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identically zero polynomial. We typically consider identity testing of circuits whose size and

degree are bounded by a polynomial function in the number of variables. This low-degree

regime captures polynomials of interest to computer scientists, such as the determinant and

permanent, and corresponds to typical algorithmic applications of PIT. In this regime, the

problem of PIT is easily solved with randomness by evaluating the circuit at a randomly

chosen point of a large enough grid. The correctness of this algorithm follows from the

Schwartz-Zippel lemma, which roughly says that a low-degree multivariate polynomial cannot

vanish at many points of a sufficiently large grid. To date, no deterministic algorithm for PIT

is known that substantially improves on the naïve derandomization of the Schwartz-Zippel

lemma.

Polynomial identity testing has widespread applications in theoretical computer science

and has led to randomized algorithms for perfect matching [29, 23, 30], primality testing

[1, 3], and equivalence testing of read-once branching programs [6], among other problems.

In light of the utility of PIT as an algorithmic primitive, it is worth understanding to what

extent PIT can be derandomized. There is a large body of work concerned with unconditional

derandomization of PIT for various sub-classes of algebraic circuits. For more on this, we refer

the reader to the surveys of Shpilka and Yehudayoff [38] and Saxena [34, 35]. In this work,

we will focus on conditional derandomization of PIT under suitable hardness assumptions.

1.1 Prior Work

The first instantiation of the hardness-randomness paradigm for polynomial identity testing

was given by Kabanets and Impagliazzo [21]. Their work implemented the design-based

approach of Nisan and Wigderson [31] in the algebraic setting, showing that lower bounds

for an explicit family of multivariate polynomials can be used to derandomize PIT.

Subsequent work by Dvir, Shpilka, and Yehudayoff [13] and Chou, Kumar, and Solomon

[12] extended this to the setting of bounded-depth circuits, roughly showing that lower bounds

against depth-(∆ + O(1)) circuits suffice to derandomize identity testing of depth-∆ circuits,

for any constant ∆. The result of Dvir, Shpilka, and Yehudayoff [13] works with any hard

polynomial, but scales poorly with the individual degree of the circuit being tested. Chou,

Kumar, and Solomon [12] refined the approach of Dvir, Shpilka, and Yehudayoff [13] and

showed that if the family of hard polynomials has sufficiently low degree, then this dependence

on the individual degree of the circuit being tested can be avoided. Implementing the hardness-

randomness paradigm in low-depth is motivated in part by a host of depth-reduction results

in algebraic complexity [4, 24, 39, 18] which show that polynomials computable by small

circuits can be computed by non-trivially small low-depth circuits.

Returning to the setting of unrestricted circuits, recent work of Guo, Kumar, Saptharishi,

and Solomon [17] uses a stronger hardness assumption than that of Kabanets and Impagliazzo

[21] and obtains a stronger derandomization of PIT. Specifically, Guo, Kumar, Saptharishi,

and Solomon [17] obtain a polynomial-time derandomization of PIT using lower bounds

against an explicit family of constant-variate polynomials. For comparison, Kabanets and

Impagliazzo [21] only obtain quasipolynomial-time algorithms for PIT under multivariate

hardness assumptions. In Section 6 of this work, we further discuss the relationship between

these hardness assumptions and provide evidence for the strength of constant-variate hardness

compared to multivariate hardness.

A separate line of work by Agrawal, Ghosh, and Saxena [2] and Kumar, Saptharishi,

and Tengse [27] shows that PIT exhibits a “bootstrapping” phenomenon. That is, if one

can obtain a barely non-trivial derandomization of PIT for circuits of size and degree which

are unbounded in the number of variables, then it follows that there is a near-complete

derandomization of PIT for circuits of polynomial size and degree.
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From these works, we have a relatively good understanding of what derandomization of

PIT is possible under hardness assumptions. However, excluding the bootstrapping results

of Agrawal, Ghosh, and Saxena [2] and Kumar, Saptharishi, and Tengse [27], all previous

work on hardness-randomness tradeoffs for PIT requires the underlying field to be of zero or

large characteristic (for the definition of the characteristic of a field, see Section 2). That is,

we can derandomize PIT under hardness assumptions over the complex numbers C or the

finite field of pm elements Fpm when p is sufficiently large, but we do not know how to do

the same over a field of low characteristic like F2m .

A partial exception to this deficiency is the work of Kabanets and Impagliazzo [21]. Their

results yield derandomization of PIT over a finite field Fpm assuming an explicit polynomial

which is hard to compute as a function over Fpm . Over infinite fields, two polynomials are

equal if and only if they compute the same function. However, this no longer holds over

finite fields. For example, over F2, the polynomial x2 − x computes the zero function but is

decidedly not the zero polynomial. It is more common in the study of algebraic circuits to

prove lower bounds on the task of computing a polynomial as a syntactic object, not as a

function. Functional lower bounds imply syntactic lower bounds, but the reverse direction

does not hold, which makes proving functional lower bounds a harder task.

If one inspects the proof of Kabanets and Impagliazzo [21], the functional hardness

assumption can be replaced with a slightly weaker, albeit non-standard, syntactic hardness

assumption. Namely, it suffices to assume the existence of an explicit family of n-variate

polynomials {fn : n ∈ N} such that fpk

n is hard in the syntactic sense for 1 6 pk 6 2O(n).

Over characteristic zero fields, the factoring algorithm of Kaltofen [22] implies that if f is

hard to compute, then fd is comparably hard to compute as long as d is not too large. Over

fields of characteristic p, it is not clear if hardness of fp is implied by hardness of f . For

example, it is consistent with our current state of knowledge that the n × n permanent

permn(x) is 2Ω(n)-hard over F3, but that permn(x)3 is computable by circuits of size O(n2)

over F3. Understanding the relationship between the complexity of f and fp over fields of

characteristic p > 0 in general remains a challenging open problem.

For further exposition on hardness-randomness tradeoffs for PIT, see the recent survey of

Kumar and Saptharishi [26].

1.2 Identity Testing in Low Characteristic

Before describing our contributions, we take a detour to look more closely at the question of

derandomizing PIT over fields of low characteristic. Known techniques for derandomizing

PIT over fields of small characteristic under hardness assumptions fail due to the fact that

over a field of positive characteristic, the derivative of a non-constant polynomial may be

zero. For example, over F2, we have ∂
∂x (x2) = 2x = 0, since 2 = 0 in F2. Thus, techniques

which are in some sense “analytic” break in low characteristic. Given that the problem

of polynomial identity testing is entirely algebraic, it would be nice to find an “algebraic”

approach that does not succumb to this flaw. Indeed, derandomizing PIT in low characteristic

fields under hardness assumptions is listed as an open problem in the recent survey of Kumar

and Saptharishi [26] on algebraic derandomization.

The problem of derandomizing PIT in low characteristic fields also has interesting

algorithmic applications. Consider, for example, the randomized algorithm of Lovász [29] to

detect whether a bipartite graph has a perfect matching. Let G = (V1 t V2, E) be a balanced

bipartite graph on 2n vertices with partite sets V1 and V2. We form the n × n symbolic

matrix A given by

Ai,j =

{
xi,j {i, j} ∈ E

0 otherwise.
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It is not hard to see that det(A) 6= 0 if and only if G has a perfect matching. We can then

check if G has a perfect matching by evaluating A at a random point chosen from a suitably

large grid of integers.

In evaluating det(A), we may encounter large numbers of size Ω(n!). Arithmetic on such

numbers is expensive, requiring at least Ω(n log n) time. We could instead implement this

algorithm over a finite field of size poly(n). As the determinant is a polynomial of degree n,

the Schwartz-Zippel lemma guarantees that this modification yields an algorithm with low

error probability. What we have gained is the fact that elements of such a finite field can be

represented in O(log n) bits, so our arithmetic becomes more efficient. In principle, one could

choose the field so that the characteristic is large enough for the the hardness-randomness

paradigm to apply, but there may be other considerations which motivate picking, say,

an extension field of F2. Derandomizing such an algorithm (under hardness assumptions)

requires extending the hardness-randomness paradigm to fields of low characteristic.

Alternatively, one can reduce the bit complexity by using a derandomized polynomial

identity testing algorithm over the rational numbers, but with the arithmetic performed

modulo a small prime number. This approach also achieves logarithmic bit complexity.

However, we are now in the position of having to derandomize the selection of the prime

number. It is not obvious how to do this much faster than brute force, so the benefits of

reducing the bit complexity are negated by the need to try many different primes.

While the previous example may seem somewhat artificial, we remark that there are

instances of algorithms which explicitly rely on polynomial identity testing over fields of low

characteristic. For example, the randomized algorithm of Williams [41] for the k-path problem

makes use of polynomial identity testing over fields of characteristic 2. If one wanted to

derandomize this algorithm under a hardness assumption, prior work on hardness-randomness

tradeoffs for PIT would not suffice.

1.3 Our Results

In this work, we instantiate the hardness-randomness paradigm for PIT over fields of

low characteristic under standard syntactic hardness assumptions. That is, we obtain

derandomization of PIT from the existence of an explicit family of hard polynomials {fn :

n ∈ N} without assuming hardness of pth powers of fn. At the heart of our results is a new

technique for computing the map fp 7→ f over F[x] when the polynomial fp is given by an

algebraic circuit. When f depends on a small number of variables, the circuit computing f

is not too much larger than the circuit which computes fp.

I Lemma 1.1 (informal version of Corollary 3.6). Suppose f(x)p is a polynomial on O(1)

variables and can be computed by a circuit of size s over a field of characteristic p > 0. Then

f(x) can be computed by a circuit of size O(s).

Using this, we are able to extend the techniques of Kabanets and Impagliazzo [21] to

fields of low characteristic. To do so, we need stronger hardness assumptions than those

made by Kabanets and Impagliazzo [21] for the case of zero characteristic fields. In algebraic

complexity, lower bounds are typically proved for families of polynomials parameterized by

the number of variables, as this captures the regime of interest for algorithmic applications.

To prove our results, we assume lower bounds against a family of constant-variate polynomials

which are parameterized by degree.

For the sake of exposition, we focus on the case of lower bounds for univariate polynomials.

A univariate polynomial of degree d can easily be computed by circuits of size O(d) using

Horner’s rule. It is not hard to show that every such polynomial also requires size Ω(log d)
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to compute. However, improving on this Ω(log d) lower bound for an explicit family of

polynomials is a long-standing open problem. Standard dimension arguments show that

most univariate polynomials of degree d require circuits of size dΩ(1) to compute.

When comparing statements regarding degree d univariates and degree nO(1) multivariate

polynomials on n variables, it is instructive to think of n and log d as comparable. In this

sense, our results achieve the same hardness-randomness tradeoffs as those of Kabanets

and Impagliazzo [21], but require translating their hardness assumptions to the comparable

statement for univariate polynomials.

Using Lemma 1.1, we can extend the analysis of Kabanets and Impagliazzo to work over

fields of low characteristic. We now give two concrete examples of the derandomization we

can obtain using this extension.

I Theorem 1.2 (informal version of Theorem 4.3 and Corollary 4.5). Let F be a field of

characteristic p > 0. Let {fd(x) : d ∈ N} be an explicit family of univariate polynomials

which cannot be computed by circuits of size less than s(d) over F.

1. If s(d) = logω(1) d, then there is a deterministic algorithm for identity testing of polynomial-

size, polynomial-degree circuits over F in n variables which runs in time 2no(1)

.

