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—— Abstract
A polynomial threshold function (PTF) f : R"™ — R is a function of the form f(z) = sign(p(z))
where p is a polynomial of degree at most d. PTFs are a classical and well-studied complexity
class with applications across complexity theory, learning theory, approximation theory, quantum
complexity and more. We address the question of designing pseudorandom generators (PRGs) for
polynomial threshold functions (PTFs) in the gaussian space: design a PRG that takes a seed of few
bits of randomness and outputs a n-dimensional vector whose distribution is indistinguishable from
a standard multivariate gaussian by a degree d PTF.

Our main result is a PRG that takes a seed of d°™) log(n/c)log(1/¢)/e® random bits with
output that cannot be distinguished from an n-dimensional gaussian distribution with advantage
better than £ by degree d PTFs. The best previous generator due to O’Donnell, Servedio, and Tan
(STOC’20) had a quasi-polynomial dependence (i.e., seed length of do(logd>) in the degree d. Along
the way we prove a few nearly-tight structural properties of restrictions of PTFs that may be of
independent interest.

Similar results were obtained in [15] (independently and concurrently).!
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1 Introduction

Polynomial threshold functions (PTFs) are a classical and well-studied class of functions
with several applications in complexity theory, learning theory, theory of approximation, and
more. Here we study the question of designing pseudorandom generators (PRGs) that fool
test functions that are PTFs. We first start with some standard definitions. Let sign: R — R
be defined as sign(z) = 1 if z > 0 and 0 otherwise.

» Definition 1. For an integer d > 0, a degree d PTF f :R™ — {0,1} is a function of the
form f(x) = sign(p(x)), where p : R™ — R is a polynomial of degree at most d.

Our goal is to design a PRG that takes few random bits and outputs a high-dimensional
vector whose distribution is indistinguishable from a standard multivariate gaussian by any
low-degree PTF. Specifically:

LA version of our manuscript with the same proofs and results as in this submission appeared on arxiv
on March 25, 2021. There are, however, differences in the technical overview and exposition (among
other things, we’ve incorporated feedback from others within this submission).
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» Definition 2. A function G : {0,1}" — R" is a pseudorandom generator for degree d PTFs
with error € if for every degree at most d PTF f: R™ — {0,1},

G =1)—
- f(Gy)=1) N0
We call r the seed length of the generator and say G e-fools degree d PTFs with respect
to the gaussian distribution 2. We say G is explicit if its output can be computed in time

polynomial in n.

Of particular interest is the boolean case where the target distribution is not gaussian
but the uniform distribution on the hypercube {41, —1}". The gaussian case is interesting
by itself both from a complexity-theoretic view as well as a geometric one. For instance, a
PRG as above can be used to get deterministic algorithms for approximating the gaussian
volumes of polynomial surfaces. Further, the gaussian case is a necessary stepping-stone to
obtaining PRGs in the Boolean case: a PRG for the latter implies a PRG for the gaussian
case. Achieving similar parameters as we do for the boolean case would be a significant
achievement: we do not even have non-trivial correlation lower bounds for NP against PTFs
of degree w(logn) over the hypercube. A PRG would at the very least imply correlation lower
bounds against a function in NP, resolving a longstanding bottleneck in circuit complexity.

Over the last several years, the question of designing PRGs for PTFs has received much
attention. Non-explicitly (i.e., the generator is not necessarily efficiently computable), by
the probabilistic method, it is known that there exists PRGs that e-fool degree d PTFs
with seed-length O(dlogn + log(1/¢)). Meka and Zuckerman [12] gave the first non-trivial
PRG for bounded degree PTFs with a seed length of d°(9) log(n)/e? for the boolean and
gaussian cases. Independent of [12], [2] showed that bounded independence fools degree-2
PTFs leading to seed length O(log(n)/e?). Since then, there have been several other works
that make progress on the gaussian case [7, 6, 8, 10, 11]. The seed length in all of these works
had an exponential dependence on the degree d of the PTF. In particular, until recently
no non-trivial PRGs (i.e., seed length o(n)) were known for PTFs of degree w(logn). In
a remarkable recent work, O’Donnell, Servedio, and Tan [14] got around this exponential
dependence on the degree d, achieving a seed length of (d/)?1°&% log(n). Our work builds
on their work (which in turn builds on a framework of [7]).

1.1 Main Results

Our main result is a PRG with seed length (d/e)?™) log(n) that e-fools n-variate degree-d
PTFs:

» Theorem 3 (PRG for PTFs). There exist constants ¢, C' such that for alle >0 and d > 1,
there exists an explicit PRG that e-fools n-variate degree d PTF's with respect to the gaussian
distribution with seed length r(n,d,e) = Cd¢log(n/e)log(1/e) /2.

As remarked above, this is the first result with polynomial dependence on the degree for
fooling PTFs against any distribution and gives the first non-trivial PRGs against PTFs of
degree n®*M) . Previously, we could only handle degree at most 90(+/logn)

Towards proving the above result, we develop several structural results on PTFs in the

gaussian space that might be of independent interest. We expand on these later on. Briefly:

2 Here, and henceforth, y €y S denotes a uniformly random element from a multi-set S, and N(0,1)
represents the standard univariate gaussian distribution of variance 1.
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We show that the derivatives of a low-degree polynomial p, taken at a random point
x ~ N(0,1)", are likely to have magnitudes ||V*p(x)|| which grow slowly as k increases.
We apply this fact to the study of random “gaussian restrictions” of a polynomial p,

Pea(y) =p (\/1 Y ﬁy) :

and conclude that for small enough A, with high probability over z ~ N(0,1)", p, A(Y)

becomes highly concentrated around its mean value p when Y ~ N(0,1)", as quantified

by a bound on the higher-moments E(p, \(Y) — u)%.

As this concentration result relies only on moment bounds, it extends easily to pseu-

dorandom distributions Y over R” which are k-moment-matching with N (0, 1)™, when

k > R - deg(p).

Note that the magnitudes of the derivatives V¥*p, »(0) (with respect to z) are the same
as the magnitudes of the degree-k coefficients of p, »(y) (as a polynomial in y), up to a
scaling factor of roughly A\*/2. However, to obtain the moment bound, we must translate to
the basis of Hermite polynomials and bound the degree-k coefficients with respect to this
basis (rather than the standard basis). In contrast with our work, [14] derive coeflicient-size
bounds for the Hermite basis directly and work with it exclusively. However, there are some
significant advantages in having the flexibility to work also within the standard basis which
will become relevant later — mainly they are due to the fact that standard basis representations
(or equivalently: derivatives) behave nicely under the scaling operator p(t) — p(yt). The
Hermite-basis representation behaves poorly under scaling®.

