
ar
X

iv
:2

20
2.

12
29

9v
2

[c
s.

C
L

]
24

 N
ov

 2
02

2

Capturing Failures of Large Language Models via
Human Cognitive Biases

Erik Jones
UC Berkeley

erjones@berkeley.edu

Jacob Steinhardt
UC Berkeley

jsteinhardt@berkeley.edu

Abstract

Large language models generate complex, open-ended outputs: instead of out-
putting a class label they write summaries, generate dialogue, or produce working
code. In order to asses the reliability of these open-ended generation systems, we
aim to identify qualitative categories of erroneous behavior, beyond identifying
individual errors. To hypothesize and test for such qualitative errors, we draw
inspiration from human cognitive biases—systematic patterns of deviation from ra-
tional judgement. Specifically, we use cognitive biases as motivation to (i) generate
hypotheses for problems that models may have, and (ii) develop experiments that
elicit these problems. Using code generation as a case study, we find that OpenAI’s
Codex errs predictably based on how the input prompt is framed, adjusts outputs
towards anchors, and is biased towards outputs that mimic frequent training exam-
ples. We then use our framework to elicit high-impact errors such as incorrectly

deleting files. Our results indicate that experimental methodology from cognitive
science can help characterize how machine learning systems behave.1

1 Introduction

Recent large language models have achieved new, exciting capabilities. In contrast to traditional
classifiers, these models can generate open-ended text, enabling use cases like summarization
[Stiennon et al., 2020], dialog [Thoppilan et al., 2022], and code generation [Chen et al., 2021].

The open-ended power of these systems, however, poses new reliability challenges. We must
understand not only when systems err, but also the kinds of errors they make, as some errors are much
more costly than others. For example, erroneous code that does not compile is less dangerous than
code that deletes all files in the home directory. Studying how frequently an error occurs is difficult,
as the same error (e.g. delete all files) can appear in a wide range of syntactically diverse outputs.
In order to better reason about how complex systems err, we need methods to test whether systems
make the same qualitative error across different prompts, even when the generated outputs differ.

To study these reliability challenges, we primarily focus on code generation models. Such models
complete programs from comments, descriptions of code functionality, or initial lines of code.
Code generation is particularly amenable to study since it is objective: generated solutions are
unambiguously correct or incorrect. Yet it is also open-ended: the set of programs a model could
output is arbitrarily large, so the rate at which a specific program is outputted is not very descriptive.

Many of the reliability challenges posed by code generation models, and open-ended systems broadly,
also arise when studying qualitative failures in human decision making. These failures, called
cognitive biases, are systematic ways in which humans deviate from rational judgment [Tversky
and Kahneman, 1974]. For example, Tversky and Kahneman find that humans inadequately adjust

1Code for this paper is available at https://github.com/ejones313/codex- cog- biases.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/ejones313/codex-cog-biases

“””

Cognitive bias:
humans change their
answers based on
irrelevant content

Possible failure:
Codex relies on
semantically irrelevant
parts of the prompt

Failure-Eliciting Prompts

def sum(x, y):

Sum x and y

“””

print(’Hello world’)

def concatenate(s):

“””
Concatenate all strings in s

“””

Model Outputs

Just concatenate:

return ‘’.join(s)

Concatenate appended to sum:

print(“Hello World”)

Figure 1: Illustration of our experimental framework. We use a cognitive bias (framing effect) to
inspire a potential code generation failure mode (relying on irrelevant information). We then
transform inputs in a way that we suspect will elicit the failure mode (prepending sum). We evaluate
whether the modifications lower accuracy, and if the output is an instance of the targeted failure mode.

estimates away from initial values, and disproportionately recall distinctive examples. To uncover
cognitive biases, Tversky and Kahneman ask questions that are crafted to systematically reveal some
qualitative irrationality. They uncover insights into human behavior from the diverse responses,
without complete mechanistic insight into the minds that they aim to analyze.

In this work, we extend Tversky and Kahneman’s experimental methodology and results to elicit
failure modes of large code and language models, without relying on complete mechanistic insight
into their behavior (Figure 1). Given a potential failure mode (e.g. relying on irrelevant information in
the input), we construct a transformation over inputs that largely preserves semantics, but that we
suspect will elicit the failure (e.g. prepending an irrelevant function). We first test if the model is
sensitive to the transformation, by measuring if it decreases accuracy. Then, we check that the model
outputs have elements that are indicative of the targeted failure (e.g. copies the irrelevant function).

We draw on four different cognitive biases to hypothesize potential failures of OpenAI’s Codex [Chen
et al., 2021] and Salesforce’s CodeGen [Nijkamp et al., 2022], then apply our framework to each.
Our results indicate that these models often rely on irrelevant information when generating solutions,
adjust solutions towards related-but-incorrect solutions, are biased based on training-set frequencies,
and reverts to computationally simpler problems when faced with a complex calculation. We also
apply our framework to OpenAI’s GPT-3 [Brown et al., 2020], and show that it updates its predictions
towards anchors, and predictably adjusts its responses based on the question framing.

Finally, we show that our framework can uncover high-impact errors: errors that are harmful and
difficult to undo. Specifically, we use our framework to systematically generate prompts where Codex
erroneously deletes files. Our results indicate that experimental methodology from cognitive science
can help uncover failure modes of complex machine learning systems.

2 Related Work

Large language models. Recent work has developed large, capable, autoregressive language models,
which predict future tokens from past tokens [Radford et al., 2019, Wang and Komatsuzaki, 2021,
Brown et al., 2020, Chen et al., 2021, Rae et al., 2021]. These models can be used for open-ended
generation tasks such as summarization [Stiennon et al., 2020, Ziegler et al., 2019, Rothe et al., 2020],
dialogue [Ram et al., 2018, Thoppilan et al., 2022], and long form question answering [Fan et al.,
2019], among others. Model-generated code has been used to solve both programming and statistics
questions [Chen et al., 2021, Tang et al., 2021].

There is some existing work studying failures of large language models. Benchmarks that measure
model performance on multiple choice questions [Wang et al., 2019b,a, Hendrycks et al., 2021b],
mathematics [Hendrycks et al., 2021c, Cobbe et al., 2021], long-form question answering [Lin et al.,
2021, Gabriel et al., 2021, Shuster et al., 2021, Krishna et al., 2021], and coding problems [Hendrycks
et al., 2021a, Chen et al., 2021] reveal inputs that the model errs on, but not the kind of error it makes.
Another line of work shows that test-based language models can internalize bias and stereotypes
[Sheng et al., 2019, Nadeem et al., 2020, Groenwold et al., 2020, Blodgett et al., 2021, Gehman
et al., 2020], and proposes applying fairness measurements from cognitive social sciences to machine
learning systems [Jacobs and Wallach, 2021]. Some work adversarially prompts models to leak
training data [Carlini et al., 2020], or output specific content [Wallace et al., 2019, Carlini et al.,

2

Test
Cases

Prompt

def largest_divisor(n: int) -> int:
""" For a given number n, find the largest
number smaller than n that divides n evenly
>>> largest_divisor(15)
5

“””

def sum(x, y):

“””
Returns the sum of x and y

“””
print(’Hello world’)

Irrelevant
Preceding

Function

Canonical for i in reversed(range(n)):

Solution if n % i == 0:

return i

def check(candidate):
assert candidate(3) == 1
assert candidate(49)== 7

def concatenate(s):

“””
Returns the concatenation of all
strings in s

“””
print(‘Hello world’)

Figure 2: Left. Example of a HumanEval problem from Chen et al. [2021]. The problem contains a
prompt (blue), a canonical solution to the prompt (green), and a few test-cases (black). The prompt
contains two components: a function signature (first line), and a docstring (remaining lines). Right.
Illustration of our framing experiment. The transformed prompt (everything above the black line)
contains an irrelevant preceding function (IPF) prepended to a prompt from HumanEval (blue). The
IPF contains a randomly chosen prompt from HumanEval (purple) and a framing line (red). The
output Codex generates (below the black line) matches the framing line. When we omit the random
HumanEval prompt and the framing line (leaving only blue), Codex produces the correct output.

2020]. And a final line of work identifies additional potential failures of current and future machine
learning systems [Bender et al., 2021, Bommasani et al., 2021, Weidinger et al., 2021].

Cognitive biases. Tversky and Kahneman [1974] define human cognitive biases: systematic patterns of
deviation from rational judgment. They observe that humans employ heuristics when computing
probabilities or assessing values, and that these heuristics lead to predictable errors. Follow-up work
has added to, refined, and validated the set of known cognitive biases [Tversky and Kahneman, 1973,
1981, Strack et al., 1988, Kahneman and Frederick, 2002, Windhager et al., 2010, Meyer, 2014].