2. If s(d) = 2logΩ(1) d, then there is a deterministic algorithm for identity testing of polynomial-

size, polynomial-degree circuits over F in n variables which runs in time 2logO(1) n.

For comparison, from an nω(1) lower bound against a family of explicit multilinear

polynomials, Kabanets and Impagliazzo [21] give a deterministic algorithm for PIT over fields

of characteristic zero which runs in time 2no(1)

. If instead one has a 2nΩ(1)

lower bound, then

their techniques yield a deterministic algorithm which runs in time 2logO(1) n. Viewing log d

and n as (roughly) equivalent, we see that our derandomization obtains the same tradeoff

between hardness and pseudorandomness as Kabanets and Impagliazzo [21], modulo the

difference between univariate and multivariate lower bounds.

It is not hard to show that lower bounds in the constant-variate regime imply comparable

lower bounds in the multivariate regime (see Lemma 2.6), but the reverse implication is

not known. In Section 6, we investigate the possibility of using known techniques to prove

univariate lower bounds from multivariate lower bounds.

As the assumption of a hard univariate family seems strong, it raises the question of

whether or not one can obtain a stronger derandomization of PIT over fields of positive

characteristic under a univariate hardness assumption. There is evidence this can be done, as

Guo, Kumar, Saptharishi, and Solomon [17] use univariate lower bounds to obtain a complete

derandomization of PIT over fields of characteristic zero. With a more careful instantiation

of the Kabanets-Impagliazzo result, we are able to derandomize PIT in a way that suffices

for the bootstrapping results of Agrawal, Ghosh, and Saxena [2] and Kumar, Saptharishi,

and Tengse [27] to take effect. This allows us to prove nearly-optimal hardness-randomness

tradeoffs for PIT over fields of positive characteristic, which comes close to matching the

characteristic zero result of Guo, Kumar, Saptharishi, and Solomon [17]. More concretely,

we prove the following.

I Theorem 1.3 (informal version of Theorem 5.3). Let F be a field of characteristic p > 0. Let

{fd(x) : d ∈ N} be an explicit family of univariate polynomials which cannot be computed by

circuits of size less than dδ for some constant δ > 0. Then there is a deterministic algorithm

for identity testing of polynomial-size, polynomial-degree algebraic circuits in n variables over

F which runs in time nexp ◦ exp(O(log? n)).

The rest of this work is organized as follows. In Section 2, we establish notation, definitions,

and relevant background necessary to state and prove our results. In Section 3, we prove our

main technical lemma on computing pth roots of algebraic circuits over fields of characteristic
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p > 0. We then use this in Section 4 to extend the work of Kabanets and Impagliazzo to

the low characteristic setting. We combine our techniques with the bootstrapping results

to obtain near-complete derandomization of PIT over fields of positive characteristic in

Section 5. Section 6 investigates the relationship between univariate and multivariate circuit

lower bounds. We conclude in Section 7 with a collection of problems left open by this work.

2 Preliminaries

For n ∈ N, we write [n] := {1, . . . , n} and JnK := {0, . . . , n − 1}. If A is an n × m matrix,

we write Ai,• and A•,j for the ith row and jth column of A, respectively. We abbreviate a

vector of variables (x1, . . . , xn), numbers (a1, . . . , an), or field elements (α1, . . . , αn) by x,

a, and α, respectively, where the length is usually clear from context. We also abbreviate

the product
∏n

i=1 xai
i =: xa. Given a polynomial f(x) =

∑
a αaxa, we write deg(f) and

ideg(f) for the total degree and individual degree of f , respectively. The total degree of

f is given by deg(f) := max{‖a‖1 : αa 6= 0}, while the individual degree of f is given by

ideg(f) := max{‖a‖∞ : αa 6= 0}.

For a field F, the characteristic of F, denoted charF, is the smallest positive integer p

such that p · 1 = 0 in F. In the case that there is no such p, we say that F has characteristic

zero. Alternatively, charF is the number p such that the ring homomorphism Z → F induced

by 1 7→ 1 has kernel pZ. The set CF(s, n, d) ⊆ F[x] denotes the set of all n-variate degree d

polynomials which can be computed by an algebraic circuit of size at most s over F.

2.1 Algebraic Computation and Polynomial Identity Testing

We assume familiarity with the models of algebraic circuits, formulae, and branching programs.

When we refer to the size of a circuit, formula, or branching program, we mean the number

of nodes in the computational device. An introduction to this area can be found in the survey

of Shpilka and Yehudayoff [38]. Throughout this work, we analyze our algorithms under the

assumption that arithmetic over the base field F can be performed in constant time.

We now collect basic definitions and results needed for the study of deterministic black-box

algorithms for polynomial identity testing. More in-depth exposition is available in the recent

survey of Kumar and Saptharishi [26].

We start with the notion of a hitting set, the basic object used to construct deterministic

black-box algorithms for polynomial identity testing.

I Definition 2.1. Let C ⊆ F[x] be a set of n-variate polynomials. We say that a set H ⊆ Fn

is a hitting set for C if for every non-zero f(x) ∈ C, there is a point α ∈ H such that f(α) 6= 0.

If H can be computed in t(n) time, then we say that H is t(n)-explicit.

We now introduce hitting set generators, the analogue of pseudorandom generators in

the context of algebraic derandomization.

I Definition 2.2. Let C ⊆ F[x] be a set of n-variate polynomials. Let G : Fm → Fn be a

mapping given by

G(y) = (G1(y), . . . , Gn(y)),

where Gi ∈ F[y]. We say that G is a hitting set generator for C if for every non-zero f(x) ∈ C,

we have f(G(y)) 6= 0. The seed length of G is m. The degree of G is maxi∈[n] deg(Gi). We

say G is t(n)-explicit if, given α ∈ Fm, we can compute G(α) in t(n) time.
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It is a well-known result that an explicit, low-degree hitting set generator for C with small

seed length yields an explicit hitting set for C of small size. The hitting set is constructed

by evaluating the generator on a grid of large enough size. Correctness follows from the

Schwartz-Zippel lemma.

I Lemma 2.3. Let C be a set of n-variate degree d polynomials. Let G : Fm → Fn be a

t(n)-explicit hitting set generator for C of degree D. Then there is a (dD + 1)mt(n)-explicit

hitting set H for C of size (dD + 1)m.

We also need a notion of explicitness for a family of polynomials. In previous works

on hardness-randomness tradeoffs for polynomial identity testing, a family of n-variate

polynomials {fn ∈ F[x] : n ∈ N} is considered explicit if fn is computable in exp(O(n)) time.

However, we will need a slightly different notion of explicitness. Instead of an exponential-

time algorithm to compute fn, we require an exponential-time algorithm to compute the

coefficient of a given monomial in fn. This different notion of explicitness will be used to

transition between the constant-variate and multivariate regimes later on in Section 4 and

Section 5.

I Definition 2.4. Let {fn,d(x) ∈ F[x] : n, d ∈ N} be a family of n-variate degree d polynomials.

We say that this family is strongly t(n, d)-explicit if there is an algorithm which on input

(n, d, a) outputs the coefficient of xa in fn,d(x) in t(n, d) time.

I Remark 2.5. The preceding definition is reminiscent of Valiant’s criterion for membership in

VNP. Briefly, Valiant’s criterion says that if the coefficient of xa can be computed in #P/poly,

then the polynomial f(x) is in VNP, an algebraic analogue of NP. We refer the reader to

Bürgisser [8, Chapters 1 and 2] for further exposition on VNP and Valiant’s criterion.

We will repeatedly build explicit families of hard multivariate polynomials out of explicit

families of hard constant-variate polynomials. By “a family of hard multivariate polynomials,”

we mean a family of polynomials {fn(x) ∈ F[x] : n ∈ N}, where fn is an n-variate polynomial

of degree nO(1). When we say “a family of hard constant-variate polynomials,” we mean a

family {fd(x) ∈ F[x] : d ∈ N}, where fd is a degree d polynomial on k = O(1) variables. That

is, when we consider multivariate polynomials, we parameterize the family by the number of

variables and primarily consider families of small degree; when we look at constant-variate

polynomials, we fix the number of variables in all polynomials and parameterize the family

by the degree of the polynomial.

To illustrate how we can obtain hard multivariate polynomials from hard constant-variate

polynomials, suppose gd(x) =
∑d

i=0 αix
i is a hard degree d univariate polynomial. We will

define a new polynomial fn(y) on n := blog dc + 1 variables, where the monomials of fn

correspond to writing each term of gd “in base 2.” More precisely, for each e ∈ {0, 1}n, let

j(e) be the number whose representation in binary corresponds to e. We assign the coefficient

αj(e) to the monomial ye in fn. To show that fn is hard, we show the contrapositive: a small

circuit for fn implies a small circuit for gd, which contradicts the hardness of gd. The proof

of this is relatively straightforward, as we simply find a way to substitute powers of x for

each yi so that the monomial ye is mapped to xj(e).

In the case where gd is a polynomial in multiple variables, we simultaneously write each

variable appearing in gd “in base 2.” We remark that there is nothing a priori special about

our use of base 2. However, doing so yields polynomials which are multilinear, a fact which

will be useful later on.

We now make the preceding sketch precise, showing that lower bounds in the constant-

variate regime imply comparable lower bounds in the multivariate regime.
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I Lemma 2.6. Let gm,d(x) =
∑

a αaxa be a strongly t(m, d)-explicit m-variate degree d

polynomial which requires circuits of size s to compute. Let j : {0, 1}blog dc+1 → J2blog dc+1K

be given by j(e) =
∑blog dc+1

i=1 ei2
i−1, that is, j(e) is the number whose binary representation

corresponds to e. Let y = (y1,1, . . . , y1,blog dc+1, . . . , ym,1, . . . , ym,blog dc+1) and define

fm,d(y) =
∑

e∈{0,1}m×blog dc+1

α(j(e1,•),...,j(em,•))y
e.

Then fm,d is a strongly t(m, d)-explicit multilinear polynomial on m(blog dc + 1) variables

which requires circuits of size s − Θ(m log d) to compute.

Proof. The fact that fm,d is multilinear is clear from the definition.

To see that fm,d is hard to compute, suppose Φ is a circuit of size t which computes

fm,d. By applying the Kronecker substitution yi,j 7→ x2j

i , we can recover a circuit which

computes gm,d(x). This mapping can be computed in size Θ(m log d) by repeated squaring,

so we obtain a circuit for gm,d of size t + Θ(m log d). By assumption, t + Θ(m log d) > s, so

t > s − Θ(m log d), which proves the lower bound on the circuit complexity of fm,d.

Finally, remark that the binary description of a monomial in fm,d is exactly the same

as the binary description of a monomial in gm,d. This implies we can use the t(m, d)-time

algorithm to compute the coefficients of fm,d, so fm,d inherits the explicitness of gm,d. J

Whether lower bounds in the multivariate regime imply lower bounds in the constant-

variate regime is an open question. In Section 6, we give complexity-theoretic evidence

that suggests the technique used to prove the preceding lemma does not suffice to prove

constant-variate lower bounds from multivariate lower bounds.

In Section 5, we will run into some technical issues concerning circuits which are defined

over a low-degree extension of the base field F. The next lemma says that whenever a circuit

Φ is defined over an extension K ⊇ F of low degree, such a circuit can in fact be defined over

F without increasing its size too much. A related result was proved in Bürgisser, Clausen,

and Shokrollahi [10, §4.3], where the authors considered extensions K ⊇ F such that circuits

defined over K have no computational advantage compared to circuits defined over F when

computing a polynomial in F[x].

