Algebraic Hardness Versus Randomness in Low
Characteristic

Robert Andrews
Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
rgandre2@illinois.edu

—— Abstract
We show that lower bounds for explicit constant-variate polynomials over fields of characteristic
p > 0 are sufficient to derandomize polynomial identity testing over fields of characteristic p. In
this setting, existing work on hardness-randomness tradeoffs for polynomial identity testing requires
either the characteristic to be sufficiently large or the notion of hardness to be stronger than the
standard syntactic notion of hardness used in algebraic complexity. Our results make no restriction
on the characteristic of the field and use standard notions of hardness.

We do this by combining the Kabanets-Impagliazzo generator with a white-box procedure to
take p*™® roots of circuits computing a p*™® power over fields of characteristic p. When the number
of variables appearing in the circuit is bounded by some constant, this procedure turns out to be
efficient, which allows us to bypass difficulties related to factoring circuits in characteristic p.

We also combine the Kabanets-Impagliazzo generator with recent “bootstrapping” results in
polynomial identity testing to show that a sufficiently-hard family of explicit constant-variate
polynomials yields a near-complete derandomization of polynomial identity testing. This result holds
over fields of both zero and positive characteristic and complements a recent work of Guo, Kumar,
Saptharishi, and Solomon, who obtained a slightly stronger statement over fields of characteristic
Zero.

2012 ACM Subject Classification Theory of computation — Algebraic complexity theory; Theory
of computation — Pseudorandomness and derandomization

Keywords and phrases Polynomial identity testing, hardness versus randomness, low characteristic
Digital Object Identifier 10.4230/LIPIcs.CCC.2020.37

Funding Supported by NSF grant CCF-1755921.

Acknowledgements We would like to thank Michael A. Forbes for many useful comments which

helped improve the presentation of this work.

1 Introduction

The interaction between computational hardness and pseudorandomness is a central theme of
computational complexity. The goal of this vein of work is to show that a class C of problems
that are solvable by randomized algorithms can in fact be solved by deterministic algorithms
which are not much slower than the known randomized algorithm, assuming lower bounds
for a related class D. When trying to derandomize BPP, the class of problems solvable in
polynomial time by a randomized Turing machine with failure probability at most 1/3, we
understand this problem quite well. A series of works culminated in that of Impagliazzo and
Wigderson [20], which showed that BPP = P if there are problems in E which require boolean
circuits of exponential size. Subsequent work by Shaltiel and Umans [36] and Umans [40]
further tightened the quantitative tradeoffs obtainable for derandomizing BPP.

In this work, we focus on the question of hardness versus randomness in the more restricted
computational model of algebraic circuits, which naturally compute multivariate polynomials
over a specified base field F. Here, the algorithmic problem of interest is polynomial identity
testing (PIT), which is the problem of determining if a given algebraic circuit computes the

© Robert Andrews; COMPUTATIONAL
BY licensed under Creative Commons License CC-BY COMPLEXITY
35th Computational Complexity Conference (CCC 2020). CONFERENCE

Editor: Shubhangi Saraf; Article No. 37; pp. 37:1-37:32

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

37:2

Algebraic Hardness Versus Randomness in Low Characteristic

identically zero polynomial. We typically consider identity testing of circuits whose size and
degree are bounded by a polynomial function in the number of variables. This low-degree
regime captures polynomials of interest to computer scientists, such as the determinant and
permanent, and corresponds to typical algorithmic applications of PIT. In this regime, the
problem of PIT is easily solved with randomness by evaluating the circuit at a randomly
chosen point of a large enough grid. The correctness of this algorithm follows from the
Schwartz-Zippel lemma, which roughly says that a low-degree multivariate polynomial cannot
vanish at many points of a sufficiently large grid. To date, no deterministic algorithm for PIT
is known that substantially improves on the naive derandomization of the Schwartz-Zippel
lemma.

Polynomial identity testing has widespread applications in theoretical computer science
and has led to randomized algorithms for perfect matching [29, 23, 30], primality testing
[1, 3], and equivalence testing of read-once branching programs [6], among other problems.
In light of the utility of PIT as an algorithmic primitive, it is worth understanding to what
extent PIT can be derandomized. There is a large body of work concerned with unconditional
derandomization of PIT for various sub-classes of algebraic circuits. For more on this, we refer
the reader to the surveys of Shpilka and Yehudayoff [38] and Saxena [34, 35]. In this work,
we will focus on conditional derandomization of PIT under suitable hardness assumptions.

1.1 Prior Work

The first instantiation of the hardness-randomness paradigm for polynomial identity testing
was given by Kabanets and Impagliazzo [21]. Their work implemented the design-based
approach of Nisan and Wigderson [31] in the algebraic setting, showing that lower bounds
for an explicit family of multivariate polynomials can be used to derandomize PIT.

Subsequent work by Dvir, Shpilka, and Yehudayoff [13] and Chou, Kumar, and Solomon
[12] extended this to the setting of bounded-depth circuits, roughly showing that lower bounds
against depth-(A 4+ O(1)) circuits suffice to derandomize identity testing of depth-A circuits,
for any constant A. The result of Dvir, Shpilka, and Yehudayoff [13] works with any hard
polynomial, but scales poorly with the individual degree of the circuit being tested. Chou,
Kumar, and Solomon [12] refined the approach of Dvir, Shpilka, and Yehudayoff [13] and
showed that if the family of hard polynomials has sufficiently low degree, then this dependence
on the individual degree of the circuit being tested can be avoided. Implementing the hardness-
randomness paradigm in low-depth is motivated in part by a host of depth-reduction results
in algebraic complexity [4, 24, 39, 18] which show that polynomials computable by small
circuits can be computed by non-trivially small low-depth circuits.

Returning to the setting of unrestricted circuits, recent work of Guo, Kumar, Saptharishi,
and Solomon [17] uses a stronger hardness assumption than that of Kabanets and Impagliazzo
[21] and obtains a stronger derandomization of PIT. Specifically, Guo, Kumar, Saptharishi,
and Solomon [17] obtain a polynomial-time derandomization of PIT using lower bounds
against an explicit family of constant-variate polynomials. For comparison, Kabanets and
Impagliazzo [21] only obtain quasipolynomial-time algorithms for PIT under multivariate
hardness assumptions. In Section 6 of this work, we further discuss the relationship between
these hardness assumptions and provide evidence for the strength of constant-variate hardness
compared to multivariate hardness.

A separate line of work by Agrawal, Ghosh, and Saxena [2] and Kumar, Saptharishi,
and Tengse [27] shows that PIT exhibits a “bootstrapping” phenomenon. That is, if one
can obtain a barely non-trivial derandomization of PIT for circuits of size and degree which
are unbounded in the number of variables, then it follows that there is a near-complete
derandomization of PIT for circuits of polynomial size and degree.

R. Andrews

From these works, we have a relatively good understanding of what derandomization of
PIT is possible under hardness assumptions. However, excluding the bootstrapping results
of Agrawal, Ghosh, and Saxena [2] and Kumar, Saptharishi, and Tengse [27], all previous
work on hardness-randomness tradeoffs for PIT requires the underlying field to be of zero or
large characteristic (for the definition of the characteristic of a field, see Section 2). That is,
we can derandomize PIT under hardness assumptions over the complex numbers C or the
finite field of p" elements F,» when p is sufficiently large, but we do not know how to do
the same over a field of low characteristic like Faom.

A partial exception to this deficiency is the work of Kabanets and Impagliazzo [21]. Their
results yield derandomization of PIT over a finite field F,» assuming an explicit polynomial
which is hard to compute as a function over Fp=. Over infinite fields, two polynomials are
equal if and only if they compute the same function. However, this no longer holds over
finite fields. For example, over Fy, the polynomial 22 — x computes the zero function but is
decidedly not the zero polynomial. It is more common in the study of algebraic circuits to
prove lower bounds on the task of computing a polynomial as a syntactic object, not as a
function. Functional lower bounds imply syntactic lower bounds, but the reverse direction
does not hold, which makes proving functional lower bounds a harder task.

If one inspects the proof of Kabanets and Impagliazzo [21], the functional hardness
assumption can be replaced with a slightly weaker, albeit non-standard, syntactic hardness
assumption. Namely, it suffices to assume the existence of an explicit family of n-variate
polynomials {f, : n € N} such that ﬁk is hard in the syntactic sense for 1 < pF < 20(™),
Over characteristic zero fields, the factoring algorithm of Kaltofen [22] implies that if f is
hard to compute, then f¢ is comparably hard to compute as long as d is not too large. Over
fields of characteristic p, it is not clear if hardness of f? is implied by hardness of f. For
example, it is consistent with our current state of knowledge that the n x n permanent
perm,, (7) is 24 -hard over F3, but that perm,, (Z)? is computable by circuits of size O(n?)
over F3. Understanding the relationship between the complexity of f and fP over fields of
characteristic p > 0 in general remains a challenging open problem.

For further exposition on hardness-randomness tradeoffs for PIT, see the recent survey of
Kumar and Saptharishi [26].

1.2 Identity Testing in Low Characteristic

Before describing our contributions, we take a detour to look more closely at the question of
derandomizing PIT over fields of low characteristic. Known techniques for derandomizing
PIT over fields of small characteristic under hardness assumptions fail due to the fact that
over a field of positive characteristic, the derivative of a non-constant polynomial may be
zero. For example, over Fo, we have a%(xQ) = 2x = 0, since 2 = 0 in Fy. Thus, techniques
which are in some sense “analytic” break in low characteristic. Given that the problem
of polynomial identity testing is entirely algebraic, it would be nice to find an “algebraic”
approach that does not succumb to this flaw. Indeed, derandomizing PIT in low characteristic
fields under hardness assumptions is listed as an open problem in the recent survey of Kumar
and Saptharishi [26] on algebraic derandomization.

The problem of derandomizing PIT in low characteristic fields also has interesting
algorithmic applications. Consider, for example, the randomized algorithm of Lovasz [29] to
detect whether a bipartite graph has a perfect matching. Let G = (V4 U Va4, E) be a balanced
bipartite graph on 2n vertices with partite sets V3 and V5. We form the n x n symbolic
matrix A given by

AiJ‘ _ {xi,j {Z7]} €L

0 otherwise.

37:3

CCC 2020

37:4

Algebraic Hardness Versus Randomness in Low Characteristic

It is not hard to see that det(A) # 0 if and only if G has a perfect matching. We can then
check if G has a perfect matching by evaluating A at a random point chosen from a suitably
large grid of integers.

In evaluating det(A), we may encounter large numbers of size (n!). Arithmetic on such
numbers is expensive, requiring at least Q(nlogn) time. We could instead implement this
algorithm over a finite field of size poly(n). As the determinant is a polynomial of degree n,
the Schwartz-Zippel lemma guarantees that this modification yields an algorithm with low
error probability. What we have gained is the fact that elements of such a finite field can be
represented in O(logn) bits, so our arithmetic becomes more efficient. In principle, one could
choose the field so that the characteristic is large enough for the the hardness-randomness
paradigm to apply, but there may be other considerations which motivate picking, say,
an extension field of Fy. Derandomizing such an algorithm (under hardness assumptions)
requires extending the hardness-randomness paradigm to fields of low characteristic.

Alternatively, one can reduce the bit complexity by using a derandomized polynomial
identity testing algorithm over the rational numbers, but with the arithmetic performed
modulo a small prime number. This approach also achieves logarithmic bit complexity.
However, we are now in the position of having to derandomize the selection of the prime
number. It is not obvious how to do this much faster than brute force, so the benefits of
reducing the bit complexity are negated by the need to try many different primes.

While the previous example may seem somewhat artificial, we remark that there are
instances of algorithms which explicitly rely on polynomial identity testing over fields of low
characteristic. For example, the randomized algorithm of Williams [41] for the k-path problem
makes use of polynomial identity testing over fields of characteristic 2. If one wanted to
derandomize this algorithm under a hardness assumption, prior work on hardness-randomness
tradeoffs for PIT would not suffice.

1.3 Our Results

In this work, we instantiate the hardness-randomness paradigm for PIT over fields of
low characteristic under standard syntactic hardness assumptions. That is, we obtain
derandomization of PIT from the existence of an explicit family of hard polynomials {f,, :
n € N} without assuming hardness of p'" powers of f,,. At the heart of our results is a new
technique for computing the map f? — f over F[Z] when the polynomial f? is given by an
algebraic circuit. When f depends on a small number of variables, the circuit computing f
is not too much larger than the circuit which computes fP.

» Lemma 1.1 (informal version of Corollary 3.6). Suppose f(T)P is a polynomial on O(1)
variables and can be computed by a circuit of size s over a field of characteristic p > 0. Then
f(T) can be computed by a circuit of size O(s).

