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▶ Definition 2. A function G : {0, 1}r → R
n is a pseudorandom generator for degree d PTFs

with error ε if for every degree at most d PTF f : Rn → {0, 1},
∣

∣

∣

∣

P
y∈u{0,1}r

(f(G(y)) = 1) − P
x∼N(0,1)n

(f(x) = 1)

∣

∣

∣

∣

f ε.

We call r the seed length of the generator and say G ε-fools degree d PTFs with respect

to the gaussian distribution 2. We say G is explicit if its output can be computed in time

polynomial in n.

Of particular interest is the boolean case where the target distribution is not gaussian

but the uniform distribution on the hypercube {+1, −1}n. The gaussian case is interesting

by itself both from a complexity-theoretic view as well as a geometric one. For instance, a

PRG as above can be used to get deterministic algorithms for approximating the gaussian

volumes of polynomial surfaces. Further, the gaussian case is a necessary stepping-stone to

obtaining PRGs in the Boolean case: a PRG for the latter implies a PRG for the gaussian

case. Achieving similar parameters as we do for the boolean case would be a significant

achievement: we do not even have non-trivial correlation lower bounds for NP against PTFs

of degree É(log n) over the hypercube. A PRG would at the very least imply correlation lower

bounds against a function in NP, resolving a longstanding bottleneck in circuit complexity.

Over the last several years, the question of designing PRGs for PTFs has received much

attention. Non-explicitly (i.e., the generator is not necessarily efficiently computable), by

the probabilistic method, it is known that there exists PRGs that ε-fool degree d PTFs

with seed-length O(d log n + log(1/ε)). Meka and Zuckerman [12] gave the first non-trivial

PRG for bounded degree PTFs with a seed length of dO(d) log(n)/ε2 for the boolean and

gaussian cases. Independent of [12], [2] showed that bounded independence fools degree-2

PTFs leading to seed length O(log(n)/ε2). Since then, there have been several other works

that make progress on the gaussian case [7, 6, 8, 10, 11]. The seed length in all of these works

had an exponential dependence on the degree d of the PTF. In particular, until recently

no non-trivial PRGs (i.e., seed length o(n)) were known for PTFs of degree É(log n). In

a remarkable recent work, O’Donnell, Servedio, and Tan [14] got around this exponential

dependence on the degree d, achieving a seed length of (d/ε)O(log d) log(n). Our work builds

on their work (which in turn builds on a framework of [7]).

1.1 Main Results

Our main result is a PRG with seed length (d/ε)O(1) log(n) that ε-fools n-variate degree-d

PTFs:

▶ Theorem 3 (PRG for PTFs). There exist constants c, C such that for all ε > 0 and d g 1,

there exists an explicit PRG that ε-fools n-variate degree d PTFs with respect to the gaussian

distribution with seed length r(n, d, ε) = Cdc log(n/ε) log(1/ε)/ε2.

As remarked above, this is the first result with polynomial dependence on the degree for

fooling PTFs against any distribution and gives the first non-trivial PRGs against PTFs of

degree nΩ(1). Previously, we could only handle degree at most 2O(
√

log n).

Towards proving the above result, we develop several structural results on PTFs in the

gaussian space that might be of independent interest. We expand on these later on. Briefly:

2 Here, and henceforth, y ∈u S denotes a uniformly random element from a multi-set S, and N(0, 1)
represents the standard univariate gaussian distribution of variance 1.
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We show that the derivatives of a low-degree polynomial p, taken at a random point

x ∼ N(0, 1)n, are likely to have magnitudes ∥∇kp(x)∥ which grow slowly as k increases.

We apply this fact to the study of random “gaussian restrictions” of a polynomial p,

px,λ(y) := p
(√

1 − ¼x +
√

¼y
)

,

and conclude that for small enough ¼, with high probability over x ∼ N(0, 1)n, px,λ(Y )

becomes highly concentrated around its mean value µ when Y ∼ N(0, 1)n, as quantified

by a bound on the higher-moments E(px,λ(Y ) − µ)R.

As this concentration result relies only on moment bounds, it extends easily to pseu-

dorandom distributions Y over R
n which are k-moment-matching with N(0, 1)n, when

k g R · deg(p).

Note that the magnitudes of the derivatives ∇kpx,λ(0) (with respect to x) are the same

as the magnitudes of the degree-k coefficients of px,λ(y) (as a polynomial in y), up to a

scaling factor of roughly ¼k/2. However, to obtain the moment bound, we must translate to

the basis of Hermite polynomials and bound the degree-k coefficients with respect to this

basis (rather than the standard basis). In contrast with our work, [14] derive coefficient-size

bounds for the Hermite basis directly and work with it exclusively. However, there are some

significant advantages in having the flexibility to work also within the standard basis which

will become relevant later – mainly they are due to the fact that standard basis representations

(or equivalently: derivatives) behave nicely under the scaling operator p(t) 7→ p(µt). The

Hermite-basis representation behaves poorly under scaling3.

For an arbitrary fixed polynomial p(t), a bound on the coefficient-sizes in one basis

translates only to a fairly crude bound in the other basis4. Therefore, we come to the

following rather technical contribution of our work which we would like to highlight: we find

that, although it is rather painful to convert between bases while studying an arbitrary fixed

polynomial, it is actually quite possible to do so when studying certain average-case behaviors

of polynomials; for instance, to study the typical behavior of p(x) in the neighborhood around

a random point x ∼ N(0, 1)n, or the typical moments of p(
√

1 − ¼x +
√

¼Y ), it is possible to

pass freely between either polynomial basis, and we develop some simple tools for doing so.

These tools appear to be new (at least with respect to the body of works on PTFs) and it

seems likely that they could be helpful in future works.

Besides these structural results and technical contributions, we also manage to introduce

some substantial simplifications to the analysis of the main PRG as compared to [14]. This

is in part due to the flexibility we have to measure the well-behavedness of a polynomial p in

the neighborhood around a point x directly via the derivatives at x, rather than indirectly

by taking several Hermite expansions of p and other auxiliary polynomials (cf. horizontal,

diagonal mollifier checks in [14]). We will expand on this in Section 2 when discussing our

analysis, but we briefly summarize a few key points here.

Following [7] and [14], the construction we analyze has the form Z := 1√
L

∑L
i=1 Yi, where

each Yi is a k-moment-matching gaussian. This can be thought of as the gaussian analogue

of the boolean construction from [12], which pseudorandomly partitions the n input bits

into L buckets, and then assigns the bits in each bucket using k-wise independence. This

3 In contrast, the Hermite basis representation behaves nicely under the noise operator, p(t) 7→
Ex∼N(0,1)n p(

√
1 − λx +

√
λt).

4 This is especially true in the current setting where we must control the relative sizes of the magnitudes
of coefficients at degree k vs. k + 1.
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construction and its variants are by now the most widely-applied pseudorandom tool for

fooling various “geometric” function classes including linear threshold functions and their

generalizations (such as PTFs and intersections of halfspaces).

A tempting first idea for analyzing Z is to apply a hybrid argument – this seems promising

in light of the fact that for a low-degree polynomial, we know that p
(√

1 − 1
L x +

√

1
L Yi

)

should be highly-concentrated around its mean for typical x5. However, this naive idea

fails quantitatively: The probability that we have good behavior at x is in general not

smaller than
√

1/L, so we cannot afford a union-bound over L events as required by the

standard hybrid argument. Remarkably in [7], Kane shows how to address this obstacle

with a clever sandwiching argument which in some sense mimics the hybrid argument but

manages to pay for the error caused by “bad points” x only once rather than L times.

However, one drawback of Kane’s analysis is that its implementation is highly elaborate.

After the framework was extended by [14] to break the log(n)-degree barrier, the com-

plexity only increased and the details of the argument became only more specialized and

technical6. Given the wide applicability of the aforementioned pseudorandom construction

and its variants, it would be highly desirable to have a lean and more transparent analysis

which might better serve as a flexible starting point for future adaptations. We propose

that in this work, we do obtain such an analysis.