I Lemma 2.7 ([8, Proposition 4.1(iii)], [19], see also [10, §4.3]). Let F be a field and let K ⊇ F

be an extension of degree k. Suppose f(x) can be computed by a circuit of size s over K.

Then there is a circuit of size O(k3s) which computes f over F.

We conclude our preliminaries on algebraic complexity by quoting a celebrated result of

Kaltofen which shows that algebraic circuits may be factored without a large increase in size.

I Theorem 2.8 ([22]). Let f(x) ∈ F[x] be a polynomial of degree d computable by an algebraic

circuit of size s. Let g(x) ∈ F[x] be a factor of f(x). Then there is an algebraic circuit of

size s′ 6 O((snd)4) which computes

1. g(x), in the case that charF = 0, and

2. g(x)pk

where k > 0 is the largest integer such that g(x)pk

divides f(x), in the case that

charF = p > 0.

2.2 Combinatorial Designs

We will make use of the designs of Nisan and Wigderson [31], specifically as they are used

by Kabanets and Impagliazzo [21] to prove hardness-randomness tradeoffs for polynomial

identity testing. Nisan and Wigderson [31] gave two constructions of designs: one via
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Reed-Solomon codes, and one via a greedy algorithm. We first quote their construction using

Reed-Solomon codes, which was also recently described in work by Kumar, Saptharishi, and

Tengse [27].

I Lemma 2.9 ([31], see also [27]). Let c > 2 be a positive integer, and let n, m, `, r ∈ N be

such that (i) ` = mc, (ii) r 6 m, (iii) m is a prime power, and (iv) n 6 m(c−1)r. Then there

is a collection of sets S1, . . . , Sn ⊆ [`] such that

for each i ∈ [n], we have |Si| = m; and

for all distinct i, j ∈ [n], we have |Si ∩ Sj | 6 r.

Additionally, such a family can be deterministically constructed in poly(n) time.

We now cite the designs obtained by Nisan and Wigderson [31] via a greedy algorithm.

In the regime where m = O(log n), this improves on the previous construction by taking the

size ` of the ground set to be O(log n) as opposed to O(log2 n).

I Lemma 2.10 ([31]). Let n and m be integers such that n < 2m. There exists a family of

sets S1, . . . , Sn ⊆ [`] such that

1. ` = O(m2/ log(n)),

2. for each i ∈ [n], we have |Si| = m; and

3. for all distinct i, j ∈ [n], we have |Si ∩ Sj | 6 log(n).

Such a family of sets can be deterministically constructed in time poly(n, 2`).

In extending the analysis of the Kabanets-Impagliazzo generator to low characteristic

fields, we will make use of Lemma 2.10. Our use of Lemma 2.9 will arise when we combine

the hardness versus randomness paradigm with the bootstrapping phenomenon. In that

setting, we will apply Lemma 2.9 with c = O(1) and r = O(1). Compared to Lemma 2.10,

this yields sets with much smaller intersection size, though the number of sets is only mO(1)

as opposed to 2m.

2.3 Field Theory

To cleanly state some of our results, we need the notion of a perfect field. Namely, given

a circuit Φ which computes f(x)p ∈ F[x], we will construct in Section 3 a circuit Ψ which

computes f(x). This construction takes pth roots of field elements α ∈ F, which are not

always guaranteed to exist in F. To ensure Ψ is defined over the base field F, we require that

F is closed under taking pth roots, which is equivalent to requiring that F is perfect.

I Definition 2.11. A field F is called perfect if either F has characteristic 0 or F has

characteristic p > 0 and the map α 7→ αp is an automorphism of F. If F has characteristic

p > 0, then the perfect closure of F, denoted Fp−∞

, is the smallest field containing F which

is closed under taking pth roots.

It is a basic fact that perfect closures exist.

I Fact 2.12. Every field F of characteristic p > 0 has a perfect closure Fp−∞

.

Informally, one can prove this by adjoining “enough” pth roots to the field F. That is, for

each α ∈ F, we introduce a countable collection of new field elements denoted by (α, n) for

n ∈ N, where the element (α, n) is meant to represent αp−n

. We then take a quotient by a

suitable equivalence relation; for example, if αp = β, then we regard (α, n) and (β, n + 1) as

equivalent for all n ∈ N. One must then verify that the resulting object is in fact a field and

is (up to isomorphism) the perfect closure of F. More formally, the perfect closure can be

constructed as the direct limit of a particular direct system of fields. We refer the reader to

Bourbaki [7, Chapter 5, §1] for the details of this construction.
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Examples of perfect fields of positive characteristic include all finite fields and all alge-

braically closed fields of positive characteristic. A non-example is given by Fpm(x), the field

of rational functions in n variables with coefficients in Fpm , where Fpm is the finite field of

size pm. The field Fpm(x) fails to be perfect due to the fact that x
1/p
1 /∈ Fpm(x), so x1 is not

in the image of the map α 7→ αp.

For more details on perfect fields, we refer the reader to any text on field theory, e.g.,

Roman [33, Chapter 3].

3 p
th Roots of Algebraic Computation

Suppose F is a field of characteristic p > 0 and Φ is a circuit which computes f(x)p for a

polynomial f(x). If we want to obtain a circuit which computes f(x), then Theorem 2.8

does not suffice. In this section, we will describe a simple transformation of Φ which yields

a circuit computing f(x). This is the main technical step that will allow us to obtain

hardness-randomness tradeoffs over fields of low characteristic.

In general, this transformation will incur an exponential blow-up in the size of Φ. If the

original circuit computes a polynomial on n variables, then the new circuit we build will be

larger in size by a factor of about p2n. In particular, if our input is a circuit on a constant

number of variables, then we only increase the size of the circuit by a constant factor. The

fact that this transformation is efficient in the constant-variate regime is exactly the reason

we need to use hardness of constant-variate families of polynomials as opposed to a family of

hard multilinear polynomials.

Before describing the construction for circuits on an arbitrary number of variables, we

first examine the case of univariate polynomials. Let F be a field of characteristic p > 0 and

let f(x) ∈ F[x] be a univariate polynomial. We start by grouping the monomials of f by

their degree modulo p, which allows us to write

f(x) =

p−1∑

i=0

f̃i(x)xi,

where each f̃i(x) is a univariate polynomial in x which is only supported on pth powers of x.

That is, the term f̃i(x)xi corresponds exactly to the monomials in f(x) whose degree in x is

congruent to i modulo p. Recall that over a field of characteristic p > 0, we have the identity

(a + b)p = ap + bp. Since f̃i(x) is a sum of pth powers of x, we can write

f̃i(x) =

di∑

j=0

αi,jxjp =




di∑

j=0

α
1/p
i,j xj




p

.

This expresses f̃i(x) as a pth power of the polynomial fi(x) :=
∑di

j=0 α
1/p
i,j xj . In general,

fi may not be well-defined over F, as the coefficients α
1/p
i,j may not exist in F. However,

α
1/p
i,j ∈ Fp−∞

, the perfect closure of F, so fi is well-defined over Fp−∞

.

With this, we can write

f(x) =

p−1∑

i=0

fi(x)pxi.

We refer to such an expression as the mod-p decomposition of f . This motivates the following

definition, which generalizes this decomposition to the case of multivariate polynomials.
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I Definition 3.1. Let f(x) ∈ F[x]. The mod-p decomposition of f(x) is the collection of

polynomials {fa(x) : a ∈ JpKn} such that

f(x) =
∑

a∈JpKn

fa(x)pxa.

Over a perfect field F of characteristic p > 0, the existence of the mod-p decomposition

follows from the fact that any polynomial of the form
∑

a αaxp·a has a pth root, given by∑
a α

1/p
a xa. Here, we use the fact that F is perfect to guarantee the constants α

1/p
a exist in

F. Uniqueness of the decomposition follows from the fact that the monomials {xa : a ∈ Nn}

form a basis for F[x]. We record this observation as a lemma.

I Lemma 3.2. Let F be a field of characteristic p > 0 and let f, g ∈ F[x]. Let {fa : a ∈ JpKn}

and {ga : a ∈ JpKn} be the mod-p decompositions of f and g, respectively. Then f = g if and

only if fa = ga for all a ∈ JpKn.

The utility of the mod-p decomposition becomes apparent when f(x) is itself a pth power.

In this case, f itself is a sum of pth powers of monomials in the variables x1, . . . , xn, so we

have f(x) = f0(x)p. Given a circuit Φ which computes f , suppose we could transform Φ into

a new circuit Ψ which computes the mod-p decomposition of f . Then to compute f(x)1/p,

we simply construct the circuit Ψ and set f0(x) = f(x)1/p to be the output.

Before continuing on, we record a straightforward lemma about how the mod-p decompo-

sition behaves with respect to addition and multiplication.

I Lemma 3.3. Let F be a perfect field of characteristic p > 0. Let f, g ∈ F[x], and let

{fa : a ∈ JpKn} and {ga : a ∈ JpKn} be the mod-p decompositions of f and g, respectively. Let

h = αf + βg and q = γfg for α, β, γ ∈ F. Let {ha : a ∈ JpKn} and {qa : a ∈ JpKn} be the

mod-p decompositions of h and q. Then for all a ∈ JpKn, we have

ha = α1/pfa + β1/pga

and

qa = γ1/p
∑

b,c∈JpKn

b+c≡a mod p

fbgcx
b+c−a

p ,

where the sum and congruence b + c ≡ a mod p are performed component-wise.

Proof. By expanding the equality h = αf + βg in the mod-p decomposition and using the

fact that (a + b)p = ap + bp, we obtain

∑

a∈JpKn

ha(x)pxa = α
∑

a∈JpKn

fa(x)pxa + β
∑

a∈JpKn

ga(x)pxa

=
∑

a∈JpKn

(α1/pfa(x) + β1/pga(x))pxa.

Lemma 3.2 implies that ha = α1/pfa + β1/pga as claimed.
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For q(x), we again expand the equality q = γfg in the mod-p decomposition to obtain

∑

a∈JpKn

qa(x)pxa = γ



∑

a∈JpKn

fa(x)pxa





∑

a∈JpKn

ga(x)pxa




= γ
∑

b,c∈JpKn

fb(x)pgc(x)pxb+c

=
∑

a∈JpKn


γ1/p

∑

b,c∈JpKn

b+c≡a mod p

fb(x)gc(x)x
b+c−a

p




p

xa.

Once more, Lemma 3.2 implies that

qa = γ1/p
∑

b,c∈JpKn

b+c≡a mod p

fbgcx
b+c−a

p

as claimed. J

3.1 Circuits

We start by implementing the strategy outlined above in the case of algebraic circuits.

Throughout this and subsequent sections, Φ and Ψ will denote algebraic circuits, formulae, or

branching programs, and v, u, and w will denote gates in these circuits. We will frequently

refer to the polynomial computed at a gate v, which we denote by v̂. For a ∈ JpKn, we write

v̂a for the part of the mod-p decomposition of v̂ indexed by a.

I Lemma 3.4. Let F be a field of characteristic p > 0. Let Φ be an algebraic circuit

of size s which computes a polynomial f(x) ∈ F[x] and let {fa : a ∈ JpKn} be the mod-p

decomposition of f . Then there is a circuit Ψ of size 3sp2n + 2n which simultaneously

computes {fa : a ∈ JpKn} over Fp−∞

, the perfect closure of F.