Some known failure modes of large language models resemble cognitive biases. Zhao et al. [2021]
and Liu et al. [2021] show that the specific random samples used for few-shot learning can change
GPT-3’s prediction on binary and multiple choice tasks. Similarly, Wallace et al. [2019] show that
innocuous prompts can routinely generate toxic model output. Our framework builds on this work by (i)
identifying the link to cognitive biases, (ii) focusing on open-ended generation, and (iii) leveraging
Tversky and Kahneman’s experimental methodology to elicit qualitative failure modes.

3 Code Generation Experiments

3.1 Models

We study two code models: OpenAI’s Codex [Chen et al., 2021], and Salesforce’s CodeGen. [Nijkamp et
al., 2022]. Both models are autoregressive—given a sequence of previous tokens, they predict the
next token. Practitioners query these code models with partial programs, docstrings, or function
signatures, and obtain completions as output.

Codex. We study OpenAI’s Codex, a large language model trained to generate code from docstrings
[Chen et al., 2021]. We use the OpenAI API to query the “davinci-001” version of Codex, and use
greedy decoding to generate solutions. Details of this model architecture are not public, but it is likely
similar to the largest model from Chen et al. [2021]: a 12B parameter version of GPT-3 [Brown et al.,
2020] that is fine-tuned on GitHub instead of the CommonCrawl.

CodeGen. We additionally study the 6.2 billion parameter “mono” version of CodeGen, which is
trained on text data and fine-tuned on GitHub. Unlike Codex, the weights of CodeGen are publicly
available,2 so we run inference locally. We use greedy decoding to generate solutions.

3.2 Benchmarks

In order to identify whether code models some failure mode, we need to generate prompts that elicit
that failure. To do so, we systematically apply transformations to standard prompts. We use two
benchmarks as sources of prompts to transform: HumanEval, and MathEquations.

2 https://github.com/salesforce/CodeGen

3

https://github.com/salesforce/CodeGen

Functional accuracy Outputs framing line

Framing Line

r a i s e NotImplemented

pass

assert False

return False

p r i n t (" H e l l o wor ld!")

Model
C O D E X

CODEGEN

C O D E X
CODEGEN

C O D E X
CODEGEN

C O D E X
CODEGEN

C O D E X
CODEGEN

O R I G I NA L F R A M E D

32:9 2:4
25:6 1:5

32:9 3:0
25:6 2:1

32:9 3:3
25:6 4:2

32:9 4:9
25:6 3:6

32:9 10:6
25:6 11:0

OR I G I NA L F R A M E D

1:4 91:7
0:0 79:3

9:7 92:7
0:0 78:7

0:0 92:7
0:1 72:6

11:5 65:6
0:0 64:6

0:0 62:2
0:0 58:2

Table 1: Results of the framing experiments. We compare functional accuracy and the rate at which
framing line is outputted over HumanEval with (framed) and without (original) irrelevant preceding
functions. We find that the irrelevant preceding functions lower functional accuracy across all framing
lines for Codex and CodeGen. Moreover, we find that the outputted function often appears verbatim in
the generated output, suggesting that both models rely on irrelevant information in the prompt.

HumanEval. We use the HumanEval benchmark as a diverse source of “normal” prompts [Chen et
al., 2021]. HumanEval contains 164 programming problems, each of which includes a function
signature and a docstring. The docstring contains an English description of the desired functionality
and a few example input-output pairs. HumanEval also contains a canonical solution for each
program, which we use in Section 3.3.2. We give an example problem from HumanEval in Figure 2.

MathEquations. We also curate a set of prompts of basic arithmetic functions. For example, we
prompt Codex to “Write a function that sums the squares of its inputs”, or “Write a function that
sums its inputs called product_plus_five”. Further details are given in Sections 3.3.3 and 3.3.4.

3.3 Empirical results

In this section, we show how cognitive biases can (i) inspire hypotheses for potential failure modes,
and (ii) help us design experiments to test these hypotheses. Our approach has three steps. First, we
construct a transformation over prompts that largely preserves semantics, but that we suspect will
elicit a specific cognitive-bias-inspired failure mode. Next, we measure if code models are
sensitive to the transformation, by measuring the decrease in accuracy. And finally, we check that the
generated output has elements that are indicative of the targeted failure mode. Our approach mirrors
the high-level methodology from Tversky and Kahneman [1974]; we empirically elicit specific failure
modes using targeted prompts, without complete mechanistic insight into the system that we study.

We draw inspiration from four cognitive biases: the framing effect (Tversky and Kahneman [1981];
Section 3.3.1), anchoring (Tversky and Kahneman [1974]; Section 3.3.2), the availability heuristic
(Tversky and Kahneman [1973]; Section 3.3.3), and attribute substitution (Kahneman and Frederick
[2002]; Section 3.3.4).

3.3.1 Inspiration: Framing effect

We first draw inspiration from the framing effect: predictable shifts in human responses when the
same problem is framed in different ways [Tversky and Kahneman, 1981]. In their study identifying
the effect, Tversky and Kahneman [1981] find that subjects favor certainly saving 200 people over
saving 600 with probability 1/3, yet prefer losing 600 with probability 2/3 over certainly losing 400
(even though these are equivalent). At its core, the framing effect shows how humans can rely on
semantically irrelevant information when they make decisions.

Using the framing effect as inspiration, we hypothesize that code generation models may generate
solutions exclusively from irrelevant information in the prompt. To elicit this failure, we transform
HumanEval prompts by prepending irrelevant preceding functions. Specifically, to generate irrelevant

4

def common(l1, l2):
ret = set()
for el in l1:

for var in [l1, l2]:
print(var)

Anchor Function

HumanEval Prompt
(def common…)

First solution lines

Full Prompt
for var in [l1, l2]:

if el1 in var:
ret.add(e1)

return sorted(ret)

Figure 3: Illustration of our anchoring experiment using a real example (expanded in Figure 7). We
construct the anchor function (left) by taking the function signature from the HumanEval prompt
(blue), appending n lines of the canonical solution (green), then adding anchoring lines (red). We
construct the full prompt (center) by combining the anchor function, the original HumanEval prompt,
and the first n lines of the canonical solution. The solution Codex generates (right) combines elements of
a canonical solution (checks condition and adds to ret.), with the anchor function (for var loop).

preceding functions, we combine a random prompt from HumanEval with a framing line. We test
five framing lines: r a i s e NotImplementedError , pass , assert False , return False , and
p r i n t (" H e l l o wor ld!") . We first check that prepending these irrelevant preceding functions
decreases functional accuracy.3 Next, to test if models relied on irrelevant information in the prompt,
we measure how much more frequently the framing line appears verbatim in the generated output.

We report the results of our framing experiments in Table 1. We find that adding irrelevant preceding
functions consistently lowers functional accuracy, by between 22.3 and 30.5 points for Codex, across
the different framing lines we tested. Moreover, both models frequently generate the framing line:
81% of the time for Codex and 70.7% of time for CodeGen, compared to only 4.5% and 0.0%
over untransformed prompts respectively. These results suggest that code generation models can
erroneously rely on irrelevant information in the prompt in predictable ways, even in the extreme
case when doing so contradicts the type specification in the function signature (return False).

3.3.2 Inspiration: Anchoring

We next draw inspiration from anchoring: humans’ tendency to insufficiently adjust their estimates
away from initial values. For example, Tversky and Kahneman [1974] find that subjects’ median
estimate for the fraction of African countries in the UN shifts from 25% to 45%, based on whether
they were first asked if the fraction was greater or less than 10% and 65%, respectively. Anchoring
captures how humans adjust to partial information, versus irrelevant information (framing effect).

Using anchoring as inspiration, we hypothesize that code generation models may adjust their output
towards related solutions, when these solutions are included in the prompt. To elicit this failure, we
prepend anchor functions to prompts: functions that are similar to a valid solution for a HumanEval
prompt, but contain some error. We first check that prepending these anchor functions decreases
functional accuracy, as in Section 3.3.1. Next, to test if models adjust their output towards related
solutions, we check that the generated solution contains elements of the anchor function.

We aim to construct anchor functions that are similar to functions in HumanEval prompts and that
compile, but are incorrect. To do so, we take a prefix of the canonical solution, then add additional
anchor lines that produce an incorrect output. See Figure 3 for an example. We describe two types of
anchor lines, and how we test their influence on the generated solutions, in the following paragraphs.

Print-var anchor lines. We first study print-var anchor lines, which iterate over all variables in the
function signature and print their values. For a function with inputs var1 and var2 , the associated
print-var anchor lines are:

f o r var i n [var1 , var2] :
p r i n t (va r)

To study the influence of the print-var anchor lines on the solution, we measure how often (i) just the
first line (for loop), and (ii) just the second line (print statement) appear in the generated solution.

Add-var anchor lines. We also study add-var anchor lines, which return the sum of all variables in
the function signature (converted to strings). For a function with inputs var1 and var2 , the add-var
anchor lines are:

3Following Chen et al. [2021], we measure performance on HumanEval with functional accuracy: the fraction
of programs that pass all of the test cases provided at the url: https://github.com/openai/human- eval.