PTFs simplify under restrictions

As a byproduct of our analysis, we obtain a structural result on PTFs that is similar in

spirit to the celebrated switching lemmas that show that certain classes of functions simplify

significantly under random restrictions. Switching lemmas and random restrictions are a

cornerstone in complexity theory, and are one of the main methods we have for proving lower

bounds. We prove analogous results with nearly optimal parameters for the important class

of PTFs in the continuous space.

In the boolean case, i.e., when studying distributions on the hypercube {+1, −1}n, a

restriction is a partial assignment of the form Ä ∈ {+1, −1, ∗}n with the understanding that

the ∗-variables are left free. Typically, restrictions Ä as above are parametrized by some

¼ > 0, the fraction of ∗’s.

Here, we study analogues of the above results in the continuous world, where the inputs

are coming from the standard gaussian distribution. The first question however is what

should the analogue of random restrictions be in the continuous space? As it turns out,

adopting the usual interpretation (where some coordinates are fixed and some are free) is

not a natural one to study in the continuous space especially for PTFs7.

The answer comes from the work of [7] (further developed in [14]) who introduced the

notion of a zoom of a polynomial. To draw a clearer parallel with random restrictions, we

term these gaussian restrictions:

▶ Definition 4. Given a function p : Rn → R and x ∈ R
n, and a restriction parameter

¼ ∈ (0, 1), let px,λ : Rn → R be8 the function px,λ(y) = p(
√

1 − ¼x +
√

¼y).

Intuitively, we can view px,λ as a restriction where (1 − ¼)-fraction of the variance is already

fixed. (Note that for independent x, y ∼ N(0, 1)n,
√

1 − ¼x +
√

¼y is distributed as N(0, 1)n.)

5 For a quantitative version of this statement, see Lemma 13.
6 Refer to [15], which fills in several details absent in [14], to see the full scope of the argument.
7 One reason is that the class of PTFs is invariant under linear transformations, so it would be nice to

have our notion of restrictions also have some symmetry under linear transformations.
8 As the value of λ will often be clear, we will often in fact just use px for brevity.
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We show that PTFs simplify significantly, i.e., become essentially constant, under gaussian

restrictions for ¼ j 1/d6.

▶ Theorem 5. There is a constant C > 0 such that the following holds. For any ¶, ε > 0, if

f : Rn → {0, 1} is a PTF of degree d, and

¼ f C δ2

d6 log(1/ε) ,

then with probability at least 1 − ¶ over x ∼ N(0, 1)n, the gaussian restriction of the PTF

(fx,λ) is nearly fixed to a constant: for some b ∈ {0, 1} we have

P
y∼N(0,1)n

[fx,λ(y) = b] > 1 − ε.

The work of [14] achieves a similar conclusion but when the restriction parameter is

¼ = d−O(log d) as opposed to being polynomially small as above. This improved significantly

on the work of [7] that implicitly shows a similar claim for ¼ = 2−O(d).

We remark that in a related line of work, [1, 4, 3, 5] study random restrictions of PTFs

over the hypercube. Our focus here is on gaussian restrictions and obtaining stronger bounds

quantitatively: these works had exponential dependence on the degree d.

Slow-growth of derivatives

The analysis of the PRG (Theorem 21) and the random restriction statement above (The-

orem 5) rely crucially on a claim about the magnitude of the derivatives of a polynomial

evaluated at random gaussian input which may itself be of independent interest (and can be

stated in a self-contained way).

For a function p : R
n → R, let ∥∇kp(x)∥2 denote the sum of squares of all partial

derivatives of p of order k at x. That is, ∥∇kp(x)∥ is the Frobenius norm of the tensor

of k’th order partial derivatives of p. We show that for any degree d polynomial p, the

Frobenius-norm of the k’th order derivatives are comparable to the (k−1)’th order derivatives

on a random gaussian input with high probability:

▶ Lemma 6. For any degree-d polynomial p : Rd → R, and x ∼ N(0, 1)n, the following holds

with probability at least 1 − ¶:

∥∇kp(x)∥ f O(d3/¶)∥∇k−1p(x)∥, for all 1 f k f d. (1)

Note that the above lemma is tight up to the factor of O(d2): consider the example

p(x) = xd
1.

Independent and concurrent work

Independently and concurrent to our work, [15] (following up on [14]) also obtained similar

results to Theorem 3. They first obtained an analogue of hypervariance reduction (cf.,

Lemma 11) as studied in [14] with better parameters and combined the improved hypervari-

ance reduction lemma with the framework of [14] to yield a PRG with dO(1) dependence on

the degree d.

Our approach differs in that we critically use our new bounds on the growth of derivatives

of polynomials as in Lemma 6 (instead of Lemma 11 which follows from Lemma 6). Working

with the derivatives directly allows us to get a substantially simpler analysis of the main

PRG construction compared to [14, 15].
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2 Proof Overview

We first describe the high-level ideas underlying our main PRG construction - the proof of

Theorem 21. We then describe the main idea behind the proof of Lemma 6 which is critical

in being able to handle PTFs of polynomially large degree. The proof of Lemma 6 is quite

different from the approach taken in [7, 14] to prove analogous results in their analysis.

2.1 Analysis of the PRG

We will use the same generator as in [7], and the high-level strategy is similar in spirit to

that of [7, 14]. However, we introduce several additional ingredients that exploit Lemma 6

and significantly simplify the analysis.

As in the works of [7] and [14], the PRG output will be

Z :=
1√
L

L
∑

i=1

Yi,

where each Yi is an independent k-moment-matching gaussian vector with k = dΘ(1). For

the time being let us work under the idealized assumption that each Yi is exactly k-moment-

matching with a standard gaussian: i.e., for any polynomial h : R
n → R of degree at

most k, E[h(Yi)] = Ez∼N(0,1)n [h(z)]. We will later relax this condition without too much

additional work as is now standard (see Section 3 for details), and ultimately output a

discrete approximation to Z with finite support. For now, it is appropriate to imagine that

the seed length required for generating each Yi will be roughly O(k log n); the total seed

length will thus be L · O(k log n). We improve prior works by showing that it suffices to let

L = dΘ(1), rather than L = 2Θ(d) as in [7] or L = dΘ(log d) as in [14].

For the rest of this section, fix a degree d polynomial p : Rn → R and let f : Rn → {0, 1}
defined as f(x) = sign(p(x)) be the corresponding PTF we are trying to fool. For simplicity

in this introduction, we consider the case where p is multi-linear. The general case is similar

but is slightly more nuanced.

We wish to compare EZ [f(Z)] to Ez[f(z)] where z ∼ N(0, 1)n. Note that we can rewrite

z ∼ N(0, 1)n as z := 1√
L

∑L
i=1 yi where each yi is an independent standard gaussian.

First attempt: A hybrid argument

A natural approach to analyze the PRG is to use a hybrid argument by replacing each yi

with a k-moment matching Gaussian vector Yi as in our PRG output. That is, show the

following sequence of inequalities:

E

[

f

(

y1√
L

+
y2√
L

+ · · · +
yL√

L

)]

≈ E

[

f

(

Y1√
L

+
y2√
L

+ · · · +
yL√

L

)]

≈ E

[

f

(

Y1√
L

+
Y2√

L
+ · · · +

yL√
L

)]

≈ · · · ≈ E

[

f

(

Y1√
L

+
Y2√

L
+ · · · +

YL√
L

)]

. (2)

Let ¼ = 1/L and y′ =
√

¼(y2 + · · ·+yL). Note that y′ ∼ N(0, 1−¼)n. The first inequality

in the sequence above, corresponding to a single-step of the hybrid argument is, equivalent

to showing:

E

[

f(
√

¼y1 + y′)
]

≈ E

[

f(
√

¼Y1 + y′)
]

.
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In other words, the above inequality is asking to show that

E[fy′/
√

1−λ(y1)] ≈ E[fy′/
√

1−λ(Y1)].