Proof. To construct the desired circuit Ψ, we will split each gate v of Φ into pieces {(v, a) :

a ∈ JpKn} and wire Ψ so that (v, a) computes v̂a. As Φ computes f(x), this implies that

Ψ will contain gates computing fa(x) for all a ∈ JpKn. To wire each gate (v, a) in Ψ, we

consider the type of the gate v in Φ.

First, suppose v is an input gate in Φ labeled by a constant α ∈ F. In this case, we set

(v, 0) = α1/p and (v, a) = 0 for a 6= 0. By definition, Fp−∞

contains α1/p, so this is valid

over Fp−∞

.

It follows from the definition of v̂a that (v, a) correctly computes v̂a.

If v is an input gate labeled by the variable xi, let ei denote the vector with a 1 in the

ith slot and zero elsewhere. We set (v, ei) = 1 and (v, a) = 0 for a 6= ei.

Again, it follows immediately from the definition of v̂a that (v, a) correctly computes v̂a.

Suppose now that v is an addition gate in Φ with children u and w with incoming edges

labeled αu and αw. For each a ∈ JpKp, we set (v, a) = α
1/p
u · (u, a) + α

1/p
w · (w, a).

By induction, (u, a) and (w, a) correctly compute ûa and ŵa, respectively. Lemma 3.3

then implies that (v, a) correctly computes v̂a.
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Finally, we consider the case where v is a multiplication gate in Φ with children u and w

with incoming edges labeled αu and αw. For a ∈ JpKn, we set

(v, a) = α1/p
u α1/p

w

∑

b,c∈JpKn

b+c≡a (mod p)

(u, b) · (w, c) · x
b+c−a

p ,

where vector addition and congruence of vectors is performed coordinate-wise. Note that

since b + c ≡ a mod p, the vector 1
p (b + c − a) is in fact an integer vector. Moreover, since

b + c ∈ {0, . . . , 2(p − 1)}n, it follows that b + c − a ∈ {0, p}n, so 1
p (b + c − a) ∈ {0, 1}n is

a zero-one vector.

Via induction, (u, b) and (w, c) correctly compute ûb and ŵc, respectively. From this and

Lemma 3.3, it follows that (v, a) correctly computes v̂a.

As previously remarked, since Φ computes f(x), for every a ∈ JpKn there is a gate in Ψ

which computes fa(x), so Ψ correctly computes all components of the mod-p decomposition

of f . It remains to bound the size of Ψ.

For every gate in Φ, we construct pn gates of the form (v, a) in Ψ. In the case that v

is a multiplication gate, we need extra intermediate hardware to compute the summation

(v, a) =
∑

b+c≡a (mod p)(u, b) · (w, c) · x
b+c−a

p . This can be done with pn summation gates and

2pn multiplication gates. We also need 2n gates to compute the products xe for e ∈ {0, 1}n.

Since Ψ is a circuit, we only need to pay for these gates once, as we can reuse them for all

the multiplication computations. In total, each multiplication gate incurs an extra cost of

3pn gates.

This implies each gate in Φ gives rise to at most 3p2n gates in Ψ. As there are s gates in

Φ, there are at most 3sp2n + 2n gates in Ψ. J

I Remark 3.5. In the above construction, rather than using the perfect closure, the resulting

circuit can be defined over an extension K ⊇ F of finite degree. This can be done by adjoining

to F all pth roots of constants which appear in Φ. The degree of this extension may be

exponential in s in the worst case.

We can now use the construction of Lemma 3.4 to take pth roots of circuits which compute

a pth power over a field of characteristic p.

I Corollary 3.6. Let F be a field of characteristic p > 0. Let Φ be an algebraic circuit of size

s which computes a polynomial f(x)p ∈ F[x]. Then there is a circuit Ψ of size 3sp2n + 2n

which computes f(x) over Fp−∞

, the perfect closure of F.

Proof. By Lemma 3.4, there is a circuit Ψ of the claimed size which computes (f(x)p)0. It

follows from the definition of the mod-p decomposition that f(x) = (f(x)p)0, so Ψ computes

f(x) as desired. J

I Remark 3.7. If n = O(logp s), then Corollary 3.6 shows that if fp is computable in size s,

then f is computable in size sO(1). While the log-variate regime may appear as a somewhat

artificial intermediary between the constant-variate and full multivariate regimes, it is a

meaningful setting to study due to various corollaries of the bootstrapping results. For

example, Forbes, Ghosh, and Saxena [14] recently studied the problem of designing explicit

hitting sets for log-variate depth-three diagonal circuits.
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3.2 Formulae

It is natural to ask if the mod-p decomposition allows us to efficiently take pth roots in other

models of algebraic computation. We address this question first in the case of algebraic

formulae, and subsequently for algebraic branching programs. For the reader who is solely

interested in the application of the mod-p decomposition and Corollary 3.6 to hardness-

randomness tradeoffs, it is safe to skip ahead to Section 4. Before continuing on, we make an

important remark regarding formulae and branching programs for univariate polynomials.

I Remark 3.8. In the univariate regime, our results (as stated) for formulae and branching

programs are not as meaningful as the result for circuits. A formula or ABP of size s can

only compute a polynomial of degree d 6 s, so any formula or ABP computing a degree d

univariate polynomial must have size at least d. For univariate polynomials, Horner’s rule

supplies a matching O(d) upper bound. Thus, the pth root of a univariate polynomial which

has complexity s can be computed by a device of size s/p, which is much stronger than what

we will obtain in Corollary 3.10 and Corollary 3.12.

However, if one modifies the model of formulae (or branching programs) to allow leaves

(or edges) labeled by a power of a variable xj
i , then the trivial Ω(d) lower bound no longer

holds. Our techniques can be adapted to this stronger model with little modification, where

the upper bounds we obtain are less trivial.

We now show how one can compute the mod-p decomposition of an algebraic formula.

We essentially do this by applying the transformation of Lemma 3.4 and arguing that we can

convert the resulting circuit into a formula without increasing its size too much. To do this,

we need some additional bookkeeping to ensure that the underlying graph of the resulting

computation is a tree. We borrow this style of bookkeeping from Raz [32], who used it for

improved homogenization and multilinearization of formulae. Alternatively, one can use the

fact that formulae of size s can be rebalanced to have depth O(log s) and then analyze the

increase in depth incurred in the proof of Lemma 3.4.

I Lemma 3.9. Let F be a field of characteristic p > 0. Let Φ be an algebraic formula of size

s and product depth d which computes a polynomial f(x) ∈ F[x] and let {fa : a ∈ JpKn} be the

mod-p decomposition of f . Then there is a formula Ψ of size 3snpn(d+3) and product depth

d + dlog ne which simultaneously computes {fa : a ∈ JpKn} over Fp−∞

, the perfect closure

of F.

Proof. As in Lemma 3.4, we will split each gate v of Φ into pieces which compute components

of the mod-p decomposition of v̂. However, we will need a much larger number of copies of v

to ensure that the resulting circuit Ψ is in fact a formula.

We first set up some notation, borrowing heavily from Raz [32]. For a gate v in Φ, let

path(v) denote the set of all vertices on the path from v to the root of Φ, including v itself.

Let Nv denote the set of all functions T : path(v) → JpKn such that for all u, w ∈ path(v)

where u is a sum gate with child w, we have T (u) = T (w). Informally, the map T encodes

the progression of types in the mod-p decomposition seen as the computation progresses

through the formula.

For each gate v in Φ, we create a collection of gates {(v, a, T ) : a ∈ JpKn, T ∈ Nv, T (v) = a}.

We will wire the gates of Ψ so that (v, a, T ) computes v̂a. As before, to wire the gates of Ψ

correctly, we consider what type of gate v is in Φ. The construction only differs meaningfully

from that of Lemma 3.4 in the case of multiplication gates.

If v is an input gate in Φ labeled by α ∈ F, then we set (v, 0, T ) = α1/p and (v, a, T ) = 0

for a 6= 0. As α1/p ∈ Fp−∞

, this produces a valid circuit over Fp−∞

.

It is immediate from the definition that (v, a, T ) correctly computes v̂a.
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If v is an input gate labeled by the variable xi, let ei denote the vector with a 1 in the

ith slot and zero elsewhere. We set (v, ei, T ) = 1 and (v, a, T ) = 0 for a 6= ei.

Once more, it is an immediate consequence of the definition that (v, a, T ) correctly

computes v̂a.

Suppose now that v is an addition gate with children u and w with incoming edges

labeled αu and αw. For each a ∈ {0, . . . , p − 1}n and T ∈ Nv, we set (v, a, T ) =

α
1/p
u · (u, a, Tu) + α

1/p
w · (w, a, Tw), where Tu ∈ Nu and Tw ∈ Nw extend T and satisfy

T (v) = Tu(u) = Tw(w).

By induction, (u, a, Tu) and (w, a, Tw) correctly compute ûa and ŵa, respectively. By

Lemma 3.3, it follows that (v, a, T ) correctly computes v̂a.

Finally, consider the case when v is a multiplication gate with children u and w with

incoming edges labeled αu and αw. We set

(v, a, T ) = α1/p
u α1/p

w

∑

b+c≡a (mod p)

(u, b, Tu,b) · (w, c, Tw,c) · x
b+c−a

p ,

where Tu,b (respectively Tw,c) extends T and satisfies Tu,b(u)=b (respectively Tw,c(w)=c).

By induction, (u, b, Tu,b) and (w, c, Tw,c) compute ûb and ŵc, respectively. Lemma 3.3

implies that (v, a, T ) correctly computes v̂a.

By construction, Ψ correctly computes {fa : a ∈ JpKn}. It remains to bound the size and

product depth of Ψ and show that Ψ is indeed a formula.

Each gate v in Φ yields pn|Nv| gates of the form (v, a, T ) in Ψ. If v is a multiplication

gate with children u and w, we need to implement the sum over the children (u, b, Tu) and

(w, c, Tw). For a given e ∈ {0, 1}n, we can compute xe using a subformula of size at most n.

To compute (v, a, T ), we need pn summation gates and 2pn multiplication gates in addition

to the gates computing (u, b, Tu), (w, c, Tw), and xe. This implies that we can compute

(v, a, T ) using at most 3npn extra gates. Thus, for every gate v in Φ, we create at most

3np2n|Nv| gates in Ψ.

To bound the size of Nv, note that a function T ∈ Nv can only change values along

path(v) at multiplication gates. Since there are at most d multiplication gates along path(v),

we can specify T by a (d + 1)-tuple of elements of JpKn, corresponding to the values taken by

T between successive multiplication gates. This implies |Nv| 6 pn(d+1). Thus Ψ contains at

most 3snpn(d+3) gates.

It follows from the definition of Ψ that the product depth of Ψ is d + dlog ne, as the

number of product gates on any path from a leaf to the root increases by at most an additive

dlog ne. This arises from the need to implement a product of the form xe at gates of Ψ which

correspond to multiplication gates in Φ. As we need to compute a product of this form at

most once along every path from the root to a leaf, we only incur an additive dlog ne increase

in product depth as opposed to a multiplicative increase.