5

https://github.com/openai/human-eval.

C
o
d

e
x

Fu
n
ct

io
n
a
l
a
cc

.

Fr
a
c.

 s
o
lu

ti
o
n
s

C
o
d

e
G

e
n

Fu
n
ct

io
n
a
l
a
cc

.

Fr
a
c.

 s
o
lu

ti
o
n
s

0.8
Change in functional accuracy with anchor functions

0.6

0.4

Anchor function influence on generated solutions

For var loop
Prints var
Exact copy

0.2 No anchor function

Anchor function

0.0

0.8
No anchor function

0.6 Anchor function

0.4

0.2
For var loop
Prints var
Exact copy

0.0
0 1 2 3 4 5 6 7

Canonical solution lines prompted
8 0 1 2 3 4 5 6 7 8

Canonical solution lines prompted

Figure 4: Results of the print-var anchoring experiment. Left. We measure the functional accuracy of
Codex (top) and CodeGen (bottom) with no anchor function prepended (baseline acc) and with a print-
var anchor function prepended (anchor acc), and find that prepending the anchor function consistently
lowers accuracy. Right. We measure the influence of the anchor function on the generated solution
by plotting the fraction of generated solutions that contain “ for var i n ” from the print-var anchor
prompt (for var loop), the fraction of generated solutions that include “p r i n t (var) ” (prints var),
and the fraction of generated solutions that output the anchor function verbatim without additional
content (exact copy), as a function of the number of canonical solution lines added to the prompt.

tmp = s t r (va r 1) + s t r (va r 2)
return tmp

To study the influence of the add-var anchor lines on the solution, we measure how often return
tmp appears in the generated solution.

Print-var results. In Figure 4, we show that prepending print-var anchor functions consistently
lowers Codex and CodeGens’ functional accuracies across different number of prompted canonical
solution lines. We vary the number of canonical solution lines to study prompts of different difficulties;
as the number of solution lines increases, the number remaining lines models must produce decreases.4

We additionally find that elements of anchor function often appear in both models’ outputs, suggesting
that code generation models adjust their solutions towards related solutions. In Figure 4, we see that
Codex generates f o r var in 32%–61% of solutions when at least one line of the canonical solution is
included, and generates p r i n t (v a r) in 26%–44% of solutions. CodeGen’s behavior is qualitatively
similar. Both models sometimes even incorporate the anchor lines into correct solutions; on Codex,
the f o r var loop is used in a correct solution for 3%–11% of all outputs, while p r i n t (v a r) is used in a
correct solution for 1%–9% of outputs.

Control experiments. One concern might be that models just outputs the anchor function verbatim, as
in Section 3.3.1, but we find that this does not explain the full results—both models include anchor lines
in many solutions that do not copy the anchor function verbatim. We also find that changing the name
of the anchor function leads to only negligible changes; see Appendix A.1 for details.

Add-var results. We next consider results for add-var anchor lines. Full results for the add-var
anchor prompts are presented in Appendix A.1 and are qualitatively similar to the print-var results.

One again, we find that prepending the anchor function consistently lowers functional accuracy.
Moreover, the outputted solutions often include an anchor line. For example, Codex and CodeGen
generate return tmp in 26%–46% and 13%–79% of solutions respectively, depending on how many
canonical solution lines we prompt with. These results are not caused by models outputting the
anchoring function verbatim: this only occurs between 7% and 12% of the time for Codex, and 4%
and 12% for CodeGen. Overall, our findings suggest that code generation models can err by adjusting
its output towards related solutions, when the solutions are included in the prompt.

4We filter out programs whose entire canonical solution would appear in the prompt; see Appendix A.1.

6

”””
Write a function that squares
the sum of its inputs

“””
def square_sum(x, y):

return x ** 2 + y ** 2

“””
Write a function that sums its

inputs called product_plus_2 “””
def product_plus_2(x, y):

return x * y + 2

Figure 5: Left. Availability heuristic example where Codex mixes up the order of operations. The
correct function signature (blue), square_sum matches the prompt. However, the incorrect function
call (red) instead squares its inputs before summing them. The prompt is above the horizontal line,
while the generated code is below. Right. Attribute substitution example where Codex relies on the
function name to generate output. Codex correctly generates the desired function name (blue), but
errs by using the function name instead of the prompt to generate the return statement (red).

3.3.3 Inspiration: Availability heuristic

We next draw inspiration from the availability heuristic: the tendency of humans to evaluate how
frequently an example occurs based on how easy it is to recall. For example, Tversky and Kahneman
[1973] find that humans tend to incorrectly report that there are more first words that start with “r”
and “k” than have third letter “r” and “k”, because the former quickly come to mind.

Using the availability heuristic as motivation, we hypothesize that code generation models may err by
outputting solutions to related prompts that appear more frequently in the training set. To elicit this
failure, we start with prompts that apply a unary operation before a binary operation (unary-first), then
flip the order (binary-first). Programmers tend to apply unary operations first (e.g. when computing
Euclidean distances or variances), so we conjecture that they appear more frequently on GitHub. We
first check that flipping the order of operations decreases accuracy. Next, to test if code generation
models instead outputs related prompts that occur more frequently in the training set, we measure
whether code generation models instead output the unary-first solution.

We consider all 12 combinations of the binary operations sum, difference, and product, with unary
operations square, cube, quadruple, and square root. Focusing on Codex,5 we find that accuracy
drops from 50% to 17% when flipping the order from unary-first to binary-first. Among combinations
where flipping the order leads to error, we find that 75% of the binary-first outputs are the unary-first
solution. We exhibit one such error in Figure 5: when prompted to square the sum of its inputs, Codex
generates the correct function name (square_sum), but reverses the order of operations. Our results
suggest that Codex can err by outputting solutions to related, frequent prompts in the training set.

Control experiments. One worry is that the dip in performance is due the instructional nature of our
prompts. We rule this out by evaluating Codex on prompts where the docstring appears beneath the
function signature and is a definition rather than command, to more closely mimic some functions on
GitHub. We obtain qualitatively similar results on these prompts, see Appendix A.4 for details.

3.3.4 Inspiration: Attribute substitution

Finally, we draw inspiration from attribute substitution: the human tendency to respond to a com-
plicated question using a simpler, related question [Kahneman and Frederick, 2002]. For example, a
professor when asked how likely a candidate is to be tenured, may instead respond with how
impressive they found their job talk.

Using attribute substitution as inspiration, we hypothesize that Codex may use simple-but-incorrect
heuristics to generate solutions. To elicit this failure, we add requests for conflicting function names to
MathEquation prompts. For example, in Figure 5 we prompt Codex to write a program that sums its
inputs called product_plus_2 . We first check that adding conflicting function names decreases
Codex’s functional accuracy. Next, to test if Codex uses simple-but-incorrect heuristics to generate
solutions, we check whether the generate solution matches the function name.

We evaluate Codex using 90 MathEquation prompts where the desired solution and requested
function name differ. To construct prompts, we begin with a prompt that Codex originally solves

5We find that CodeGen often produces nonsensical solutions on the style of prompts used in Section 3.3.3,
Section 3.3.4, and Section 5, so we focus primarily on Codex.

7

| {z }

Name location

No name
Docstring

Function signature
Name first

Correct

100.0
4.4
4.4
4.6

Matches function name

-
80.0
70.0
51.7

Other error

0.0
15.6
25.6
43.7

Table 2: Results of the attribute substitution experiments. We report accuracy when we do not request
a contradictory function name (no name), we request a function name in the docstring (docstring), in
the function signature below the docstring (function signature), or above the docstring (name first).
Overall, we find that Codex frequently generates solutions based on the function name.

(sum, difference, or product), then append a request for a specific, contradictory function name (see
Appendix A.4 for full implementation details).

We report our experimental results in Table 2. When we request a conflicting function name, Codex’s
accuracy drops from 100% to only 4.4%-4.6%. This finding holds whether we request the function
name in the docstring, write it in the function signature below the docstring, or write the function
name over a simple description on the function. Moreover, for between 52% and 80% of prompts,
Codex responds with the function specified in the function name. Our results indicate that Codex can err
by using simple-but-incorrect heuristics to generate solutions.

4 GPT-3 Results

In this section, we extend our study from Codex to GPT-3. To test GPT-3 for failure modes, we try to
faithfully reproduce and extend the anchoring experiment of Jacowitz and Kahneman [1995] and
framing effect experiment of Tversky and Kahneman [1981].

Anchoring. As in Section 3.3.2 we study Section 3.3.2, we study anchoring: humans’ tendency to
insufficiently adjust their estimates away from an initial value [Tversky and Kahneman, 1974]. We
largely replicate the anchoring study presented in Jacowitz and Kahneman [1995], but test the
“davinci-001” version of OpenAI’s GPT-3 instead of humans.