Using this, we are able to extend the techniques of Kabanets and Impagliazzo [21] to
fields of low characteristic. To do so, we need stronger hardness assumptions than those
made by Kabanets and Impagliazzo [21] for the case of zero characteristic fields. In algebraic
complexity, lower bounds are typically proved for families of polynomials parameterized by
the number of variables, as this captures the regime of interest for algorithmic applications.
To prove our results, we assume lower bounds against a family of constant-variate polynomials
which are parameterized by degree.

For the sake of exposition, we focus on the case of lower bounds for univariate polynomials.
A univariate polynomial of degree d can easily be computed by circuits of size O(d) using
Horner’s rule. It is not hard to show that every such polynomial also requires size 2(log d)

R. Andrews

to compute. However, improving on this Q(logd) lower bound for an explicit family of
polynomials is a long-standing open problem. Standard dimension arguments show that
most univariate polynomials of degree d require circuits of size d*(!) to compute.

When comparing statements regarding degree d univariates and degree n©(*) multivariate
polynomials on n variables, it is instructive to think of n and logd as comparable. In this
sense, our results achieve the same hardness-randomness tradeoffs as those of Kabanets
and Impagliazzo [21], but require translating their hardness assumptions to the comparable
statement for univariate polynomials.

Using Lemma 1.1, we can extend the analysis of Kabanets and Impagliazzo to work over
fields of low characteristic. We now give two concrete examples of the derandomization we
can obtain using this extension.

» Theorem 1.2 (informal version of Theorem 4.3 and Corollary 4.5). Let F be a field of

characteristic p > 0. Let {fs(x) : d € N} be an explicit family of univariate polynomials

which cannot be computed by circuits of size less than s(d) over F.

1. Ifs(d) = log“’(l) d, then there is a deterministic algorithm for identity testing of polynomial-
size, polynomial-degree circuits over F in n variables which runs in time gn”

2. Ifs(d) = 9log" @ then there is a deterministic algorithm for identity testing of polynomial-
size, polynomial-degree circuits over F in n variables which runs in time 9log?!)

For comparison, from an n*() lower bound against a family of explicit multilinear
polynomials, Kabanets and Impagliazzo [21] give a deterministic algorithm for PIT over fields
of characteristic zero which runs in time 27°*". If instead one has a 2" lower bound, then
their techniques yield a deterministic algorithm which runs in time 9log? Viewing log d
and n as (roughly) equivalent, we see that our derandomization obtains the same tradeoff
between hardness and pseudorandomness as Kabanets and Impagliazzo [21], modulo the
difference between univariate and multivariate lower bounds.

It is not hard to show that lower bounds in the constant-variate regime imply comparable
lower bounds in the multivariate regime (see Lemma 2.6), but the reverse implication is
not known. In Section 6, we investigate the possibility of using known techniques to prove
univariate lower bounds from multivariate lower bounds.

As the assumption of a hard univariate family seems strong, it raises the question of
whether or not one can obtain a stronger derandomization of PIT over fields of positive
characteristic under a univariate hardness assumption. There is evidence this can be done, as
Guo, Kumar, Saptharishi, and Solomon [17] use univariate lower bounds to obtain a complete
derandomization of PIT over fields of characteristic zero. With a more careful instantiation
of the Kabanets-Impagliazzo result, we are able to derandomize PIT in a way that suffices
for the bootstrapping results of Agrawal, Ghosh, and Saxena [2] and Kumar, Saptharishi,
and Tengse [27] to take effect. This allows us to prove nearly-optimal hardness-randomness
tradeoffs for PIT over fields of positive characteristic, which comes close to matching the
characteristic zero result of Guo, Kumar, Saptharishi, and Solomon [17]. More concretely,
we prove the following.

» Theorem 1.3 (informal version of Theorem 5.3). Let F be a field of characteristic p > 0. Let
{fa(z) : d € N} be an explicit family of univariate polynomials which cannot be computed by
circuits of size less than d® for some constant § > 0. Then there is a deterministic algorithm
for identity testing of polynomial-size, polynomial-degree algebraic circuits in n variables over
F which runs in time noP°exp(O(log” n))

The rest of this work is organized as follows. In Section 2, we establish notation, definitions,
and relevant background necessary to state and prove our results. In Section 3, we prove our
main technical lemma on computing p** roots of algebraic circuits over fields of characteristic

37:5

CCC 2020

37:6

Algebraic Hardness Versus Randomness in Low Characteristic

p > 0. We then use this in Section 4 to extend the work of Kabanets and Impagliazzo to
the low characteristic setting. We combine our techniques with the bootstrapping results
to obtain near-complete derandomization of PIT over fields of positive characteristic in
Section 5. Section 6 investigates the relationship between univariate and multivariate circuit
lower bounds. We conclude in Section 7 with a collection of problems left open by this work.

2 Preliminaries

For n € N, we write [n] :== {1,...,n} and [n] := {0,...,n — 1}. If A is an n x m matrix,
we write A; o and A, ; for the i*" row and j*® column of A, respectively. We abbreviate a
vector of variables (x1,...,x,), numbers (ai,...,a,), or field elements (ay,...,a,) by Z,
a, and @, respectively, where the length is usually clear from context. We also abbreviate
the product []}, zf* = 7% Given a polynomial f(Z) = Y - azz", we write deg(f) and
ideg(f) for the total degree and individual degree of f, respectively. The total degree of
f is given by deg(f) := max{||@||, : az # 0}, while the individual degree of f is given by
ideg(f) := max{|fall, : oz # 0}.

For a field I, the characteristic of F, denoted charF, is the smallest positive integer p
such that p-1 =0 in F. In the case that there is no such p, we say that F has characteristic
zero. Alternatively, charF is the number p such that the ring homomorphism Z — F induced
by 1 — 1 has kernel pZ. The set Cgp(s,n,d) C F[Z] denotes the set of all n-variate degree d
polynomials which can be computed by an algebraic circuit of size at most s over F.

2.1 Algebraic Computation and Polynomial Identity Testing

We assume familiarity with the models of algebraic circuits, formulae, and branching programs.
When we refer to the size of a circuit, formula, or branching program, we mean the number
of nodes in the computational device. An introduction to this area can be found in the survey
of Shpilka and Yehudayoff [38]. Throughout this work, we analyze our algorithms under the
assumption that arithmetic over the base field ' can be performed in constant time.

We now collect basic definitions and results needed for the study of deterministic black-box
algorithms for polynomial identity testing. More in-depth exposition is available in the recent
survey of Kumar and Saptharishi [26].

We start with the notion of a hitting set, the basic object used to construct deterministic
black-box algorithms for polynomial identity testing.

» Definition 2.1. Let C C F[Z] be a set of n-variate polynomials. We say that a set H C F™
is a hitting set for C if for every non-zero f(T) € C, there is a point @ € H such that f(a) # 0.
If H can be computed in t(n) time, then we say that H is t(n)-explicit.

We now introduce hitting set generators, the analogue of pseudorandom generators in
the context of algebraic derandomization.

» Definition 2.2. Let C C F[z] be a set of n-variate polynomials. Let G : F™ — F" be a
mapping given by

where G; € F[y]. We say that G is a hitting set generator for C if for every non-zero f(T) € C,
we have f(G()) # 0. The seed length of G is m. The degree of G is max;c[,) deg(G;). We
say G is t(n)-explicit if, given @ € F™, we can compute G(a) in t(n) time.

R. Andrews

It is a well-known result that an explicit, low-degree hitting set generator for C with small
seed length yields an explicit hitting set for C of small size. The hitting set is constructed
by evaluating the generator on a grid of large enough size. Correctness follows from the
Schwartz-Zippel lemma.

» Lemma 2.3. Let C be a set of n-variate degree d polynomials. Let G : F"™ — F™ be a
t(n)-explicit hitting set generator for C of degree D. Then there is a (dD + 1)™t(n)-explicit
hitting set H for C of size (dD + 1)™.

We also need a notion of explicitness for a family of polynomials. In previous works
on hardness-randomness tradeoffs for polynomial identity testing, a family of n-variate
polynomials {f,, € F[Z] : n € N} is considered explicit if f,, is computable in exp(O(n)) time.
However, we will need a slightly different notion of explicitness. Instead of an exponential-
time algorithm to compute f,, we require an exponential-time algorithm to compute the
coefficient of a given monomial in f,,. This different notion of explicitness will be used to
transition between the constant-variate and multivariate regimes later on in Section 4 and
Section 5.

» Definition 2.4. Let {f,.4(T) € F[Z] : n,d € N} be a family of n-variate degree d polynomials.
We say that this family is strongly t(n,d)-explicit if there is an algorithm which on input
(n,d, @) outputs the coefficient of T in f, 4(T) in t(n,d) time.

» Remark 2.5. The preceding definition is reminiscent of Valiant’s criterion for membership in
VNP. Briefly, Valiant’s criterion says that if the coefficient of Z% can be computed in #P /poly,
then the polynomial f(T) is in VNP, an algebraic analogue of NP. We refer the reader to
Biirgisser [8, Chapters 1 and 2] for further exposition on VNP and Valiant’s criterion.

We will repeatedly build explicit families of hard multivariate polynomials out of explicit
families of hard constant-variate polynomials. By “a family of hard multivariate polynomials,”
we mean a family of polynomials { f,,(Z) € F[z] : n € N}, where f,, is an n-variate polynomial
of degree n®"). When we say “a family of hard constant-variate polynomials,” we mean a
family {fq4(%) € F[z] : d € N}, where f; is a degree d polynomial on k = O(1) variables. That
is, when we consider multivariate polynomials, we parameterize the family by the number of
variables and primarily consider families of small degree; when we look at constant-variate
polynomials, we fix the number of variables in all polynomials and parameterize the family
by the degree of the polynomial.

To illustrate how we can obtain hard multivariate polynomials from hard constant-variate
polynomials, suppose gq4(z) = Z?:o a;2* is a hard degree d univariate polynomial. We will
define a new polynomial f,,(7) on n := |logd| + 1 variables, where the monomials of f,
correspond to writing each term of g4 “in base 2.7 More precisely, for each € € {0,1}", let
j(€) be the number whose representation in binary corresponds to €. We assign the coefficient
a(e) to the monomial 7° in f,. To show that f, is hard, we show the contrapositive: a small
circuit for f,, implies a small circuit for g4, which contradicts the hardness of g4. The proof
of this is relatively straightforward, as we simply find a way to substitute powers of x for
each y; so that the monomial ° is mapped to z7(®).

In the case where g4 is a polynomial in multiple variables, we simultaneously write each
variable appearing in g4 “in base 2" We remark that there is nothing a priori special about
our use of base 2. However, doing so yields polynomials which are multilinear, a fact which
will be useful later on.

We now make the preceding sketch precise, showing that lower bounds in the constant-
variate regime imply comparable lower bounds in the multivariate regime.

37:7

CCC 2020

37:8

Algebraic Hardness Versus Randomness in Low Characteristic

» Lemma 2.6. Let g,,,4(T) = > - gz be a strongly t(m,d)-explicit m-variate degree d
polynomial which requires circuits of size s to compute. Let j : {0, 1}llogdl+1 _ [allogd]+1]
be given by j(€) = Z}flg U191 that is, j(€) is the number whose binary representation
corresponds to e. Lety = (y1,1,- - - YL, [logd|+1> -+ sYm,Ls-- > Ym,|logd|+1) and define

fm,a(¥) = > (@1 0) i Em)T

EE{O,I}""X llogd]+1

Then fm,a ts a strongly t(m,d)-explicit multilinear polynomial on m(|logd| + 1) variables
which requires circuits of size s — ©(mlogd) to compute.

Proof. The fact that f,, 4 is multilinear is clear from the definition.

To see that fp, 4 is hard to compute, suppose ® is a circuit of size ¢ which computes
fm,qa. By applying the Kronecker substitution y; ; — xf’j,
computes ¢, q¢(T). This mapping can be computed in size ©(mlogd) by repeated squaring,
so we obtain a circuit for g, q of size t + ©(mlogd). By assumption, ¢ + ©(mlogd) > s, so
t > s — ©(mlogd), which proves the lower bound on the circuit complexity of f,, 4.

Finally, remark that the binary description of a monomial in f,, 4 is exactly the same
as the binary description of a monomial in g, 4. This implies we can use the ¢(m, d)-time

algorithm to compute the coefficients of f,, 4, so fy, 4 inherits the explicitness of g,, 4. <

we can recover a circuit which

Whether lower bounds in the multivariate regime imply lower bounds in the constant-
variate regime is an open question. In Section 6, we give complexity-theoretic evidence
that suggests the technique used to prove the preceding lemma does not suffice to prove
constant-variate lower bounds from multivariate lower bounds.