For an arbitrary fixed polynomial p(¢), a bound on the coefficient-sizes in one basis
translates only to a fairly crude bound in the other basis?. Therefore, we come to the
following rather technical contribution of our work which we would like to highlight: we find
that, although it is rather painful to convert between bases while studying an arbitrary fixed
polynomial, it is actually quite possible to do so when studying certain average-case behaviors
of polynomials; for instance, to study the typical behavior of p(z) in the neighborhood around
a random point = ~ N(0,1)", or the typical moments of p(v/1 — Az 4+ +/AY), it is possible to
pass freely between either polynomial basis, and we develop some simple tools for doing so.
These tools appear to be new (at least with respect to the body of works on PTFs) and it
seems likely that they could be helpful in future works.

Besides these structural results and technical contributions, we also manage to introduce
some substantial simplifications to the analysis of the main PRG as compared to [14]. This
is in part due to the flexibility we have to measure the well-behavedness of a polynomial p in
the neighborhood around a point x directly via the derivatives at x, rather than indirectly
by taking several Hermite expansions of p and other auxiliary polynomials (cf. horizontal,
diagonal mollifier checks in [14]). We will expand on this in Section 2 when discussing our
analysis, but we briefly summarize a few key points here.

Following [7] and [14], the construction we analyze has the form Z := \i@ Zle Y;, where

each Y; is a k-moment-matching gaussian. This can be thought of as the gaussian analogue

of the boolean construction from [12], which pseudorandomly partitions the n input bits
into L buckets, and then assigns the bits in each bucket using k-wise independence. This

3 In contrast, the Hermite basis representation behaves nicely under the noise operator, p(t) —

Ezono,1)» P(V1 = Az + VAL).
4 This is especially true in the current setting where we must control the relative sizes of the magnitudes
of coefficients at degree k vs. k + 1.
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construction and its variants are by now the most widely-applied pseudorandom tool for
fooling various “geometric” function classes including linear threshold functions and their
generalizations (such as PTFs and intersections of halfspaces).

A tempting first idea for analyzing Z is to apply a hybrid argument — this seems promising

in light of the fact that for a low-degree polynomial, we know that p (, /1— %x + \/%Y;)

should be highly-concentrated around its mean for typical x°. However, this naive idea
fails quantitatively: The probability that we have good behavior at x is in general not
smaller than \/1/7]4’ so we cannot afford a union-bound over L events as required by the
standard hybrid argument. Remarkably in [7], Kane shows how to address this obstacle
with a clever sandwiching argument which in some sense mimics the hybrid argument but
manages to pay for the error caused by “bad points” x only once rather than L times.
However, one drawback of Kane’s analysis is that its implementation is highly elaborate.
After the framework was extended by [14] to break the log(n)-degree barrier, the com-
plexity only increased and the details of the argument became only more specialized and
technical®. Given the wide applicability of the aforementioned pseudorandom construction
and its variants, it would be highly desirable to have a lean and more transparent analysis
which might better serve as a flexible starting point for future adaptations. We propose
that in this work, we do obtain such an analysis.

PTFs simplify under restrictions

As a byproduct of our analysis, we obtain a structural result on PTFs that is similar in
spirit to the celebrated switching lemmas that show that certain classes of functions simplify
significantly under random restrictions. Switching lemmas and random restrictions are a
cornerstone in complexity theory, and are one of the main methods we have for proving lower
bounds. We prove analogous results with nearly optimal parameters for the important class
of PTFs in the continuous space.

In the boolean case, i.e., when studying distributions on the hypercube {+1,—-1}", a
restriction is a partial assignment of the form p € {+1, —1, *}" with the understanding that
the x-variables are left free. Typically, restrictions p as above are parametrized by some
A > 0, the fraction of *’s.

Here, we study analogues of the above results in the continuous world, where the inputs
are coming from the standard gaussian distribution. The first question however is what
should the analogue of random restrictions be in the continuous space? As it turns out,
adopting the usual interpretation (where some coordinates are fixed and some are free) is
not a natural one to study in the continuous space especially for PTFs”.

The answer comes from the work of [7] (further developed in [14]) who introduced the
notion of a zoom of a polynomial. To draw a clearer parallel with random restrictions, we
term these gaussian restrictions:

» Definition 4. Given a function p : R* — R and x € R™, and a restriction parameter
A€ (0,1), let pyp o : R™ = R be® the function p, (y) = p(v/1 — Az + Vy).

Intuitively, we can view p, » as a restriction where (1 — A)-fraction of the variance is already
fired. (Note that for independent x,y ~ N(0,1)", v/T — Az + /Ay is distributed as N (0,1)™.)

For a quantitative version of this statement, see Lemma 13.

Refer to [15], which fills in several details absent in [14], to see the full scope of the argument.

One reason is that the class of PTFs is invariant under linear transformations, so it would be nice to
have our notion of restrictions also have some symmetry under linear transformations.

As the value of A will often be clear, we will often in fact just use p, for brevity.

~N o v
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We show that PTFs simplify significantly, i.e., become essentially constant, under gaussian
restrictions for A < 1/d°.

» Theorem 5. There is a constant C' > 0 such that the following holds. For any 0, > 0, if
f:R™—={0,1} is a PTF of degree d, and
62
A< C’cl6 log(1/e)’
then with probability at least 1 — § over x ~ N(0,1)"™, the gaussian restriction of the PTF
(fz.a) is nearly fixed to a constant: for some b € {0,1} we have

P - =b>1-—c¢.
ol ealy) = e

The work of [14] achieves a similar conclusion but when the restriction parameter is
X\ = d=90029d) a5 opposed to being polynomially small as above. This improved significantly
on the work of [7] that implicitly shows a similar claim for A = 279(),

We remark that in a related line of work, [1, 4, 3, 5] study random restrictions of PTFs
over the hypercube. Our focus here is on gaussian restrictions and obtaining stronger bounds
quantitatively: these works had exponential dependence on the degree d.

Slow-growth of derivatives

The analysis of the PRG (Theorem 21) and the random restriction statement above (The-
orem 5) rely crucially on a claim about the magnitude of the derivatives of a polynomial
evaluated at random gaussian input which may itself be of independent interest (and can be
stated in a self-contained way).

For a function p : R® — R, let ||[V*p(z)|* denote the sum of squares of all partial
derivatives of p of order k at z. That is, |[V¥p(z)| is the Frobenius norm of the tensor
of k’th order partial derivatives of p. We show that for any degree d polynomial p, the
Frobenius-norm of the k’th order derivatives are comparable to the (k—1)’th order derivatives
on a random gaussian input with high probability:

» Lemma 6. For any degree-d polynomial p : R — R, and x ~ N(0,1)", the following holds
with probability at least 1 —§:

IVep(2)|| < O(d®/8)|[V* " p(x)ll, for all1 <k < d. (1)
Note that the above lemma is tight up to the factor of O(d?): consider the example
p(x) = zf.

Independent and concurrent work

Independently and concurrent to our work, [15] (following up on [14]) also obtained similar
results to Theorem 3. They first obtained an analogue of hypervariance reduction (cf.,
Lemma 11) as studied in [14] with better parameters and combined the improved hypervari-
ance reduction lemma with the framework of [14] to yield a PRG with d°(") dependence on
the degree d.