In their original experiment, Jacowitz and Kahneman asked students to estimate quantities such as the
length of the Mississippi river in miles. They then asked new students to estimate the same quantities,
but first gave them a upper or lower bound on the true answer (e.g. the Mississippi river is longer than
700 miles), which they call anchors. They find that students tend to underestimate the true quantity
when prompted with the lower anchor, and overestimate it when prompted with the upper anchor.

We adapt the anchoring study from Jacowitz and Kahneman [1995] by finding the true answer for 14
of their 15 original questions6, then computing upper and lower anchors by increasing and decreasing
the true answer by a fixed percentage p. See Appendix B.1 for a full list of questions and true answers.
As an example, if the actual answer is 2000 and p is 50%, the upper anchor is 3000 and the
lower anchor is 1000. We use this bound as an anchor, so that a typical prompt might be:

The length of the Mississippi river (in miles) is greater than 1000.
anchor

What is the length of the Mississippi River (in miles)? Answer:

To study anchoring in GPT-3, we measure how prepending the anchor changes GPT-3’s estimate.
We categorize four potential changes: the estimate does not change, the estimate shifts towards the
anchor, the estimate shifts away from the anchor, and the estimate is gibberish. We report the results in
Table 3 for p 2 f20%; 50%g. We find that GPT-3 routinely updates its estimate when an anchor is
prepended, and tends to shift the estimate towards the anchor. We also find that while GPT-3’s
updated estimate sometimes matches the anchor exactly (67% of the time), it also often lands between
the anchor and the original prediction, mirroring the behavior of humans.

Our replication has a few limitations. Like the original study our sample size is small, we construct
prompts with templates, and many of the outputs—on average 41%—are gibberish. Nevertheless,
our results suggest that GPT-3 incorporates the anchor during estimation.

6We omit a question asking for the number of bars in Berkeley, CA, since the answer is ambiguous

8

Anchor change to model output
p No change Towards anchor Away from anchor Gibberish

20% 10.7 28.6
50% 14.3 42.9

10.7 50.0
10.7 32.1

Table 3: Results of the adaptation of the anchoring study from Jacowitz and Kahneman [1995] on
GPT-3. We consider anchors that are 20% and 50% increases and decreases from the ground truth
answer, and measure how often GPT-3’s revised prediction does not change, shifts towards / away
from the anchor, or is gibberish, aggregated across lower and upper anchors.

“””
Delete all files in an inputted directory that import all
of statsmodels, plotly, seaborn, and scipy

“”” import

os import
re

def delete_all(directory):
for root, dir, file in os.walk(directory):

for f in files:

with open(os.path.join(root, f), ‘r’) as fp:
if re.search(“import statsmodels”, fp.read()):

os.remove(os.path.join(root, f))

Figure 6: Left. Example where Codex incorrectly deletes files. We prompt Codex to delete files
containing all of statsmodels, plotly, seaborn, and scipy. Codex correctly iterates through all files in
the inputted directory (blue), but then incorrectly deletes all files containing statsmodels (red), as
attribute substitution suggests. Right. Plot describing the errors Codex makes as a function of the
number of packages. We find that Codex often incorrectly deletes files if they contain any of the
listed packages, and relies more on just the first package as the number of packages increases.

Framing effect. As in Section 3.3.1, we study the framing effect: predictable shifts in human
responses when the same problem is framed in different ways. We largely replicate the framing exper-
iment presented in Tversky and Kahneman [1981]: we compare GPT-3’s responses to two equivalent
decisions: choosing to either deterministically save (or let die) some fraction of a population, or to
probabilistically save (let die) the whole population.

We measure the rate at which GPT-3 chooses the probabilistic option across different population sizes
and different fractions / probabilities. See Section B.2 for full results. When using the probability in
the original study, GPT-3 qualitatively mirrors humans: it chooses the probabilistic option far more
frequently under the “not save” framing than under the “save framing”. However, for higher
probabilities, GPT-3 consistently chooses the probabilistic option for both framings; we conjecture
that humans could exhibit similar behavior in this regime, since the probabilistic option is more
certain. Overall, our results suggest that GPT-3 selects different options based on the framing, and
could be a test-bed to identify qualitative human behaviors without running full human studies.

5 High-Impact Errors

We have shown how our framework helps us elicit failures of large language models. In this section,
we use our framework to construct cases where Codex makes high-impact errors: harmful errors that
are hard to undo. Specifically, we construct prompts where Codex incorrectly deletes files.

As in Section 3.3.4 we draw inspiration from attribute substitution: the tendency of humans to respond to
a complex question with a simpler, related question. Using attribute substitution as motivation, we
hypothesize that Codex may simplify complex expressions such as conjunctions. Instead of checking
all components of a conjunction at once, it might “give up” and consider subsets of the components
individually (e.g. checking for A or A _ B instead of A ̂ B). To elicit this failure, we prompt Codex to
delete files containing specific sets of package imports; see Figure 6 for an example. We measure how
often Codex generates a simpler output that erroneously deletes files, as well as how often it
produces the correct output. See Appendix C for additional details.

We test for two types of simpler outputs: code deleting all files containing first package in the set
(i.e. A instead of A ^ B), and code deleting all files containing any package in the set (i.e. A _ B

9

instead of A ^ B). The latter operation is computationally simpler than checking if a file contains all
packages, since Codex can delete a file whenever a single package in the set appears.

In Figure 6, we illustrate the breakdown of the errors Codex makes as a function of the number of
package imports in the prompt. We find that Codex erroneously deletes files on at least 80% of
prompts when the number of package imports is at least three, despite producing a correct output on
90% of prompts when the number of packages is at most two. Moreover, we find that Codex
increasingly errs by using only the first package as the problem gets more challenging (i.e. the number of
packages increases), as attribute substitution predicts.

Control experiments. To very that our findings generalize to different classes of realistic prompts,
we test Codex on prompts containing a descriptive docstring beneath the function signature
de lete_al l _with_ l ibrar ies (d i rec t ory) . We observe qualitatively similar results, though
we find more instances of low-impact errors; see Appendix C for details. Overall, our results
demonstrate how our framework can preemptively elicit high-impact errors, like erroneous deletions.

6 Discussion

In this work, we identify and test for classes of errors that open-ended generation systems can make,
using cognitive biases as motivation. To do so, we generate hypotheses for potential qualitative failure
modes, then construct transformations over prompts that elicit these failures. Our experiments uncover
deficiencies of Codex, CodeGen, and GPT-3, and elicit high-impact errors that are challenging to
undo. While we focus on a few specific failure modes, future work could apply our framework to
uncover additional failures. Moreover, our framework queries systems as a black-box, so it could be
used to quickly probe for errors in future systems as they are released.

Some of our results highlight how optimizing likelihood could be at odds with human intent. For
example, over GitHub, programs may more often match their function signature than docstring
(Section 3.3.3), or tend to complete to pass if the preceding function does (Section 3.3.1). Neverthe-
less, our results elicit qualitative errors regardless of the “correct” behavior (i.e. even when what is
incorrect and correct flips), and demonstrate the importance of documenting qualitative failures.

The reliability challenges posed by the open-ended generation systems that we study sometimes
also apply to classifiers. Some classification errors can be more costly than others [Oakden-Rayner et
al., 2020], classifiers may use irrelevant information to make predictions [Sagawa et al., 2020], and
input-level transformations like universal adversarial triggers [Wallace et al., 2019] and distribution
shifts [Hendrycks and Dietterich, 2019] induce errors. However, while classification errors may be
succinctly summarized with a confusion matrix, generation errors cannot, since each output appears
infrequently. To tame the large output space, our transformations must induce categories of errors that
we can reliably measure. Despite this additional constraint, we are able to construct model-agnostic
transformations: we do not use the training data, model parameters, or even output logits. Our success in
this restricted setting demonstrates the comparative brittleness of completion systems.

We present a method to systematically elicit errors from large language models. While we believe
our work is important to understand model behavior, bad actors could exploit the errors we reveal
(e.g. by deleting files on systems with a Codex back-end). Nevertheless, we introduce new robustness
challenges for developers and identify misuses of these models, which we feel supersedes this risk.

As a subroutine in our experimental pipeline, we use cognitive biases as inspiration to identify
potential failure modes. This is an example of using a reference system—a system that is analogous to
the ML models we study in some meaningful way—to generate insights into ML systems [Steinhardt,
2022]. We use humans as the reference, focusing specifically on their susceptibility to cognitive
biases. Other references, such as complex systems or evolution, may uncover new errors and insights.
Moreover, ML systems could additionally err in ways that known systems do not, so it will also be
useful to have intrinsic methods for characterizing model errors. Overall, our work underscores the
need for more extensive testing of generative ML systems before their widespread deployment.

Acknowledgements

We thank the anonymous reviewers, Ruiqi Zhong, Jean-Stanislas Denain, Aditi Raghunathan, Jessy
Lin, and Lawrence Chan for feedback. This work was supported by NSF Award Grant no. 1804794.