In Section 5, we will run into some technical issues concerning circuits which are defined
over a low-degree extension of the base field F. The next lemma says that whenever a circuit
® is defined over an extension K O F of low degree, such a circuit can in fact be defined over
F without increasing its size too much. A related result was proved in Biirgisser, Clausen,
and Shokrollahi [10, §4.3], where the authors considered extensions K O F such that circuits
defined over K have no computational advantage compared to circuits defined over F when
computing a polynomial in F[Z].

» Lemma 2.7 ([8, Proposition 4.1(iii)], [19], see also [10, §4.3]). Let F be a field and let K D F
be an extension of degree k. Suppose f(T) can be computed by a circuit of size s over K.
Then there is a circuit of size O(k®s) which computes f over F.

We conclude our preliminaries on algebraic complexity by quoting a celebrated result of
Kaltofen which shows that algebraic circuits may be factored without a large increase in size.

» Theorem 2.8 ([22]). Let f(Z) € F[Z] be a polynomial of degree d computable by an algebraic

circuit of size s. Let g(T) € F[Z] be a factor of f(T). Then there is an algebraic circuit of

size 8" < O((snd)*) which computes

1. g(T), in the case that charF =0, and

2. g(f)pk where k > 0 is the largest integer such that g(f)pk divides f(T), in the case that
charF =p > 0.

2.2 Combinatorial Designs

We will make use of the designs of Nisan and Wigderson [31], specifically as they are used
by Kabanets and Impagliazzo [21] to prove hardness-randomness tradeoffs for polynomial
identity testing. Nisan and Wigderson [31] gave two constructions of designs: one via

R. Andrews

Reed-Solomon codes, and one via a greedy algorithm. We first quote their construction using
Reed-Solomon codes, which was also recently described in work by Kumar, Saptharishi, and
Tengse [27].

» Lemma 2.9 ([31], see also [27]). Let ¢ > 2 be a positive integer, and let n,m,¢,r € N be
such that (i) £ = m¢, (i) r < m, (i) m is a prime power, and (iv) n < m=Y". Then there
is a collection of sets Si,...,Sy, C [€] such that

for each i € [n], we have |S;| =m; and

for all distinct i, j € [n], we have |S; N S;| < r.
Additionally, such a family can be deterministically constructed in poly(n) time.

We now cite the designs obtained by Nisan and Wigderson [31] via a greedy algorithm.

In the regime where m = O(logn), this improves on the previous construction by taking the
size £ of the ground set to be O(logn) as opposed to O(log® n).

» Lemma 2.10 ([31]). Let n and m be integers such that n < 2™. There exists a family of
sets S1,...,S, C €] such that

1. £ = 0(m?/log(n)),

2. for each i € [n], we have |S;| = m; and

3. for all distinct i, j € [n], we have |S; N .S;| < log(n).

Such a family of sets can be deterministically constructed in time poly(n,2°).

In extending the analysis of the Kabanets-Impagliazzo generator to low characteristic
fields, we will make use of Lemma 2.10. Our use of Lemma 2.9 will arise when we combine
the hardness versus randomness paradigm with the bootstrapping phenomenon. In that
setting, we will apply Lemma 2.9 with ¢ = O(1) and » = O(1). Compared to Lemma 2.10,
this yields sets with much smaller intersection size, though the number of sets is only m©™)
as opposed to 2.

2.3 Field Theory

To cleanly state some of our results, we need the notion of a perfect field. Namely, given
a circuit ® which computes f(Z)? € F[Z], we will construct in Section 3 a circuit ¥ which
computes f(Z). This construction takes p' roots of field elements a € F, which are not
always guaranteed to exist in F. To ensure ¥ is defined over the base field IF, we require that
F is closed under taking p*™® roots, which is equivalent to requiring that I is perfect.

» Definition 2.11. A field F is called perfect if either F has characteristic 0 or F has
characteristic p > 0 and the map a — aP is an automorphism of F. If F has characteristic
p > 0, then the perfect closure of F, denoted FP ", is the smallest field containing F which
is closed under taking p* roots.

It is a basic fact that perfect closures exist.
» Fact 2.12. Ewvery field F of characteristic p > 0 has a perfect closure FP~ " .

Informally, one can prove this by adjoining “enough” p** roots to the field F. That is, for
each « € F, we introduce a countable collection of new field elements denoted by (a,n) for
n € N, where the element (a,n) is meant to represent P " . We then take a quotient by a
suitable equivalence relation; for example, if a? = 3, then we regard (a,n) and (8,n + 1) as
equivalent for all n € N. One must then verify that the resulting object is in fact a field and
is (up to isomorphism) the perfect closure of F. More formally, the perfect closure can be
constructed as the direct limit of a particular direct system of fields. We refer the reader to
Bourbaki [7, Chapter 5, §1] for the details of this construction.

37:9

CCC 2020

37:10

Algebraic Hardness Versus Randomness in Low Characteristic

Examples of perfect fields of positive characteristic include all finite fields and all alge-
braically closed fields of positive characteristic. A non-example is given by F,m (%), the field
of rational functions in n variables with coefficients in F,m, where F,m is the finite field of
size p™. The field Fpm (Z) fails to be perfect due to the fact that a:i/ P ¢ Fpm(T), so x1 is not
in the image of the map a +— aoP.

For more details on perfect fields, we refer the reader to any text on field theory, e.g.,
Roman [33, Chapter 3].

3 p' Roots of Algebraic Computation

Suppose F is a field of characteristic p > 0 and @ is a circuit which computes f(Z)P for a
polynomial f(Z). If we want to obtain a circuit which computes f(Z), then Theorem 2.8
does not suffice. In this section, we will describe a simple transformation of ® which yields
a circuit computing f(Z). This is the main technical step that will allow us to obtain
hardness-randomness tradeoffs over fields of low characteristic.

In general, this transformation will incur an exponential blow-up in the size of ®. If the
original circuit computes a polynomial on n variables, then the new circuit we build will be
larger in size by a factor of about p?". In particular, if our input is a circuit on a constant
number of variables, then we only increase the size of the circuit by a constant factor. The
fact that this transformation is efficient in the constant-variate regime is exactly the reason
we need to use hardness of constant-variate families of polynomials as opposed to a family of
hard multilinear polynomials.

Before describing the construction for circuits on an arbitrary number of variables, we
first examine the case of univariate polynomials. Let F be a field of characteristic p > 0 and
let f(x) € F[z] be a univariate polynomial. We start by grouping the monomials of f by
their degree modulo p, which allows us to write

@)= Fi)d,
=0

where each ﬁ(m) is a univariate polynomial in = which is only supported on p'* powers of x.
That is, the term ﬁ(m)xl corresponds exactly to the monomials in f(z) whose degree in x is
congruent to ¢ modulo p. Recall that over a field of characteristic p > 0, we have the identity
(a+b)P = aP 4+ bP. Since f;(x) is a sum of p" powers of z, we can write

di di P
~ , 1
filz) = Zai,jx“’ = Z ai,é‘pmj
§=0 §=0
This expresses ﬁ(m) as a p'" power of the polynomial f;(z) = Z?i:o a%p 2. In general,

fi may not be well-defined over F, as the coefficients az

ép may not exist in F. However,

a%p € FP~ 7, the perfect closure of F, so f; is well-defined over FP™ "~ .
With this, we can write

p—1
f(z) = Zfi(a:)pa:i.
i=0

We refer to such an expression as the mod-p decomposition of f. This motivates the following
definition, which generalizes this decomposition to the case of multivariate polynomials.

R. Andrews 37:11

» Definition 3.1. Let f(Z) € F[z]. The mod-p decomposition of f(Z) is the collection of
polynomials { fz(T) : @ € [p]™} such that

f@= > fa@rz".

ac[p]™

Over a perfect field F of characteristic p > 0, the existence of the mod-p decomposition
follows from the fact that any polynomial of the form Y _azZ?® has a p'® root, given by
py o%/ PZ%. Here, we use the fact that F is perfect to guarantee the constants o%/ P
F. Uniqueness of the decomposition follows from the fact that the monomials {z® : @ € N}
form a basis for F[Z]. We record this observation as a lemma.

exist in

» Lemma 3.2. Let F be a field of characteristic p > 0 and let f,g € F[z]. Let {fz:a € [p]"}
and {gz : @ € [p]"™} be the mod-p decompositions of f and g, respectively. Then f = g if and
only if fz = gz for alla € [p]™.

The utility of the mod-p decomposition becomes apparent when f(Z) is itself a p'" power.
In this case, f itself is a sum of p*™ powers of monomials in the variables z1,. .., z,, so we
have f(Z) = f5(%)?. Given a circuit ® which computes f, suppose we could transform @ into
a new circuit ¥ which computes the mod-p decomposition of f. Then to compute f (E)l/ P
we simply construct the circuit ¥ and set f5(Z) = f(Z)/? to be the output.

Before continuing on, we record a straightforward lemma about how the mod-p decompo-
sition behaves with respect to addition and multiplication.

» Lemma 3.3. Let F be a perfect field of characteristic p > 0. Let f,g € F[z], and let
{fz:a € [p]*} and {gz : a € [p]™} be the mod-p decompositions of [and g, respectively. Let
h=af +8g and g = ~vfg for a,B,y € F. Let {hg :a € [p]™} and {qz : @ € [p]™} be the

mod-p decompositions of h and q. Then for all @ € [p]™, we have
ha = a'/? fz 4+ 8"/P gz
and
_ beelpl”
b+e=a mod p
where the sum and congruence b+ ¢ = @ mod p are performed component-wise.

Proof. By expanding the equality h = af + ¢ in the mod-p decomposition and using the
fact that (a + b)? = a? + bP, we obtain

Y ha@ =a Y @i+ 8 Y. gal@)ra

a€[p]™ ae[p]™ ag[p]™
= Y (@7 fala) + P ga(@) 7",
a€[p]™

Lemma 3.2 implies that hgy = a'/? fz + /7 g5 as claimed.

CCC 2020

37:12

Algebraic Hardness Versus Randomness in Low Characteristic

For ¢(Z), we again expand the equality ¢ = vfg in the mod-p decomposition to obtain

Y w@ri = Y a@rE || Y w@re

ae[p]™ ac[p]™ ac[p]™
=7 Z f5(®)P ge(T)P T+
b,ce[p]”
P
— 1/p A
= > | Y. L@g@z | 7
aclp]™ beep]™
b4c¢=a mod p
Once more, Lemma 3.2 implies that
__bte-a
qa =7 1/p Z fgga’c P
b,ee[p]™
EJrEEE mod p
as claimed. <

3.1 Circuits

We start by implementing the strategy outlined above in the case of algebraic circuits.
Throughout this and subsequent sections, ® and ¥ will denote algebraic circuits, formulae, or
branching programs, and v, u, and w will denote gates in these circuits. We will frequently
refer to the polynomial computed at a gate v, which we denote by 9. For @ € [p]™, we write
vz for the part of the mod-p decomposition of ¢ indexed by @.

» Lemma 3.4. Let F be a field of characteristic p > 0. Let ® be an algebraic circuit
of size s which computes a polynomial f(Z) € F[T] and let {fz : @ € [p]™} be the mod-p
decomposition of f. Then there is a circuit U of size 3sp®™ + 2" which simultaneously
computes {fz: @ € [p]"} over FP" ", the perfect closure of F.

Proof. To construct the desired circuit ¥, we will split each gate v of ® into pieces {(v,a) :
a € [p]™} and wire ¥ so that (v,@) computes 0z. As ® computes f(T), this implies that
¥ will contain gates computing fz(Z) for all @ € [[p]™. To wire each gate (v,a) in ¥, we
consider the type of the gate v in ®.

First, suppose v is an input gate in ® labeled by a constant a € F. In this case, we set

(v,0) = &'/P and (v,a) = 0 for @ # 0. By definition, F*"~ contains a'/?, so this is valid

over FP~ 7

It follows from the definition of ¥z that (v,a) correctly computes g.

If v is an input gate labeled by the variable z;, let €; denote the vector with a 1 in the

ith slot and zero elsewhere. We set (v,€;) = 1 and (v,@) = 0 for @ # &;.

Again, it follows immediately from the definition of 0z that (v,a) correctly computes 9.

Suppose now that v is an addition gate in ® with children u and w with incoming edges
labeled v, and av,. For each @ € [p]?, we set (v,a) = ow/” - (u,@) + ad? - (w,).
By induction, (u,a) and (w,a) correctly compute @z and g, respectively. Lemma 3.3

then implies that (v,a) correctly computes g.

R. Andrews

Finally, we consider the case where v is a multiplication gate in ® with children v and w
with incoming edges labeled «, and «,,. For @ € [p]™, we set

(v,a) = al/Pal/P Z (u,b) - (w,¢) ~§b+?a,

_ beelp]”
b+c=a (mod p)

where vector addition and congruence of vectors is performed coordinate-wise. Note that
since b+ ¢ = @ mod p, the vector %(5 +¢—a) is in fact an integer vector. Moreover, since
b+ce€{0,...,2(p—1)}", it follows that b+¢ —a € {0, p}", so %(54—6—6) € {0,1}"™ is
a zero-one vector.