Our approach differs in that we critically use our new bounds on the growth of derivatives
of polynomials as in Lemma 6 (instead of Lemma 11 which follows from Lemma 6). Working
with the derivatives directly allows us to get a substantially simpler analysis of the main
PRG construction compared to [14, 15].

21:5
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2 Proof Overview

We first describe the high-level ideas underlying our main PRG construction - the proof of
Theorem 21. We then describe the main idea behind the proof of Lemma 6 which is critical
in being able to handle PTFs of polynomially large degree. The proof of Lemma 6 is quite
different from the approach taken in [7, 14] to prove analogous results in their analysis.

2.1 Analysis of the PRG

We will use the same generator as in [7], and the high-level strategy is similar in spirit to
that of [7, 14]. However, we introduce several additional ingredients that exploit Lemma 6
and significantly simplify the analysis.

As in the works of [7] and [14], the PRG output will be

1 L
Z:zﬁ;n,

where each Y; is an independent k-moment-matching gaussian vector with k = d®). For
the time being let us work under the idealized assumption that each Y; is exactly k-moment-
matching with a standard gaussian: i.e., for any polynomial A : R — R of degree at
most k, E[A(Y;)] = E.wn(0,1)»[R(2)]. We will later relax this condition without too much
additional work as is now standard (see Section 3 for details), and ultimately output a
discrete approximation to Z with finite support. For now, it is appropriate to imagine that
the seed length required for generating each Y; will be roughly O(klogn); the total seed
length will thus be L - O(klogn). We improve prior works by showing that it suffices to let
L =d®W rather than L = 2@ as in [7] or L = d®1°8 %) as in [14].

For the rest of this section, fix a degree d polynomial p : R* — R and let f: R” — {0,1}
defined as f(x) = sign(p(x)) be the corresponding PTF we are trying to fool. For simplicity
in this introduction, we consider the case where p is multi-linear. The general case is similar
but is slightly more nuanced.

We wish to compare Ez[f(Z)] to E,[f(z)] where z ~ N(0,1)™. Note that we can rewrite
z~ N(0,1)" as z := ﬁ Zle y; where each y; is an independent standard gaussian.

First attempt: A hybrid argument

A natural approach to analyze the PRG is to use a hybrid argument by replacing each y;
with a k-moment matching Gaussian vector Y; as in our PRG output. That is, show the
following sequence of inequalities:

)

e e

Let A\=1/Land 3 = vV A(ya+---+yr). Note that 4/ ~ N(0,1—\)". The first inequality
in the sequence above, corresponding to a single-step of the hybrid argument is, equivalent
to showing:

%

&=
7 N
S|

+
S

+

+
S
—

E[£(VAu + )| ~E [F(VAY: +9)].
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In other words, the above inequality is asking to show that

Elfy ,yimsxw)] = E[f, ) 7= (Y1)].

Intuitively, this is equivalent to showing that k-moment matching gaussians fool gaussian

restrictions of a PTF with high probability over the restriction. Indeed, such a claim follows

from our bounds on the derivatives of polynomials at random evaluation points (Lemma 6).
We say that a polynomial p is well-behaved at a point x if

V5 p(a)| < (1/)|V¥pla)]| for all k= 01,....d 1.

where ¢ is a parameter that will be set to be slightly larger than v A. We say p is poorly-
behaved at x if the above condition does not hold.

The starting point of the analysis is that if p is well-behaved at z, then sign(p(z + VAY))
is fooled by a moment-matching Y with very good error:

» Proposition 7 (Direct Corollary of Lemma 13). Let ¢ : R™ — R be a degree d multi-linear
polynomial and suppose that q is well-behaved at a point x. Let R = ¢*/\. Then, for
y~ N(0,1)" and Y a dR-moment matching gaussian,

E  [sign(q(z + Vy)] — Elsign(q(z + VAY)] < 2790,

y~N(0,1)" Y

This fact follows from the following argument. Since ¢ is well-behaved at z, this in
particular implies a non-negligible lower bound on the size of the constant term ¢ of h(t) :=
q(z + \/At), relative to its other coefficients. In particular, sign(h(t)) is nearly fired to a
constant in the sense of Theorem 5. Indeed, writing h(t) = ¢+ (h(t) —c), we see that sign(h(t))
can only differ from sign(c) if we have a deviation with magnitude at least |h(t) — ¢| > |c|.
We can use a concentration inequality to bound the probability that either |h(y) —¢| > |c| or
|h(Y) — ¢| > |e|. In light of the bounds on ||[V¥q(z)||, such a concentration inequality follows
from moment bounds obtained from hypercontractivity.

The above lemma shows the first step of the hybrid argument and suggests the following
strategy for analyzing the PRG. Define Z_; = Z — v/AY;. We can now aim to show that the
polynomial p is well-behaved at Z_; with high probability. This indeed seems plausible as our
Lemma 6 indeed shows that when Z is standard gaussian, the polynomial p is well-behaved
at Z with high probability.

Immediately, there are two obstacles for this approach:

First, Lemma 6 works only for truly random gaussian and not for our pseudorandom Z_;.

Second, even if we argue that p is likely to be well-behaved at Z_;, we cannot apply

a union bound over i. The error guarantee in Lemma 6, is > v/)\; whereas, we have

L = 1/ choices of i, so we cannot use such a straightforward union-bound argument to

replace each Y; with a y;.

The second issue is especially problematic as the error probability in Lemma 6 cannot be
improved, at least in that variant; the probability that the derivatives don’t grow too fast is
not small compared to L = 1/A.

Beating the union bound

Roughly speaking, the main insight in going beyond the union bound obstacle mentioned
above is as follows. There are two sources of error in the naive hybrid argument outlined
above: (1) The probability of failure coming from p being poorly-behaved at the points
Z_;. (2) The error coming from applying Proposition 7 to replace a Y; with y; when p is
well-behaved at Z_;.

21:7
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Note that we have very good control on the error of type (2) above: we could make it be
much smaller than 1/L by increasing the amount of independence k. We will exploit this
critically. We will complement this by showing that even though a naive union bound would
be bad for errors of type (1) above, it turns out that we don’t have to incur this loss: we
(implicitly) show that P (Vi, p is well-behaved at Z_;) ~ 1 — O(ed?®). We do so by checking
only that p is well-behaved at the single point Z (in a slightly stronger sense) and then we
conclude that p is also highly-likely to be well-behaved at each of the “nearby” points Z_;.
Intuitively, this is what allows us to circumvent the union bound in the hybrid argument.
However, it would be difficult to actually carry out the analysis as stated this way — we use
a sandwiching argument to sidestep the complicated conditionings which would arise in this
argument as stated.

We proceed to describe the sandwiching argument. We wish to lower-bound the PTF
sign(p(x)) by sign(p(z)) - g(x), where g(x) is some “mollifier” function taking values in [0, 1].
The role of g(x) is roughly to “test” whether p is well-behaved at x; we ideally want g(x) = 1
at points « where p is well-behaved and g(x) = 0 at points & where p is poorly-behaved.
However, we also need g(z) to be smooth?; so there will be some intermediate region of
points for which g(z) yields a non-informative, non-boolean value.

