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Abstract. An n×n matrix with ±1 entries which acts on Rn as a scaled
isometry is called Hadamard. Such matrices exist in some, but not all di-
mensions. Combining number-theoretic and probabilistic tools we construct
matrices with ±1 entries which act as approximate scaled isometries in Rn

for all n ∈ N. More precisely, the matrices we construct have condition
numbers bounded by a constant independent of n.

Using this construction, we establish a phase transition for the proba-
bility that a random frame contains a Riesz basis. Namely, we show that
a random frame in Rn formed by N vectors with independent identically
distributed coordinate having a non-degenerate symmetric distribution con-
tains many Riesz bases with high probability provided that N ≥ exp(Cn).
On the other hand, we prove that if the entries are subgaussian, then a ran-
dom frame fails to contain a Riesz basis with probability close to 1 whenever
N ≤ exp(cn), where c < C are constants depending on the distribution of
the entries.

1. Introduction and main results

Let n < N be natural numbers. A set of vectors X1, . . . , XN ∈ Rn is called
a frame if

(1.1) K(n,N) ∥x∥22 ≤
N∑
j=1

⟨x,Xj⟩2 ≤ RK(n,N) ∥x∥22

for all x ∈ Rn. Here R ≥ 1 is an absolute constant called the frame constant,
and K(n,N) > 0 is some function of n and N . The notation ∥x∥2 stands for
the Euclidean norm of the vector x = (x1, . . . , xn):

∥x∥2 =

(
n∑
j=1

x2
j

)1/2

.

In the last 40 years, frame theory became a well-developed area of applied
mathematics, see [4], [5], [6], and the references therein. A frame can intuitively
be regarded as overcomplete basis in Rn. Because of this property, frames
became a valuable tool in signal transmission. A signal which is viewed as an
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n-dimensional vector can be encoded by the sequence of its inner products with
the frame vectors. If this sequence is transmitted over a communication line,
then the original signal can be reconstructed even if part of the coefficients is
lost or corrupted in the process of transmission. Moreover, this encoding is
robust, which means that if the inner products are evaluated with some noise,
then the reconstructed version will be close to the original one with the error
depending on the noise magnitude.

One of the most popular classes of frames in algorithmic applications is
the set of random frames. Such frames became also the method of choice in
compressed sensing where one needs to reconstruct a low complexity signal
from a small number of linear measurements, see, e.g., [21]. For example, if
complexity is measured as the size of the support, and the support itself is
unknown, the random frames provide robust recovery with optimal or almost
optimal theoretical guarantees.

To construct a random frame, consider a random vector X ∈ Rn with cen-
tered uncorrelated coordinates of unit variance. In other words, assume that
EX = 0 and EXX⊤ = In. Let vectors X1, . . . , XN be independent copies of
X. The Law of Large Numbers implies that

lim
N→∞

1

N

N∑
j=1

XjX
⊤
j = In a.s.

and thus, with probability close to 1,

(1− ε) ∥x∥22 ≤
N∑
j=1

⟨x,Xj⟩2 ≤ (1 + ε) ∥x∥22

for all x ∈ Rn provided that N = N(ε) is sufficiently large.
Another, trivial way to construct a frame is to take several bases in Rn

and concatenate them. This allows an exact reconstruction of the transmitted
signal if the number of corrupted coordinates is relatively small. Indeed, one
can reconstruct the original vector from the set of transmitted coordinates for
each basis separately and keep the copy which is repeated many times. While
in practice the random frames perform better than such concatenated bases,
it leads to a question whether a random frame contains a copy or copies of a
nice basis. More precisely, a sequence of n vectors v1, . . . , vn ∈ Rn is called a
Riesz basis if it possesses the frame property (1.1). This property ensures that
the reconstruction is robust, i.e., that the reconstructed vector is close to the
original one if the coordinates are distorted by adding a small noise. These
considerations lead to a natural question of determining the values of N for
which a random frame {X1, . . . , XN} ⊂ Rn contains one or many Riesz bases
with high probability.

This problem can be conveniently translated to the language of random
matrices. Namely, for an n×N matrix A, define its singular values as

smax(A) = s1(A) ≥ s2(A) ≥ · · · ≥ sn(W ) = smin(A) ≥ 0,
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where sj(A) =
√
λj(AA⊤), and λ1(AA

⊤), . . . , λn(AA
⊤) are eigenvalues of AA⊤

arranged in the decreasing order. Also, define the condition number of A as

κ(A) =
smax(A)

smin(A)

using the convention that κ(A) = ∞ whenever smin(A) = 0. With this nota-
tion, the frame property (1.1) can be rewritten as κ(An,N) ≤ C where An,N is
the n × N matrix with columns X1, . . . , XN . Thus, the problem of existence
of a Riesz basis in a random frame can be recast as the question of existence
of one or many well-conditioned square n×n submatrices of an n×N random
matrix An,N with i.i.d. entries. Our first main result shows that the prob-
ability of finding such a submatrix undergoes a phase transition when N is
exponential in terms of n. Since the upper and the lower bound hold under
somewhat different assumptions, we formulate them separately.