10

References
Emily Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchel. On the dan-

gers of stochastic parrots: Can language models be too big? In ACM Conference on Fairness,
Accountability, and Transparency (FAccT), 2021.

Su Lin Blodgett, Gilsinia Lopez, Alexandra Olteanu, Robert Sim, and Hanna Wallach. Stereotyping
norwegian salmon: An inventory of pitfalls in fairness benchmark datasets. In Association for
Computational Linguistics (ACL), 2021.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson,
Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel,
Jared Quincy Davis, Dorottya Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Ste-
fano Ermon, John Etchemendy, Kawin Ethayarajh, L i Fei-Fei, Chelsea Finn, Trevor Gale, Lauren
Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Peter
Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil
Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani,
Omar Khattab, Pang Wei Koh, Mark Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar,
Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li , Xuechen Li,
Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell, Zanele
Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman, Allen Nie, Juan Car-
los Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr, Isabel Papadimitriou,
Joon Sung Park, Chris Piech, Eva Portelance, Christopher Potts, Aditi Raghunathan, Rob Reich,
Hongyu Ren, Frieda Rong, Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa
Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Rohan
Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Wang, Bohan Wu, Jiajun Wu,
Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei Zaharia, Michael Zhang,
Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang. On the
opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, Alina Oprea, and Colin Raffel.
Extracting training data from large language models. arXiv preprint arXiv:2012.07805, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Angela Fan, Yacine Jernite, Ethan Perez, David Grangier, Jason Weston, and Michael Auli. ELI5:
Long form question answering. In Association for Computational Linguistics (ACL), 2019.

11

Saadia Gabriel, Asli Celikyilmaz, Rahul Jha, Yejin Choi, and Jianfeng Gao. GO FIGURE: A meta
evaluation of factuality in summarization. In Findings of the Association for Computational
Linguistics (Findings of ACL), 2021.

Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A Smith. Real-
toxicityprompts: Evaluating neural toxic degeneration in language models. arXiv preprint
arXiv:2009.11462, 2020.

Sophie Groenwold, Lily Ou, Aesha Parekh, Samhita Honnavalli, Sharon Levy, Diba Mirza, and
William Yang Wang. Investigating african-american vernacular english in transformer-based text
generation. In Empirical Methods in Natural Language Processing (EMNLP), 2020.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. In International Conference on Learning Representations (ICLR),
2019.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge
competence with APPS. In Advances in Neural Information Processing Systems (NeurIPS), 2021a.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference on
Learning Representations (ICLR), 2021b.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
Advances in Neural Information Processing Systems (NeurIPS), 2021c.

Abigail Z. Jacobs and Hanna Wallach. Measurement and fairness. In ACM Conference on Fairness,
Accountability, and Transparency (FAccT), 2021.

Karen E. Jacowitz and Daniel Kahneman. Measures of anchoring in estimation tasks. Personality
and Social Psychology Bulletin, 21(11):1161–1166, 1995.

Daniel Kahneman and Shane Frederick. Representativeness revisited: Attribute substitution in
intuitive judgment. In Heuristics and Biases: The Psychology of Intuitive Judgement, pages 49–81.
2002.

Kalpesh Krishna, Aurko Roy, and Mohit Iyyer. Hurdles to progress in long-form question answering.
In North American Association for Computational Linguistics (NAACL), 2021.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958, 2021.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What
makes good in-context examples for GPT-3. arXiv preprint arXiv:2101.06804, 2021.

David E. Meyer. Semantic priming well established. Science, 345(6196):523–523, 2014.

Moin Nadeem, Anna Bethke, and Siva Reddy. Stereoset: Measuring stereotypical bias in pretrained
language models. arXiv preprint arXiv:2004.09456, 2020.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huam Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. A conversational paradigm for program synthesis. arXiv preprint
arXiv:2203.13474, 2022.

Luke Oakden-Rayner, Jared Dunnmon, Gustavo Carneiro, and Christopher Ré. Hidden stratification
causes clinically meaningful failures in machine learning for medical imaging. In Proceedings of
the ACM Conference on Health, Inference, and Learning, pages 151–159, 2020.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI Blog, 1(8), 2019.

12

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song,
J. Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza Rutherford, Tom Henni-
gan, Jacob Menick, Albin Cassirer, Richard Powell, G. V. D. Driessche, Lisa Anne Hendricks,
Maribeth Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl, Sumanth Dathathri, Saffron
Huang, Jonathan Uesato, John F. J. Mellor, I. Higgins, Antonia Creswell, Nathan McAleese,
Amy Wu, Erich Elsen, Siddhant M. Jayakumar, Elena Buchatskaya, D. Budden, Esme Sutherland,
K . Simonyan, Michela Paganini, L . Sifre, Lena Martens, Xiang Lorraine Li , A. Kuncoro, Aida
Nematzadeh, E. Gribovskaya, Domenic Donato, Angeliki Lazaridou, A. Mensch, J. Lespiau, Maria
Tsimpoukelli, N. Grigorev, Doug Fritz, Thibault Sottiaux, Mantas Pajarskas, Tobias Pohlen, Zhitao
Gong, Daniel Toyama, Cyprien de Masson d’Autume, Yujia Li, Tayfun Terzi, Vladimir Mikulik,
I. Babuschkin, Aidan Clark, Diego de Las Casas, Aurelia Guy, Chris Jones, James Bradbury,
Matthew Johnson, Blake A. Hechtman, Laura Weidinger, Iason Gabriel, William S. Isaac, Edward
Lockhart, Simon Osindero, Laura Rimell, Chris Dyer, Oriol Vinyals, Kareem W. Ayoub, Jeff
Stanway, L. Bennett, D. Hassabis, K. Kavukcuoglu, and Geoffrey Irving. Scaling language models:
Methods, analysis & insights from training gopher. arXiv, 2021.

Ashwin Ram, Rohit Prasad, Chandra Khatri, Anu Venkatesh, Raefer Gabriel, Qing Liu, Jeff Nunn,
Behnam Hedayatnia, Ming Cheng, Ashish Nagar, Eric King, Kate Bland, Amanda Wartick, Yi Pan,
Han Song, Sk Jayadevan, Gene Hwang, and Art Pettigrue. Conversational ai: The science behind
the alexa prize. arXiv preprint arXiv:1801.03604, 2018.

Sascha Rothe, Shashi Narayan, and Aliaksei Severyn. Leveraging pre-trained checkpoints for
sequence generation tasks. Transactions of the Association for Computational Linguistics (TACL),
8:264–280, 2020.

Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and Percy Liang. Distributionally robust
neural networks for group shifts: On the importance of regularization for worst-case generalization.
In International Conference on Learning Representations (ICLR), 2020.

Emily Sheng, Kai-Wei Chang, Premkumar Natarajan, and Nanyun Peng. The woman worked as a
babysitter: On biases in language generation. In Empirical Methods in Natural Language
Processing (EMNLP), 2019.

Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela, and Jason Weston. Retrieval augmentation
reduces hallucination in conversation. arXiv preprint arXiv:2104.07567, 2021.

Jacob Steinhardt. Anchor weights for ML. Bounded Regret, 2022.

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul Christiano. Learning to summarize from human feedback. In Advances in
Neural Information Processing Systems (NeurIPS), 2020.

Fritz Strack, Leonard L. Martin, and Nobert Schwarz. Priming and communication: Social determi-
nants of information use in judgments of life satisfaction. European Journal of Social Psychology,
18(5):429–442, 1988.

Leonard Tang, Elizabeth Ke, Nikhil Singh, Nakul Verma, and Iddo Drori. Solving probability and
statistics problems by program synthesis. arXiv preprint arXiv:2111.08276, 2021.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, YaGuang Li, Hongrae Lee, Huaixiu Steven
Zheng, Amin Ghafouri, Marcelo Menegali, Yanping Huang, Maxim Krikun, Dmitry Lepikhin,
James Qin, Dehao Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts, Maarten Bosma, Yanqi
Zhou, Chung-Ching Chang, Igor Krivokon, Will Rusch, Marc Pickett, Kathleen Meier-Hellstern,
Meredith Ringel Morris, Tulsee Doshi, Renelito Delos Santos, Toju Duke, Johnny Soraker, Ben
Zevenbergen, Vinodkumar Prabhakaran, Mark Diaz, Ben Hutchinson, Kristen Olson, Alejandra
Molina, Erin Hoffman-John, Josh Lee, Lora Aroyo, Ravi Rajakumar, Alena Butryna, Matthew
Lamm, Viktoriya Kuzmina, Joe Fenton, Aaron Cohen, Rachel Bernstein, Ray Kurzweil, Blaise
Aguera-Arcas, Claire Cui, Marian Croak, Ed Chi, and Quoc Le. LaMDA: Language models for
dialog applications. arXiv preprint arXiv:2201.08239, 2022.

Amos Tversky and Daniel Kahneman. Availability: A heuristic for judging frequency and probability.
Cognitive Psychology, 5(2):207–232, 1973.