We set g(x) to be a smoothed version of the indicator function

d—1
)~ k+1 T 1 k T
g(z) kr_[on(nv )l < 21949l ).

which tests whether the derivatives of p at « have controlled growth in the sense of Lemma 6.
More specifically, we set

g(w) = dr:[lp (log (16152 |||vvki]fz(ofo)c|)||2|2>) ’

where p(t) : R — [0, 1] is some smooth univariate function with p(¢) = 0 for ¢t < 0 and
p(t)=1fort > 1.
Now, for every point z € R™ we have

sign(p(z)) = sign(p(x))g(x).

Furthermore, under truly-random gaussian inputs z ~ N(0,1)" we have
Esign(p(=))g(2) > Esign(p(=)) ~ E|g() — 1| > Esign(p(z)) ~ O(ed?),

where the final inequality here follows from Lemma 6. Combining these, we get that
Esign(p(Z)) > Esign(p(2)) — O(ed”) — | Esign(p(2))g(2) — Esign(p(2))g(2)|

Note that we can similarly obtain an upper-bound for Ez sign(p(Z)) by repeating this
argument on the polynomial —p(z).

Thus, it suffices to bound |Eyz sign(p(Z2))g(Z) — E. sign(p(z))g(z)|. Having introduced
the mollifier, we can now afford to do so by a standard hybrid argument. We represent z as
z = % Zle y; and recall that Z is of the form Z = ﬁ 25:1 Y;. We can replace each Y;
with y; and get

| Esign(p(2))9(2) — Esign(p(2))g(2)| < ~L,

where v is the (quite small) error coming from the following lemma.

9 Ultimately we need g to be well approximated by some polynomial so that it can be fooled by limited
independence. Smoothness will allow us to get such an approximation by truncating the Taylor series.
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» Lemma 8. There exists a constant c such that the following holds for X < €?/Rd°. For
any fized vector x € R™, Y a dR-moment-matching gaussian vector, and y ~ N(0,1)",

| Esign(p(z + VAY))g(z + VAY) — Esign(p( + VAy)g(z + VAy)| < 7 =272

Technically speaking, the above lemma is where our intuition on going around the union
bound is quantified, allowing us to use the hybrid argument. We briefly outline our proof of
this lemma, where for the purpose of illustration we continue with the simplifying assumption
that the polynomial p is multilinear.

The proof is by a case analysis on the behavior of p at the the fixed point . In the
multilinear case it suffices to consider the derivatives V¥p(x); in the general case we need to
consider something slightly different.

Case 1: p is well-behaved at z, i.e., [|[V**p(z)| < (1/2)||VEp(z)|| for all k.

We can use Lemma 13 in this case to conclude that sign(p(z +v/Ay)), sign(p(z +VAY))
are both almost constant with error 2~ (),

So, it remains to show that Y fools g(z + v/ Ay). We approximate g by a low-degree

polynomial in y using a Taylor-truncation argument. Our assumption on the controlled
growth of derivatives || V¥p(z)|| allows us to bound the truncation error by bounding
the higher-moments of the deviations || V¥p(z + VAY)|| — || VFp(z)]|.
Case 2: p is not well-behaved at z; let ko be the largest k such that |[VFo+ip(z)|| >
(1/e)[V*p(2)].
Intuitively, this says that the polynomial p is well behaved at degree above kg, but not
at degree kg. This allows us to show, via an R-th moment bound, that both
[V op(z + VAY)|| < 2¢[|[VFo+p(a))
V¥ +p(z + VAY)| = 5[|VFoHp(a)|
are highly likely. Thus, it is highly likely that

IV*op(z + VAY)|| < 4el|VEH p(z + VAY)].

The latter means p is still sufficiently poorly-behaved at the point z + v/AY that the
mollifier classifies it correctly as g(z 4+ vAY) = 0.

2.2 Slow-growth of derivatives and simplification under restrictions

The proof of Lemma 6 is iterative and is relatively simple given Kane’s relative anti-
concentration inequality for degree d polynomials [9] developed in the context of studying
the Gotsman-Linial conjecture for PTFs.

[9] shows that for any degree d polynomial, and =,y ~ N(0,1)™ with probability at least
1 — 6§, we have |(y, Vp(z))| < (d*/8)|p(x)|. As y in the above statement is independent
of x, for any z, (y, Vp(z)) is distributed as N(0,||Vp(z)||?). This says that the inequality
is essentially equivalent to saying that with probability at least 1 — § over x, we have
[Vp(z)||? < O(d?/d)|p(x)|. The latter can be seen as the inequality corresponding to k = 1
in the statement of Lemma 6. The full proof of the lemma is via iteratively applying the
above argument using a vector-valued generalization of Kane’s inequality.

Next, it is not too hard to prove Theorem 5 given Lemma 6. For illustration, suppose
that we have a degree d multi-linear polynomial p, and write f(¢) := p(v/1 — At). Then, by
elementary algebra'®, we have the identity

P2 (y) :p(vlfkﬂw\ﬁy) =Y 0%f(x) <1i/\)la/2y“- 3)

101f p is multi-linear, then the Hermite expansion (see Section 3) is just p(z) = Zae{o 1o p(a)ha(z) =
Zlg[n] p(I) Hie[ ;. We can prove the identity for each monomial and use additivity.
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Now, by Lemma 6, with probability 1—4 over x, we have | V¥ f(2)|| < O(d®/68)|| V¥~ f(z)],
for all k. Thus, if we take A < §%/(R?d"), the factor of A will kill the growing derivatives
leading to a bound on the higher-order moments of p,(y) — p.(0) via hypercontractivity.
These moment bounds in turn imply that |p,(y) — p.(0)] < |p.(0)| with high probability over
y, and hence that sign(p,(y)) = sign(p,(0)) with high probability over y.

Notice that Equation (3) is essentially a Taylor expansion of p at v/1 — Az: it expresses the
function p,(y) as a polynomial in y in the standard basis, whose coefficients are determined
by the derivatives of p at /1 — Axz. We want to do something similar in the general case, but
in the Hermite basis; for non-multi-linear polynomials these two bases no longer coincide.
So, in the general case, we rely on the following identity, which we regard as an analogue of
the Taylor expansion for the Hermite basis.

» Lemma 9 (See Section 3). Let f(y) =3, f(a)ha(y). Then

F(VI=e+Viy) =3 83"%) (1_AA) " )

where g(x) = U= f(x) = Yo f(@)(1 = V)2, (@),

Hermite polynomials are such a ubiquitous tool used in such a wide range of fields that

it seems unlikely that such an identity is new. However, we are not aware of any previous
appearance of such an identity in the literature (at least in the body of work on PTFs) and
we provide a proof.