Intuitively, this is equivalent to showing that k-moment matching gaussians fool gaussian

restrictions of a PTF with high probability over the restriction. Indeed, such a claim follows

from our bounds on the derivatives of polynomials at random evaluation points (Lemma 6).

We say that a polynomial p is well-behaved at a point x if

∥∇k+1p(x)∥ f (1/ε)∥∇kp(x)∥ for all k = 0, 1, . . . , d − 1,

where ε is a parameter that will be set to be slightly larger than
√

¼. We say p is poorly-

behaved at x if the above condition does not hold.

The starting point of the analysis is that if p is well-behaved at x, then sign(p(x +
√

¼Y ))

is fooled by a moment-matching Y with very good error:

▶ Proposition 7 (Direct Corollary of Lemma 13). Let q : Rn → R be a degree d multi-linear

polynomial and suppose that q is well-behaved at a point x. Let R = ε2/¼. Then, for

y ∼ N(0, 1)n and Y a dR-moment matching gaussian,

E
y∼N(0,1)n

[sign(q(x +
√

¼y)] − E
Y

[sign(q(x +
√

¼Y )] f 2−Ω(R).

This fact follows from the following argument. Since q is well-behaved at x, this in

particular implies a non-negligible lower bound on the size of the constant term c of h(t) :=

q(x +
√

¼t), relative to its other coefficients. In particular, sign(h(t)) is nearly fixed to a

constant in the sense of Theorem 5. Indeed, writing h(t) = c+(h(t)−c), we see that sign(h(t))

can only differ from sign(c) if we have a deviation with magnitude at least |h(t) − c| g |c|.
We can use a concentration inequality to bound the probability that either |h(y) − c| g |c| or

|h(Y ) − c| g |c|. In light of the bounds on ∥∇kq(x)∥, such a concentration inequality follows

from moment bounds obtained from hypercontractivity.

The above lemma shows the first step of the hybrid argument and suggests the following

strategy for analyzing the PRG. Define Z−i = Z −
√

¼Yi. We can now aim to show that the

polynomial p is well-behaved at Z−i with high probability. This indeed seems plausible as our

Lemma 6 indeed shows that when Z is standard gaussian, the polynomial p is well-behaved

at Z with high probability.

Immediately, there are two obstacles for this approach:

First, Lemma 6 works only for truly random gaussian and not for our pseudorandom Z−i.

Second, even if we argue that p is likely to be well-behaved at Z−i, we cannot apply

a union bound over i. The error guarantee in Lemma 6, is k
√

¼; whereas, we have

L = 1/¼ choices of i, so we cannot use such a straightforward union-bound argument to

replace each Yi with a yi.

The second issue is especially problematic as the error probability in Lemma 6 cannot be

improved, at least in that variant; the probability that the derivatives don’t grow too fast is

not small compared to L = 1/¼.

Beating the union bound

Roughly speaking, the main insight in going beyond the union bound obstacle mentioned

above is as follows. There are two sources of error in the naive hybrid argument outlined

above: (1) The probability of failure coming from p being poorly-behaved at the points

Z−i. (2) The error coming from applying Proposition 7 to replace a Yi with yi when p is

well-behaved at Z−i.

CCC 2022
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Note that we have very good control on the error of type (2) above: we could make it be

much smaller than 1/L by increasing the amount of independence k. We will exploit this

critically. We will complement this by showing that even though a naive union bound would

be bad for errors of type (1) above, it turns out that we don’t have to incur this loss: we

(implicitly) show that P (∀i, p is well-behaved at Z−i) ≈ 1 − O(εd3). We do so by checking

only that p is well-behaved at the single point Z (in a slightly stronger sense) and then we

conclude that p is also highly-likely to be well-behaved at each of the “nearby” points Z−i.

Intuitively, this is what allows us to circumvent the union bound in the hybrid argument.

However, it would be difficult to actually carry out the analysis as stated this way – we use

a sandwiching argument to sidestep the complicated conditionings which would arise in this

argument as stated.

We proceed to describe the sandwiching argument. We wish to lower-bound the PTF

sign(p(x)) by sign(p(x)) · g(x), where g(x) is some “mollifier” function taking values in [0, 1].

The role of g(x) is roughly to “test” whether p is well-behaved at x; we ideally want g(x) = 1

at points x where p is well-behaved and g(x) = 0 at points x where p is poorly-behaved.

However, we also need g(x) to be smooth9, so there will be some intermediate region of

points for which g(x) yields a non-informative, non-boolean value.

We set g(x) to be a smoothed version of the indicator function

g(x) ≈
d−1
∏

k=0

1

(

∥∇k+1p(x)∥ f 1

ε
∥∇kp(x)∥

)

,

which tests whether the derivatives of p at x have controlled growth in the sense of Lemma 6.

More specifically, we set

g(x) :=

d−1
∏

k=0

Ä

(

log

(

1

16ε2

∥∇kp(x)∥2

∥∇k+1p(x)∥2

))

,

where Ä(t) : R → [0, 1] is some smooth univariate function with Ä(t) = 0 for t f 0 and

Ä(t) = 1 for t g 1.

Now, for every point x ∈ R
n we have

sign(p(x)) g sign(p(x))g(x).

Furthermore, under truly-random gaussian inputs z ∼ N(0, 1)n we have

E
z

sign(p(z))g(z) g E
z

sign(p(z)) − E
z

|g(z) − 1| g E
z

sign(p(z)) − O(εd3),

where the final inequality here follows from Lemma 6. Combining these, we get that

E
Z

sign(p(Z)) g E
z

sign(p(z)) − O(εd3) − |E
Z

sign(p(Z))g(Z) − E
z

sign(p(z))g(z)|.

Note that we can similarly obtain an upper-bound for EZ sign(p(Z)) by repeating this

argument on the polynomial −p(x).

Thus, it suffices to bound |EZ sign(p(Z))g(Z) − Ez sign(p(z))g(z)|. Having introduced

the mollifier, we can now afford to do so by a standard hybrid argument. We represent z as

z := 1√
L

∑L
i=1 yi and recall that Z is of the form Z = 1√

L

∑L
i=1 Yi. We can replace each Yi

with yi and get

|E
Z

sign(p(Z))g(Z) − E
z

sign(p(z))g(z)| f µL,

where µ is the (quite small) error coming from the following lemma.

9 Ultimately we need g to be well approximated by some polynomial so that it can be fooled by limited
independence. Smoothness will allow us to get such an approximation by truncating the Taylor series.
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▶ Lemma 8. There exists a constant c such that the following holds for ¼ f ε2/Rdc. For

any fixed vector x ∈ R
n, Y a dR-moment-matching gaussian vector, and y ∼ N(0, 1)n,

|E
Y

sign(p(x +
√

¼Y ))g(x +
√

¼Y ) − E
y

sign(p(x +
√

¼y))g(x +
√

¼y)| f µ = 2−Ω(R).

Technically speaking, the above lemma is where our intuition on going around the union

bound is quantified, allowing us to use the hybrid argument. We briefly outline our proof of

this lemma, where for the purpose of illustration we continue with the simplifying assumption

that the polynomial p is multilinear.

The proof is by a case analysis on the behavior of p at the the fixed point x. In the

multilinear case it suffices to consider the derivatives ∇kp(x); in the general case we need to

consider something slightly different.

Case 1: p is well-behaved at x, i.e., ∥∇k+1p(x)∥ f (1/ε)∥∇kp(x)∥ for all k.

We can use Lemma 13 in this case to conclude that sign(p(x+
√

¼y)), sign(p(x+
√

¼Y ))

are both almost constant with error 2−Ω(R).

So, it remains to show that Y fools g(x +
√

¼y). We approximate g by a low-degree

polynomial in y using a Taylor-truncation argument. Our assumption on the controlled

growth of derivatives ∥∇kp(x)∥ allows us to bound the truncation error by bounding

the higher-moments of the deviations ∥∇kp(x +
√

¼Y )∥ − ∥∇kp(x)∥.