13

Amos Tversky and Daniel Kahneman. Judgment under uncertainty: Heuristics and biases. Science,
185(4157):1124–1131, 1974.

Amos Tversky and Daniel Kahneman. The framing of decisions and the psychology of choice.
Science, 211(4481):453–458, 1981.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh. Universal adversarial
triggers for attacking and analyzing NLP. In Empirical Methods in Natural Language Processing
(EMNLP), 2019.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R. Bowman. SuperGLUE: A stickier benchmark for general-purpose language
understanding systems. In Advances in Neural Information Processing Systems (NeurIPS), 2019a.

Alex Wang, Amapreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. GLUE: A
multi-task benchmark and analysis platform for natural language understanding. In International
Conference on Learning Representations (ICLR), 2019b.

Ben Wang and Aran Komatsuzaki. GPT-J-6B: A 6 billion parameter autoregressive language model,
2021.

Laura Weidinger, John Mellor, Maribeth Rauh, Conor Griffin, Jonathan Uesato, Po-Sen Huang, Myra
Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh, Zac Kenton, Sasha Brown, Will Hawkins,
Tom Stepleton, Courtney Biles, Abeba Birhane, Julia Haas, Laura Rimell, Lisa Anne Hendricks,
William Isaac, Sean Legassick, Geoffrey Irving, and Iason Gabriel. Ethical and social risks of
harm from language models. arXiv preprint arXiv:2112.04359, 2021.

Sonja Windhager, Florian Hutzler, Claus-Christian Carbon, Elisabeth Oberzaucher, Katrin Schaefer,
Truls Thorstensen, Helmut Leder, and Karl Grammer. Laying eyes on headlights: Eye movements
suggest facial features in cars. Collegium Antropologicum, 34(3):1075–1080, 2010.

Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
few-shot performance of language models. In International Conference on Machine Learning
(ICML), 2021.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

14

def common(l1, l2):
ret = set()

for el in l1: Anchor Function
for var in [l1, l2]:

print(var)

def common(l1: list, l2: list):
"""Return sorted unique common elements for two lists.
>>> common([1, 4, 3, 653, 5], [5, 1, 5, 9, 653, 121])
[1, 5, 653]
>>> common([5, 3, 2, 8], [3, 2])
[2, 3]

”””
ret = set()
for el in l1:

for var in [l1, l2]:
if el1 in var:

ret.add(e1)
return sorted(ret)

ret = set()
for el in l1:

for e2 in l2:
if e1 == e2:

ret.add(e1)
return sorted(ret)

Figure 7: Actual example of how an anchor function impacts the generated solution. We construct
the anchor function by taking the function signature from the HuamnEval prompt (blue), removing
the docstring and variable typing, appending n lines of the canonical solution (green), then adding
anchoring lines (red). We prompt Codex with the anchor function, the HumanEval prompt, and the
first n lines of the canonical solution (above black line). The full canonical solution is on the right
(green text, grey box). We see that the solution Codex generates (below black line) combines
elements of the canonical solution (e.g. checks condition and adds to ret.), with the anchor function
(e.g. for var loop).

A Additional Details and Results for Code Generation Experiments

In this section, we provide additional experimental details and results for the experiments in Section 3.
We include additional details for anchoring (Appendix A.1), the availability heuristic (Appendix A.3),
and attribute substitution (Appendix A.4).

A.1 Anchoring

In this section, we include additional experimental details and results from the anchoring experiments
in Section 3.3.2.

A.1.1 Additional experimental details

Filtering prompts for longer canonical solutions. In Section 3.3.2, we discussed how we filter out
prompts whose entire solution would appear in the prompt. For example, if the canonical solution is
4 lines but our experiment calls for six, we omit the prompt. This leaves all 164 prompts for 0
canonical solution lines added, 127 for one line added, 117 for two lines added, 107 for three lines
added„ 99 for four lines added, 82 for five lines added, 65 for six lines added, 55 for seven lines
added, and 47 for eight lines added.

Additional prompt example. In Figure 3, we showed an example prompt and output from our
anchoring experiment. We expand on these results in Figure 7 by including the entire prompt, and the
canonical solution as reference.

Changing the anchor function name We additionally study anchoring experiments where the name of
the anchor function and function to be completed differ. This is different from the experiment in
Section 3.3.2 where the names of the anchor function and the function to be completed were the
same. Unless otherwise noted, we append 1 to the name of the anchor function and 2 to the name of the
function to be completed. We propagate this change to other instances of the function name in the

15

C
o
d

e
x

Fu
n
ct

io
n
a
l
a
cc

.

Fr
a
c.

 s
o
lu

ti
o
n
s

C
o
d

e
G

e
n

Fu
n
ct

io
n
a
l
a
cc

.

Fr
a
c.

 s
o
lu

ti
o
n
s

0.8
Change in functional accuracy with anchor functions

0.6

Anchor function influence on generated solutions

returns tmp
exact copy

0.4

0.2 baseline acc

anchor acc

0.0

0.8
baseline acc

0.6 anchor acc

0.4

0.2 returns tmp

exact copy
0.0

0 1 2 3 4 5 6 7
Canonical solution lines prompted

8 0 1 2 3 4 5 6 7 8
Canonical solution lines prompted

Figure 8: Results of the add-vars anchoring experiment. Left. We measure the functional accuracy of
Codex (top) and CodeGen (bottom) without an anchor function (baseline acc), the functional accuracy
with an add-var anchor function prepended (anchor acc), and find that the anchor function consistently
lowers accuracy. Right. We measure the influence of the anchor function on the generated solution by
plotting the fraction of generated solutions that contain return tmp from the add-var anchor
prompt (returns tmp), and the fraction of generated solutions that output the anchor function verbatim
without additional content (exact copy), as a function of the number of canonical solution lines added
to the prompt.

function signature of and the docstring. However, all components of the prompts from Section 3.3.2
remain unchanged.

A.2 Additional experimental results

In this section we provide additional experimental results, including the add-var anchor function
results, tables containing numbers used to generate plots, and the results of our experiments where
the anchor function and function to be completed have different names.

Add-var results We first exhibit the results of the add-var anchor line experiments described in
Section 3.3.2. In Figure 8, we plot the functional accuracy of prompts with (baseline) and without
(anchor) prepended anchor functions for both Codex and CodeGen, and find that while the baseline
functional accuracy increases, the anchor functional accuracy remains roughly constant. Moreover,
we see that both models adjust their output to related-but-incorrect solutions; in the same plot, we
see that our test for the anchor, the presence of return tmp consistently appears in the generated
solutions, while both anchor lines rarely appear together.

Tabular results. We additionally report the full experimental results for print-var anchor functions
and add-var anchor functions for both Codex and CodeGen. Table 4, and the full experimental results
for add-var anchor function sin Table 5. These include more information than the figures, since we
additionally include the fraction of prompts that are functionally correct and pass the anchor tests.

Control experiment: changing the function name. In Figure 9 we plot the results of the print-var
anchoring experiment where we append 1 to the function name in the anchor function, and 2 to the
function name of the function to be completed (see Table 6 for numerical results). We plot the
analogous add-var results in Figure 10 and include full numerical results in Table 7. Both results are
nearly identical to the results where the function name is shared presented in Section 3.3.2, and
suggest that the shared function name is not responsible for our anchoring results.

A.3 Availability Heuristic

In this section, we augment Section 3.3.3 with additional additional availability heuristic experiments
that use non-instructional prompts. These prompts give the correct function name, add in variables x

16

Fu
n
ct

io
n
a
l
a
cc

u
ra

cy

Fr
a
ct

io
n
 o

f
so

lu
ti

o
n
s

Fu
n
ct

io
n
a
l
a
cc

u
ra

cy

Fr
a
ct

io
n
 o

f
so

lu
ti

o
n
s

Model

C O D E X

C O D E G E N

Sol. lines

0
1
2
3
4
5
6
7
8

0
1
2
3
4
5
6
7
8

Anc. acc. Prints

34:1 7:9
29:9 44:9
36:8 25:6
46:7 29:0
46:5 26:3
51:2 30:5
46:2 30:8
40:0 38:2
57:4 29:8

22:0 10:4
20:5 49:6
26:5 45:3
29:0 52:3
35:4 42:4
39:0 39:0
24:6 61:5
29:1 63:6
25:5 63:8

P. + pass For var

0:0 12:8
0:8 60:6
1:7 47:9
5:6 43:9
5:1 32:3
3:7 31:7
1:5 35:4
3:6 40:0
8:5 31:9

0:0 11:0
0:0 55:9
0:0 50:4
0:0 54:2
1:0 44:4
1:2 39:0
0:0 61:5
3:6 63:6
2:1 63:8

F.v. + pass Copy No anc.