Via induction, (u,b) and (w,€) correctly compute iz and g, respectively. From this and
Lemma 3.3, it follows that (v,a) correctly computes og.

As previously remarked, since ® computes f(T), for every a € [p]™ there is a gate in ¥
which computes fz(T), so ¥ correctly computes all components of the mod-p decomposition
of f. It remains to bound the size of W.

For every gate in ®, we construct p" gates of the form (v,a@) in ¥. In the case that v
is a multiplication gate, we need extra intermediate hardware to compute the summation

(v,@) = X 51227 (mod p) (W b) - (w,?) -z . This can be done with p" summation gates and

2p™ multiplication gates. We also need 2" gates to compute the products z° for € € {0,1}".

Since ¥ is a circuit, we only need to pay for these gates once, as we can reuse them for all
the multiplication computations. In total, each multiplication gate incurs an extra cost of
3p™ gates.

This implies each gate in ® gives rise to at most 3p?™ gates in W. As there are s gates in
®, there are at most 3sp?™ 4 2" gates in V. |

» Remark 3.5. In the above construction, rather than using the perfect closure, the resulting
circuit can be defined over an extension K D F of finite degree. This can be done by adjoining
to F all pt* roots of constants which appear in ®. The degree of this extension may be
exponential in s in the worst case.

We can now use the construction of Lemma 3.4 to take p*" roots of circuits which compute
a p'* power over a field of characteristic p.

» Corollary 3.6. Let F be a field of characteristic p > 0. Let ® be an algebraic circuit of size
s which computes a polynomial f(T)P € F[T]. Then there is a circuit ¥ of size 3sp*™ + 2"
which computes f(T) over FP" | the perfect closure of F.

Proof. By Lemma 3.4, there is a circuit ¥ of the claimed size which computes (f(Z)?)g. It
follows from the definition of the mod-p decomposition that f(z) = (f(Z)?)g, so ¥ computes
f(@) as desired. <

» Remark 3.7. If n = O(log,, s), then Corollary 3.6 shows that if f? is computable in size s,
then f is computable in size s©(1). While the log-variate regime may appear as a somewhat
artificial intermediary between the constant-variate and full multivariate regimes, it is a
meaningful setting to study due to various corollaries of the bootstrapping results. For
example, Forbes, Ghosh, and Saxena [14] recently studied the problem of designing explicit
hitting sets for log-variate depth-three diagonal circuits.

37:13

CCC 2020

37:14

Algebraic Hardness Versus Randomness in Low Characteristic

3.2 Formulae

It is natural to ask if the mod-p decomposition allows us to efficiently take p*" roots in other
models of algebraic computation. We address this question first in the case of algebraic
formulae, and subsequently for algebraic branching programs. For the reader who is solely
interested in the application of the mod-p decomposition and Corollary 3.6 to hardness-
randomness tradeoffs, it is safe to skip ahead to Section 4. Before continuing on, we make an
important remark regarding formulae and branching programs for univariate polynomials.

» Remark 3.8. In the univariate regime, our results (as stated) for formulae and branching
programs are not as meaningful as the result for circuits. A formula or ABP of size s can
only compute a polynomial of degree d < s, so any formula or ABP computing a degree d
univariate polynomial must have size at least d. For univariate polynomials, Horner’s rule
supplies a matching O(d) upper bound. Thus, the p'" root of a univariate polynomial which
has complexity s can be computed by a device of size s/p, which is much stronger than what
we will obtain in Corollary 3.10 and Corollary 3.12.

However, if one modifies the model of formulae (or branching programs) to allow leaves
(or edges) labeled by a power of a variable xf , then the trivial Q(d) lower bound no longer
holds. Our techniques can be adapted to this stronger model with little modification, where
the upper bounds we obtain are less trivial.

We now show how one can compute the mod-p decomposition of an algebraic formula.
We essentially do this by applying the transformation of Lemma 3.4 and arguing that we can
convert the resulting circuit into a formula without increasing its size too much. To do this,
we need some additional bookkeeping to ensure that the underlying graph of the resulting
computation is a tree. We borrow this style of bookkeeping from Raz [32], who used it for
improved homogenization and multilinearization of formulae. Alternatively, one can use the
fact that formulae of size s can be rebalanced to have depth O(log s) and then analyze the
increase in depth incurred in the proof of Lemma 3.4.

» Lemma 3.9. Let F be a field of characteristic p > 0. Let ® be an algebraic formula of size
s and product depth d which computes a polynomial f(T) € F[Z] and let {fz : @ € [p]™} be the

m(d+3) and product depth

mod-p decomposition of f. Then there is a formula U of size 3snp
d + [logn] which simultaneously computes {fz : @ € [p]"} over FP" ", the perfect closure

of F.

Proof. Asin Lemma 3.4, we will split each gate v of ® into pieces which compute components
of the mod-p decomposition of ©. However, we will need a much larger number of copies of v
to ensure that the resulting circuit ¥ is in fact a formula.

We first set up some notation, borrowing heavily from Raz [32]. For a gate v in @, let
path(v) denote the set of all vertices on the path from v to the root of @, including v itself.
Let N, denote the set of all functions T : path(v) — [p]™ such that for all u,w € path(v)
where u is a sum gate with child w, we have T'(u) = T'(w). Informally, the map T encodes
the progression of types in the mod-p decomposition seen as the computation progresses
through the formula.

For each gate v in ®, we create a collection of gates {(v,a,T) : @ € [p]",T € N,,T(v) =a}.
We will wire the gates of ¥ so that (v,a@,T) computes 9z. As before, to wire the gates of ¥
correctly, we consider what type of gate v is in ®. The construction only differs meaningfully
from that of Lemma 3.4 in the case of multiplication gates.

If v is an input gate in ® labeled by a € T, then we set (v,0,T) = a'/? and (v,a,T) =0

for @ # 0. As a'/? € FP™™ | this produces a valid circuit over FP .

It is immediate from the definition that (v,a,T) correctly computes ¥z.

R. Andrews

If v is an input gate labeled by the variable x;, let €; denote the vector with a 1 in the
i*h slot and zero elsewhere. We set (v,€;,T) =1 and (v,a@,T) = 0 for @ # &;.

Once more, it is an immediate consequence of the definition that (v,a,T’) correctly
computes Ug.

Suppose now that v is an addition gate with children u and w with incoming edges
labeled «,, and a,,. For each @ € {0,...,p — 1}" and T € N,, we set (v,a,T) =
al/? . (u,a,Ty,) + al/?. (w,a,Ty), where T,, € N,, and T, € N,, extend T and satisfy
TWw) =Ty(u) = Ty (w).

By induction, (u,@,T,) and (w,a, Ty,) correctly compute iz and Wz, respectively. By
Lemma 3.3, it follows that (v,a,T) correctly computes ¥z.

Finally, consider the case when v is a multiplication gate with children u and w with
incoming edges labeled a, and a,,. We set

(U,E, T) = at/paqlu/p Z (u7gv T 7) : (U),E, Tw,E) . E’H—i_zv
b4+c=a (mod p)

where T, 7 (respectively T, z) extends T" and satisfies T, 7(u) =b (respectively T;, z(w)=7¢).

By induction, (u,b, T,3) and (w,¢, Ty =) compute 4y and g, respectively. Lemma 3.3
implies that (v,@,T) correctly computes 0.

By construction, ¥ correctly computes {fz: @ € [p]™}. It remains to bound the size and
product depth of ¥ and show that W is indeed a formula.

Each gate v in ® yields p™|N,| gates of the form (v,a,T) in ¥. If v is a multiplication
gate with children u and w, we need to implement the sum over the children (u,b,T,) and

(w,¢,Ty). For a given € € {0,1}", we can compute T° using a subformula of size at most n.

To compute (v,a,T), we need p" summation gates and 2p™ multiplication gates in addition
to the gates computing (u,b,T,), (w,¢, Ty), and T¢. This implies that we can compute
(v,a,T) using at most 3np™ extra gates. Thus, for every gate v in ®, we create at most
3np*|N,| gates in W.

To bound the size of N,, note that a function T" € N, can only change values along
path(v) at multiplication gates. Since there are at most d multiplication gates along path(v),
we can specify T by a (d + 1)-tuple of elements of [p]™, corresponding to the values taken by
T between successive multiplication gates. This implies |N,| < p™(@*t1). Thus ¥ contains at
most 3snp™@t3) gates.

It follows from the definition of ¥ that the product depth of ¥ is d + [logn], as the
number of product gates on any path from a leaf to the root increases by at most an additive
[logn]. This arises from the need to implement a product of the form Z° at gates of ¥ which
correspond to multiplication gates in ®. As we need to compute a product of this form at
most once along every path from the root to a leaf, we only incur an additive [logn] increase
in product depth as opposed to a multiplicative increase.

To see that ¥ is a formula, consider the edges leaving the gate (u,@,T). Let v denote the
parent of v in U. If v is an addition gate, then only (v, @, T) receives an edge from (u,a,T)
where T, € N, agrees with T on path(v). If v is a multiplication gate, then only (v, T(v),T})
receives an edge from (u,a,T’) where T,, € N, agrees with T on path(v). In both cases, the
fan-out of the gate u is 1, so V¥ is in fact a formula. <

As with circuits, we can use Lemma 3.9 to compute p* roots of formulae which compute
a p'* power over a field of characteristic p > 0.

37:15

CCC 2020

37:16

Algebraic Hardness Versus Randomness in Low Characteristic

» Corollary 3.10. Let F be a field of characteristic p > 0. Let ® be an algebraic formula
of size s and product depth d which computes a polynomial f(Z)?P € F[z]. Then there is a
formula U of size 3snp™9+3) and product depth d + [logn] which computes f(T) over FP" ™
the perfect closure of F.

Proof. Analogous to the proof of Corollary 3.6. |

3.3 Algebraic Branching Programs

We now consider the task of taking p*" roots of algebraic branching programs. We consider
the model of branching programs where edges may only be labeled by a constant o € F
or a multiple of a variable ax;. Some authors allow the edges of a branching program to
be labeled by an affine form ¢(T) = ag + Y., ; a;x;. Such a branching program can be
converted to one whose edges are labeled by field constants or multiples of a variable. This
transformation increases the number of vertices by a factor of O(n), which is small compared
to the increase in size we will incur by taking a p* root. We begin by computing the mod-p

decomposition of an algebraic branching program.

» Lemma 3.11. Let F be a field of characteristic p > 0. Let ® be an algebraic branching
program on s vertices with edges labeled by variables or field constants which computes a
polynomial f(Z) € F[z] and let {fz : @ € [p]™} be the mod-p decomposition of f. Then
there is an algebraic branching program W on sp™ wvertices which simultaneously computes
{fz:a € [p]"} over TP~ the perfect closure of F.

Proof. For each node v in ®, we create a collection of nodes {(v,a) : @ € [p]"} in ¥. We
will wire the nodes of ¥ so that (v,a) computes ¥z.

For a pair of vertices u and v, let ¢(u,v) denote the label of the edge between u and v.
Let N'"(v) denote the set of vertices w such that the edge (w,v) is present in .

Let u and v be two nodes in ® and suppose there is an edge from u to v in . We consider
two cases, depending on whether this edge is labeled by a constant « € F or a multiple of a
variable ax;.

Suppose the edge from u to v is labeled by « € F. For all @ € [p]™, we add an edge

between (u,@) and (v,a@) labeled by o!'/P. Since o'/? € FP™™ | this construction is valid

over the perfect closure FP~ " of F.

Suppose the edge from u to v is labeled by ax;, where a € F. Denote by €; the vector

which has a 1 in the i*" slot and zeroes elsewhere. For all @ € [p]", we add an edge

between (u,a) and (v,a + ¢€;), where the addition @ + €; is performed modulo p. If

@; < p— 1, we label this edge with o!/?. If @; = p — 1, we label this edge with a/?z;.

Again, o'/? € FP~™ by definition, so this construction is valid.

To see that this construction is correct, let v be a node in ®. By the definition of an
algebraic branching program, we have

0= Z l(u,v) - 1.
)

ueNn(v

Repeatedly applying the addition case of Lemma 3.3 yields, for each @ € [p]™,

b= 3 (fu,0)-)

u€EN™(v)

R. Andrews

If £(u,v) = o € F, then we have (£(u,v) - @)z = a/Pig. If £(u,v) = az;, then if @; > 0, we
have (£(u,v) - @) = a/Piz_z,. Otherwise, a; = 0, so (£(u,v) - @)g = a'/Piz_z, x;, where the
subtraction @ — €; is done modulo p.