Case 2: p is not well-behaved at x; let k0 be the largest k such that ∥∇k0+1p(x)∥ >

(1/ε)∥∇k0p(x)∥.

Intuitively, this says that the polynomial p is well behaved at degree above k0, but not

at degree k0. This allows us to show, via an R-th moment bound, that both

∗ ∥∇k0p(x +
√

¼Y )∥ f 2ε∥∇k0+1p(x)∥
∗ ∥∇k0+1p(x +

√
¼Y )∥ g 1

2 ∥∇k0+1p(x)∥
are highly likely. Thus, it is highly likely that

∥∇k0p(x +
√

¼Y )∥ f 4ε∥∇k0+1p(x +
√

¼Y )∥.

The latter means p is still sufficiently poorly-behaved at the point x +
√

¼Y that the

mollifier classifies it correctly as g(x +
√

¼Y ) = 0.

2.2 Slow-growth of derivatives and simplification under restrictions

The proof of Lemma 6 is iterative and is relatively simple given Kane’s relative anti-

concentration inequality for degree d polynomials [9] developed in the context of studying

the Gotsman-Linial conjecture for PTFs.

[9] shows that for any degree d polynomial, and x, y ∼ N(0, 1)n with probability at least

1 − ¶, we have |ïy, ∇p(x)ð| f (d2/¶)|p(x)|. As y in the above statement is independent

of x, for any x, ïy, ∇p(x)ð is distributed as N(0, ∥∇p(x)∥2). This says that the inequality

is essentially equivalent to saying that with probability at least 1 − ¶ over x, we have

∥∇p(x)∥2 f O(d2/¶)|p(x)|. The latter can be seen as the inequality corresponding to k = 1

in the statement of Lemma 6. The full proof of the lemma is via iteratively applying the

above argument using a vector-valued generalization of Kane’s inequality.

Next, it is not too hard to prove Theorem 5 given Lemma 6. For illustration, suppose

that we have a degree d multi-linear polynomial p, and write f(t) := p(
√

1 − ¼t). Then, by

elementary algebra10, we have the identity

px(y) = p
(√

1 − ¼x +
√

¼y
)

=
∑

α

∂αf(x)

(

¼

1 − ¼

)|α|/2

yα. (3)

10 If p is multi-linear, then the Hermite expansion (see Section 3) is just p(x) =
∑

α∈{0,1}n p̂(α)hα(x) =
∑

I⊆[n]
p̂(I)

∏

i∈I
xi. We can prove the identity for each monomial and use additivity.
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Now, by Lemma 6, with probability 1−¶ over x, we have ∥∇kf(x)∥ f O(d3/¶)∥∇k−1f(x)∥,

for all k. Thus, if we take ¼ j ¶2/(R2d6), the factor of ¼ will kill the growing derivatives

leading to a bound on the higher-order moments of px(y) − px(0) via hypercontractivity.

These moment bounds in turn imply that |px(y) − px(0)| < |px(0)| with high probability over

y, and hence that sign(px(y)) = sign(px(0)) with high probability over y.

Notice that Equation (3) is essentially a Taylor expansion of p at
√

1 − ¼x: it expresses the

function px(y) as a polynomial in y in the standard basis, whose coefficients are determined

by the derivatives of p at
√

1 − ¼x. We want to do something similar in the general case, but

in the Hermite basis; for non-multi-linear polynomials these two bases no longer coincide.

So, in the general case, we rely on the following identity, which we regard as an analogue of

the Taylor expansion for the Hermite basis.

▶ Lemma 9 (See Section 3). Let f(y) =
∑

α f̂(³)hα(y). Then

f
(√

1 − ¼x +
√

¼y
)

=
∑

α

∂αg(x)√
³!

(

¼

1 − ¼

)|α|/2

hα(y),

where g(x) := U√
1−λf(x) =

∑

α f̂(³)(1 − ¼)|α|/2hα(x).

Hermite polynomials are such a ubiquitous tool used in such a wide range of fields that

it seems unlikely that such an identity is new. However, we are not aware of any previous

appearance of such an identity in the literature (at least in the body of work on PTFs) and

we provide a proof.

Hypervariance reduction

We next remark on the relation between slow-growth of derivatives (as in Lemma 6) and

hypervariance reduction as studied and introduced in [14]. The latter plays a similar role

in their paper as the former does in this work. However, Lemma 6 importantly has only

polynomial dependence on the degree d and is also much more conducive to our analysis of

the PRG.

Recall the Hermite expansion (see Section 3) of polynomials: A degree d polynomial

p : Rn → R can be uniquely expressed as

p(y) :=
∑

|α|fd

p̂(³)hα(y),

where ³ ∈ N
n denotes a multi-index and hα(y) is the ³’th Hermite polynomial. The

hypervariance and normalized hypervariance of a polynomial introduced in [14] are defined

as follows:

▶ Definition 10. For a polynomial p : Rn → R of the form p(y) :=
∑

α p̂(³)hα(y), define its

hypervariance, HyperVarR( ), and normalized hypervariance, HR( ), as

HyperVarR(p) :=
∑

α̸=0

p̂(³)2R2|α|, HR(p) :=
HyperVarR(p)

p̂(0)2
.

Intuitively, if the normalized hypervariance HR(p) of a polynomial is small for a large R,

then it means that the weights of the higher-order Hermite coefficients of p have a geometric

decay.

[14] showed that for any polynomial p, for a suitable ¼ > 0, a gaussian restriction of p will

have small normalized hypervariance with high probability. Specifically, they showed that

if ¼ = d−O(log d), then HR(px,λ) is bounded with high probability over x ∼ N(0, 1)n. They

also asked whether this property holds when ¼ = d−O(1) instead of being quasi-polynomially

small in d. Lemma 6 implies this conjecture without too much difficulty:
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▶ Lemma 11. For any degree d polynomial p and ¼, ¶ > 0, the following holds. Except with

probability ¶ over x ∼ N(0, 1)n, the normalized hypervariance HR(px,λ) = O(¼d6R2/¶2).

The proof of the analogue of Lemma 11 for quasi-polynomially small ¼ (i.e. ¼ = d−O(log d))

in [14] was by an iterative process: Intuitively, if one sets ¼0 = d−O(1), and ¼ = ¼log d
0 , then

the random restriction pλ,x is equivalent to (log d) independent random restrictions with

restriction parameter ¼0. The authors in [14] show that each such ¼0-restriction (essentially)

decreases the degree by a factor of 2. We instead take a different approach by drawing a

connection between norms of derivatives and to relative anti-concentration as developed in

the context of studying the Gotsman-Linial conjecture for PTFs.

3 Preliminaries

The pseudorandom generator construction: idealization vs. discretization. Following [7]

and [14], we analyze the idealized pseudorandom distribution

Z =
1√
L

L
∑

i=1

Yi,

where each Yi ∈ R
n is a k-moment-matching gaussian (that is, E[p(Yi)] = Ex∼N(0,1)n [p(x)]

for all polynomials p : Rn → R of degree at most k).

Suppose that, for any such Z with parameters (L, k), it is the case that Z fools degree-d

PTFs with error ε = ε(L, k, d). Then, it is shown in [7] how to obtain a small-seed length

PRG (in the sense of Definition 2) by providing a specific instantiation and discretization of

this construction.

▶ Theorem 12 ([7], implicit in Section 6). Suppose a Z as above with parameters (L, k) fools

degree d-PTFs with error ε = ε(L, k, d). Then, there is an explicit, efficiently computable

PRG with seed length O(dkL log(ndL/ε) that (2ε)-fools degree d PTFs.

Hermite polynomials. To argue about polynomials which are not necessarily multilinear,

we need some simple facts concerning Hermite polynomials. For our purposes, Hermite

polynomials are simply a convenient choice of polynomial basis which have nice properties

(in particular being orthonormal) with respect to gaussian inputs. For a more detailed

background on Hermite polynomials and their use for analyzing functions over gaussian

space, see [13, Ch. 11].