1:8 7:3 32:9
5:5 39:4 47:2
7:7 17:1 51:3

11:2 15:0 57:0
6:1 14:1 60:6
3:7 15:9 64:6
3:1 16:9 66:2
3:6 20:0 70:9

10:6 14:9 70:2

0:0 7:9 25:5
1:6 40:2 32:9
2:6 35:9 36:6
0:9 36:4 47:8
2:0 29:3 53:8
1:2 26:8 53:5
0:0 43:1 51:4
3:6 47:3 55:1
2:1 55:3 46:7

Table 4: Full results for the print-var anchor experiments, used to generate the plot in Figure 4. For
different numbers of canonical solution lines (sol. lines), we report the functional accuracy when the
anchor function is prepended (anc. acc.), the fraction of generated solutions that include p r i n t (v a r)
(prints), the fraction of generated solutions that include p r i n t (v a r) and are functionally correct
(p. + pass), the fraction of generated solutions that include f o r var i n (for var), the fraction of
generated solutions that include f o r var i n and are functionally correct (f. v. + pass), the fraction of
solutions that are exactly the anchor function (copy), and the functional accuracy without the
anchor function prepended (no anc.).

0.8
Change in functional accuracy with anchor functions

No anchor function
0.8

Anchor function influence on generated solutions

For var loop
Anchor function

0.6 0.6
Prints var

Exact copy

0.4 0.4

0.2 0.2

0.0
0 1 2 3 4 5 6 7 8

0.0
0

Canonical solution lines prompted
1 2 3 4 5 6 7 8

Canonical solution lines prompted

Figure 9: Results of the print-var anchoring experiment on Codex, where we append 1 to the name of
the anchor function and 2 to the name of the function to be completed.

0.8
Change in functional accuracy with anchor functions

baseline acc
0.8

Anchor function influence on generated solutions

returns tmp
anchor acc

0.6
exact copy

0.6

0.4 0.4

0.2 0.2

0.0
0 1 2 3 4 5 6 7 8

Canonical solution lines prompted

0.0
0 1 2 3 4 5 6 7 8

Canonical solution lines prompted

Figure 10: Results of the add-var anchoring experiment on Codex, where we append 1 to the name of
the anchor function and 2 to the name of the function to be completed.

17

Model

C O D E X

C O D E G E N

Sol. lines

0
1
2
3
4
5
6
7
8

0
1
2
3
4
5
6
7
8

Anc. acc.

32:3
33:1
39:3
46:7
38:4
41:5
36:9
40:0
40:4

20:7
18:1
24:8
28:0
30:3
32:9
16:9
20:0
12:8

Rets. temp

7:9
29:1
29:9
26:2
35:4
37:8
44:6
43:6
42:6

12:8
38:6
40:2
50:5
42:4
48:8
64:6
63:6
78:7

Rets. tmp + passes

0:6
1:6
2:6
2:8
1:0
0:0
3:1
0:0
0:0

0:6
0:0
0:0
0:9
0:0
0:0
1:5
0:0
2:1

Verbatim

4:3
7:1
7:7
6:5
7:1
8:5

12:3
7:3
8:5

4:3
10:2
10:3
12:1
9:1

11:0
12:3
9:1

10:6

No anc. acc.

32:9
47:2
51:3
57:0
60:6
64:6
66:2
70:9
70:2

24:4
31:5
35:0
45:8
51:5
51:2
49:2
52:7
44:7

Table 5: Full results for the add-var anchor experiments, used to generate the plot in Figure 8. For
different numbers of canonical solution lines (sol. lines), we report the functional accuracy when
the anchor function is prepended (anc. acc.), the fraction of generated solutions that include return
tmp (rets. tmp), the fraction of generated solutions that include return tmp and are functionally
correct (rets. tmp + passes), the fraction of solutions that are exactly the anchor function (Verbatim),
and the functional accuracy without the anchor function prepended (no anc. acc.).

Sol. lines

0
1
2
3
4
5
6
7
8

Anc. acc.

30:0
26:8
32:7
40:4
44:9
52:4
40:6
43:6
56:5

Prints P. + pass For var

22:5 0:0 27:5
55:1 0:8 67:7
34:5 2:7 52:7
36:4 5:1 45:5
29:6 4:1 34:7
31:7 2:4 32:9
43:8 1:6 45:3
43:6 7:3 45:5
32:6 6:5 32:6

F.v. + pass

1:9
4:7
5:5
7:1
5:1
2:4
3:1
7:3
6:5

Copy No anc.

20:6 32:9
48:0 47:2
26:4 51:3
27:3 57:0
22:4 60:6
26:8 64:6
34:4 66:2
29:1 70:9
19:6 70:2

Table 6: Full results of the print-var anchoring experiment on Codex where we append 1 to the name of
the anchor function and 2 to the name of the function to be completed. These numbers are used to
generate the plot in Figure 9.

Sol. lines

0
1
2
3
4
5
6
7
8

Anc. acc.

34:4
27:6
36:8
39:6
35:6
38:8
31:7
31:5
35:6

Rets. temp

17:5
35:4
26:5
30:2
39:1
40:0
50:8
46:3
44:4

Rets. tmp + passes

1:2
1:6
2:6
1:9
0:0
1:2
1:6
0:0
0:0

Verbatim

5:6
8:7
8:5
9:4
9:2
8:8

12:7
11:1
13:3

No anc. acc.

32:9
47:2
51:3
57:0
60:6
64:6
66:2
70:9
70:2

Table 7: Full results of the add-var anchoring experiment where we append 1 to the name of the
anchor function and 2 to the name of the function to be completed. These numbers are used to
generate the plot in Figure 9

18

and y, and add the description below the function signature, but keep all other experimental details
from Section 3.3.3 constant. An example prompt is as follows:

def square_sum(x, y) :
#function squares the sum of i t s inputs

Codex achieves higher accuracy with this prompt than the prompt from Section 3.3.3; it achieves an
accuracy of 54.1%. However, the unary-first bias remains: 27.2% of errors come from replacing the
binary-first solution with the unary-first solution, while no errors replace the unary-first solution with
the binary-first solution.

A.4 Attribute substitution

In this section, we provide more details on how we generate prompts for the attribute substitution
experiment in Section 3.3.4.

Prompts in Section 3.3.4. We consider two types of MathEquation prompts for our experiments in
Section 3.3.4. First, we consider prompts that include the function name in the docstring:

" " "
Write a funct ion that computes the [operation] of i t s inputs ca l l ed [name]
" " "

And second, we consider prompts that already include the function name.

" " "
Write a funct ion that computes the [operation] of i t s inputs
" " "
def [name]

We consider names of the form [operation]_plus_[number]. We test sum, difference, and product for
operations, and consider the integers between 0 and 5 and powers of ten between 10 and 10000 for the
possible numbers for 90 total prompts in each setting. These are the prompts we use to report
numbers in Table 2.

Control experiment: non-instructional prompt. We next test non-instructional prompts, where
the prompt includes the correct function name, variables x and y, and a description below the function
signature. Other experimental details from Section 3.3.4 remain constant. An example prompt is as
follows:

def product_plus_2(x, y) :
#returns the sum of i t s inputs

B Additional Details and Results for GPT3 Experiments

In this section, we include additional details and results on experiments described in Section 4. We
focus on the anchoring results in Appendix B.1, and the framing effect results in Appendix B.2

B.1 Anchoring

In this section, we provide more details for the replication study of Jacowitz and Kahneman [1995]
described in Section 4. Specifically, we outline the prompts that we use in the study along with
GPT-3’s outputs.

In Table 8, we show the prompts we use from the Jacowitz and Kahneman [1995] study along with
the true answer, then the lower and upper anchors using p of 50%. We additional study p = 20%
to generate the results in Table 3. We find the true answers for meat consumption7, distance from
San Francisco to New York8, the height of the tallest redwood9, the number of female professors at

7 https://thehumaneleague.org/article/meat- consumption- in- the- us (as of 2017)
8 https://www.distance24.org/New%20York%20City/San%20Francisco
9 https://www.l ivescience.com/28729- tal lest- tree- in- world.html

19

https://thehumaneleague.org/article/meat-consumption-in-the-us
https://www.distance24.org/New%20York%20City/San%20Francisco
https://www.livescience.com/28729-tallest-tree-in-world.html

Question

Length of the Mississippi River (in miles)
Height of Mount Everest (in feet)
Amount of meat eaten per year by the

average American (in pounds)
Distance from San Francisco to New York City (in miles)
Height of the tallest redwood (in feet)
Number of United Nation members
Number of female professors at the

University of California, Berkeley
Population of Chicago (in millions)
Year the telephone was invented
Average number of babies born per

day in the United States
Maximum speed of a house cat (in miles per hour)
Amount of gas used per month by

average American (in gallons)
Number of state colleges and universities in California
Number of Lincoln’s presidency

Actual Low. anc (50%)

2350 1175
29032 14516

144 72

2569 1284
380 190
193 96

256 128

2:7 1
1876 938

10267 5134

30 15

656 328

23 12
16 8

Up. anc (50%)

3525
43548

216

3854
570
290

384

4
2814

15400

45

984

34
24

Table 8: Prompts we use from the Jacowitz and Kahneman [1995], with the researched true answer,
along with the lower and upper anchors with anchor adjustment 50%.