Denote by [N ] the set {1, . . . , N}. Let A be an n × N matrix. If I ⊂ [N ],
denote by AI the submatix of A whose columns belong to I. The following
theorem shows that if N is exponential in n, then with high probability, the
n×N random matrix has many square submatrices with uniformly bounded
condition numbers. In the language of frames, it means that a random frame
with exponentially many vectors contains a large number of Riesz bases whose
frame constants are uniformly bounded.

Theorem 1.1. Let A be an n×N matrix with i.i.d. symmetric non-degenerate
entries. Then there exist constants c, C, α, β > 0 depending on the distribution
of entries of A with the following property.
Assume that

N ≥ exp(Cn).

Then there exists

L ≥ exp(cn)

such that

P
(
exist disjoint subsets I1, . . . , IL of [N ] with

|Ij| = n and κ(AIj) < α for all j ∈ [L]
)

≥ 1− exp (− exp(βn)) .

The strategy of proving Theorem 1.1 relies on using a certain deterministic
n × n matrix V having a bounded condition number. Denote by Colj(M)
the j-th column of the matrix M . We partition the set of integers [N ] into
n subsets I1, . . . , In of approximately the same size and show that with high
probability, the set {Coli(A)}i∈Ij contains many columns close to Colj(V ).
Condition on the event that such columns exist and form an n × n matrix
B taking one column from each set. Then conditionally this matrix can be
viewed as a noisy version of the matrix V . This allows to show that with high
probability, the matrix B has a bounded condition number as well.
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The key to this strategy is a successful choice of the pattern matrix V . Since
we strive to prove Theorem 1.1 under minimal assumptions, the choice of V
becomes a non-trivial task. Indeed, the requirement that a column of A can
be close to a column of V with a non-negligible probability forces us to look
for matrices V whose entries are in the support of the distribution of an entry
of A. The latter can be as small as two points, a and −a because of the
symmetry assumption. Thus, we need to to construct V as a scaled copy of a
matrix with ±1 entries. Such matrices are known in some cases. For instance,
the condition number of any Hadamard matrix is one. An n× n matrix H is
called Hadamard if n−1/2H is an isometry. The earliest result on the existence
of Hadamard matrices was probably proved by Sylvester [20] who showed that
Hadamard matrices exist for dimension 2k where k is any nonnegative integer
(these matrices are now called Wash since their rows are Walsh functions).
Hadamard matrices is a well-studied subject, and a number of constructions
of such matrices are available, see e.g., the books [1], [12], and the references
therein. In particular, Wallis [23] proved that if p > 3 is an integer, then there
exists an Hadamard matrix of order 2tp, where t = ⌊2log2(p− 3)⌋. Craigen [7]
improved Wallis’s result by showing that for any odd number p, there exists an
Hadamard matrix of order 2tp, where t = 4

⌈
1
6
log2((p− 1)/2)

⌉
+ 2. Recently,

de Launey [10] studied the asymptotic existence of Hadamard matrices and
concluded that for any ϵ > 0, the set of odd numbers k for which there is a
Hadamard matrix of order k22+[ϵlog2(k)] always has positive density in the set
of natural numbers. Yet, the dimensions in which Hadamard matrices were
constructed are rare.

This leads us to a task of constructing approximately Hadamard matrices,
i.e., matrices with ±1 entries and bounded condition numbers. Some con-
structions of matrices with properties simlar to Hadamard’s are available. For
example, Banica, Nechita, and Życzkowski [2] defined an almost Hadamard

matrix to be aN dimensional real square matrixH, such thatH/
√
N is orthog-

onal, and is a local maximum of the ℓ1-norm of the entries on the orthogonal
group O(N). They showed the existence of almost Hadamard matrices under
some special assumptions. There is also a notion of quasi-Hadamard matrix
[2, 15], which is defined as a square matrix with {−1, 1} entries that maximizes
the absolute value of the determinant, but there are only very limited results
on the existence of those matrices. In summary, no existing construction is
directly related to our purpose.

The second main result of the paper is the following theorem asserting the
existence of an approximately Hadamard matrix in all dimensions.

Theorem 1.2. There exist constants 0 < c < C such that for any n ∈ N, one
can find an n× n matrix V with ±1 entries satisfying

c
√
n ≤ smin(V ) ≤ smax(V ) ≤ C

√
n.

The proof of Theorem 1.2 relies on Vinogradov’s theorem from analytic
number theory and combines number-theoretic and probabilistic ideas. The
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details are presented in Section 2. After Theorem 1.2 is proved, we prove
Theorem 1.1 in Section 3.