Hypervariance reduction

We next remark on the relation between slow-growth of derivatives (as in Lemma 6) and
hypervariance reduction as studied and introduced in [14]. The latter plays a similar role
in their paper as the former does in this work. However, Lemma 6 importantly has only
polynomial dependence on the degree d and is also much more conducive to our analysis of
the PRG.

Recall the Hermite expansion (see Section 3) of polynomials: A degree d polynomial
p:R™ — R can be uniquely expressed as

p(y) == pla)ha(y),
jal<d

where o € N" denotes a multi-index and h,(y) is the a’th Hermite polynomial. The
hypervariance and normalized hypervariance of a polynomial introduced in [14] are defined
as follows:

» Definition 10. For a polynomial p : R™ — R of the form p(y) := >, p(a)ha(y), define its
hypervariance, HyperVarg( ), and normalized hypervariance, Hg( ), as

. o HyperVar
HyperVarg(p) := Zp(a)QRz‘ !l Hg(p) == ypﬁ(O)QR(m.
a#0

Intuitively, if the normalized hypervariance Hg(p) of a polynomial is small for a large R,
then it means that the weights of the higher-order Hermite coefficients of p have a geometric
decay.

[14] showed that for any polynomial p, for a suitable A > 0, a gaussian restriction of p will
have small normalized hypervariance with high probability. Specifically, they showed that
if \ =d=90%ed) then Hp(p,.) is bounded with high probability over z ~ N(0,1)". They
also asked whether this property holds when A\ = d=°(") instead of being quasi-polynomially
small in d. Lemma 6 implies this conjecture without too much difficulty:
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» Lemma 11. For any degree d polynomial p and A\, 8 > 0, the following holds. Except with
probability & over x ~ N(0,1)", the normalized hypervariance Hg(p; x) = O(ACR?/§?).

The proof of the analogue of Lemma 11 for quasi-polynomially small X (i.e. A = d—9U°g4))
in [14] was by an iterative process: Intuitively, if one sets A\g = d~°(1) and \ = /\g’gd, then
the random restriction pj , is equivalent to (logd) independent random restrictions with
restriction parameter Ag. The authors in [14] show that each such Ap-restriction (essentially)
decreases the degree by a factor of 2. We instead take a different approach by drawing a
connection between norms of derivatives and to relative anti-concentration as developed in
the context of studying the Gotsman-Linial conjecture for PTFs.

3 Preliminaries

The pseudorandom generator construction: idealization vs. discretization. Following [7]
and [14], we analyze the idealized pseudorandom distribution

1 L
7 =—= Y;W

where each Y; € R™ is a k-moment-matching gaussian (that is, E[p(Y;)] = E,wn (0,1 [p(2)]
for all polynomials p : R™ — R of degree at most k).

Suppose that, for any such Z with parameters (L, k), it is the case that Z fools degree-d
PTFs with error e = ¢(L, k,d). Then, it is shown in [7] how to obtain a small-seed length
PRG (in the sense of Definition 2) by providing a specific instantiation and discretization of
this construction.

» Theorem 12 ([7], implicit in Section 6). Suppose a Z as above with parameters (L, k) fools
degree d-PTF's with error ¢ = e(L,k,d). Then, there is an explicit, efficiently computable
PRG with seed length O(dkLlog(ndL/¢c) that (2¢)-fools degree d PTFs.

Hermite polynomials. To argue about polynomials which are not necessarily multilinear,
we need some simple facts concerning Hermite polynomials. For our purposes, Hermite
polynomials are simply a convenient choice of polynomial basis which have nice properties
(in particular being orthonormal) with respect to gaussian inputs. For a more detailed
background on Hermite polynomials and their use for analyzing functions over gaussian
space, see [13, Ch. 11].

One concrete way to define the Hermite polynomials is the following:

For the univariate polynomials, the degree-m “Probabilist’s” Hermite polynomial is the

m-th coeflicient of the generating function

est—%SQ _ Z Hm(t)sm

m>0
We define the degree-m univariate Hermite polynomial by the normalization

B (1) 1= \/%Hm(t).

For a multi-index o € N, we define the multivariate Hermite polynomial A, : R — R
via the product

21:11
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We record some basic properties of this particular choice of polynomial basis. The final
two properties say that the Hermite basis is orthonormal with respect to correlation under
the standard gaussian distribution — this is the reason for our choice of normalization.

The set {h(z) : |a| < d} is a basis for real polynomials in n variables of degree < d.
hg is the constant polynomial hg = 1.

For multi-indicies o € {0, 1}", ho(7) is simply the monomial [, _; ;.

For x ~ N(0,1)", and distinct multi-indices o # 5, E; hq(z)hg(z) = 0.

For z ~ N(0,1)", and any multi-index a, E, ho(z)? = 1.

Gaussian noise operator. We recall the definition of the noise operator U,, which here we
regard as an operator on real polynomials in n variables (see [13, Ch. 11] for background
and a more general viewpoint). For a polynomial f : R" — R and a parameter p € [0, 1], the
action of U, on f is specified by

Upf)(x):= E <P$+\/1—p22>.

Z~N(0,1)"

An important feature of the Hermite basis is that the noise operator acts on it diagonally
(see [13, Ch. 11]):

Uyha () = pl*ho(z).
Thus, if f is a degree-d polynomial given in the Hermite basis as
= > f@)ha(x)
la|<d
then we can express the result of the noise operator applied to f explicitly as

= > F@)p*ha(a).

laf<d

Higher moments and hypercontractivity. Fix a polynomial
=Y f@)ha(@)
la|<d

For an even natural number g > 2, we write the gaussian g-norm of f as

1/q
o= (L8, F7)

We wish to be able to bound this quantity in terms of the magnitudes of the Hermite
coeflicients of f, f(a). For this purpose, we extend the definition of U, also to p > 1 by its
action on the Hermite basis: U,hq(z) = pl®lh,(x). With this notation, we can express the
well-known (g, 2)-hypercontractive inequality [13, Ch. 9,11] as

£l < 1V g=1fll2,

which is quite convenient for us, as we can use orthonormality of the Hermite basis to
explicitly compute

1Uya=tf13 =Y (@D fa) < > ¢ f(a)
la|<d la|<d

To get a feel for the utility of this bound, let’s see how it can be used to prove the
following concentration bound:
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» Lemma 13. Let f : R® — R be a degree d polynomial with normalized hypervariance

H 5(f) < 1. where q is an even natural number. Then,

(sien(f () # sign(f(0))) < 27°.

P
y~N(0,1)"

Further, the same holds more generally for y ~ Y, as long as the distribution Y is dq-
moment-matching.

Proof. Suppose that f(y) is normalized so that

y~N(0,1)" f(y) = f(o) = =+1.