One concrete way to define the Hermite polynomials is the following:

For the univariate polynomials, the degree-m “Probabilist’s” Hermite polynomial is the

m-th coefficient of the generating function

est− 1
2

s2

=
∑

mg0

Hm(t)sm.

We define the degree-m univariate Hermite polynomial by the normalization

hm(t) :=
1√
m!

Hm(t).

For a multi-index ³ ∈ N
n, we define the multivariate Hermite polynomial hα : Rn → R

via the product

hα(x) :=

n
∏

i=1

hai
(xi).
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We record some basic properties of this particular choice of polynomial basis. The final

two properties say that the Hermite basis is orthonormal with respect to correlation under

the standard gaussian distribution – this is the reason for our choice of normalization.

The set {hα(x) : |³| f d} is a basis for real polynomials in n variables of degree f d.

h0 is the constant polynomial h0 ≡ 1.

For multi-indicies ³ ∈ {0, 1}n, hα(x) is simply the monomial
∏

i:ai=1 xi.

For x ∼ N(0, 1)n, and distinct multi-indices ³ ̸= ´, Ex hα(x)hβ(x) = 0.

For x ∼ N(0, 1)n, and any multi-index ³, Ex hα(x)2 = 1.

Gaussian noise operator. We recall the definition of the noise operator Uρ, which here we

regard as an operator on real polynomials in n variables (see [13, Ch. 11] for background

and a more general viewpoint). For a polynomial f : Rn → R and a parameter Ä ∈ [0, 1], the

action of Uρ on f is specified by

(Uρf)(x) := E
Z∼N(0,1)n

f
(

Äx +
√

1 − Ä2Z
)

.

An important feature of the Hermite basis is that the noise operator acts on it diagonally

(see [13, Ch. 11]):

Uρhα(x) = Ä|α|hα(x).

Thus, if f is a degree-d polynomial given in the Hermite basis as

f(x) =
∑

|α|fd

f̂(³)hα(x),

then we can express the result of the noise operator applied to f explicitly as

Uρf(x) =
∑

|α|fd

f̂(³)Ä|α|hα(x).

Higher moments and hypercontractivity. Fix a polynomial

f(x) :=
∑

|α|fd

f̂(³)hα(x).

For an even natural number q g 2, we write the gaussian q-norm of f as

∥f∥q :=

(

E
x∼N(0,1)n

f(x)q

)1/q

.

We wish to be able to bound this quantity in terms of the magnitudes of the Hermite

coefficients of f , f̂(³). For this purpose, we extend the definition of Uρ also to Ä > 1 by its

action on the Hermite basis: Uρhα(x) = Ä|α|hα(x). With this notation, we can express the

well-known (q, 2)-hypercontractive inequality [13, Ch. 9,11] as

∥f∥q f ∥U√
q−1f∥2,

which is quite convenient for us, as we can use orthonormality of the Hermite basis to

explicitly compute

∥U√
q−1f∥2

2 =
∑

|α|fd

(q − 1)|α|f̂(³)2 f
∑

|α|fd

q|α|f̂(³)2.

To get a feel for the utility of this bound, let’s see how it can be used to prove the

following concentration bound:
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▶ Lemma 13. Let f : Rn → R be a degree d polynomial with normalized hypervariance

H√
q(f) f 1

4 , where q is an even natural number. Then,

P
y∼N(0,1)n

(

sign(f(y)) ̸= sign(f̂(0))
)

f 2−q.

Further, the same holds more generally for y ∼ Y , as long as the distribution Y is dq-

moment-matching.

Proof. Suppose that f(y) is normalized so that

E
y∼N(0,1)n

f(y) = f̂(0) = ±1.

We have the q-th moment bound

∥f(x) − f̂(0)∥q f ∥U√
q

(

f(y) − f̂(0)
)

∥2 f 1
2 .

From the generic concentration inequality

P (|X| g t∥X∥q) f t−q

we obtain

P

(

sign(f(y)) ̸= sign(f̂(0))
)

f 2−q.

Thus, we find that the PTF sign(f) almost always yields the value sign(f̂(0)) under random

gaussian inputs. Crucially for us, this argument is also easy to derandomize: since the

argument merely relies on a bound on the q-th moment Ey∼N(0,1)n(f(y) − f̂(0))q, and for Y

which is k-moment-matching for k g dq we have

E
Y

(f(Y ) − f̂(0))q = E
y∼N(0,1)n

(f(y) − f̂(0))q,

we conclude also that sign(f(Y )) is typically equal to sign(f̂(0)). ◀

We remark that this lemma further implies that Y fools sign(f) when H√
q(f) is small:

E
Y

sign(f(Y )) = E
y∼N(0,1)n

sign(f(y)) ± O(2−q).

Gaussian restrictions and derivatives on the Hermite basis. Besides the effect of the noise

operator, it will also be important to understand the effect of two further operations on

polynomials:

The derivative map, f(y) 7→ ∂αf(y).

The gaussian restriction at x, f(y) 7→ f
(√

1 − ¼x +
√

¼y
)

.

In particular, we are concerned with how these operations affect the Hermite coefficients of a

polynomial; ultimately, our goal will be to develop a “Hermite-basis analogue” of the Taylor

expansion which can be applied to expand f
(√

1 − ¼x +
√

¼y
)

as a function of y. We start

by computing the effect of these two operations on univariate Hermite polynomials, and then

on the full multivariate Hermite basis, and finally on a general polynomial f(x) expressed in

the Hermite basis.
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▶ Proposition 14. For univariate Hermite polynomials, we have the identities
∂k

∂tk hm(t) =
√

m!
(m−k)! hm−k(t),

hm

(√
1 − ¼x +

√
¼y
)

=
∑m

k=0

√

(

m
k

)

(1 − ¼)(m−k)/2¼k/2hm−k(x)hk(y).

Proof. The first of these identities is standard (see e.g. [13, Ex. 11.10]); we provide a proof

of the second.

The second identity can be proved by considering the generating function

est− 1
2

s2

=
∑

m

√
m!hm(t)sm,

and comparing the coefficient of sm on both sides of

es(
√

1−λx+
√

λy)− 1
2

s2

= e(s
√

1−λ)x− 1
2

(s
√

1−λ)2 · e(s
√

λ)y− 1
2

(s
√

λ)2

◀

The corresponding identities for multivariate Hermite polynomials follow easily from above.

▶ Proposition 15. We have

∂αhβ(y) =
√

α!
γ! hγ(y), where µ = ´ − ³,

hβ

(√
1 − ¼x +

√
¼y
)

= (1 − ¼)|β|/2
∑

αfβ
∂αhβ(x)√

α!

(

λ
1−λ

)|α|/2

hα(y),

∂αhβ

(√
1 − ¼x +

√
¼y
)

= (1 − ¼)|β−α|/2
∑

γfβ−α
∂α+γ hβ(x)√

γ!

(

λ
1−λ

)|γ|/2

hγ(y).

We conclude with a Taylor-like expansion in the Hermite basis that we use repeatedly.

▶ Lemma 16. Let f(y) =
∑

α f̂(³)hα(y). Then

f
(√

1 − ¼x +
√

¼y
)

=
∑

α

∂αg(x)√
³!

(

¼

1 − ¼

)|α|/2

hα(y),

where g(x) := U√
1−λf(x) =

∑

α f̂(³)(1 − ¼)|α|/2hα(x).

Proof. We express

f
(√

1 − ¼x +
√

¼y
)

=
∑

α

f̂(³)hα

(√
1 − ¼x +

√
¼y
)

=
∑

α

hα(y)√
³!

(

¼

1 − ¼

)|α|/2
∑

βgα

f̂(´)(1 − ¼)|β|/2∂αhβ(x)

=
∑

α

hα(y)√
³!

(

¼

1 − ¼

)|α|/2

∂αg(x). ◀

Lastly, we will also need an extension of this theorem which expresses ∂αf , at the point

√
1 − ¼x +

√
¼y,

as a polynomial in y in the Hermite basis.