By induction, (u,@) correctly computes @g. From our construction of ¥, if (u,v) is an
edge in @, then (v,@) has an incoming edge which computes (¢(u,v) - 4)z. This implies that
(v,@) computes the polynomial } -, c yin(,)(£(u,v) - @)z = g, which is what we want.

Thus, ¥ simultaneously computes {fz : @ € [p]"}. Every node in ® corresponds to p"
nodes in W. Unlike the cases of circuits and formulae, we do not need extra hardware to

implement intermediate calculations, so ¥ consists of sp™ nodes as claimed. <

Again, as in the case of circuits and formulae, this immediately yields a way to compute p*®
roots of algebraic branching programs which compute a pt* power over a field of characteristic
p > 0.

» Corollary 3.12. Let F be a field of characteristic p > 0. Let ® be an algebraic branching
program on s vertices with edges labeled by variables or field constants which computes a
polynomial f(ZT)P € F[x]. Then there is an algebraic branching program ¥ on sp™ vertices
which computes f(T) over FP" | the perfect closure of F.

Proof. Analogous to the proof of Corollary 3.6. <

4 Extending the Kabanets-lmpagliazzo Generator

With our main technical tool in hand, we move on to our first application. The hitting set
generator of Kabanets and Impagliazzo [21] was the first to provide hardness-randomness
tradeoffs for polynomial identity testing over fields of characteristic zero. Over fields of
characteristic p > 0, Kabanets and Impagliazzo obtain hardness-randomness tradeoffs under
non-standard hardness assumptions. Namely, they require an explicit family of polynomials
{fn : n € N} such that f}l’k is hard to compute for 1 < pF < 290" though they do not state
their results in this way. Rather, they use the assumption of a family of polynomials which
are hard to compute as functions, which implies hardness of p'" powers over finite fields.

It is more common in algebraic complexity to prove lower bounds on the task of computing
polynomials as syntactic objects. Over infinite fields, this is equivalent to computing a
polynomial as a function. However, the two notions differ over finite fields. For example,
the polynomial 22 — z is non-zero as a polynomial over Fy, but computes the zero function
over [Fy. It is interesting to note that examples of functional lower bounds over finite fields
are known. The works of Grigoriev and Karpinski [15], Grigoriev and Razborov [16], and
Kumar and Saptharishi [25] prove lower bounds against constant-depth circuits over finite
fields which functionally compute an explicit polynomial.

In this section, we will extend the Kabanets-Impagliazzo generator to all perfect fields of
characteristic p > 0 under syntactic hardness assumptions for a single family of polynomials.
The perfect fields of characteristic p include all finite fields and all algebraically closed fields
of positive characteristic. To do this, we need a stronger (but still syntactic) hardness
assumption. In their work, Kabanets and Impagliazzo use the existence of an explicit family
of hard multilinear polynomials to derandomize polynomial identity testing. Here, we need
lower bounds against an explicit family of constant-variate polynomials of arbitrarily high
degree. Such an assumption appears to be stronger than the assumption of a hard family
of multilinear polynomials. We discuss the relationship between these hypotheses in more
detail in Section 6.

37:17

CCC 2020

37:18

Algebraic Hardness Versus Randomness in Low Characteristic

4.1 The Kabanets-lmpagliazzo Generator

We first describe the construction of the Kabanets-Impagliazzo generator.

» Construction 4.1 ([21]). Let n and m be integers satisfying n < 2™. Let g € F[z]
be a polynomial on m variables. Let Si,...,S, C [f] be a Nisan-Wigderson design as in
Lemma 2.10. The Kabanets-Impagliazzo generator Gk 4(Z) : F* — F™ is the polynomial map
given by

gKI,g(E) = (g(§|sl), s ag(z\sn)%

where Z

s, denotes the restriction of Z to the variables with indices in S;.

We now quote the main lemma used by Kabanets and Impagliazzo in the analysis of their
generator.

» Lemma 4.2 ([21]). LetF be any field and n,m € N such that n < 2™. Let f € Fly1, ..., yn]
and g € Flzq,...,xy] be non-zero polynomials of degree dy and dg, respectively. Let f(y) be
computable by an algebraic circuit of size s. Let S CF be any set of size at least dydy + 1
and let £ = O(m?/logn) be as in Lemma 2.10. Let Gki,4 be as in Construction 4.1.

Suppose that f(Gxr,q(@)) =0 for all € S*. Then there is an algebraic circuit ® of size
s' < poly(n,m,dy,dg, s, (1+ideg g)'°8™) which computes the following. IfF has characteristic
zero, then ® computes g(T). If F has characteristic p > 0, then ® computes g(f)pk for some
k € N such that pk < dy.

If f(Gk1,4(Z)) = 0, then using Lemma 4.2, we can reconstruct a circuit for g using the
circuit for f. By taking g from a family of hard polynomials, we obtain a contradiction if
there is a small circuit which computes f. This proves that Gk g4 is a hitting set generator for
the class of small circuits. The explicitness of Gki,4 follows from the explicitness of the family
from which g is taken. The hardness-randomness tradeoffs of Kabanets and Impagliazzo [21]
then follow by setting parameters according to the hardness of g.

Over a field of characteristic p > 0, Lemma 4.2 provides a circuit computing g(f)pk.
Suppose we are working over F, the finite field of ¢ = p® elements. By taking p'® powers
of g(f)Pk if necessary, we can obtain a circuit which computes ¢(Z)?"" = ¢(Z)? for some
r € N. The map a + af is the identity over F,, so the circuit which computes g(7)? in
fact computes the same function as ¢(Z). This is why, without further work, we need a
polynomial which is hard to compute as a function to obtain hardness-randomness tradeoffs
over finite fields.

If we could factor the circuit for g(f)pk to obtain a not-too-much-larger circuit for ¢(),
then we could derive hardness-randomness tradeoffs from the assumption of an explicit
family of multilinear polynomials which are hard to compute. It remains an open problem
to show that if g(Z)P has a small circuit, then ¢g(Z) has a small circuit. However, in the
constant-variate regime, Corollary 3.6 resolves this problem in the affirmative. This is the
main fact which drives our extension of the Kabanets-Impagliazzo generator.

4.2 Extension to Fields of Low Characteristic

We now show how to use the Kabanets-Impagliazzo generator to obtain hardness-randomness
tradeoffs over all perfect fields of characteristic p > 0. Recall that Cg(s,n,d) denotes the set
of n-variate degree d polynomials computable by circuits of size at most s.

R. Andrews

» Theorem 4.3. Let F be a field of characteristic p > 0 and let ¢,k € N be positive constants.
Let {g4(T) : d € N} be a strongly t(k,d)-explicit family of k-variate degree d polynomials. Let
s: N —= N be a function such that gq cannot be computed by algebraic circuits of size smaller
than s(d) over TP~ . Then there is a hitting set generator G : B¢ — F" for Cg(n®,n,nc)
which

1. is (poly(n,2%) + t(k,n3k) . g1 (n3ek+2N)OR)) _egplicit,

2. has seed length £ = O K logQ(Sllé":CMO(C)))

3. has degree O(k log(s_l(n30k+o(c)))).

Proof. We will obtain our generator by using {gq : d € N} to construct a family of hard
multilinear polynomials. We then set parameters and instantiate the Kabanets-Impagliazzo
generator with this hard multilinear family.

By Lemma 2.6, there is a strongly ¢(k, d)-explicit family of multilinear polynomials hy (%)
on m = k(|logd]| + 1) variables such that any circuit which computes hy must be of size
s(d) — O(klogd). The construction of hq also yields the identity

, and

. 0 1 llog d] 0 1 llog d]
9a(@) = ha(2? 22 ... 22 "7 L adad . xl),
which allows us to obtain a circuit for gg from a circuit for hy. As hg is multilinear, we have
deg(hg) < m and ideg(hg) = 1.
Set d = s71(n®) for a large enough constant e > 1 to be specified later. Since g4 is a
k-variate degree d polynomial, we trivially have s(d) < d°®), so s~1(d) > d*(1/*). This gives
us

2m > dk _ Sfl(ne)k > (nQ(e/k))k _ nQ(e).

Taking e to be large enough guarantees 2™ > n. Let Si,...,S, C [¢] be the Nisan-Wigderson
design guaranteed by Lemma 2.10. Our generator G : FY — F™ is given by instantiating the
Kabanets-Impagliazzo generator with hy. That is,

9(2) = Gx1ng(2) = (ha(Zls,)s - - haZls,))-

We now verify the claimed properties of G.

Correctness. To see that G is indeed a hitting set generator for Cp(n¢, n,n¢), suppose there
is some non-zero f € Cp(n° n,n°) such that f(G(z)) = 0. Then by Lemma 4.2, there is a
circuit of size

s" < poly(n, m,n®,298™) < n9©

which computes hg(7)?" for p* < deg(f) < n¢. Via the Kronecker substitution y;, j— xfj,
we obtain a circuit of size s’ + O(klog d) < n°(®) which computes gq(Z)?". We now apply
Corollary 3.6 a total of a times to obtain a circuit which computes g4(Z) and has size
s" < (3-2F - p?F)2nO(©). Since p® < n® and 2 < p, we obtain s” < n?ktO() By setting
e = 3ck + O(c) where the hidden constant on the ©(c) term is large enough, we obtain
a contradiction as follows. By assumption, any circuit which computes g; must be of
size at least s(d) = n®. However, we have a circuit of size n3**+9(¢) < n¢ = s(d) which
computes g4, a contradiction. Thus, it must be the case that f(G(z)) # 0. Hence G is a
hitting set generator for Cp(n¢, n,nc).

Explicitness. Given a point @ € F¢, we can evaluate G as follows. First, we construct
the Nisan-Wigderson design Sy, ...,S, C [/] in time poly(n,2%). We then compute all
d°®) coefficients of hg, each in t(k,d) time. Finally, for each i € [¢], we evaluate hy
on @lg, in time d°®). Using the fact that d = s~ (n3*+9(©)) we can evaluate G in
poly(n, 2°) 4 t(k, n3ck+0(e)) . =1 (p3ck+0())Ok) time as claimed.

37:19

CCC 2020

37:20

Algebraic Hardness Versus Randomness in Low Characteristic

Seed length. It follows from Lemma 2.10 that G has seed length ¢ = O(m?/logn) =

O(kzlé‘;g: d). By our choice of d = sil(n?’c’ﬁo(c)), we obtain the claimed seed length of

O (k2 lOgZ(S—l(n36k+O(c)))) .

logn
Degree. By construction, G is a map of degree deg(hq) < m = k(|logd] 4+ 1). Once more,
plugging in our choice of d yields the claimed bound of O(klog(s~! (n3¢k+0()))). <

By applying Lemma 2.3, we obtain the following construction of explicit hitting sets for
Cr(n®,n,n).

» Corollary 4.4. Assume the setup of Theorem 4.3. Let T, £, and A be the explicitness, seed
length, and degree of the generator of Theorem 4.3, respectively. Then there is a hitting set
H for Cp(n®,n,n®) which

1. has size |[H| = (n°A +1)*, and

2. has explicitness |H|-T = (n°A +1)* - T.

Proof. This is Lemma 2.3 applied to Theorem 4.3. |

We conclude this section with some concrete hardness-randomness tradeoffs obtainable
via Theorem 4.3 and Corollary 4.4. Recall that for constant k, a k-variate polynomial of
degree d consists of at most (k']gd) < d°®) monomials. In this regime, a polynomial which is
strongly d©*)-explicit is “exponential time explicit,” as the description of a single monomial
consists of O(klogd) bits.

» Corollary 4.5. Let F be a field of characteristic p > 0. Let ¢,k € N be fixed constants. Let

{94(Z) : d € N} be a strongly d°F) -explicit family of k-variate degree d polynomials which

cannot be computed by circuits of size smaller than s(d) over FP~. Then the following

results hold regarding hitting sets for Cp(n¢,n,nc).

1. If s(d) = log* M) d, then there is a 2”0(1)—6xplicit hitting set for Cp(n®, n,n®) of size on”",

2. If 8(()6(11)) = QIOgQ(l)d, then there is a 21°go(1>”—explicz't hitting set for Cp(n®,n,n¢) of size
glog® " n,

3. If s(d) = d®W), then there is a n®1°8™ _explicit hitting set for Cp(n®,n,n) of size
nOlogn)

Proof. Each statement follows by setting parameters in Theorem 4.3 and Corollary 4.4
and using the fact that ¢ and k are fixed constants independent of n and d. We omit the
straightforward calculations. |

5 Bootstrapping from Constant-Variate Hardness

Given that we use the seemingly stronger assumption of constant-variate hardness in our
extension of the Kabanets-Impagliazzo generator, one may wonder if we can push the
hardness-randomness connection further and obtain a better derandomization of identity
testing for Cp(n®, n,nc). Perhaps surprisingly, this is possible by going through the recent
development of “bootstrapping” for hitting sets.