We have the ¢g-th moment bound

1@ = FO)l < 1Uyq (£) = F(O)) I < 3
From the generic concentration inequality

B(IX] > #|X],) < ¢
we obtain

P(sign(f(y)) # sign(f(0))) <271,
Thus, we find that the PTF sign(f) almost always yields the value sign(f(0)) under random
gaussian inputs. Crucially for us, this argument is also easy to derandomize: since the

argument merely relies on a bound on the g-th moment E, 1)~ (f(y) — f(0))?, and for Y’
which is k-moment-matching for k£ > dg we have

E(f(Y) - fO)'= E  (f(y) = f(0)",

Y y~N(0,1)"

~

we conclude also that sign(f(Y")) is typically equal to sign(f(0)). <

We remark that this lemma further implies that Y fools sign(f) when H /(f) is small:

Esign(f(V)) = E | sign(f(y))+ 02,

Gaussian restrictions and derivatives on the Hermite basis. Besides the effect of the noise
operator, it will also be important to understand the effect of two further operations on
polynomials:

The derivative map, f(y) — 0% f(y).

The gaussian restriction at z, f(y) — f (\/ﬁx + ﬁy)
In particular, we are concerned with how these operations affect the Hermite coefficients of a
polynomial; ultimately, our goal will be to develop a “Hermite-basis analogue” of the Taylor
expansion which can be applied to expand f (mgc + ﬁy) as a function of y. We start
by computing the effect of these two operations on univariate Hermite polynomials, and then
on the full multivariate Hermite basis, and finally on a general polynomial f(x) expressed in
the Hermite basis.
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» Proposition 14. For univariate Hermite polynomials, we have the identities

k
%hm(t) =1/ #_!k)!hm—k(t);

B (\/1 — Az + ﬁy) =2 keo \/@(1 — A)m=R2NR/2p (Y ().

Proof. The first of these identities is standard (see e.g. [13, Ex. 11.10]); we provide a proof
of the second.
The second identity can be proved by considering the generating function

stf—s _Zrh

and comparing the coefficient of s”* on both sides of

es(\/l—)\z+ﬁy)—%sz — e(s\/l—A)m—%(sx/l—)\)z (sVN)y—31(sVX)? <

The corresponding identities for multivariate Hermite polynomials follow easily from above.

» Proposition 15. We have
0%hs(y) = %hw(y), where vy = — a,

o lel/2
0 T
by (VI Re 4 Vay) = (1 - N2 S, Ohe (MY (),
a+y z "‘/|/2
0y (VI=Aa + V) = (L= N)Pelizy oy e (2007 ).
We conclude with a Taylor-like expansion in the Hermite basis that we use repeatedly.

» Lemma 16. Let f(y) =, f(a)ha(y). Then

f(\/m:r—k\f)\y) :ZBO:/gg) (1_/\)\>|a/2ha(y)7

where g(z) = U= f(2) = 3, f(@)(1 = N)*2hq ().

Proof. We express

I (\/m:r + ﬁy) = Zf(a)ha (mx + \[\y)

Chaly) (A )P .
-y (H) 3 150 - N0t

Z

h ) A le|/2 o
S () e :
Lastly, we will also need an extension of this theorem which expresses 0 f, at the point

\/1—)\x+\r)\y,

as a polynomial in y in the Hermite basis.

» Theorem 17. Let f(y) =, f(a)ha(y). Then

o (VI=he +Vay) = (1 - ) 791/2 Y 0%g(a f (5 A)'M'/thw,

B>«

where g(x) := U 1= f(x).
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Proof. We express

0% f (\/1 o+ ﬁy) =3 j(B)ohs (\/1 o+ ﬁy)
B
. h’y(y) A v1/2 B |B—al/2 qa+y T
-2 (+35) PIC

[vl/2
= (1= N)ll2y” h\%y,) <1_/\)\> 9 g(x). <

4  Gaussian restrictions of polynomials

Here we prove the structural properties of gaussian restrictions of polynomials: Theorem 5,
Lemma 6, Lemma 11. Note that Theorem 5 follows immediately from Lemma 11 and
Lemma 13. We next prove Lemma 11 from Lemma 6.

Proof of Lemma 11 from Lemma 6. Define f(z) := U s—xp(z). Then, by Lemma 16,

ol a2
pet) = £+ 3 ST (L2 )

a#0 \/J
Thus,
_ 8‘)‘f($> ? A o |cx| o 2 A . laf
HyperVarR(pm)—§)< m) (1A) < 3 0 (H) 2
d A k
=S (125) 9@l
k=1

where the first inequality follows as va! > 1.
We now conclude by applying Lemma 6 to f. We have

k
d
S B (25) IVE @)1
f(x)? '
Except with probability § over & ~ N(0,1)"™, we can bound this by

d k - 2k
A cd? Ad8 R2
2k
_ _ < .
2R (1—A) <6> —O< 5 ) )

4.1 Proof of Lemma 6

HR(p:r) =

Our main tool will be Kane’s relative-anticoncentration lemma for gaussian polynomials.

» Lemma 18 ([9]). For a degree d polynomial p, and independent standard gaussian vectors
z,y € R™,

P(lp(x)| < €| {y. Vp(@))|) < O(ed?).

In fact, we will actually work with the following corollary which is essentially the first of the
d inequalities in Lemma 6.
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» Corollary 19. For a degree d polynomial p, and independent standard gaussian vector
r eR”,

P(lp(2)] < ellVp(2)]) < O(ed?).

Proof. We note that for any fixed z, (y, Vp(z)) is identical in distribution to Z||Vp(x)],
where Z ~ N(0, 1) is a standard gaussian. So, we express

P(lp(2)| < elZ][IVp(2)])
= P(p(x)| < el|Vp(2)l)) - P(12] = 1).

P(lp(2)| < el (y, Vp(2)) |)

Since P(|Z| > 1) > Q(1), we conclude that
P(|p(z)| < el|Vp(2)|)) < O(ed?). <
The heart of the proof of Lemma 6 is a vector-valued variant of the above corollary:

» Lemma 20. Let 7(3:) = (f1(x), f2(x),..., fm(x)) be a collection of m degree-at-most d
polynomials f;(x). If x € R™ is a standard gaussian vector, then

P{IIf @)<Y V@) | < Oed).
j=1
Proof of Lemma 6. We simply apply the above lemma d times and take a union bound. For

1<k<dlet fr():=((0°f(z): |a| = k)). Note that || fr(z)|? = |V*f(x)|2. Further,
note that

Yo V@ @)? = IVE f ),

a:|lal=k
where the inequality follows as each (k+ 1)’th order derivative would be counted at least once

in the expression on the left hand side. Therefore, by the above lemma, for x ~ N(0,1)"™, we
have

P(|VEf(2)]* < 2| VEH f(2)]?) < O(ed?)

Setting € = §/d3, and taking a union bound over all k, we get that for a constant C' > 0,
P(Vk, [|V*f(2)]? > C(82/d) V¥ f()]?) 2 1 — 6.

This proves Lemma 6. <

Proof of Lemma 20. Consider the auxiliary polynomial
h(x,y) = > fi(@)y;.
j=1

As a function of both z and y, we have

Vh(z,y) = f(z) o Myy,
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where M, is the matrix with columns V f;(x) (that is, M, has (7, j)-th entry %fj (2)). So,
applying Corollary 19 to this auxiliary polynomial gives the probability bound

0= B(h(a.)* < 2 |Vg(a.v))
—p({nF@)" <2 (1T + 1M01%) )
< O(ed?).