The conclusion of Theorem 1.1 holds under minimal assumptions on the
distribution of entries. If we assume that the entries of the matrix are sub-
gaussian, then the bound of Theorem 1.1 becomes sharp. Recall that a random
variable X is called subgaussian if there is a > 0 such that

E exp

(
X2

a2

)
≤ 2.

If X is subgaussian then the smallest number a having this property is called
the subgaussian norm of X and denoted ∥X∥ψ2

. Subgaussian random variables

form a large family containing many naturally arising ones, see, e.g. [22].
The next theorem shows that finding a submatrix with a bounded condition

number requires an exponential number of columns for matrices with subgaus-
sian entries.

Theorem 1.3. Let X be a centered subgaussian random variable. Then there

exist C, c, c̃, t0 > 0 depending only on
∥X∥ψ2
∥X∥2

with the following property. Let

t > t0, and assume that

N ≤ exp

(
c̃

t4
n

)
.

Let A be an n×N matrix whose entries are independent copies of X. Then

P (∃I ⊂ [N ] |I| = n and κ(AI) < t) ≤ exp

(
−c

n2

t4

)
.

We prove Theorem 1.3 in Section 4. Its proof is easier than that of Theorem
1.1 and relies on the Hanson-Wright inequality [19].

Acknowledgment. The second author is grateful to Marcin Bownik for help-
ful discussions and bringing his attention to the problem. Part of this work
was done when the second author visited the Weizmann Institute of Science.
He is grateful to the Institute for its hospitality. The authors thank a referee
for thoroughly checking the manuscript and correcting many typos.

2. Approximately Hadamard matrices

In this section we construct an n × n matrix with ±1 entries whose scaled
copy acts on Rn as an approximate isometry. More precisely, for any suf-
ficiently large n, we construct an n × n matrix V such that its condition
number κ(V ) is bounded by an absolute constant.

We use standard matrix norms below. Namely, ∥A∥ stands for the operator
norm of an n×m matrix A = (ai,j), and ∥A∥HS stands for its Hilbert-Schmidt
or Frobenius norm:

∥A∥ = max
∥x∥2=1

∥Ax∥2 , and ∥A∥HS =

(
n∑
i=1

m∑
j=1

a2i,j

)1/2

.
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We will apply an above mentioned result of Wallis [23] showing that Hadamard
matrices exist in dimensions close to n3.

Lemma 2.1. There is l0 ∈ N such that for any l > l0, there exists an
Hadamard matrix of dimension m(l) with

m(l) = 22⌈log2(l−3)⌉l.

We will need the following corollary.

Corollary 2.2. For any ε > 0, there exists N(ε) such that for any n > N0(ε),
one can find an even number m ∈ [(1− ε)n, (1+ ε)n] for which there exists an
Hadamard matrix of size m×m.

Proof. For any n > 12, there exists a unique k ∈ N such that 22k(2k−1 + 3) <
n ≤ 22(k+1)(2k + 3). Assume first that 22k(2k−1 + 3) < n ≤ 22k(2k + 3). Set

m = 22k
⌈ n

22k

⌉
.

By Lemma 2.1, there exists an Hadamard matrix of size m×m. Since

1 ≤ m

n
=

⌈2−2kn⌉
2−2kn

,

and 2−2kn ≥ 2k−1 + 3 > (n/2)1/3, the result follows if we choose N(ε) suffi-
ciently large.

Since the tensor product of Hadamard matrices is an Hadamard matrix, and
there are Hadamard matrices of sizes 2 × 2 and 4 × 4, there exist Hadamard
matrices of sizes 2m(l) and 4m(l) for all l > l0. This allows completing the
proof of the corollary in the remaining cases when 22k+1(2k−1 + 3) < n ≤
22k+1(2k + 3) and 22k+2(2k−1 + 3) < n ≤ 22k+2(2k + 3). □

The aim of this section is to construct approximately Hadamard matrices in
any dimension, i.e. matrices whose condition number is O(1). To this end, we
use a construction of approximately Hadamard matrices of a prime size.

Let q ∈ N be an odd prime number. For k ∈ Zq, denote

eq(k) = exp

(
2πi

k

q

)
.

Define the Fourier transform on Zq setting

v̂(j) =
∑
k∈Zq

v(k)eq(jk)

for a vector v ∈ CZq and j ∈ Zq.

Lemma 2.3. Let q be an odd prime number. Then there exists a vector uq ∈
{−1, 1}Zq such that∣∣|ûq(j)| − √

q
∣∣ ≤ √

qδq for any j ∈ Zq
with δq = Cq−1/4

√
log q.
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Proof. The construction closely follows the one in [14, Proposition 3.2], which
in turn originates in [16, Theorem 9.2].