5.1 A Non-Trivial Hitting Set from Constant-Variate Hardness

Let n be a constant and let s be arbitrarily large. Suppose we have an explicit, slightly
non-trivial hitting set for Cr(s,n,s). Then we can “bootstrap” the advantage this hitting
set has over the trivial one in order to obtain an explicit hitting set of very small size for
Cr(s,s,s). That is, in order to almost completely derandomize polynomial identity testing

R. Andrews

for the class of polynomials of polynomial degree computed by polynomial-size circuits, it
suffices to find a non-trivial derandomization of polynomial identity testing for circuits on a
constant number of variables but of arbitrary size and degree.

We remark that, throughout this section, one should read Cp(s, s, s) as a stand-in for
Cr(n® n,n®), where ¢ is a fixed constant. This follows by taking s = n® and noting that
Cr(n®,n,nc) C Cr(n°, n® n°) = Cp(s, s, s). While the following results are stated for Cr(s, s, s),
changing s by at most a polynomial factor will not qualitatively affect the results we obtain.

We now formally state the bootstrapping result. Let log* s denote the iterated logarithm
of s. That is,

N 1+log*(logs) s>1
log™ s :==
0 s< 1.

This version of the bootstrapping theorem is due to Kumar, Saptharishi, and Tengse [27] and
improves upon the initial work of Agrawal, Ghosh, and Saxena [2]. Note that this theorem
holds over all fields, including those of positive characteristic.

» Theorem 5.1 ([27]). Let IF be any field and let € > 0 and n > 2 be constants. Suppose that
for all sufficiently large s, there is an sOU™ -explicit hitting set of size s"~¢ for Cr(s,n,s).
Then there is an s&P °exP(OU0L” 9) _eqplicit hitting set of size sP°exp(O(log™s)) fop. Cr(s,s,s).

In this section, we will use Theorem 5.1 to obtain a stronger derandomization of polynomial
identity testing over fields of characteristic p > 0 under appropriate hardness assumptions.
Suppose {ga(Z) : d € N} is a family of strongly d°*)-explicit k-variate degree d polynomials

which require algebraic circuits of size d**). Using Corollary 4.5, we can obtain a s©(0gs)_

O(logs) By a more careful instantiation of the

explicit hitting set for Cg(s, s, s) of size s
Kabanets-Impagliazzo generator, we can use the hardness assumption on g4 to design an
explicit hitting set which satisfies the hypotheses of Theorem 5.1. This yields an explicit
hitting set for Cp(s, s, s) of size sP°exP(OUog” %)) \which greatly improves upon the size
590og5) hitting set of Corollary 4.5.

Our argument also works for fields of characteristic zero, giving us a general theorem
which converts near-optimal constant-variate hardness into near-optimal derandomization of
polynomial identity testing for Cg(s, s, s).

First, we need a technical lemma regarding lower bounds against constant-variate poly-
nomials. Roughly, we will show that d° lower bounds against degree d constant-variate
polynomials can be magnified to d° lower bounds against constant-variate polynomials for
arbitrary §,¢ > 0.

» Lemma 5.2. Let F be any field. Let k € N and ¢,0 > 0 be fized constants. Let {gq4(T) : d €
N} be a strongly dO®) _explicit family of k-variate polynomials of degree d. Suppose that for
d sufficiently large, gq cannot be computed by algebraic circuits of size smaller than d° over
F. Then there is a constant m € N and a family {ha(7) : A € N} of strongly AU -explicit
m-variate degree A polynomials such that for A sufficiently large, ha cannot be computed by
algebraic circuits of size smaller than A€ over F.

Proof. We follow the approach of Lemma 2.6, but in base d®/2¢ + 1 as opposed to base 2.

Without loss of generality, assume that § < 1 < ¢. Let m = % and let ¥ =
5/2¢ j
(V1,15 > Uk2¢/5)- Let o(yi;) = xgd D We will take ha(g) to be the polynomial

of individual degree d®/2¢ which satisfies the equation h(co(%)) = ga(T). More explicitly, let

37:21

CCC 2020

37:22

Algebraic Hardness Versus Randomness in Low Characteristic

9a(T) = > cyr 0T be the expression of gq as a sum of monomials. Let ¢ : [d?/2¢+1]2¢/9 —
[d + 1] be the map which takes the base-(d®/2¢ + 1) expansion of a number ¢ € [d + 1] and
returns ¢t. Then we define ha(7) as

— Ai,j
h’A(y) = Z OK‘P(AI,O)P“’LP(AI‘H.) H ylv] :

Aeﬂd6/2c+1ﬂk><2c/6 i,je[[d‘s/2‘3+1]]

It is clear from the construction of ha that ha(o(y)) = ga(Z). The polynomial ha is of
individual degree at most d?/?¢, so A := deg(ha) can be bounded as

2ckdd/2¢

Agmdé/Zc: 5

Since k and § are fixed constants, for d large enough, we obtain A < d2%/3¢.

To show that ha has the claimed hardness, suppose we are given a circuit of size s which
computes ha. By repeated squaring, we may compute the map o(y) using a circuit of size
O(klogd) = O(mlog A) = O(log A). This yields a circuit of size s’ < s + O(log A) which
computes gg. By the assumed hardness of g4, we have s/ > d°. Putting things together
gives us

s>d° —O(logA).
Since A < d?9/3¢ for d large enough, we obtain
s> A3/ O(log A).

For A (and hence d) large enough, we have s > A€, which yields the desired lower bound
on hA.

It remains to verify the explicitness of hao. We can compute a coefficient of ha by
computing the corresponding coefficient of gg, so ha inherits the strong d°®)-explicitness
of gq. We need to show that d°*) < AP in order to conclude that ha is strongly
AC(m)_explicit. By writing ha as a sum of monomials, there is a circuit of size AC(™)
which computes ha. Combined with the argument above, this yields a circuit of size
A°™ 1+ O(log A) = A°(™ which computes g4. Since any circuit which computes g4 must
have size d?, we obtain AC(™) > d% As ¢, k, 6, and m are all fixed constants, this yields
dO) < AO(M) a5 desired.]

Now we are ready to state and prove our hardness-randomness tradeoff.

oo

» Theorem 5.3. Let IF be any field and let k € N and § > 0 be fized constants. Let K = FP~
if charF =p > 0 and K = F otherwise. Let {g4(T) € F[Z] : d € N} be a family of strongly
dOW) _explicit k-variate degree d polynomials. Suppose that for all d sufficiently large, gq
cannot be computed by algebraic circuits of size smaller than d® over K. Then for all
sufficiently large s, there is an sP°P(OUL" 9)) _eqplicit hitting set of size sP°xp(Olog” 5)
for Cr(s, s, s).

Proof. Using Lemma 5.2, we may assume without loss of generality that § > 30.

By Theorem 5.1, it suffices to provide an explicit hitting set of size s"~¢ for Cg(s,n, s)
for constants €, n and all s sufficiently large. We will instantiate the Kabanets-Impagliazzo
generator with g as the hard polynomial, using the finer-grained designs of Lemma 2.9.

Let s be given. By adding auxiliary variables if necessary, we may assume that k is a
prime power. Note there is always a power of 2 between k and 2k, so this at most doubles
the number of variables in g;. We set parameters as follows:

R. Andrews

c=3,
n = 2kt = 2k4,
r:=2, and
d = sk
By Lemma 2.9, we can construct in poly(n) time a collection of sets Si,...,S, C [k¢] such

that |S;| =k and |S; N S| < 7.
Consider the generator G : F** — F™ given by

G(z) = (9a(Zls,)s- -+ 94(Zls,))-

By construction, G has seed length k¢ and degree d = s*. Since g4 is strongly d°®)-explicit,
we can evaluate G by constructing the design Si,...,.S,, computing the coefficients of g4,
and evaluating each of the n copies of g4. Constructing the design takes n®(®) time and
computing the coefficients of g4 takes d°®) time. To evaluate gq, we use the expression of
gq as a sum of monomials, which requires d°) time for each of the n evaluations. In total,
we can evaluate G in time

nOW . o) — pO() , Ok _ o), (O(Vm)

so G is sO(VM)_explicit for s sufficiently large.

If G is in fact a hitting set generator for Cp(s,n, s), then using Lemma 2.3, we obtain a
hitting set H for Cp(s,n, s) of size

(s d)kc _ (Sk+1)k3 _ gk < g2kt—e _ gn—e
for some € > 0 when s is large enough. Moreover, H is s@(V7) . |H| < s9(")_explicit. We now
apply Theorem 5.1 to obtain the claimed s@P ©exP(O(og” 5))_explicit hitting set for Cr(s,s,s)
of size s*Poexp(Olog”s)) Tt remains to show that G is indeed a hitting set generator for
Cr(s,n,s).

To show this, suppose for the sake of contradiction that G is not a hitting set generator
for Cp(s,n, s). Then there is some f(7) € Cr(s,n, s) such that f(y) # 0 and f(G(Z)) =0. We
define the hybrid polynomials fy,..., f, by

fO(y7E) = f(yh cee 7yn)
[1(@,%) = f(94(Z]s,): y25 -+, Yn)

|

N

fnfl(y7) f(gd(§|51)7‘"vgd(z|sn71)7yn)
fn(@.2) = f9a(Zls,), - -, 9a(Z]s,)) = f(G(Z)).

Since fy # 0 and f, = 0, there is some i € [n] such that f;_; # 0 and f; = 0. Assuming
|F| > sd > deg(f;), we can find an assignment to the variables {y; : j # i} and {z; : j ¢ S;}
such that f; remains non-zero under this partial evaluation. If F is too small, we may find
such an assignment using values from some finite extension F’ D F of size at least sd + 1
(and hence degree O(log(sd))). After renaming variables, denote this non-zero restriction of
fi by f(Zl, ceey ley);

We can compute f by composing the circuit for f with at most n — 1 copies of the partial
evaluation of gq(Z|s,) for j < i. By assumption, we can compute f with a circuit of size
s. Since |S; N ;| < 2 for j # i, at most 2 variables in Z|s; are unset. This implies each
restriction of gq(Z|s;) is a polynomial of degree d on 2 variables and thus can be computed

37:23

CCC 2020

37:24

Algebraic Hardness Versus Randomness in Low Characteristic

by a depth-two circuit of size at most d - (d 4 1)2. This yields a circuit for f of size at most
s+nd-(d+1)2. Note that the degree of f is bounded by sd, since f is the composition of
two polynomials of degrees at most s and d.
By assumption, we have that f(z1,...,2r,y) # 0 and f(z1,...,2r,94(Z)) = 0. This
implies that y — g4(Z) is a factor of f. We now apply Theorem 2.8 to factor the circuit for f.
If charF = p > 0, we obtain a circuit for (y — g4(2))?" = y?" — ga(z)?" for some t € N.
Since y?' — gd(f)pt is a factor of f(z1,...,2k,y), we must have

dp' = deg(y”" — ga(2)"") < deg(F) < sd.

This implies p' < s. Since f has degree sd and is computable in size s+O(nd?), the circuit

computing ypt — gd(f)p‘ has size at most O((nsd)'?). By setting y = 0 and negating the
output of the circuit, we obtain a circuit for g4(2)?" of size O((nsd)'2).
We now apply Corollary 3.6 a total of ¢ times. This produces a circuit which computes
ga(Z) and has size O((nsd)'?p?*2kt3t) = O((nsd)'2s#*+2). Here we use the fact that
p > 2, 50 28 < pFt < sF and 3t < 4P < p?t < $2.
In the case where |F| > sd, the circuit for f was defined over F, so the circuit for g4 is
defined over K = FP" ™. If instead |F| < sd, the circuit for f was defined over a finite
extension F' D FF of degree O(log(sd)). As F is a finite field, F’ is perfect, so the circuit
obtained from Corollary 3.6 is defined over F’. We apply Lemma 2.7 to simulate this
circuit over F, incurring an extra O(log®(sd)) factor in the circuit size.
In total, we now have a circuit which computes g4 over K =FP " and has size bounded
by O((nsd)*?s**+21og®(sd)).
If charF = 0, the previous case applies, but without the need to take a p‘" root or
simulate a field extension. This yields a circuit which computes gq(Z) over K = F and
has size O((nsd)!?).
In both cases, we obtain a circuit which computes g4(Z) over K and has size at most
O((nsd)*?s+2log?(sd)). Restating in terms of k and d, we have a circuit for g4 of size

O((nsd)1283k+2 1Og3(8d)) — O(k48814+3kd12 IOgS(d)) _ O(k48d15+14/k 10g3(d))

Since k > 1 and k is a constant, we can bound the size of the circuit computing g4 by
O(d?log®(d)). This contradicts the fact that g4 requires circuits over K of size d® > d° for
sufficiently large d. Hence G is in fact a hitting set generator for Cp(s,n, s). <

5.2 Comparison to Characteristic Zero

Over fields of characteristic zero, the recent work of Guo, Kumar, Saptharishi and Solomon
[17] obtained what is currently the best-known derandomization of polynomial identity testing
for Cp(s, s, s) under a hardness assumption. From an explicit family of k-variate degree d
polynomials of hardness d(!), they obtain an explicit hitting set for Cp(s, s, s) of size sO1).
Specifically, they prove the following theorem.