Now, for some constant C' > 2 to be specified later, let E' denote the event that
2 7 5 _ € 2
(C =DIf @) < 5 1Mol

where ||M,||F is the Frobenius norm of M,,. We note that we can lower-bound the probability
q by

02 P(5) 2| (5. @) < CIF (@ and 10yl 2 FIMLIE |E)

We claim that for large enough choice of constant C, this conditional probability can be
lower-bounded by §2(1). Indeed, we can argue for any fixed x:

P(|(y. T@)| = clF @) < &
P(IMayl? > JIMLI3) > QL).

The first item is just a Chebyshev inequality; the second item can be derived e.g. from the
basic anticoncentration bound one obtains for degree-2 polynomials from the Paley-Zygmund
bound together with hypercontractivity (since, for any fixed matrix M, the quadratic form
9(y) == [[My]|* has second-moment Eg(y)* > (Eg(y))* = [|M|%).

Thus, by choosing C' large enough, we can lower-bound this conditional probability by

Q1) — = > Q(1).

c?
We conclude that P(E) < O(q) = O(ed?). This gives the desired conclusion

P(I7 @) < ) IM.1r) < O(ed?). “

5 Pseudorandom Generator for PTFs

The following theorem gives quantitative bounds on the error of our main generator:

» Theorem 21. Fix some parameters € > 0 and R € N. Let z be a standard gaussian, and
let Z = % 25:1 Y;, where each Y; is dR-moment-matching. Then for some sufficiently large
absolute constant ¢ and any polynomial p of degree d,

Esign(p(Z)) > E si —_O(ed®) — L. 2-2R)
Ssign(p(2)) > E - sign(p(z) - O(ed’) ,

as long as L is at least Rd°/e>.

Combining the above with Theorem 12 immediately implies our main result Theorem 3.
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Proof of Theorem 3. Given a target error ¢, set ¢ = ¢//Cd?, and R = C'log(d/¢) for a
sufficiently big constant so that the error in the above lemma is at most ¢'/2 for L =
Rd¢/e?* = O(d°log(d/c)/e?). While the above theorem only gives a lower bound, we can
get an upper bound by applying the result to —p. Now, by applying Theorem 12 there
exists an efficient PRG that fools degree d PTFs with error at most ¢ and seed length
0(d°M log(nd/<")log(d/<")/(¢')? which can be simplified to the bound in the theorem. <

We now prove the above theorem by the lower-sandwiching argument outlined in Sec-
tion 2.1. Fix a polynomial p(x) of degree d. We remind the reader of our convention
sign(t) := 1(¢ > 0).

We define the mollifier function

9() = :H_;P (log (16152 ||gi11),<ji|)|i2)) ’

where p : R — [0, 1] is some smooth univariate function with p(¢) = 0 for ¢t <0, p(t) =1 for

t>1, and ||%||Oo < kKO0 for all k. 1

Proof of Theorem 21. For every point z € R™ we have

sign(p(x)) > sign(p(x))g(x).

Furthermore, under the truly-random gaussian inputs z ~ N(0,1)™ we have
Esign(p(2))g(2) > Esign(p(2)) — E|g(2) — 1| > Esign(p(2)) — O(ed’),

where the final inequality here follows from Lemma 6. Combining these, we get that

Esign(p(7)) >

B, SiEn(p(z) - O(ed”) ~ | Esign(p(2))g(2) - E | sign(p(z))a(2)]

Thus, it suffices to bound | Ez sign(p(Z))g(Z) —E.~n(0,1)» sign(p(2))g(2)|, which we do by
a hybrid argument. We first represent z as z := % Zle y; where each y; is an independent
standard gaussian. We can replace each Y; with y; and get

| Esign(p(2))9(Z) — Esign(p(y))g(y)| < 2 B,

as a consequence of the following lemma (restatement of Lemma 8) that we prove in the next
section. Theorem 21 now follows. <

» Lemma 22 (Main hybrid-step). There exists a constant ¢ such that the following holds for
A < e2/Rd°. For any fived vector v € R™, Y a dR-moment-matching gaussian vector, and
y~N(O,1)",

|I}@sign(p(x +VAY )g(z +VAY) — Igsign(p(x +V))g(x + Vay)| < v = 2790,

1 For example, it suffices to let p(t) be the standard mollifier p(t) := 0 for t < 0, p(t) := 1 for t > 1, and
p(t) :=e-exp (m) for t € (0,1).
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5.1 Analysis of the main hybrid-step

The proof of Lemma 22 is by a case-analysis as outlined in the introduction. Consider the
setting as in the lemma and define

o) = Uz (= ).

The core argument will be a case-analysis on the derivatives of ¢ at the fixed point z and
whether these are slow-growing. Note that if p were multi-linear, then we would simply have
¢ = p. The starting point is the following re-scaling of Lemma 16:

p(ﬁﬁy) => acﬁ(x)w/?ha(y). (4)

|
laj<d VY

Further, by a re-scaling of Theorem 17, we get the following identity which gives a nice nearly
self-referential expression relating the derivatives of p to those of ¢:

3p(m+\f)\y> 3 aﬂqs AB=al2p (). (5)

B>a

Now, note that for a truly random gaussian y we have 9%¢(x) = E, 9*p(z + v/ Ay). Thus,
it is reasonable to expect that for typical points x and small enough A, 9“p(x + v/ \y) will
be strongly concentrated around 9%¢(x). The following lemma gives quantitative bounds
on how much the derivatives 9*p(x + v/Ay) deviate from their expectations 9%¢(z) for a
random y ~ N(0,1)". As we will need such bounds even for k-moment-matching V', we state
the deviation bound in terms of moments:

» Lemma 23. Suppose f is a degree-d polynomial, and let ¢(z) = U\/ff( —). Consider

the polynomial
D(y) = |V*f(z+VAy) — V¥o(2)|%,

which measures the euclidean distance between the k-th order derivatives V* f(z + V) and
their expectations VF¢(x).
For y ~ N(0,1)", we have the moment bound

d
IDW)llg2 < Y (M) V().
t=k+1
That is,
1/q d
(e VS V)= TR0 ) < || 3 Oaf T s

Proof. We express

D(y) = Y (e + Vay) 7o) =30 [ 3 6% =V 2hs i (y)

a B>«
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First, by triangle-inequality, we get

2
IDWllgr2 <> |1 D2 3% AB=al/2p (o))
a B>«
q/2
=112 3% A= 2hs o (y)
a ||B>a .
Applying hypercontractivity, we now get
I\D(y)llq/gﬁz Uy, 8% AB=el/2h ()
ﬁ>o¢ 9
_ B8 |B—al, |B—al
Z Z 513 $(x)*A q
a f>a
< Z Z 9P p(z)2 NB—elglf—ol
a Bf>a
.S (. ) o0t Iv s
t=k+1
d
< Y (M) F| V()| <
t=k+1

We are now ready to prove Lemma 22.