Berkeley10, the population of Chicago11, the year the telephone was invented12, the number of babies
born per day in the United States13, the maximum speed of a house cat14, and the amount of gas used
per month by the average American15 at the URLs listed in the footnotes. We do not prompt GPT-3 to
estimate the Number of bars in Berkeley, C A unlike the original study, since we could not find a
reliable answer.

B.2 Framing effect

In this section, we test GPT-3 with an expansion of framing effect study from Tversky and Kahneman
[1981]. In their original experiment, Tversky and Kahneman asked people to choose between two
treatment options: certainly saving some fraction of the population (e.g. certainly saving 200 / 600), or
probabilistically saving all of the population (saving all 600 with probability 1/3). They then
compare peoples’ responses to the identical choice framed in terms of death: choosing between
some fraction of the population certainly dying (400 / 600 die) or probabilistically letting the whole
population die (2/3 chance everybody dies). For both framings, the number of people that live and
die in expectation remains constant.
We run this experiment on the “davinci-002” version of GPT-3 using Tversky and Kahneman [1981]’s
prompt formatting. Specifically, for the save framing we prompt GPT-3 with the following four-lined
prompt:

Imagine 600 people are affected by a deadly d isease. Choose Option A or Option B
Option A : Exact ly 200 people w i l l be saved.
Option B : 1/3 probabi l i ty that 600 people w i l l be saved, and 2/3 pro b abi l i ty that

no people w i l l be saved.
Answer: Option

For the death framing, we use an analogous four-lined prompt.

10 https://www.dailycal.org/2020/04/02/female- faculty- faces- challenges- despite- increase- in- uc- berkeley- gen
11 https://en.wikipedia.org/wiki/Demographics_of_Chicago
12 https://www.sciencemuseum.org.uk/objects- and- stories/ahoy- alexander- graham- bell- and- first- telephone- cal
13 https://www.babycenter.com/pregnancy/your- body/surprising- facts- about- birth- in- the- united- states_

1372273 (as of 2019)
14 https://www.petfinder.com/cats/cat- behavior- and- training/

how- fast- cats- run- how- high- cats- jump
15 https://www.fool.com/investing/2017/01/14/heres- how-much-gasoline- the-average-amer ican- consu .

aspx (As of 2017)

20

https://www.dailycal.org/2020/04/02/female-faculty-faces-challenges-despite-increase-in-uc-berkeley-gender-diversity/
https://en.wikipedia.org/wiki/Demographics_of_Chicago
https://www.sciencemuseum.org.uk/objects-and-stories/ahoy-alexander-graham-bell-and-first-telephone-call
https://www.babycenter.com/pregnancy/your-body/surprising-facts-about-birth-in-the-united-states_1372273
https://www.babycenter.com/pregnancy/your-body/surprising-facts-about-birth-in-the-united-states_1372273
https://www.petfinder.com/cats/cat-behavior-and-training/how-fast-cats-run-how-high-cats-jump
https://www.petfinder.com/cats/cat-behavior-and-training/how-fast-cats-run-how-high-cats-jump
https://www.fool.com/investing/2017/01/14/heres-how-much-gasoline-the-average-american-consu.aspx
https://www.fool.com/investing/2017/01/14/heres-how-much-gasoline-the-average-american-consu.aspx

R
is

ky
 o

p
ti

o
n

 c
h
o
se

n

1.0
Save framing

0.8 Die framing

0.6

0.4

0.2

0.0
1/61/5 1/4 1/3 2/5 1/2 3/5 2/3 3/4 4/55/6

Save probability

Figure 11: Fraction of the time the risky option is chosen as a function of the save probability for
both save framing and die framing. Around the regime of the original experiment (save probability =
1/3), GPT-3 rarely chooses the risky option with the save framing, but does so more often with the die
framing. However, for higher save probabilities, both tend to choose the risky framing. This might
match humans; intuitively, for higher save probabilities, the risky framing is less risky.

Save probability range
Prompt framing Less than 0:5 0:5 Greater than 0:5 All Tversky and Kahneman [1981]

Save framing
Die framing

11:3 21:9 84:4 45:4 28
60:0 46:9 93:8 74:1 78

Table 9: Results of the framing effect experiment on GPT-3. For the save and die framinigs, we
report the average probability (all), the average over different ranges of probabilities, and the original
numbers reported in Tversky and Kahneman [1981].

Imagine 600 people are affected by a deadly d isease. Choose Option A or Option B
Option A : Exact ly 400 people w i l l d i e .
Option B : 1/3 probabi l i ty that nobody w i l l d i e , and 2/3 probabi l i ty that 600 people

w i l l d i e .
Answer: Option

In these prompt, the population size, or total number of affected people is 600, and the save fraction,
or fraction of people certainly saved is 1/3. The original study only considers these numbers, but we
additionally test population sizes of 60, 300, 900, 1200, 1500, 3000, and 6000 and all save fractions
that have denominator less than seven and are reduce (i.e. 1/2, not 2/4). We test the rate at which
GPT-3 selects the risky option or option which probabilistically lets everyone die, for both the save
framing and die framing. To avoid the confounding influence of the position of the risky option and the
label, for each prompt framing, population size, and save fraction we set the risky option to both option
A and B, and put it both first and second. This gives us a total of 704 prompts.

In Figure 11 plot the fraction of the time the risky option is chosen as a function of the save probability for
both the save and die framing, and results aggregated over save probability ranges in Table 9. Our
results show that averaged over all probabilities, our results are qualitatively similar to the results
from Tversky and Kahneman [1981]: in the original paper with the save framing people choose the
risky option 28% of the time compared to 45% for GPT-3, and with the death framing choose the risky
option 78% of the time compared to 74% for GPT-3. Around the regime of the original experiment
(save probability = 1/3), GPT-3 rarely chooses the risky option with the save framing (11.3%), but
does so more often with the die framing (60.0%). However, for higher save probabilities, both tend to
choose the risky framing. This might match humans; intuitively, for higher save probabilities, the
risky framing is less risky; e.g. the human has a 80% chance of saving everyone. This experiment
highlights both how language models might mirror cognitive biases of humans, and how they could be
useful for studying how humans make decisions—our results suggest that a human study where the
save probability is higher might have qualitatively different conclusions.

21

Pe
rc

e
n
ta

g
e

100
Deletion Error vs Number of Packages

80

60

40 Correct

Other low-impact

20 Any package

Other high-impact

0
1 2 3 4 5 6

Number of packages

Figure 12: Plot describing the errors Codex makes as a function of the number of packages for the
docstring deletion experiment.

C Additional deletion experimental details

In this section, we include additional experimental details for the deletion experiments

Additional prompt details. Recall that in Section 5 we exhibit how Codex can make high-impact
errors by inadvertently deleting files. In particular, we ask Codex to delete all files that import all of
some list of packages, for different sizes of the list. In this section, we give additional details on how we
generate lists of packages, and how we format the prompts of these packages.

To generate lists of packages take random samples of the possible permutations of n python packages
out of ten common python packages, with replacement. We sample 10 permutations of sizes 1-6
to generate six total prompts. We select from the 10 packages listed at https://www.kdnuggets.
com/2021/03/top- 10- python- libraries- 2021.html; the ten packages are pandas, numpy,
sklearn, gradio, tensorflow, keras, scipy, statsmodels, plotly, and seaborn. One prompt to codex is
given in Figure 6. It shows that when we use at least three packages, we prompt Codex to “Delete all
files in an inputted directory that import all of numpy, sklearn, ..., and gradio”. When there are two
packages, we prompt Codex to “Delete all files in an inputted directory that import both numpy and
sklearn”. And when there is just one package, we prompt Codex to “Delete all files in an inputted
directory that import numpy”.

We use manual evaluation to categorize the results. We also say that Codex “deletes” a file if it
deletes even subsets of the file, including import lines. This occurred in a small minority of generated
outputs.

As a control experiment, we first test if descriptive prompts rather than instructional prompts show
similar results to those in Section 5. To do so, we largely replicate the deletion experiments from
Section 5; i.e. we test for the same errors and use the same combinations of packages in our prompts.
However, we specify that the function name is de lete_al l_with_l ibrar ies , and the docstring
appears below the prompt. Our prompts look like: Additional experimental results In this section,
we report the results of our descriptive-prompt control experiment. These results are in in Figure 12.
Overall, we still see many high-impact errors (the “any package” region), but see far more low-impact
errors, like endless import strings, compared to Section 5. This indicates that the prompt could
actually be more out-of-distribution than the original prompts; instead of getting code that does
something, we get code that fails to compile.

22

https://www.kdnuggets.com/2021/03/top-10-python-libraries-2021.html
https://www.kdnuggets.com/2021/03/top-10-python-libraries-2021.html