» Theorem 5.4 ([17]). Let F be a field of characteristic zero. Let k € N be large enough
and let § > 0 be a fived constant. Suppose {Pyq € F[T] : d € N} is a family of d°*) -explicit

k-variate polynomials of degree d such that Py 4 cannot be computed by algebraic circuits

of size smaller than d°. Then there is an 5(k/6)°

SO /6%)

-explicit hitting set for Cp(s, s, s) of size

We remark that Guo, Kumar, Saptharishi, and Solomon [17] do not define the notion of
explicitness they use in their result, but it is enough for P 4 to be computable by a uniform
algorithm which runs in time d°*). This is slightly different from our notion of strong

R. Andrews

explicitness, where we require the coefficients of P} 4 to be computable in dO®) time. Tt is
clear that one can pass from strong explicitness to the standard notion of explicitness by
computing a polynomial as a sum of monomials. Via polynomial interpolation, one can show
that polynomials which are “evaluation-explicit” are strongly explicit. In both cases, the
explicitness parameter may degrade considerably, as the number of terms in a polynomial
may be exponentially larger than the amount of time required to compute the polynomial or
one of its coefficients. In general, one cannot hope to do better than this: in one direction, the
coefficients of the permanent are easy to compute, but the permanent is widely conjectured
to be hard to compute; in the other direction, there are examples of polynomials which
are easy to compute but which have the permanent of a large matrix embedded in their
coefficients (see, for example, Biirgisser [8, §2.3]).

In the context of Theorem 5.3 and Theorem 5.4, however, the two notions of explicitness
coincide. When working with k-variate polynomials of degree d, we incur an overhead of
d9®) in passing between the two notions of explicitness. As the hypotheses of these theorems
are already in the regime of (strong) d9")_explicitness, the explicitness parameter changes
by a polynomial factor, which is small enough to not affect the asymptotics of the results
obtained.

The fact that the underlying field has characteristic zero is used in a key part of the proof

of Theorem 5.4, and it is not clear how to adapt the proof to fields of positive characteristic.

The generator used to design the hitting set in the conclusion of Theorem 5.4 is notably
not a variation on the Kabanets-Impagliazzo generator, but instead a new generator whose
construction is more algebraic than combinatorial in flavor.

Note that Theorem 5.3 and Theorem 5.4 require the same hardness assumption. This gives
a second proof of derandomization of polynomial identity testing from an explicit family of
hard constant-variate polynomials, although the derandomization we obtain is slightly weaker
compared to Theorem 5.4. However, our construction does not require the characteristic
of the underlying field to be zero. It is tempting to conjecture that one can recover the
conclusion of Theorem 5.4 in positive characteristic by improving the bootstrapping process
used to prove Theorem 5.1. It is unclear whether such a result is possible.

6 Relating Constant-Variate and Multivariate Lower Bounds

This work and the work of Guo, Kumar, Saptharishi, and Solomon [17] have shown that
lower bounds against (strongly) explicit constant-variate polynomials yield very strong
derandomizations of polynomial identity testing. We are able to give an explicit hitting set of
size sexPoexp(O(log”) for Cr(s, s, s) for any field F (this is Theorem 5.3), while Guo, Kumar,
Saptharishi, and Solomon [17] obtain explicit hitting sets of size s°(
when char F = 0. However, if one instead assumes the existence of a (strongly) explicit family
of maximally-hard multivariate polynomials of low degree (specifically, degree n®) where n
is the number of variables), it is not clear how to obtain similar derandomization results.
The best-known derandomization from multivariate lower bounds is that of Kabanets and

) for the same class

Impagliazzo [21], who gave an explicit hitting set of size s©(1°8%) for Cg(s, s, s).

The fact that we can obtain strong derandomizations of polynomial identity testing from
constant-variate hardness raises the question of whether or not such derandomization is
possible under multivariate hardness assumptions. A natural first approach to this would be
to show that lower bounds for a (strongly) explicit family of multivariate polynomials imply
comparable lower bounds against a (strongly) explicit family of constant-variate polynomials.
Such an implication is known in the setting of non-commutative circuits and is due to
Carmosino, Impagliazzo, Lovett, and Mihajlin [11].

37:25

CCC 2020

37:26

Algebraic Hardness Versus Randomness in Low Characteristic

It is not hard to show a connection in the other direction; that is, lower bounds against
strongly explicit families of constant-variate polynomials can be translated into comparable
lower bounds against strongly explicit families of multivariate polynomials. An easy way to
do this is via the approach of Lemma 2.6.

In this section, we investigate to what extent a converse to Lemma 2.6 may hold.
Unconditionally refuting the converse of Lemma 2.6 requires proving circuit lower bounds
that seem far out of reach, so we have little hope to fully resolve this question. However,
we can give some complexity-theoretic evidence which shows a converse to Lemma 2.6 is
unlikely to hold. To do this, we take a detour into the arithmetic complexity of integers.

6.1 Complexity of Computing Integers
We start by defining the model we use to compute sequences of integers.

» Definition 6.1. For a natural number n € N, let 7(n) denote the size of the smallest
cireuit which computes n using the constant 1 and the operations of addition, subtraction,
and multiplication. Let (an)nen be a sequence of natural numbers. If T(ay) < log®® n, then
we say (an)nen 1S easy to compute. Otherwise, we say (an)nen s hard to compute.

As an example, the sequence (2"),¢y is easy to compute, as we can compute 2" in
O(logn) arithmetic steps by repeated squaring. A major open problem in this area is to
understand 7(n!), the complexity of the sequence of factorials. The following conjecture
regarding 7(n!) appears to be folklore.

» Conjecture 6.2. The sequence of factorials (n!),cy is hard to compute.

Prior work has established relationships between Conjecture 6.2 and other prominent
conjectures in computational complexity. Blum, Cucker, Shub, and Smale [5, page 126] gave
an argument that shows if 7(n!) < log®® o)
n. A related work by Shamir [37] reduces factorization to computing factorials, albeit in a

slightly different model. Biirgisser [9] showed that Conjecture 6.2 implies that the n x n
o)

n, then there are circuits of log n size to factor

permanent cannot be computed by constant-free division-free algebraic circuits of size n
Work by Lipton [28] shows that average-case hardness of factoring implies a slightly weaker
form of Conjecture 6.2; namely, that the polynomial []}"_,(z — i) is hard to compute by
constant-free algebraic circuits.

Before moving on to address the question of a converse to Lemma 2.6, we present a
reduction due to Shamir [37] which reduces the task of computing n! to the task of computing

(-

» Lemma 6.3 ([37]). If ((*"))nen is easy to compute, then (n!),en is easy to compute.

n

Proof. Suppose T((Q")) < O(log®n). Recall the identity

i {((n/2>!>2 (,72) n is even
(22 (,)15),) s odd.

This implies

T(n!) < 7(n) + 7((|n/2))?) + T((z LT&%J?J))

Expanding out the recurrence and using the fact that 7((|n/2]!)?) < 7(|n/2]!) + 1, we get

R. Andrews
(n!) < lzj [T(Ln/TJ) + T(<2 LTE%Z:J)) * 1]

<logn - (O(logn) + O(logn) + 1)
< O(log“*tn).

Hence (n!),en is easy to compute. <

6.2 The Inverse Kronecker Map and Constant-Free Circuits

Here, we show that two forms of a converse to Lemma 2.6 refute Conjecture 6.2 to varying
degrees. Our first argument shows that a straightforward converse of Lemma 2.6 implies that
Conjecture 6.2 fails infinitely often. That is, suppose g(x) is a univariate degree d polynomial

and f(7) is a multilinear polynomial which simplifies to g(z) under the mapping y; — 22

Lemma 2.6 says that hardness of g(x) implies hardness of f(7). The following conjecture,
which we wish to conditionally refute, says that hardness of f(7) implies hardness of g(z).

» Conjecture 6.4. Let g, 4(T) = > - azZ" be an m-variate degree d polynomial. Let
j : {0,1}llegdl+1 5 [2llogdl+1] he given by j(€) = Z}f{gd]ﬂ €20~ That is, j(€) is the
number whose binary representation corresponds to €. Let

Y= (y1,1;~~ay1,Uong+1a 7ym,17~~'7ym,[10gdj+1)
and define
fm,a(y) = > (@1 0)j(Eme)) T

EE{O,l}mX |logd]+1

Suppose fm,q requires constant-free circuits of size s to compute. Then gy, 4 requires
constant-free circuits of size s*(Y) — @(mlogd) to compute.

We now show that Conjecture 6.4 implies the factorials are easy to compute infinitely
often.

» Theorem 6.5. Suppose Conjecture 6.4 holds over Q. Then the sequence of factorials
(nnen is easy to compute infinitely often.

Proof. It is easy to see that Z?:O (2:)351 = (x + 1)?" is computable by a constant-free
algebraic circuit of size O(n) via repeated squaring. Let

o= 3 (%)

The contrapositive of Conjecture 6.4 yields a constant-free circuit of size O(n¢) which

computes f, for some absolute constant ¢. Let a,_1 =1 and a9 =+ - = ay_2 = a, = 0.

Then f,(a) = (251) + 1. By evaluating the circuit for f,, at @ and subtracting 1, we obtain
a circuit of size O(n®) which computes (,7",).

37:27

CCC 2020

37:28 Algebraic Hardness Versus Randomness in Low Characteristic

We now follow the argument of Lemma 6.3 to construct circuits of size O(n°t!) to
compute (2™!),ecn. By definition, we have

= (2)y

on anl 2 e
()G
n=l / oni 2!
= H (271—1’—1) :
i=0

1=

Using the fact that we fact that we can compute (23:) by a circuit of size O(n°), we obtain

e < if((ffl)) <Y 0 < 0.

i=0 =0
Hence the factorials are easy to compute infinitely often. |

It is unclear whether there is meaningful evidence to suggest that the factorials are not
easy to compute at numbers of the form 2. Because of this, Theorem 6.5 may be best
viewed as evidence that if Conjecture 6.4 is true, the proof will not be straightforward.

Conjecture 6.4 can be seen as a base-two converse to Lemma 2.6. Instead, we might
consider the following strengthening of Conjecture 6.4 to all number bases.

» Conjecture 6.6. Let g, 4(T) = > - azZ® be an m-variate degree d polynomial. Let
k € Nand let j : [k]Uosndl+1 5 [klos d+1] be given by j(&) = SoHosr U g k-1,
that is, j(e) is the number whose base-k representation corresponds to e. Let § =
(Y1,15 > Y1, [logy d)+1s -+ >Ymils-- > Ym,|log, d)+1) and define

fm.a(y) = > Qj(@ra) s (Eme)) T

ec [[k]]m)(llogg d]+1

Suppose fm,q requires constant-free circuits of size s to compute. Then g, 4 requires
constant-free circuits of size s*") — ©(mlogd) to compute.

We can show that this stronger conjecture is less likely to hold than Conjecture 6.4.

» Theorem 6.7. Suppose Conjecture 6.6 holds over Q. Then (n!)nen is easy to compute.

Proof. By Lemma 6.3, it suffices to show that the central binomial coefficients (%:L)neN

easy to compute. Let n € N be given. There is constant-free circuit of size O(logn) which
computes g(z) = (x + 1)>". Consider the polynomial

are

n—1ln—1

Fynmm) => > (Z i@n>yiy3;,
3 =0

=0 j
where by convention (Z) = 0 when n < k. Note that
n—1ln—1

flz, ™) = Z Z (z _2:;”>z”]" = "22—:1 (2]?)90’“ =]i <2:):sk = (v +1)*".

i=0 j=0 k=0

R. Andrews

The contrapositive of Conjecture 6.6 implies that f is computable by a constant-free circuit
of size O(log®n) for some absolute constant ¢. We now evaluate f(0,1) to obtain

ron =5 ()= ()« () + (o) = () 2

Jj=0

By computing f(0,1) — 2, we obtain a constant-free circuit of size O(log®n) which computes
(2:) Hence the central binomial coefficients are easy to compute. |

Note that the results of this section only give evidence that Conjecture 6.4 and Conjec-
ture 6.6 do not hold over fields of characteristic zero. Over fields of positive characteristic, it is
unclear whether these conjectures are likely to be true or false. This is somewhat interesting,
as if Conjecture 6.4 holds over fields of positive characteristic, then we can replace constant-
variate hardness with multivariate hardness in our extension of the Kabanets-Impagliazzo
generator to fields of small characteristic.