Proof of Lemma 22. We study two cases:

1. z is poorly-behaved for ¢. In this case, we will show that g(x + ﬁY) = 0 with probability
at least 1 — 2791,

2. 2 is well-behaved for ¢: In this case, we will exploit the fact that sign(p(x + vAY)) will
equal sign(¢(x)) with probability 1 — 2=%(%), We then have to show that Y fools the
mollifier g which is a bit technically involved (hence we deal with this case second unlike
in Section 2.1).

We begin with the first case.

Case 1: x is poorly-behaved for ¢». Consider the case where the inequality | VF¢(x)| >
g||V*+1g(z)|| is violated for some k, and indeed let ko be the largest k such that this inequality
is violated. We will argue that with probability at least 1 — 2~%(%) over random choice of
Y, that

IV*p(z + VAY)|| < 4e||VF+ p(z + VAY)],

in which case g(z + VYY) = 0.
More specifically, we will show that it is highly likely that both
[V*op(z + VAY)|| < 2¢[ VR g()||, and
[V +p(z + VAY)| 2 3] VF o()]].

For this, we will use Equation (5) and Lemma 23. Supposing kg is the largest k such that
IV*o(@)|| < | VEHo(2)]),

we have
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[ V5 g(@)]| < e V51 (a)]| and
|75 1) 2 e|VRo ()| for all ¢ > 0.

Lemma 23 therefore gives the bounds
1/R
(EIV*p(@+ VAY) = TRo@)|R) " < e TR+ o) [So(Ar/e2)!
t>1

and

(1794 1p@ + VAY) = T 6(@) %) < 9o (37 (/22

t>1

So, as long as AddR/e? is at most a sufficiently small constant, we conclude that the following
bounds hold with probability at least 1 — 2~ F:

IV¥op(z + VAY)|| < [[VFop(2)|| + [|V*op(a + VAY) = V*oo(a)|| < 2¢]|VF+ ¢(x)], and
VR p(z+VAY )| 2 [[VRF g (a) || - [[VF p(z+VAY ) = VR g(a) | > 5[V g(2)]).

In the case that these bounds hold, we get
IV op(a + VAY)|| < 4¢||V* T p(z + VAY)),
and so g(z++/AY") = 0. As this holds with probability at least 1—2~*() for both y ~ N(0,1)"

as well as Y, the conclusion of Lemma 22 follows. This finishes the proof of Case 1. 1

Case 2: x is well-behaved for ¢. 'We now consider the complimentary case where
IV o ()| = e V¥ ()|
for all k =0,1,...,d — 1. Consider the normalized polynomial

pla+VAy) _

ECE Z 0 (@A *ha )

fly) =

Using hypercontractivity, we bound the R-th moment of f(y) — 1 by its v/R-hypervariance:

k
176) =1l < 105 ) - Dl < || 3 (2F) <5

k>1

So, by a Markov argument, we have
P(sign(p(z + VAY)) # sign(é(x))) <277,

and this holds whenever Y is k-moment-matching for & > dR. So, sign(p(z + VAY)) is
nearly a constant for random Y'; it remains to show that Y fools g(z + ﬁY) We do this by
(essentially) truncating the Taylor-series of g about x so that we are left with a degree dR
polynomial, which is fooled by Y. The truncation-error will be small because our assumption,

IVEe(x)|| > e[ VFH ()| for all k,

gives us good control on the R-th order moments of the deviations ||V*¢(z)|| — ||V*p(z +
VAY)||. The exact calculations are somewhat cumbersome and are given below. We will
show that Y fools the mollifier function

1 |[VEp(z + V)2
gz +Viy) = H g (l " <l6a2 [VE+Ip(z + ﬁy)“2>> |
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To simplify notation we define the shifted function o(t) := p(t — log(16¢?)), and express

d—1
9w+ V) = [] o (log [V*p(z + VAg)|2 ~ log [V p(z + vAy)]?)

k=0

It will be convenient to think of g (redundantly) as function of 2d auxiliary variables sj ... s4,
t1,...tq, which we will eventually fix to

si = [V p(z + V)|

ti = |IVip(z +vVy)|1%,

S0 we write

d

g(s, 1) := [ [ o (log(ss) —log(t)) -

i=1

We Taylor-expand ¢g(s,t) around the points
a; = [V 6(0)]
bi == ||[Vio(a)?,

which gives
g(s,t) = L(s,t) + h(s,t),
with low-degree part

999 g(a, b N
Us,tyi= > %ﬁf’a)(s—@ (t —b)’
o, BEN? o

laf+|BI<R

and remainder

3 0507 9(s*, )] |«
|h(s,t)] < tfhf‘ﬂ |t*b|ﬁ,
alp!
a,BENd

la|+|8|=R

where “|028) g(s*,t*)|” is notation for the maximum magnitude of %8, ¢ on any point on
the line segment from (a,b) to (s,t). We need the following fact to bound the size of the
derivatives of g,

> Claim 24. Suppose o is a smooth univariate function with uniform derivative bounds
Hg(n)”Oo < nOm),

The bivariate function
r(u,v) := o(log(u) — log(v))

has derivatives bounded in size by

on gm nO(n) mO(m)
—_— < ——r—,
) < o

This claim follows easily from the generalized chain rule (Fad di Bruno’s formula). As a
result, we get the derivative bounds

|a|0(|a\) |5‘O(|BD
s 1t7]

020/ g(s.,1)| <
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Using this, we bound the remainder

om Ty (= =g\
h(s,) < >, d H Tn-s) \1op-gy) -
by

a,ﬂENd
lal+]8]=R

Now, consider the event E (which depends on y) that
(1= 8)[V'é@)|* < [V'p(z + VI)I® < (1 +6)| V()]

holds for all i, where § < 1/2 is a parameter we will set shortly. In the case that this indeed
holds, we get

|h(s,t)] < d°PO(5)E,
We set 0 just small enough to ensure
|h(s,t)] <271
Now, we express g (which we now think of as a function of the underlying variable y) as

g=9-1lp+g-15
=00 -1g+h-1g+g- 15,

and we obtain the pointwise bound
lg— 0 <27 %+ 15410 1.

On average over Y, we get truncation error

E |g(x + VAY) —f(y)| <27 F +E15(Y) + \/1552(1/)\/15 15(Y

d\® /R B
—R
<27R 10 (5> ( = )

—Q(R)
<o R4 g0 (Adf)
13

where the second inequality here follows from the moment bounds in Lemma 23. As
required by the conditions of Lemma 22, we insist that A is small enough that this error
is at most 2~ 2(F)_ Since this bound holds also for truly-random standard gaussian y, and
Ey {(Y) =E, {(y), we obtain the desired bound

|Eg(z + VAY) ~Eg(z + V)| < 2790,
Yy

This finishes the proof in Case 2 and hence of Lemma 22. <
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