▶ Theorem 17. Let f(y) =
∑

α f̂(³)hα(y). Then

∂αf
(√

1 − ¼x +
√

¼y
)

= (1 − ¼)−|α|/2
∑

βgα

∂βg(x)

√

³!

´!

(

¼

1 − ¼

)|β−α|/2

hβ−α(y),

where g(x) := U√
1−λf(x).
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Proof. We express

∂αf
(√

1 − ¼x +
√

¼y
)

=
∑

β

f̂(´)∂αhβ

(√
1 − ¼x +

√
¼y
)

=
∑

γ

hγ(y)√
µ!

(

¼

1 − ¼

)|γ|/2
∑

βgγ+α

(1 − ¼)|β−α|/2∂α+γhβ(x)

= (1 − ¼)−|α|/2
∑

γ

hγ(y)√
µ!

(

¼

1 − ¼

)|γ|/2

∂α+γg(x). ◀

4 Gaussian restrictions of polynomials

Here we prove the structural properties of gaussian restrictions of polynomials: Theorem 5,

Lemma 6, Lemma 11. Note that Theorem 5 follows immediately from Lemma 11 and

Lemma 13. We next prove Lemma 11 from Lemma 6.

Proof of Lemma 11 from Lemma 6. Define f(x) := U√
1−λp(x). Then, by Lemma 16,

px(y) = f(x) +
∑

α̸=0

∂αf(x)√
³!

(

¼

1 − ¼

)|α|/2

hα(y).

Thus,

HyperVarR(px) =
∑

α̸=0

(

∂αf(x)√
³!

)2(
¼

1 − ¼

)|α|
R2|α| f

∑

α̸=0

(∂αf(x))
2

(

¼

1 − ¼

)|α|
R2|α|

=

d
∑

k=1

R2k

(

¼

1 − ¼

)k

∥∇kf(x)∥2,

where the first inequality follows as
√

³! g 1.

We now conclude by applying Lemma 6 to f . We have

HR(px) =

∑d
k=1 R2k

(

λ
1−λ

)k

∥∇kf(x)∥2

f(x)2
.

Except with probability ¶ over x ∼ N(0, 1)n, we can bound this by

d
∑

k=1

R2k

(

¼

1 − ¼

)k (
Cd3

¶

)2k

f O

(

¼d6R2

¶2

)

. ◀

4.1 Proof of Lemma 6

Our main tool will be Kane’s relative-anticoncentration lemma for gaussian polynomials.

▶ Lemma 18 ([9]). For a degree d polynomial p, and independent standard gaussian vectors

x, y ∈ R
n,

P(|p(x)| f ε| ïy, ∇p(x)ð |) f O(εd2).

In fact, we will actually work with the following corollary which is essentially the first of the

d inequalities in Lemma 6.
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▶ Corollary 19. For a degree d polynomial p, and independent standard gaussian vector

x ∈ R
n,

P(|p(x)| f ε∥∇p(x)∥) f O(εd2).

Proof. We note that for any fixed x, ïy, ∇p(x)ð is identical in distribution to Z∥∇p(x)∥,

where Z ∼ N(0, 1) is a standard gaussian. So, we express

P(|p(x)| f ε| ïy, ∇p(x)ð |) = P(|p(x)| f ε|Z|∥∇p(x)∥)

g P(|p(x)| f ε∥∇p(x)∥) · P(|Z| g 1) .

Since P(|Z| g 1) g Ω(1), we conclude that

P(|p(x)| f ε∥∇p(x)∥) f O(εd2). ◀

The heart of the proof of Lemma 6 is a vector-valued variant of the above corollary:

▶ Lemma 20. Let
#»

f (x) := (f1(x), f2(x), . . . , fm(x)) be a collection of m degree-at-most d

polynomials fj(x). If x ∈ R
n is a standard gaussian vector, then

P



∥ #»

f (x)∥2 f ε2
m
∑

j=1

∥∇fj(x)∥2



 f O(εd2).

Proof of Lemma 6. We simply apply the above lemma d times and take a union bound. For

1 f k f d, let
#»

f k(x) := ((∂αf(x) : |³| = k)). Note that ∥ #»

f k(x)∥2 = ∥∇kf(x)∥2. Further,

note that

∑

α:|α|=k

∥∇(∂αf(x))∥2 g ∥∇k+1f(x)∥2,

where the inequality follows as each (k +1)’th order derivative would be counted at least once

in the expression on the left hand side. Therefore, by the above lemma, for x ∼ N(0, 1)n, we

have

P
(

∥∇kf(x)∥2 f ε2∥∇k+1f(x)∥2
)

f O(εd2)

Setting ε = ¶/d3, and taking a union bound over all k, we get that for a constant C > 0,

P
(

∀k, ∥∇kf(x)∥2 > C(¶2/d6)∥∇k+1f(x)∥2
)

g 1 − ¶.

This proves Lemma 6. ◀

Proof of Lemma 20. Consider the auxiliary polynomial

h(x, y) :=

m
∑

j=1

fj(x)yj .

As a function of both x and y, we have

∇h(x, y) =
#»

f (x) ◦ Mxy,



Z. Kelley and R. Meka 21:17

where Mx is the matrix with columns ∇fj(x) (that is, Mx has (i, j)-th entry ∂
∂xi

fj(x)). So,

applying Corollary 19 to this auxiliary polynomial gives the probability bound

q := P
(

h(x, y)2 f ε2∥∇g(x, y)∥2
)

= P

(

〈

y,
#»

f (x)
〉2

f ε2
(

∥ #»

f (x)∥2 + ∥Mxy∥2
)

)

f O(εd2).

Now, for some constant C g 2 to be specified later, let E denote the event that

(C2 − 1)∥ #»

f (x)∥2 f ε2

2
∥Mx∥2

F ,

where ∥Mx∥F is the Frobenius norm of Mx. We note that we can lower-bound the probability

q by

q g P(E) · P
(

∣

∣

∣

〈

y,
#»

f (x)
〉∣

∣

∣ f C∥ #»

f (x)∥ and ∥Mxy∥2 g 1

2
∥Mx∥2

F |E
)

.

We claim that for large enough choice of constant C, this conditional probability can be

lower-bounded by Ω(1). Indeed, we can argue for any fixed x:

P

(∣

∣

∣

〈

y,
#»

f (x)
〉∣

∣

∣ g C∥ #»

f (x)∥
)

f 1
C2 .

P
(

∥Mxy∥2 g 1
2 ∥Mx∥2

F

)

g Ω(1).

The first item is just a Chebyshev inequality; the second item can be derived e.g. from the

basic anticoncentration bound one obtains for degree-2 polynomials from the Paley-Zygmund

bound together with hypercontractivity (since, for any fixed matrix M , the quadratic form

g(y) := ∥My∥2 has second-moment E g(y)2 g (E g(y))2 = ∥M∥2
F ).

Thus, by choosing C large enough, we can lower-bound this conditional probability by

Ω(1) − 1

C2
g Ω(1).

We conclude that P(E) f O(q) = O(εd2). This gives the desired conclusion

P

(

∥ #»

f (x)∥ f Ω(ε)∥Mx∥F

)

f O(εd2). ◀

5 Pseudorandom Generator for PTFs

The following theorem gives quantitative bounds on the error of our main generator:

▶ Theorem 21. Fix some parameters ε > 0 and R ∈ N. Let z be a standard gaussian, and

let Z = 1√
L

∑L
i=1 Yi, where each Yi is dR-moment-matching. Then for some sufficiently large

absolute constant c and any polynomial p of degree d,

E
Z

sign(p(Z)) g E
z∼N(0,1)n

sign(p(z)) − O(εd3) − L · 2−Ω(R),

as long as L is at least Rdc/ε2.