7 Conclusion and Open Problems

In this work, we gave the first instantiation of the algebraic hardness-randomness paradigm
over fields of small characteristic. Our main tool was the mod-p decomposition, which
we used to efficiently compute pt" roots of circuits which depend on a small number of
variables. This allowed us to extend known hardness-randomness tradeoffs due to Kabanets
and Impagliazzo [21] to fields of small characteristic under seemingly stronger hardness
assumptions. We also constructed a hitting set generator which, under suitable hardness
assumptions, provides a near-complete derandomization of polynomial identity testing. As
our hardness assumptions are somewhat atypical, we compared them to more standard
hardness assumptions and gave a conditional result which says that our hardness assumptions
are not implied by standard ones.

A number of problems in low-characteristic derandomization remain open, some of which
we have pointed out earlier in this work. Here, we mention some challenges which our
techniques are not able to resolve.

1. Is it possible to obtain hardness-randomness tradeoffs over fields of small characteristic
using a strongly explicit family of hard multilinear polynomials as opposed to constant-
variate polynomials?

2. Let F be a field of characteristic p > 0, where p is some fixed constant. Suppose
f(Z)? € F[z] is an n-variate polynomial which can be computed by a circuit of size s over

F. Is there a circuit of size s°") which computes f(Z) in the case that n = w(logs)?

3. In the conclusion of Theorem 5.1, is it possible to obtain a hitting set of size s©()? If
s0, this would give a construction of a hitting set generator over low characteristic fields
which qualitatively matches the parameters of the generator of Guo, Kumar, Saptharishi,
and Solomon [17].

4. Ts it possible to lift lower bounds from the multivariate regime to the constant-variate
regime? It seems like the answer may be “no,” but our evidence thus far only applies to
constant-free circuits over fields of characteristic zero. What can we say if we remove the
constant-free restriction? What about fields of positive characteristic?

37:29

CCC 2020

37:30

Algebraic Hardness Versus Randomness in Low Characteristic

—— References

1

10

11

12

13

14

Manindra Agrawal and Somenath Biswas. Primality and identity testing via Chinese re-
maindering. J. ACM, 50(4):429-443, 2003. Preliminary version in the 40th Annual IEEE
Symposium on Foundations of Computer Science (FOCS 1999). doi:10.1145/792538.792540.

Manindra Agrawal, Sumanta Ghosh, and Nitin Saxena. Bootstrapping variables in algebraic
circuits. Proc. Natl. Acad. Sci. USA, 116(17):8107-8118, 2019. Preliminary version in the
50th Annual ACM Symposium on Theory of Computing (STOC 2018). doi:10.1073/pnas.
1901272116.

Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Ann. of Math. (2),
160(2):78177937 2004. doi:10.4007/annals.2004.160.781.

Manindra Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In Proceedings
of the 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2008),
pages 6775, 2008. doi:10.1109/F0CS.2008.32.

Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and real computation.
Springer-Verlag, New York, 1998. With a foreword by Richard M. Karp. doi:10.1007/
978-1-4612-0701-6.

Manuel Blum, Ashok K. Chandra, and Mark N. Wegman. Equivalence of free Boolean graphs
can be decided probabilistically in polynomial time. Inform. Process. Lett., 10(2):80-82, 1980.
doi:10.1016/S0020-0190(80)90078-2.

Nicolas Bourbaki. Algebra. II. Chapters 4—7. Elements of Mathematics (Berlin). Springer-
Verlag, Berlin, 1990. Translated from the French by P. M. Cohn and J. Howie.

Peter Birgisser. Completeness and reduction in algebraic complexity theory, volume 7 of
Algorithms and Computation in Mathematics. Springer-Verlag, Berlin, 2000. doi:10.1007/
978-3-662-04179-6.

Peter Biirgisser. On defining integers and proving arithmetic circuit lower bounds. Comput.
Complezity, 18(1):81-103, 2009. Preliminary version in the 24th Symposium on Theoretical
Aspects of Computer Science (STACS 2007). doi:10.1007/s00037-009-0260-x.

Peter Biirgisser, Michael Clausen, and M. Amin Shokrollahi. Algebraic complexity theory,
volume 315 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences]. Springer-Verlag, Berlin, 1997. With the collaboration of Thomas
Lickteig. doi:10.1007/978-3-662-03338-8.

Marco L. Carmosino, Russell Impagliazzo, Shachar Lovett, and Ivan Mihajlin. Hardness
amplification for non-commutative arithmetic circuits. In Proceedings of the 33rd Annual
Computational Complexity Conference (CCC 2018), volume 102 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 12:1-12:16. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2018. doi:10.4230/LIPIcs.CCC.2018.12.

Chi-Ning Chou, Mrinal Kumar, and Noam Solomon. Hardness vs randomness for bounded
depth arithmetic circuits. In Proceedings of the 33rd Annual Computational Complexity
Conference (CCC 2018), volume 102 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 13:1-13:17. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018. doi:
10.4230/LIPIcs.CCC.2018.13.

Zeev Dvir, Amir Shpilka, and Amir Yehudayoff. Hardness-randomness tradeoffs for bounded
depth arithmetic circuits. SIAM J. Comput., 39(4):1279-1293, 2009. Preliminary version in
the 40th Annual ACM Symposium on Theory of Computing (STOC 2008). doi:10.1137/
080735850.

Michael A. Forbes, Sumanta Ghosh, and Nitin Saxena. Towards blackbox identity testing
of log-variate circuits. In Proceedings of the 45th International Colloquium on Automata,
Languages and Programming (ICALP 2018), volume 107 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 54:1-54:16. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2018. doi:10.4230/LIPIcs.ICALP.2018.54.

R. Andrews

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Dima Grigoriev and Marek Karpinski. An exponential lower bound for depth 3 arithmetic
circuits. In Proceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC
1998), pages 577-582. ACM, New York, 1998.

Dima Grigoriev and Alexander Razborov. Exponential lower bounds for depth 3 arithmetic
circuits in algebras of functions over finite fields. Appl. Algebra Engrg. Comm. Comput.,
10(6):465-487, 2000. Preliminary version in the 89th Annual IEEE Symposium on Foundations
of Computer Science (FOCS 1998). doi:10.1007/s002009900021.

Zeyu Guo, Mrinal Kumar, Ramprasad Saptharishi, and Noam Solomon. Derandomization
from algebraic hardness: Treading the borders. In Proceedings of the 60th Annual IEEE
Symposium on Foundations of Computer Science (FOCS 2019), pages 147-157, 2019. doi:
10.1109/F0CS.2019.00018.

Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arithmetic circuits:
a chasm at depth 3. SIAM J. Comput., 45(3):1064-1079, 2016. Preliminary version in the
54th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2013). doi:
10.1137/140957123.

Pavel Hrubes and Amir Yehudayoff. Arithmetic complexity in ring extensions. Theory of
Computing, 7(8):119-129, 2011. doi:10.4086/toc.2011.v007a008.

Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: deran-
domizing the XOR lemma. In Proceedings of the 29th Annual ACM Symposium on Theory of
Computing (STOC 1997), pages 220-229. ACM, New York, 1997.

Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means
proving circuit lower bounds. Comput. Complexity, 13(1-2):1-46, 2004. Preliminary version
in the 35th Annual ACM Symposium on Theory of Computing (STOC 2003). doi:10.1007/
s00037-004-0182-6.

Erich Kaltofen. Factorization of polynomials given by straight-line programs. Advances in
Computing Research, 5, 1989.

Richard M. Karp, Eli Upfal, and Avi Wigderson. Constructing a perfect matching is in
Random NC. Combinatorica, 6(1):35-48, 1986. Preliminary version in the 17th Annual ACM
Symposium on Theory of Computing (STOC 1985). doi:10.1007/BF02579407.

Pascal Koiran. Arithmetic circuits: the chasm at depth four gets wider. Theoret. Comput.
Sci., 448:56-65, 2012. doi:10.1016/j.tcs.2012.03.041.

Mrinal Kumar and Ramprasad Saptharishi. An exponential lower bound for homogeneous
depth-5 circuits over finite fields. In Proceedings of the 32nd Annual Computational Complexity
Conference (CCC 2017), volume 79 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 31:1-30:30. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/
LIPIcs.CCC.2017.31.

Mrinal Kumar and Ramprasad Saptharishi. Hardness-randomness tradeoffs for algebraic
computation. Bull. FEur. Assoc. Theor. Comput. Sci., 129:56-87, 2019.

Mrinal Kumar, Ramprasad Saptharishi, and Anamay Tengse. Near-optimal bootstrapping of
hitting sets for algebraic circuits. In Proceedings of the 30th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2019), pages 639-646. STAM, Philadelphia, PA, 2019. doi:
10.1137/1.9781611975482.40.

Richard J. Lipton. Straight-line complexity and integer factorization. In Algorithmic number
theory (Ithaca, NY, 199/4), volume 877 of Lecture Notes in Comput. Sci., pages 71-79. Springer,
Berlin, 1994. doi:10.1007/3-540-58691-1_45.

Lészl6 Lovasz. On determinants, matchings, and random algorithms. In Fundamentals of
computation theory (Proc. Conf. Algebraic, Arith. and Categorical Methods in Comput. Theory,
Berlin/Wendisch-Rietz, 1979), volume 2 of Math. Res., pages 565-574. Akademie-Verlag,
Berlin, 1979.

Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrix
inversion. Combinatorica, 7(1):105-113, 1987. Preliminary version in the 19th Annual ACM
Symposium on Theory of Computing (STOC 1987). doi:10.1007/BF02579206.

37:31

CCC 2020

37:32

Algebraic Hardness Versus Randomness in Low Characteristic

31

32

33

34

35

36

37

38

39

40

41

Noam Nisan and Avi Wigderson. Hardness vs. randomness. J. Comput. System Sci., 49(2):149-
167, 1994. doi:10.1016/50022-0000(05)80043-1.

Ran Raz. Tensor-rank and lower bounds for arithmetic formulas. J. ACM, 60(6):Art. 40, 15,
2013. Preliminary version in the 42nd Annual ACM Symposium on Theory of Computing
(STOC 2010). doi:10.1145/2535928.

Steven Roman. Field theory, volume 158 of Graduate Texts in Mathematics. Springer, New
York, 2 edition, 2006.

Nitin Saxena. Progress on polynomial identity testing. Bull. Fur. Assoc. Theor. Comput. Sci.,
99:49-79, 2009.

Nitin Saxena. Progress on polynomial identity testing ii. In Proceedings of the Workshop
celebrating Somenath Biswas’ 60th Birthday, pages 131-146, 2014.

Ronen Shaltiel and Christopher Umans. Simple extractors for all min-entropies and a new
pseudorandom generator. J. ACM, 52(2):172-216, 2005. Preliminary version in the 42nd
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2001). doi:10.1145/
1059513.1059516.

Adi Shamir. Factoring numbers in O(log n) arithmetic steps. Inform. Process. Lett., 8(1):28-31,
1979. doi:10.1016/0020-0190(79)90087-5.

Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: a survey of recent results and questions.
Found. Trends Theor. Comput. Sci., 5(3-4):207-388, 2010. doi:10.1561/0400000039.
Sébastien Tavenas. Improved bounds for reduction to depth 4 and depth 3. Inform. and
Comput., 240:2-11, 2015. doi:10.1016/j.ic.2014.09.004.

Christopher Umans. Pseudo-random generators for all hardnesses. J. Comput. System Sci.,
67(2):419-440, 2003. Preliminary version in the 34th Annual ACM Symposium on Theory of
Computing (STOC 2002). doi:10.1016/S0022-0000(03)00046-1.

Ryan Williams. Finding paths of length k in O*(2) time. Inform. Process. Lett., 109(6):315—
318, 2009. doi:10.1016/j.ipl.2008.11.004.

	Introduction
	Prior Work
	Identity Testing in Low Characteristic
	Our Results

	Preliminaries
	Algebraic Computation and Polynomial Identity Testing
	Combinatorial Designs
	Field Theory

	p^{th} Roots of Algebraic Computation
	Circuits
	Formulae
	Algebraic Branching Programs

	Extending the Kabanets-Impagliazzo Generator
	The Kabanets-Impagliazzo Generator
	Extension to Fields of Low Characteristic

	Bootstrapping from Constant-Variate Hardness
	A Non-Trivial Hitting Set from Constant-Variate Hardness
	Comparison to Characteristic Zero

	Relating Constant-Variate and Multivariate Lower Bounds
	Complexity of Computing Integers
	The Inverse Kronecker Map and Constant-Free Circuits

	Conclusion and Open Problems