To see that Ψ is a formula, consider the edges leaving the gate (u, a, T ). Let v denote the

parent of u in Ψ. If v is an addition gate, then only (v, a, Tv) receives an edge from (u, a, T )

where Tv ∈ Nv agrees with T on path(v). If v is a multiplication gate, then only (v, T (v), Tv)

receives an edge from (u, a, T ) where Tv ∈ Nv agrees with T on path(v). In both cases, the

fan-out of the gate u is 1, so Ψ is in fact a formula. J

As with circuits, we can use Lemma 3.9 to compute pth roots of formulae which compute

a pth power over a field of characteristic p > 0.
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I Corollary 3.10. Let F be a field of characteristic p > 0. Let Φ be an algebraic formula

of size s and product depth d which computes a polynomial f(x)p ∈ F[x]. Then there is a

formula Ψ of size 3snpn(d+3) and product depth d + dlog ne which computes f(x) over Fp−∞

,

the perfect closure of F.

Proof. Analogous to the proof of Corollary 3.6. J

3.3 Algebraic Branching Programs

We now consider the task of taking pth roots of algebraic branching programs. We consider

the model of branching programs where edges may only be labeled by a constant α ∈ F

or a multiple of a variable αxi. Some authors allow the edges of a branching program to

be labeled by an affine form `(x) = α0 +
∑n

i=1 αixi. Such a branching program can be

converted to one whose edges are labeled by field constants or multiples of a variable. This

transformation increases the number of vertices by a factor of O(n), which is small compared

to the increase in size we will incur by taking a pth root. We begin by computing the mod-p

decomposition of an algebraic branching program.

I Lemma 3.11. Let F be a field of characteristic p > 0. Let Φ be an algebraic branching

program on s vertices with edges labeled by variables or field constants which computes a

polynomial f(x) ∈ F[x] and let {fa : a ∈ JpKn} be the mod-p decomposition of f . Then

there is an algebraic branching program Ψ on spn vertices which simultaneously computes

{fa : a ∈ JpKn} over Fp−∞

, the perfect closure of F.

Proof. For each node v in Φ, we create a collection of nodes {(v, a) : a ∈ JpKn} in Ψ. We

will wire the nodes of Ψ so that (v, a) computes v̂a.

For a pair of vertices u and v, let `(u, v) denote the label of the edge between u and v.

Let N in(v) denote the set of vertices w such that the edge (w, v) is present in Φ.

Let u and v be two nodes in Φ and suppose there is an edge from u to v in Φ. We consider

two cases, depending on whether this edge is labeled by a constant α ∈ F or a multiple of a

variable αxi.

Suppose the edge from u to v is labeled by α ∈ F. For all a ∈ JpKn, we add an edge

between (u, a) and (v, a) labeled by α1/p. Since α1/p ∈ Fp−∞

, this construction is valid

over the perfect closure Fp−∞

of F.

Suppose the edge from u to v is labeled by αxi, where α ∈ F. Denote by ei the vector

which has a 1 in the ith slot and zeroes elsewhere. For all a ∈ JpKn, we add an edge

between (u, a) and (v, a + ei), where the addition a + ei is performed modulo p. If

ai < p − 1, we label this edge with α1/p. If ai = p − 1, we label this edge with α1/pxi.

Again, α1/p ∈ Fp−∞

by definition, so this construction is valid.

To see that this construction is correct, let v be a node in Φ. By the definition of an

algebraic branching program, we have

v̂ =
∑

u∈N in(v)

`(u, v) · û.

Repeatedly applying the addition case of Lemma 3.3 yields, for each a ∈ JpKn,

v̂a =
∑

u∈N in(v)

(`(u, v) · û)a.



R. Andrews 37:17

If `(u, v) = α ∈ F, then we have (`(u, v) · û)a = α1/pûa. If `(u, v) = αxi, then if ai > 0, we

have (`(u, v) · û)a = α1/pûa−ei
. Otherwise, ai = 0, so (`(u, v) · û)a = α1/pûa−ei

xi, where the

subtraction a − ei is done modulo p.

By induction, (u, a) correctly computes ûa. From our construction of Ψ, if (u, v) is an

edge in Φ, then (v, a) has an incoming edge which computes (`(u, v) · û)a. This implies that

(v, a) computes the polynomial
∑

u∈N in(v)(`(u, v) · û)a = v̂a, which is what we want.

Thus, Ψ simultaneously computes {fa : a ∈ JpKn}. Every node in Φ corresponds to pn

nodes in Ψ. Unlike the cases of circuits and formulae, we do not need extra hardware to

implement intermediate calculations, so Ψ consists of spn nodes as claimed. J

Again, as in the case of circuits and formulae, this immediately yields a way to compute pth

roots of algebraic branching programs which compute a pth power over a field of characteristic

p > 0.

I Corollary 3.12. Let F be a field of characteristic p > 0. Let Φ be an algebraic branching

program on s vertices with edges labeled by variables or field constants which computes a

polynomial f(x)p ∈ F[x]. Then there is an algebraic branching program Ψ on spn vertices

which computes f(x) over Fp−∞

, the perfect closure of F.

Proof. Analogous to the proof of Corollary 3.6. J

4 Extending the Kabanets-Impagliazzo Generator

With our main technical tool in hand, we move on to our first application. The hitting set

generator of Kabanets and Impagliazzo [21] was the first to provide hardness-randomness

tradeoffs for polynomial identity testing over fields of characteristic zero. Over fields of

characteristic p > 0, Kabanets and Impagliazzo obtain hardness-randomness tradeoffs under

non-standard hardness assumptions. Namely, they require an explicit family of polynomials

{fn : n ∈ N} such that fpk

n is hard to compute for 1 6 pk 6 2O(n), though they do not state

their results in this way. Rather, they use the assumption of a family of polynomials which

are hard to compute as functions, which implies hardness of pth powers over finite fields.

It is more common in algebraic complexity to prove lower bounds on the task of computing

polynomials as syntactic objects. Over infinite fields, this is equivalent to computing a

polynomial as a function. However, the two notions differ over finite fields. For example,

the polynomial x2 − x is non-zero as a polynomial over F2, but computes the zero function

over F2. It is interesting to note that examples of functional lower bounds over finite fields

are known. The works of Grigoriev and Karpinski [15], Grigoriev and Razborov [16], and

Kumar and Saptharishi [25] prove lower bounds against constant-depth circuits over finite

fields which functionally compute an explicit polynomial.

In this section, we will extend the Kabanets-Impagliazzo generator to all perfect fields of

characteristic p > 0 under syntactic hardness assumptions for a single family of polynomials.

The perfect fields of characteristic p include all finite fields and all algebraically closed fields

of positive characteristic. To do this, we need a stronger (but still syntactic) hardness

assumption. In their work, Kabanets and Impagliazzo use the existence of an explicit family

of hard multilinear polynomials to derandomize polynomial identity testing. Here, we need

lower bounds against an explicit family of constant-variate polynomials of arbitrarily high

degree. Such an assumption appears to be stronger than the assumption of a hard family

of multilinear polynomials. We discuss the relationship between these hypotheses in more

detail in Section 6.
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4.1 The Kabanets-Impagliazzo Generator

We first describe the construction of the Kabanets-Impagliazzo generator.

I Construction 4.1 ([21]). Let n and m be integers satisfying n < 2m. Let g ∈ F[x]

be a polynomial on m variables. Let S1, . . . , Sn ⊆ [`] be a Nisan-Wigderson design as in

Lemma 2.10. The Kabanets-Impagliazzo generator GKI,g(z) : F` → Fn is the polynomial map

given by

GKI,g(z) := (g(z|S1
), . . . , g(z|Sn

)),

where z|Si
denotes the restriction of z to the variables with indices in Si.

We now quote the main lemma used by Kabanets and Impagliazzo in the analysis of their

generator.

I Lemma 4.2 ([21]). Let F be any field and n, m ∈ N such that n < 2m. Let f ∈ F[y1, . . . , yn]

and g ∈ F[x1, . . . , xm] be non-zero polynomials of degree df and dg, respectively. Let f(y) be

computable by an algebraic circuit of size s. Let S ⊆ F be any set of size at least df dg + 1

and let ` = O(m2/ log n) be as in Lemma 2.10. Let GKI,g be as in Construction 4.1.

Suppose that f(GKI,g(α)) = 0 for all α ∈ S`. Then there is an algebraic circuit Φ of size

s′ 6 poly(n, m, df , dg, s, (1+ideg g)log n) which computes the following. If F has characteristic

zero, then Φ computes g(x). If F has characteristic p > 0, then Φ computes g(x)pk

for some

k ∈ N such that pk 6 df .

If f(GKI,g(z)) = 0, then using Lemma 4.2, we can reconstruct a circuit for g using the

circuit for f . By taking g from a family of hard polynomials, we obtain a contradiction if

there is a small circuit which computes f . This proves that GKI,g is a hitting set generator for

the class of small circuits. The explicitness of GKI,g follows from the explicitness of the family

from which g is taken. The hardness-randomness tradeoffs of Kabanets and Impagliazzo [21]

then follow by setting parameters according to the hardness of g.

Over a field of characteristic p > 0, Lemma 4.2 provides a circuit computing g(x)pk

.

Suppose we are working over Fq, the finite field of q = pa elements. By taking pth powers

of g(x)pk

if necessary, we can obtain a circuit which computes g(x)par

= g(x)qr

for some

r ∈ N. The map α 7→ αq is the identity over Fq, so the circuit which computes g(x)qr

in

fact computes the same function as g(x). This is why, without further work, we need a

polynomial which is hard to compute as a function to obtain hardness-randomness tradeoffs

over finite fields.

If we could factor the circuit for g(x)pk

to obtain a not-too-much-larger circuit for g(x),

then we could derive hardness-randomness tradeoffs from the assumption of an explicit

family of multilinear polynomials which are hard to compute. It remains an open problem

to show that if g(x)p has a small circuit, then g(x) has a small circuit. However, in the

constant-variate regime, Corollary 3.6 resolves this problem in the affirmative. This is the

main fact which drives our extension of the Kabanets-Impagliazzo generator.

4.2 Extension to Fields of Low Characteristic

We now show how to use the Kabanets-Impagliazzo generator to obtain hardness-randomness

tradeoffs over all perfect fields of characteristic p > 0. Recall that CF(s, n, d) denotes the set

of n-variate degree d polynomials computable by circuits of size at most s.
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I Theorem 4.3. Let F be a field of characteristic p > 0 and let c, k ∈ N be positive constants.

Let {gd(x) : d ∈ N} be a strongly t(k, d)-explicit family of k-variate degree d polynomials. Let

s : N → N be a function such that gd cannot be computed by algebraic circuits of size smaller

than s(d) over Fp−∞

. Then there is a hitting set generator G : F` → Fn for CF(nc, n, nc)

which

1. is
(
poly(n, 2`) + t(k, n3ck+Ω(c)) · s−1(n3ck+Ω(c))O(k)

)
-explicit,

2. has seed length ` = O
(

k2 log2(s−1(n3ck+O(c)))
log n

)
, and

3. has degree O(k log(s−1(n3ck+O(c)))).

Proof. We will obtain our generator by using {gd : d ∈ N} to construct a family of hard

multilinear polynomials. We then set parameters and instantiate the Kabanets-Impagliazzo

generator with this hard multilinear family.

By Lemma 2.6, there is a strongly t(k, d)-explicit family of multilinear polynomials hd(y)

on m := k(blog dc + 1) variables such that any circuit which computes hd must be of size

s(d) − O(k log d). The construction of hd also yields the identity

gd(x) = hd(x20

1 , x21

1 , . . . , x2blog dc

1 , . . . , x20

k , x21

k , . . . , x2blog dc

k ),

which allows us to obtain a circuit for gd from a circuit for hd. As hd is multilinear, we have

deg(hd) 6 m and ideg(hd) = 1.