Combining the above with Theorem 12 immediately implies our main result Theorem 3.
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Proof of Theorem 3. Given a target error ε′, set ε = ε′/Cd3, and R = C log(d/ε) for a

sufficiently big constant so that the error in the above lemma is at most ε′/2 for L =

Rdc/ε2 = O(dc log(d/ε)/ε2). While the above theorem only gives a lower bound, we can

get an upper bound by applying the result to −p. Now, by applying Theorem 12 there

exists an efficient PRG that fools degree d PTFs with error at most ε′ and seed length

O(dO(1) log(nd/ε′) log(d/ε′)/(ε′)2 which can be simplified to the bound in the theorem. ◀

We now prove the above theorem by the lower-sandwiching argument outlined in Sec-

tion 2.1. Fix a polynomial p(x) of degree d. We remind the reader of our convention

sign(t) := 1(t g 0).

We define the mollifier function

g(x) :=

d−1
∏

k=0

Ä

(

log

(

1

16ε2

∥∇kp(x)∥2

∥∇k+1p(x)∥2

))

,

where Ä : R → [0, 1] is some smooth univariate function with Ä(t) = 0 for t f 0, Ä(t) = 1 for

t g 1, and ∥ ∂kρ
∂tk ∥∞ f kO(k) for all k. 11

Proof of Theorem 21. For every point x ∈ R
n we have

sign(p(x)) g sign(p(x))g(x).

Furthermore, under the truly-random gaussian inputs z ∼ N(0, 1)n we have

E
z

sign(p(z))g(z) g E
z

sign(p(z)) − E
z

|g(z) − 1| g E
z

sign(p(z)) − O(εd3),

where the final inequality here follows from Lemma 6. Combining these, we get that

E
Z

sign(p(Z)) g

E
z∼N(0,1)n

sign(p(z)) − O(εd3) − |E
Z

sign(p(Z))g(Z) − E
z∼N(0,1)n

sign(p(z))g(z)|.

Thus, it suffices to bound |EZ sign(p(Z))g(Z)−Ez∼N(0,1)n sign(p(z))g(z)|, which we do by

a hybrid argument. We first represent z as z := 1√
L

∑L
i=1 yi where each yi is an independent

standard gaussian. We can replace each Yi with yi and get

|E
Z

sign(p(Z))g(Z) − E
y

sign(p(y))g(y)| f 2−Ω(R)L,

as a consequence of the following lemma (restatement of Lemma 8) that we prove in the next

section. Theorem 21 now follows. ◀

▶ Lemma 22 (Main hybrid-step). There exists a constant c such that the following holds for

¼ f ε2/Rdc. For any fixed vector x ∈ R
n, Y a dR-moment-matching gaussian vector, and

y ∼ N(0, 1)n,

|E
Y

sign(p(x +
√

¼Y ))g(x +
√

¼Y ) − E
y

sign(p(x +
√

¼y))g(x +
√

¼y)| f µ = 2−Ω(R).

11 For example, it suffices to let ρ(t) be the standard mollifier ρ(t) := 0 for t ≤ 0, ρ(t) := 1 for t ≥ 1, and

ρ(t) := e · exp
(

1
(t−1)2−1

)

for t ∈ (0, 1).
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5.1 Analysis of the main hybrid-step

The proof of Lemma 22 is by a case-analysis as outlined in the introduction. Consider the

setting as in the lemma and define

ϕ(z) := U√
1−λp

(

z√
1 − ¼

)

.

The core argument will be a case-analysis on the derivatives of ϕ at the fixed point x and

whether these are slow-growing. Note that if p were multi-linear, then we would simply have

ϕ ≡ p. The starting point is the following re-scaling of Lemma 16:

p
(

x +
√

¼y
)

=
∑

|α|fd

∂αϕ(x)√
³!

¼|α|/2hα(y). (4)

Further, by a re-scaling of Theorem 17, we get the following identity which gives a nice nearly

self-referential expression relating the derivatives of p to those of ϕ:

∂αp
(

x +
√

¼y
)

=
∑

βgα

√

³!

´!
∂βϕ(x)¼|β−α|/2hβ−α(y). (5)

Now, note that for a truly random gaussian y we have ∂αϕ(x) = Ey ∂αp(x +
√

¼y). Thus,

it is reasonable to expect that for typical points x and small enough ¼, ∂αp(x +
√

¼y) will

be strongly concentrated around ∂αϕ(x). The following lemma gives quantitative bounds

on how much the derivatives ∂αp(x +
√

¼y) deviate from their expectations ∂αϕ(x) for a

random y ∼ N(0, 1)n. As we will need such bounds even for k-moment-matching Y , we state

the deviation bound in terms of moments:

▶ Lemma 23. Suppose f is a degree-d polynomial, and let ϕ(z) = U√
1−λf( z√

1−λ
). Consider

the polynomial

D(y) := ∥∇kf(x +
√

¼y) − ∇kϕ(x)∥2,

which measures the euclidean distance between the k-th order derivatives ∇kf(x +
√

¼y) and

their expectations ∇kϕ(x).

For y ∼ N(0, 1)n, we have the moment bound

∥D(y)∥q/2 f
d
∑

t=k+1

(¼dq)t−k∥∇tϕ(x)∥2.

That is,

(

E
y∼N(0,1)n

∥∇kf(x +
√

¼y) − ∇kϕ(x)∥q

)1/q

f

√

√

√

√

d
∑

t=k+1

(¼dq)t−k∥∇tϕ(x)∥2.

Proof. We express

D(y) =
∑

α

(

∂αf(x +
√

¼y) − ∂αϕ(x)
)2

=
∑

α





∑

β>α

√

³!

´!
∂βϕ(x)¼|β−α|/2hβ−α(y)





2

.
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First, by triangle-inequality, we get

∥D(y)∥q/2 f
∑

α

∥

∥

∥

∥

∥

∥

∥





∑

β>α

√

³!

´!
∂βϕ(x)¼|β−α|/2hβ−α(y)





2
∥

∥

∥

∥

∥

∥

∥

q/2

=
∑

α

∥

∥

∥

∥

∥

∥

∑

β>α

√

³!

´!
∂βϕ(x)¼|β−α|/2hβ−α(y)

∥

∥

∥

∥

∥

∥

q

.

Applying hypercontractivity, we now get

∥D(y)∥q/2 f
∑

α

∥

∥

∥

∥

∥

∥

U√
q

∑

β>α

√

³!

´!
∂βϕ(x)¼|β−α|/2hβ−α(y)

∥

∥

∥

∥

∥

∥

2

=
∑

α

∑

β>α

³!

´!
∂βϕ(x)2¼|β−α|q|β−α|

f
∑

α

∑

β>α

∂βϕ(x)2¼|β−α|q|β−α|

=

d
∑

t=k+1

(

t

t − k

)

(¼q)t−k∥∇tϕ(x)∥2

f
d
∑

t=k+1

(¼dq)t−k∥∇tϕ(x)∥2. ◀

We are now ready to prove Lemma 22.

Proof of Lemma 22. We study two cases:

1. x is poorly-behaved for ϕ. In this case, we will show that g(x+
√

¼Y ) = 0 with probability

at least 1 − 2−Ω(R).

2. x is well-behaved for ϕ: In this case, we will exploit the fact that sign(p(x +
√

¼Y )) will

equal sign(ϕ(x)) with probability 1 − 2−Ω(R). We then have to show that Y fools the

mollifier g which is a bit technically involved (hence we deal with this case second unlike

in Section 2.1).

We begin with the first case.

Case 1: x is poorly-behaved for φ. Consider the case where the inequality ∥∇kϕ(x)∥ g
ε∥∇k+1ϕ(x)∥ is violated for some k, and indeed let k0 be the largest k such that this inequality

is violated. We will argue that with probability at least 1 − 2−Ω(R), over random choice of

Y , that

∥∇k0p(x +
√

¼Y )∥ f 4ε∥∇k0+1p(x +
√

¼Y )∥,

in which case g(x +
√

¼Y ) = 0.

More specifically, we will show that it is highly likely that both

∥∇k0p(x +
√

¼Y )∥ f 2ε∥∇k0+1ϕ(x)∥, and

∥∇k0+1p(x +
√

¼Y )∥ g 1
2 ∥∇k0+1ϕ(x)∥.

For this, we will use Equation (5) and Lemma 23. Supposing k0 is the largest k such that

∥∇kϕ(x)∥ < ε∥∇k+1ϕ(x)∥,

we have
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∥∇k0ϕ(x)∥ f ε∥∇k0+1ϕ(x)∥ and

∥∇k0+1ϕ(x)∥ g εt∥∇k0+1+tϕ(x)∥ for all t g 0.

Lemma 23 therefore gives the bounds

(

E
Y

∥∇k0p(x +
√

¼Y ) − ∇k0ϕ(x)∥R
)1/R

f ε∥∇k0+1ϕ(x)∥
√

∑

tg1

(¼dR/ε2)t

and
(

E
Y

∥∇k0+1p(x +
√

¼Y ) − ∇k0+1ϕ(x)∥R
)1/R

f ∥∇k0+1ϕ(x)∥
√

∑

tg1

(¼dR/ε2)t.

So, as long as ¼dR/ε2 is at most a sufficiently small constant, we conclude that the following

bounds hold with probability at least 1 − 2−R:

∥∇k0p(x +
√

¼Y )∥ f ∥∇k0ϕ(x)∥ + ∥∇k0p(x +
√

¼Y ) − ∇k0ϕ(x)∥ f 2ε∥∇k0+1ϕ(x)∥, and

∥∇k0+1p(x+
√

¼Y )∥ g ∥∇k0+1ϕ(x)∥−∥∇k0+1p(x+
√

¼Y )−∇k0+1ϕ(x)∥ g 1
2 ∥∇k0+1ϕ(x)∥.

In the case that these bounds hold, we get

∥∇k0p(x +
√

¼Y )∥ f 4ε∥∇k0+1p(x +
√

¼Y )∥,

and so g(x+
√

¼Y ) = 0. As this holds with probability at least 1−2−Ω(R) for both y ∼ N(0, 1)n

as well as Y , the conclusion of Lemma 22 follows. This finishes the proof of Case 1. @

Case 2: x is well-behaved for φ. We now consider the complimentary case where

∥∇kϕ(x)∥ g ε∥∇k+1ϕ(x)∥

for all k = 0, 1, . . . , d − 1. Consider the normalized polynomial

f(y) :=
p(x +

√
¼y)

ϕ(x)
= 1 +

1

ϕ(x)

∑

α̸=0

∂αϕ(x)¼|α|/2hα(y).

Using hypercontractivity, we bound the R-th moment of f(y) − 1 by its
√

R-hypervariance:

∥f(y) − 1∥R f ∥U√
R (f(y) − 1) ∥2 f

√

√

√

√

∑

kg1

(

¼R

ε2

)k

f 1

2
.

So, by a Markov argument, we have

P

(

sign(p(x +
√

¼Y )) ̸= sign(ϕ(x))
)

f 2−R,

and this holds whenever Y is k-moment-matching for k g dR. So, sign(p(x +
√

¼Y )) is

nearly a constant for random Y ; it remains to show that Y fools g(x +
√

¼Y ). We do this by

(essentially) truncating the Taylor-series of g about x so that we are left with a degree dR

polynomial, which is fooled by Y . The truncation-error will be small because our assumption,

∥∇kϕ(x)∥ g ε∥∇k+1ϕ(x)∥ for all k,

gives us good control on the R-th order moments of the deviations ∥∇kϕ(x)∥ − ∥∇kp(x +√
¼Y )∥. The exact calculations are somewhat cumbersome and are given below. We will

show that Y fools the mollifier function

g(x +
√

¼y) =
d−1
∏

k=0

Ä

(

log

(

1

16ε2

∥∇kp(x +
√

¼y)∥2

∥∇k+1p(x +
√

¼y)∥2

))

.
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To simplify notation we define the shifted function Ã(t) := Ä(t − log(16ε2)), and express

g(x +
√

¼y) =
d−1
∏

k=0

Ã
(

log ∥∇kp(x +
√

¼y)∥2 − log ∥∇k+1p(x +
√

¼y)∥2
)

.

It will be convenient to think of g (redundantly) as function of 2d auxiliary variables s1 . . . sd,

t1, . . . td, which we will eventually fix to

si := ∥∇i−1p(x +
√

¼y)∥2

ti := ∥∇ip(x +
√

¼y)∥2,

so we write

g(s, t) :=

d
∏

i=1

Ã (log(si) − log(ti)) .

We Taylor-expand g(s, t) around the points

ai := ∥∇i−1ϕ(x)∥2

bi := ∥∇iϕ(x)∥2,

which gives

g(s, t) = ℓ(s, t) + h(s, t),

with low-degree part

ℓ(s, t) :=
∑

α,β∈N
d

|α|+|β|<R

∂α
s ∂β

t g(a, b)

³!´!
(s − a)

α
(t − b)

β

and remainder

|h(s, t)| f
∑

α,β∈N
d

|α|+|β|=R

|∂α
s ∂β

t g(s∗, t∗)|
³!´!

|s − a|α |t − b|β ,

where “|∂α
s ∂β

t g(s∗, t∗)|” is notation for the maximum magnitude of ∂α
s ∂β

t g on any point on

the line segment from (a, b) to (s, t). We need the following fact to bound the size of the

derivatives of g,

▷ Claim 24. Suppose Ã is a smooth univariate function with uniform derivative bounds

∥Ã(n)∥∞ f nO(n).

The bivariate function

r(u, v) := Ã(log(u) − log(v))

has derivatives bounded in size by

∣

∣

∣

∣

∂n

∂un

∂m

∂vm
r(u, v)

∣

∣

∣

∣

f nO(n)

|u|n
mO(m)

|v|m .

This claim follows easily from the generalized chain rule (Faà di Bruno’s formula). As a

result, we get the derivative bounds

∣

∣

∣∂α
s ∂β

t g(s, t)
∣

∣

∣ f |³|O(|α|)

|sα|
|´|O(|β|)

|tβ | .
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Using this, we bound the remainder

|h(s, t)| f
∑

α,β∈N
d

|α|+|β|=R

dO(R)
d
∏

i=1

(

|1 − si

ai
|

1 − |1 − si

ai
|

)αi
(

|1 − ti

bi
|

1 − |1 − ti

bi
|

)βi

.

Now, consider the event E (which depends on y) that

(1 − ¶)∥∇iϕ(x)∥2 f ∥∇ip(x +
√

¼y)∥2 f (1 + ¶)∥∇iϕ(x)∥2

holds for all i, where ¶ f 1/2 is a parameter we will set shortly. In the case that this indeed

holds, we get

|h(s, t)| f dO(R)O(¶)R.

We set ¶ just small enough to ensure

|h(s, t)| f 2−R.

Now, we express g (which we now think of as a function of the underlying variable y) as

g = g · 1E + g · 1Ē

= ℓ · 1E + h · 1E + g · 1Ē

= ℓ − ℓ · 1Ē + h · 1E + g · 1Ē ,

and we obtain the pointwise bound

|g − ℓ| f 2−R + 1Ē + |ℓ| · 1Ē .

On average over Y , we get truncation error

E
Y

∣

∣

∣g(x +
√

¼Y ) − ℓ(Y )
∣

∣

∣ f 2−R + E
Y
1Ē(Y ) +

√

E
Y

ℓ2(Y )
√

E
Y
1Ē(Y )

f 2−R + O

(

d

¶

)R

·
(

¼dR

ε2

)−Ω(R)

f 2−R + dO(1) ·
(

¼dR

ε2

)−Ω(R)

where the second inequality here follows from the moment bounds in Lemma 23. As

required by the conditions of Lemma 22, we insist that ¼ is small enough that this error

is at most 2−Ω(R). Since this bound holds also for truly-random standard gaussian y, and

EY ℓ(Y ) = Ey ℓ(y), we obtain the desired bound

|E
Y

g(x +
√

¼Y ) − E
y

g(x +
√

¼y)| f 2−Ω(R).

This finishes the proof in Case 2 and hence of Lemma 22. ◀
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