Set d = s−1(ne) for a large enough constant e > 1 to be specified later. Since gd is a

k-variate degree d polynomial, we trivially have s(d) 6 dO(k), so s−1(d) > dΩ(1/k). This gives

us

2m
> dk = s−1(ne)k

> (nΩ(e/k))k = nΩ(e).

Taking e to be large enough guarantees 2m > n. Let S1, . . . , Sn ⊆ [`] be the Nisan-Wigderson

design guaranteed by Lemma 2.10. Our generator G : F` → Fn is given by instantiating the

Kabanets-Impagliazzo generator with hd. That is,

G(z) := GKI,hd
(z) = (hd(z|S1

), . . . , hd(z|Sn
)).

We now verify the claimed properties of G.

Correctness. To see that G is indeed a hitting set generator for CF(nc, n, nc), suppose there

is some non-zero f ∈ CF(nc, n, nc) such that f(G(z)) = 0. Then by Lemma 4.2, there is a

circuit of size

s′
6 poly(n, m, nc, 2log n) 6 nO(c)

which computes hd(y)pa

for pa 6 deg(f) 6 nc. Via the Kronecker substitution yi,j 7→ x2j

i ,

we obtain a circuit of size s′ + O(k log d) 6 nO(c) which computes gd(x)pa

. We now apply

Corollary 3.6 a total of a times to obtain a circuit which computes gd(x) and has size

s′′ 6 (3 · 2k · p2k)anO(c). Since pa 6 nc and 2 6 p, we obtain s′′ 6 n3kc+O(c). By setting

e = 3ck + Θ(c) where the hidden constant on the Θ(c) term is large enough, we obtain

a contradiction as follows. By assumption, any circuit which computes gd must be of

size at least s(d) = ne. However, we have a circuit of size n3ck+O(c) � ne = s(d) which

computes gd, a contradiction. Thus, it must be the case that f(G(z)) 6= 0. Hence G is a

hitting set generator for CF(nc, n, nc).

Explicitness. Given a point α ∈ F`, we can evaluate G as follows. First, we construct

the Nisan-Wigderson design S1, . . . , Sn ⊆ [`] in time poly(n, 2`). We then compute all

dO(k) coefficients of hd, each in t(k, d) time. Finally, for each i ∈ [`], we evaluate hd

on α|Si in time dO(k). Using the fact that d = s−1(n3ck+O(c)), we can evaluate G in

poly(n, 2`) + t(k, n3ck+O(c)) · s−1(n3ck+O(c))O(k) time as claimed.
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Seed length. It follows from Lemma 2.10 that G has seed length ` = O(m2/ log n) =

O
(

k2 log2 d
log n

)
. By our choice of d = s−1(n3ck+O(c)), we obtain the claimed seed length of

O
(

k2 log2(s−1(n3ck+O(c)))
log n

)
.

Degree. By construction, G is a map of degree deg(hd) 6 m = k(blog dc + 1). Once more,

plugging in our choice of d yields the claimed bound of O(k log(s−1(n3ck+O(c)))). J

By applying Lemma 2.3, we obtain the following construction of explicit hitting sets for

CF(nc, n, nc).

I Corollary 4.4. Assume the setup of Theorem 4.3. Let T , `, and ∆ be the explicitness, seed

length, and degree of the generator of Theorem 4.3, respectively. Then there is a hitting set

H for CF(nc, n, nc) which

1. has size |H| = (nc∆ + 1)`, and

2. has explicitness |H| · T = (nc∆ + 1)` · T .

Proof. This is Lemma 2.3 applied to Theorem 4.3. J

We conclude this section with some concrete hardness-randomness tradeoffs obtainable

via Theorem 4.3 and Corollary 4.4. Recall that for constant k, a k-variate polynomial of

degree d consists of at most
(

k+d
k

)
6 dO(k) monomials. In this regime, a polynomial which is

strongly dO(k)-explicit is “exponential time explicit,” as the description of a single monomial

consists of O(k log d) bits.

I Corollary 4.5. Let F be a field of characteristic p > 0. Let c, k ∈ N be fixed constants. Let

{gd(x) : d ∈ N} be a strongly dO(k)-explicit family of k-variate degree d polynomials which

cannot be computed by circuits of size smaller than s(d) over Fp−∞

. Then the following

results hold regarding hitting sets for CF(nc, n, nc).

1. If s(d) = logω(1) d, then there is a 2no(1)

-explicit hitting set for CF(nc, n, nc) of size 2no(1)

.

2. If s(d) = 2logΩ(1) d, then there is a 2logO(1) n-explicit hitting set for CF(nc, n, nc) of size

2logO(1) n.

3. If s(d) = dΩ(1), then there is a nO(log n)-explicit hitting set for CF(nc, n, nc) of size

nO(log n).

Proof. Each statement follows by setting parameters in Theorem 4.3 and Corollary 4.4

and using the fact that c and k are fixed constants independent of n and d. We omit the

straightforward calculations. J

5 Bootstrapping from Constant-Variate Hardness

Given that we use the seemingly stronger assumption of constant-variate hardness in our

extension of the Kabanets-Impagliazzo generator, one may wonder if we can push the

hardness-randomness connection further and obtain a better derandomization of identity

testing for CF(nc, n, nc). Perhaps surprisingly, this is possible by going through the recent

development of “bootstrapping” for hitting sets.

5.1 A Non-Trivial Hitting Set from Constant-Variate Hardness

Let n be a constant and let s be arbitrarily large. Suppose we have an explicit, slightly

non-trivial hitting set for CF(s, n, s). Then we can “bootstrap” the advantage this hitting

set has over the trivial one in order to obtain an explicit hitting set of very small size for

CF(s, s, s). That is, in order to almost completely derandomize polynomial identity testing
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for the class of polynomials of polynomial degree computed by polynomial-size circuits, it

suffices to find a non-trivial derandomization of polynomial identity testing for circuits on a

constant number of variables but of arbitrary size and degree.

We remark that, throughout this section, one should read CF(s, s, s) as a stand-in for

CF(nc, n, nc), where c is a fixed constant. This follows by taking s = nc and noting that

CF(nc, n, nc) ⊆ CF(nc, nc, nc) = CF(s, s, s). While the following results are stated for CF(s, s, s),

changing s by at most a polynomial factor will not qualitatively affect the results we obtain.

We now formally state the bootstrapping result. Let log? s denote the iterated logarithm

of s. That is,

log? s :=

{
1 + log?(log s) s > 1

0 s 6 1.

This version of the bootstrapping theorem is due to Kumar, Saptharishi, and Tengse [27] and

improves upon the initial work of Agrawal, Ghosh, and Saxena [2]. Note that this theorem

holds over all fields, including those of positive characteristic.

I Theorem 5.1 ([27]). Let F be any field and let ε > 0 and n > 2 be constants. Suppose that

for all sufficiently large s, there is an sO(n)-explicit hitting set of size sn−ε for CF(s, n, s).

Then there is an sexp ◦ exp(O(log? s))-explicit hitting set of size sexp ◦ exp(O(log? s)) for CF(s, s, s).

In this section, we will use Theorem 5.1 to obtain a stronger derandomization of polynomial

identity testing over fields of characteristic p > 0 under appropriate hardness assumptions.

Suppose {gd(x) : d ∈ N} is a family of strongly dO(k)-explicit k-variate degree d polynomials

which require algebraic circuits of size dΩ(k). Using Corollary 4.5, we can obtain a sO(log s)-

explicit hitting set for CF(s, s, s) of size sO(log s). By a more careful instantiation of the

Kabanets-Impagliazzo generator, we can use the hardness assumption on gd to design an

explicit hitting set which satisfies the hypotheses of Theorem 5.1. This yields an explicit

hitting set for CF(s, s, s) of size sexp ◦ exp(O(log? s)), which greatly improves upon the size

sO(log s) hitting set of Corollary 4.5.

Our argument also works for fields of characteristic zero, giving us a general theorem

which converts near-optimal constant-variate hardness into near-optimal derandomization of

polynomial identity testing for CF(s, s, s).

First, we need a technical lemma regarding lower bounds against constant-variate poly-

nomials. Roughly, we will show that dδ lower bounds against degree d constant-variate

polynomials can be magnified to dc lower bounds against constant-variate polynomials for

arbitrary δ, c > 0.

I Lemma 5.2. Let F be any field. Let k ∈ N and c, δ > 0 be fixed constants. Let {gd(x) : d ∈

N} be a strongly dO(k)-explicit family of k-variate polynomials of degree d. Suppose that for

d sufficiently large, gd cannot be computed by algebraic circuits of size smaller than dδ over

F. Then there is a constant m ∈ N and a family {h∆(y) : ∆ ∈ N} of strongly ∆O(m)-explicit

m-variate degree ∆ polynomials such that for ∆ sufficiently large, h∆ cannot be computed by

algebraic circuits of size smaller than ∆c over F.

Proof. We follow the approach of Lemma 2.6, but in base dδ/2c + 1 as opposed to base 2.

Without loss of generality, assume that δ 6 1 6 c. Let m := 2ck
δ and let y =

(y1,1, . . . , yk,2c/δ). Let σ(yi,j) = x
(dδ/2c+1)j

i . We will take h∆(y) to be the polynomial

of individual degree dδ/2c which satisfies the equation h(σ(y)) = gd(x). More explicitly, let
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gd(x) =
∑

a∈Nk αaxa be the expression of gd as a sum of monomials. Let ϕ : Jdδ/2c +1K2c/δ →

Jd + 1K be the map which takes the base-(dδ/2c + 1) expansion of a number t ∈ Jd + 1K and

returns t. Then we define h∆(y) as

h∆(y) =
∑

A∈Jdδ/2c+1Kk×2c/δ

αϕ(A1,•),...,ϕ(Ak,•)

∏

i,j∈Jdδ/2c+1K

y
Ai,j

i,j .

It is clear from the construction of h∆ that h∆(σ(y)) = gd(x). The polynomial h∆ is of

individual degree at most dδ/2c, so ∆ := deg(h∆) can be bounded as

∆ 6 mdδ/2c =
2ckdδ/2c

δ
.

Since k and δ are fixed constants, for d large enough, we obtain ∆ 6 d2δ/3c.

To show that h∆ has the claimed hardness, suppose we are given a circuit of size s which

computes h∆. By repeated squaring, we may compute the map σ(y) using a circuit of size

O(k log d) = O(m log ∆) = O(log ∆). This yields a circuit of size s′ 6 s + O(log ∆) which

computes gd. By the assumed hardness of gd, we have s′ > dδ. Putting things together

gives us

s > dδ − O(log ∆).

Since ∆ 6 d2δ/3c for d large enough, we obtain

s > ∆3c/2 − O(log ∆).

For ∆ (and hence d) large enough, we have s > ∆c, which yields the desired lower bound

on h∆.

It remains to verify the explicitness of h∆. We can compute a coefficient of h∆ by

computing the corresponding coefficient of gd, so h∆ inherits the strong dO(k)-explicitness

of gd. We need to show that dO(k) 6 ∆O(m) in order to conclude that h∆ is strongly

∆O(m)-explicit. By writing h∆ as a sum of monomials, there is a circuit of size ∆O(m)

which computes h∆. Combined with the argument above, this yields a circuit of size

∆O(m) + O(log ∆) = ∆O(m) which computes gd. Since any circuit which computes gd must

have size dδ, we obtain ∆O(m) > dδ. As c, k, δ, and m are all fixed constants, this yields

dO(k) 6 ∆O(m) as desired. J

Now we are ready to state and prove our hardness-randomness tradeoff.

I Theorem 5.3. Let F be any field and let k ∈ N and δ > 0 be fixed constants. Let K = Fp−∞

if charF = p > 0 and K = F otherwise. Let {gd(x) ∈ F[x] : d ∈ N} be a family of strongly

dO(k)-explicit k-variate degree d polynomials. Suppose that for all d sufficiently large, gd

cannot be computed by algebraic circuits of size smaller than dδ over K. Then for all

sufficiently large s, there is an sexp ◦ exp(O(log? s))-explicit hitting set of size sexp ◦ exp(O(log? s))

for CF(s, s, s).

Proof. Using Lemma 5.2, we may assume without loss of generality that δ > 30.

By Theorem 5.1, it suffices to provide an explicit hitting set of size sn−ε for CF(s, n, s)

for constants ε, n and all s sufficiently large. We will instantiate the Kabanets-Impagliazzo

generator with gd as the hard polynomial, using the finer-grained designs of Lemma 2.9.

Let s be given. By adding auxiliary variables if necessary, we may assume that k is a

prime power. Note there is always a power of 2 between k and 2k, so this at most doubles

the number of variables in gd. We set parameters as follows:



R. Andrews 37:23

c := 3,

n := 2kc+1 = 2k4,

r := 2, and

d := sk.

By Lemma 2.9, we can construct in poly(n) time a collection of sets S1, . . . , Sn ⊆ [kc] such

that |Si| = k and |Si ∩ Sj | 6 r.

Consider the generator G : Fkc

→ Fn given by

G(z) = (gd(z|S1
), . . . , gd(z|Sn

)).

By construction, G has seed length kc and degree d = sk. Since gd is strongly dO(k)-explicit,

we can evaluate G by constructing the design S1, . . . , Sn, computing the coefficients of gd,

and evaluating each of the n copies of gd. Constructing the design takes nO(1) time and

computing the coefficients of gd takes dO(k) time. To evaluate gd, we use the expression of

gd as a sum of monomials, which requires dO(k) time for each of the n evaluations. In total,

we can evaluate G in time

nO(1) · dO(k) = nO(1) · sO(k2) = nO(1) · sO(
√

n),

so G is sO(
√

n)-explicit for s sufficiently large.

If G is in fact a hitting set generator for CF(s, n, s), then using Lemma 2.3, we obtain a

hitting set H for CF(s, n, s) of size

(s · d)kc

= (sk+1)k3

= sk4+k3

6 s2k4−ε = sn−ε

for some ε > 0 when s is large enough. Moreover, H is sO(
√

n) · |H| 6 sO(n)-explicit. We now

apply Theorem 5.1 to obtain the claimed sexp ◦ exp(O(log? s))-explicit hitting set for CF(s, s, s)

of size sexp ◦ exp(O(log? s)). It remains to show that G is indeed a hitting set generator for

CF(s, n, s).

To show this, suppose for the sake of contradiction that G is not a hitting set generator

for CF(s, n, s). Then there is some f(y) ∈ CF(s, n, s) such that f(y) 6= 0 and f(G(z)) = 0. We

define the hybrid polynomials f0, . . . , fn by

f0(y, z) = f(y1, . . . , yn)

f1(y, z) = f(gd(z|S1
), y2, . . . , yn)

...

fn−1(y, z) = f(gd(z|S1
), . . . , gd(z|Sn−1

), yn)

fn(y, z) = f(gd(z|S1
), . . . , gd(z|Sn

)) = f(G(z)).

Since f0 6= 0 and fn = 0, there is some i ∈ [n] such that fi−1 6= 0 and fi = 0. Assuming

|F| > sd > deg(fi), we can find an assignment to the variables {yj : j 6= i} and {zj : j /∈ Si}

such that fi remains non-zero under this partial evaluation. If F is too small, we may find

such an assignment using values from some finite extension F′ ⊇ F of size at least sd + 1

(and hence degree O(log(sd))). After renaming variables, denote this non-zero restriction of

fi by f(z1, . . . , zk, y).

We can compute f by composing the circuit for f with at most n − 1 copies of the partial

evaluation of gd(z|Sj
) for j < i. By assumption, we can compute f with a circuit of size

s. Since |Sj ∩ Si| 6 2 for j 6= i, at most 2 variables in z|Sj are unset. This implies each

restriction of gd(z|Sj
) is a polynomial of degree d on 2 variables and thus can be computed
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by a depth-two circuit of size at most d · (d + 1)2. This yields a circuit for f of size at most

s + nd · (d + 1)2. Note that the degree of f is bounded by sd, since f is the composition of

two polynomials of degrees at most s and d.

By assumption, we have that f(z1, . . . , zk, y) 6= 0 and f(z1, . . . , zk, gd(z)) = 0. This

implies that y − gd(z) is a factor of f . We now apply Theorem 2.8 to factor the circuit for f .

If charF = p > 0, we obtain a circuit for (y − gd(z))pt

= ypt

− gd(z)pt

for some t ∈ N.

Since ypt

− gd(z)pt

is a factor of f(z1, . . . , zk, y), we must have

dpt = deg(ypt

− gd(z)pt

) 6 deg(f) 6 sd.

This implies pt 6 s. Since f has degree sd and is computable in size s+O(nd3), the circuit

computing ypt

− gd(z)pt

has size at most O((nsd)12). By setting y = 0 and negating the

output of the circuit, we obtain a circuit for gd(z)pt

of size O((nsd)12).

We now apply Corollary 3.6 a total of t times. This produces a circuit which computes

gd(z) and has size O((nsd)12p2kt2kt3t) = O((nsd)12s3k+2). Here we use the fact that

p > 2, so 2kt 6 pkt 6 sk and 3t 6 4t 6 p2t 6 s2.

In the case where |F| > sd, the circuit for f was defined over F, so the circuit for gd is

defined over K = Fp−∞

. If instead |F| 6 sd, the circuit for f was defined over a finite

extension F′ ⊇ F of degree O(log(sd)). As F′ is a finite field, F′ is perfect, so the circuit

obtained from Corollary 3.6 is defined over F′. We apply Lemma 2.7 to simulate this

circuit over F, incurring an extra O(log3(sd)) factor in the circuit size.

In total, we now have a circuit which computes gd over K = Fp−∞

and has size bounded

by O((nsd)12s3k+2 log3(sd)).

If charF = 0, the previous case applies, but without the need to take a pth root or

simulate a field extension. This yields a circuit which computes gd(z) over K = F and

has size O((nsd)12).

In both cases, we obtain a circuit which computes gd(z) over K and has size at most

O((nsd)12s3k+2 log3(sd)). Restating in terms of k and d, we have a circuit for gd of size

O((nsd)12s3k+2 log3(sd)) = O(k48s14+3kd12 log3(d)) = O(k48d15+14/k log3(d)).

Since k > 1 and k is a constant, we can bound the size of the circuit computing gd by

O(d29 log3(d)). This contradicts the fact that gd requires circuits over K of size dδ > d30 for

sufficiently large d. Hence G is in fact a hitting set generator for CF(s, n, s). J

5.2 Comparison to Characteristic Zero

Over fields of characteristic zero, the recent work of Guo, Kumar, Saptharishi and Solomon

[17] obtained what is currently the best-known derandomization of polynomial identity testing

for CF(s, s, s) under a hardness assumption. From an explicit family of k-variate degree d

polynomials of hardness dΩ(1), they obtain an explicit hitting set for CF(s, s, s) of size sO(1).

Specifically, they prove the following theorem.

I Theorem 5.4 ([17]). Let F be a field of characteristic zero. Let k ∈ N be large enough

and let δ > 0 be a fixed constant. Suppose {Pk,d ∈ F[x] : d ∈ N} is a family of dO(k)-explicit

k-variate polynomials of degree d such that Pk,d cannot be computed by algebraic circuits

of size smaller than dδ. Then there is an s(k/δ)O(1)

-explicit hitting set for CF(s, s, s) of size

sO(k2/δ2).

We remark that Guo, Kumar, Saptharishi, and Solomon [17] do not define the notion of

explicitness they use in their result, but it is enough for Pk,d to be computable by a uniform

algorithm which runs in time dO(k). This is slightly different from our notion of strong
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explicitness, where we require the coefficients of Pk,d to be computable in dO(k) time. It is

clear that one can pass from strong explicitness to the standard notion of explicitness by

computing a polynomial as a sum of monomials. Via polynomial interpolation, one can show

that polynomials which are “evaluation-explicit” are strongly explicit. In both cases, the

explicitness parameter may degrade considerably, as the number of terms in a polynomial

may be exponentially larger than the amount of time required to compute the polynomial or

one of its coefficients. In general, one cannot hope to do better than this: in one direction, the

coefficients of the permanent are easy to compute, but the permanent is widely conjectured

to be hard to compute; in the other direction, there are examples of polynomials which

are easy to compute but which have the permanent of a large matrix embedded in their

coefficients (see, for example, Bürgisser [8, §2.3]).

In the context of Theorem 5.3 and Theorem 5.4, however, the two notions of explicitness

coincide. When working with k-variate polynomials of degree d, we incur an overhead of

dO(k) in passing between the two notions of explicitness. As the hypotheses of these theorems

are already in the regime of (strong) dO(k)-explicitness, the explicitness parameter changes

by a polynomial factor, which is small enough to not affect the asymptotics of the results

obtained.

The fact that the underlying field has characteristic zero is used in a key part of the proof

of Theorem 5.4, and it is not clear how to adapt the proof to fields of positive characteristic.

The generator used to design the hitting set in the conclusion of Theorem 5.4 is notably

not a variation on the Kabanets-Impagliazzo generator, but instead a new generator whose

construction is more algebraic than combinatorial in flavor.

Note that Theorem 5.3 and Theorem 5.4 require the same hardness assumption. This gives

a second proof of derandomization of polynomial identity testing from an explicit family of

hard constant-variate polynomials, although the derandomization we obtain is slightly weaker

compared to Theorem 5.4. However, our construction does not require the characteristic

of the underlying field to be zero. It is tempting to conjecture that one can recover the

conclusion of Theorem 5.4 in positive characteristic by improving the bootstrapping process

used to prove Theorem 5.1. It is unclear whether such a result is possible.

6 Relating Constant-Variate and Multivariate Lower Bounds

This work and the work of Guo, Kumar, Saptharishi, and Solomon [17] have shown that

lower bounds against (strongly) explicit constant-variate polynomials yield very strong

derandomizations of polynomial identity testing. We are able to give an explicit hitting set of

size sexp ◦ exp(O(log? s)) for CF(s, s, s) for any field F (this is Theorem 5.3), while Guo, Kumar,

Saptharishi, and Solomon [17] obtain explicit hitting sets of size sO(1) for the same class

when charF = 0. However, if one instead assumes the existence of a (strongly) explicit family

of maximally-hard multivariate polynomials of low degree (specifically, degree nO(1) where n

is the number of variables), it is not clear how to obtain similar derandomization results.

The best-known derandomization from multivariate lower bounds is that of Kabanets and

Impagliazzo [21], who gave an explicit hitting set of size sO(log s) for CF(s, s, s).

The fact that we can obtain strong derandomizations of polynomial identity testing from

constant-variate hardness raises the question of whether or not such derandomization is

possible under multivariate hardness assumptions. A natural first approach to this would be

to show that lower bounds for a (strongly) explicit family of multivariate polynomials imply

comparable lower bounds against a (strongly) explicit family of constant-variate polynomials.

Such an implication is known in the setting of non-commutative circuits and is due to

Carmosino, Impagliazzo, Lovett, and Mihajlin [11].
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It is not hard to show a connection in the other direction; that is, lower bounds against

strongly explicit families of constant-variate polynomials can be translated into comparable

lower bounds against strongly explicit families of multivariate polynomials. An easy way to

do this is via the approach of Lemma 2.6.

In this section, we investigate to what extent a converse to Lemma 2.6 may hold.

Unconditionally refuting the converse of Lemma 2.6 requires proving circuit lower bounds

that seem far out of reach, so we have little hope to fully resolve this question. However,

we can give some complexity-theoretic evidence which shows a converse to Lemma 2.6 is

unlikely to hold. To do this, we take a detour into the arithmetic complexity of integers.

6.1 Complexity of Computing Integers

We start by defining the model we use to compute sequences of integers.

I Definition 6.1. For a natural number n ∈ N, let τ(n) denote the size of the smallest

circuit which computes n using the constant 1 and the operations of addition, subtraction,

and multiplication. Let (an)n∈N be a sequence of natural numbers. If τ(an) 6 logO(1) n, then

we say (an)n∈N is easy to compute. Otherwise, we say (an)n∈N is hard to compute.

As an example, the sequence (2n)n∈N is easy to compute, as we can compute 2n in

O(log n) arithmetic steps by repeated squaring. A major open problem in this area is to

understand τ(n!), the complexity of the sequence of factorials. The following conjecture

regarding τ(n!) appears to be folklore.

I Conjecture 6.2. The sequence of factorials (n!)n∈N is hard to compute.

Prior work has established relationships between Conjecture 6.2 and other prominent

conjectures in computational complexity. Blum, Cucker, Shub, and Smale [5, page 126] gave

an argument that shows if τ(n!) 6 logO(1) n, then there are circuits of logO(1) n size to factor

n. A related work by Shamir [37] reduces factorization to computing factorials, albeit in a

slightly different model. Bürgisser [9] showed that Conjecture 6.2 implies that the n × n

permanent cannot be computed by constant-free division-free algebraic circuits of size nO(1).

Work by Lipton [28] shows that average-case hardness of factoring implies a slightly weaker

form of Conjecture 6.2; namely, that the polynomial
∏n

i=1(x − i) is hard to compute by

constant-free algebraic circuits.

Before moving on to address the question of a converse to Lemma 2.6, we present a

reduction due to Shamir [37] which reduces the task of computing n! to the task of computing(
2n
n

)
.

I Lemma 6.3 ([37]). If (
(

2n
n

)
)n∈N is easy to compute, then (n!)n∈N is easy to compute.

Proof. Suppose τ
((

2n
n

))
6 O(logc n). Recall the identity

n! =

{
((n/2)!)2 ·

(
n

n/2

)
n is even

n · (( n−1
2 )!)2 ·

(
n−1

(n−1)/2

)
n is odd.

This implies

τ(n!) 6 τ(n) + τ((bn/2c!)2) + τ

((
2 · bn/2c

bn/2c

))
.

Expanding out the recurrence and using the fact that τ((bn/2c!)2) 6 τ(bn/2c!) + 1, we get
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τ(n!) 6

log n∑

i=1

[
τ(bn/2ic) + τ

((
2 · bn/2i+1c

bn/2i+1c

))
+ 1

]

6 log n · (O(log n) + O(logc n) + 1)

6 O(logc+1 n).

Hence (n!)n∈N is easy to compute. J

6.2 The Inverse Kronecker Map and Constant-Free Circuits

Here, we show that two forms of a converse to Lemma 2.6 refute Conjecture 6.2 to varying

degrees. Our first argument shows that a straightforward converse of Lemma 2.6 implies that

Conjecture 6.2 fails infinitely often. That is, suppose g(x) is a univariate degree d polynomial

and f(y) is a multilinear polynomial which simplifies to g(x) under the mapping yi 7→ x2i

.

Lemma 2.6 says that hardness of g(x) implies hardness of f(y). The following conjecture,

which we wish to conditionally refute, says that hardness of f(y) implies hardness of g(x).

I Conjecture 6.4. Let gm,d(x) =
∑

a αaxa be an m-variate degree d polynomial. Let

j : {0, 1}blog dc+1 → J2blog dc+1K be given by j(e) =
∑blog dc+1

i=1 ei2
i−1. That is, j(e) is the

number whose binary representation corresponds to e. Let

y = (y1,1, . . . , y1,blog dc+1, . . . , ym,1, . . . , ym,blog dc+1)

and define

fm,d(y) =
∑

e∈{0,1}m×blog dc+1

α(j(e1,•),...,j(em,•))y
e.

Suppose fm,d requires constant-free circuits of size s to compute. Then gm,d requires

constant-free circuits of size sΩ(1) − Θ(m log d) to compute.

We now show that Conjecture 6.4 implies the factorials are easy to compute infinitely

often.

I Theorem 6.5. Suppose Conjecture 6.4 holds over Q. Then the sequence of factorials

(n!)n∈N is easy to compute infinitely often.

Proof. It is easy to see that
∑2n

i=0

(
2n

i

)
xi = (x + 1)2n

is computable by a constant-free

algebraic circuit of size O(n) via repeated squaring. Let

fn(y) =
∑

e∈{0,1}n+1

(
2n

j(e)

)
ye.

The contrapositive of Conjecture 6.4 yields a constant-free circuit of size O(nc) which

computes fn for some absolute constant c. Let an−1 = 1 and a0 = · · · = an−2 = an = 0.

Then fn(a) =
(

2n

2n−1

)
+ 1. By evaluating the circuit for fn at a and subtracting 1, we obtain

a circuit of size O(nc) which computes
(

2n

2n−1

)
.
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We now follow the argument of Lemma 6.3 to construct circuits of size O(nc+1) to

compute (2n!)n∈N. By definition, we have

2n! =

(
2n

2n−1

)
(2n−1!)2

=

(
2n

2n−1

)(
2n−1

2n−2

)2

(2n−2!)4

...

=
n−1∏

i=0

(
2n−i

2n−i−1

)2i

.

Using the fact that we fact that we can compute
(

2n

2n−1

)
by a circuit of size O(nc), we obtain

τ(2n!) 6

n−1∑

i=0

τ

((
2n−i

2n−i−1

)2i)
6

n−1∑

i=0

O(nc+1) 6 O(nc+2).

Hence the factorials are easy to compute infinitely often. J

It is unclear whether there is meaningful evidence to suggest that the factorials are not

easy to compute at numbers of the form 2n. Because of this, Theorem 6.5 may be best

viewed as evidence that if Conjecture 6.4 is true, the proof will not be straightforward.

Conjecture 6.4 can be seen as a base-two converse to Lemma 2.6. Instead, we might

consider the following strengthening of Conjecture 6.4 to all number bases.

I Conjecture 6.6. Let gm,d(x) =
∑

a αaxa be an m-variate degree d polynomial. Let

k ∈ N and let j : JkKblogk dc+1 → Jkblogk dc+1K be given by j(e) =
∑blogk dc+1

i=1 eik
i−1,

that is, j(e) is the number whose base-k representation corresponds to e. Let y =

(y1,1, . . . , y1,blogk dc+1, . . . , ym,1, . . . , ym,blogk dc+1) and define

fm,d(y) =
∑

e∈JkKm×blogk dc+1

α(j(e1,•),...,j(em,•))y
e.

Suppose fm,d requires constant-free circuits of size s to compute. Then gm,d requires

constant-free circuits of size sΩ(1) − Θ(m log d) to compute.

We can show that this stronger conjecture is less likely to hold than Conjecture 6.4.

I Theorem 6.7. Suppose Conjecture 6.6 holds over Q. Then (n!)n∈N is easy to compute.

Proof. By Lemma 6.3, it suffices to show that the central binomial coefficients
(

2n
n

)
n∈N

are

easy to compute. Let n ∈ N be given. There is constant-free circuit of size O(log n) which

computes g(x) = (x + 1)2n. Consider the polynomial

f(y1, yn) =

n−1∑

i=0

n−1∑

j=0

(
2n

i + jn

)
yi

1yj
n,

where by convention
(

n
k

)
= 0 when n < k. Note that

f(x, xn) =

n−1∑

i=0

n−1∑

j=0

(
2n

i + jn

)
xi+jn =

n2−1∑

k=0

(
2n

k

)
xk =

2n∑

k=0

(
2n

k

)
xk = (x + 1)2n.
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The contrapositive of Conjecture 6.6 implies that f is computable by a constant-free circuit

of size O(logc n) for some absolute constant c. We now evaluate f(0, 1) to obtain

f(0, 1) =
n−1∑

j=0

(
2n

jn

)
=

(
2n

0

)
+

(
2n

n

)
+

(
2n

2n

)
=

(
2n

n

)
+ 2.

By computing f(0, 1) − 2, we obtain a constant-free circuit of size O(logc n) which computes(
2n
n

)
. Hence the central binomial coefficients are easy to compute. J

Note that the results of this section only give evidence that Conjecture 6.4 and Conjec-

ture 6.6 do not hold over fields of characteristic zero. Over fields of positive characteristic, it is

unclear whether these conjectures are likely to be true or false. This is somewhat interesting,

as if Conjecture 6.4 holds over fields of positive characteristic, then we can replace constant-

variate hardness with multivariate hardness in our extension of the Kabanets-Impagliazzo

generator to fields of small characteristic.

7 Conclusion and Open Problems

In this work, we gave the first instantiation of the algebraic hardness-randomness paradigm

over fields of small characteristic. Our main tool was the mod-p decomposition, which

we used to efficiently compute pth roots of circuits which depend on a small number of

variables. This allowed us to extend known hardness-randomness tradeoffs due to Kabanets

and Impagliazzo [21] to fields of small characteristic under seemingly stronger hardness

assumptions. We also constructed a hitting set generator which, under suitable hardness

assumptions, provides a near-complete derandomization of polynomial identity testing. As

our hardness assumptions are somewhat atypical, we compared them to more standard

hardness assumptions and gave a conditional result which says that our hardness assumptions

are not implied by standard ones.

A number of problems in low-characteristic derandomization remain open, some of which

we have pointed out earlier in this work. Here, we mention some challenges which our

techniques are not able to resolve.

1. Is it possible to obtain hardness-randomness tradeoffs over fields of small characteristic

using a strongly explicit family of hard multilinear polynomials as opposed to constant-

variate polynomials?

2. Let F be a field of characteristic p > 0, where p is some fixed constant. Suppose

f(x)p ∈ F[x] is an n-variate polynomial which can be computed by a circuit of size s over

F. Is there a circuit of size sO(1) which computes f(x) in the case that n = ω(log s)?

3. In the conclusion of Theorem 5.1, is it possible to obtain a hitting set of size sO(1)? If

so, this would give a construction of a hitting set generator over low characteristic fields

which qualitatively matches the parameters of the generator of Guo, Kumar, Saptharishi,

and Solomon [17].

4. Is it possible to lift lower bounds from the multivariate regime to the constant-variate

regime? It seems like the answer may be “no,” but our evidence thus far only applies to

constant-free circuits over fields of characteristic zero. What can we say if we remove the

constant-free restriction? What about fields of positive characteristic?
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