Let v : Zq → {−1, 1} be the Legendre symbol (quadratic character mod q).
More precisely, let

Q = {k ∈ Zq : k = j2(mod q) for some j ∈ Zq} \ {0}
be the set of quadratic residues, and set

v(k) =


1, if k ∈ Q;

−1, if k ∈ Zq \ (Q ∪ {0});
0, if k = 0.

Then by a standard result on the Gauss sum, see e.g., [13, Proposition 6.3.2.;
p.71], we have

|v̂(j)| =

{√
q, if j ∈ Zq \ {0}

0, if j = 0.

The difference between v and the desired function uq is that v(0) = 0 and
v̂(0) = 0. We will perturb v replacing some of its coordinates by −1 to change
the value of v̂(0) as required while keeping the other Fourier coefficients close
to their original values. To this end, consider a sequence of i.i.d. random
variables {Xk}k∈Q such that

P(Xk = −1) = q−1/2 and P(Xk = 1) = 1− q−1/2.

Set

uq(k) =

{
Xk, if k ∈ Q;

−1, if k ∈ Zq \Q;

Then uq : Zq → {−1, 1}, so we only have to check the values of the Fourier
coefficients. Let us start with the expectations. We have

E ûq(0) = E ûq(0)− v̂(0) =
∑
k∈Q

(EXk − 1)− 1 = −2q−1/2|Q| − 1

= q−1/2 − q1/2 − 1,

and

E ûq(j)− v̂(j) =
∑
k∈Q

(EXk − 1)eq(jk)− 1 =
∑
k∈Q

(−2q−1/2)eq(jk)− 1

for all j ∈ Zq \ {0}. Evaluation of the last sum is standard, see [8, Ch. 2], or
[13, Ch. 6]. Namely,∣∣∣∣∣1 + 2

∑
k∈Q

eq(jk)

∣∣∣∣∣
2

=

∣∣∣∣∣∣
∑
k∈Zq

eq(jk
2)

∣∣∣∣∣∣
2

=
∑
k,l∈Zq

eq(jk
2)eq(jl2)

=
∑
k,l∈Zq

eq
(
j(k + l)(k − l)

)
= q,
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where the last equality follows if we fix k + l and sum over k − l first. Thus,

|E ûq(j)− v̂(j)| ≤ 2 + q−1/2 for any j ∈ Zq \ {0},
and so

∣∣|E ûq(j)| −
√
q
∣∣ ≤ 3 for all j ∈ Zq.

The quantity ûq(j)−E ûq(j) is a linear combination of i.i.d. centered random
variables Xk − EXk, k ∈ Q with coefficients eq(jk) whose absolute value is
bounded by 1. Therefore, Bernstein’s inequality yields

P (|ûq(j)− E ûq(j)| > t) ≤ 2 exp
(
−cmin(t2q−1/2, t)

)
for all t > 0 and j ∈ Zq. Setting t = Cq1/4

√
log q and taking the union bound

over j ∈ Zq, we obtain

P
(
|ûq(j)− E ûq(j)| ≤ Cq1/4

√
log q for all j ∈ Zq

)
≥ 1− q−1 > 0

if the constant C > 0 is chosen sufficiently large. The lemma follows. □

Corollary 2.4. Let q be an odd prime number. There exists a q × q matrix
Uq with ±1 entries such that

√
q(1− δq) ≤ smin(Uq) ≤ smax(Uq) ≤

√
q(1 + δq)

with δq = Cq−1/4
√
log q.

Proof. Represent Zq as {1, . . . , q}, and let uq : {1, . . . , q} → {−1, 1} be the
vector defined in Lemma 2.3. Let Uq be the circulant matrix with the first row
uq. A circulant matrix is diagonal in the Fourier basis, see e.g., [9, Theorem
3.2.1; p. 72]. Therefore, the singular values of Uq are the absolute values of
its eigenvalues which are the Fourier coefficients of the generating vector uq.
The result follows from Lemma 2.3. □

Remark 2.5. Corollary 2.4 implies that the matrix Uq satisfies∥∥Uq(Uq)⊤ − qIq
∥∥ ≤ 3δqq.(2.1)

Inequality (2.1) will be used later in the proof of Theorem 1.2.

With this auxiliary construction in place, we can prove the main result of
this section, namely Theorem 1.2.

Proof of Theorem 1.2. The proof of this theorem combines a deterministic con-
struction of number-theoretic nature with a probabilistic argument. Without
loss of generality, we can assume that n is larger than some number n0 chosen
in advance. Indeed, after the statement of the theorem is proved for n ≥ n0,
we can adjust the constants c and C appropriately to make it hold for all
n ∈ N.

We start with the case when n is even. Let ε > 0 be a number to be chosen
later. A combination of the Prime Number Theorem and Vinogradov’s sum
of three primes theorem [18], yields that there exists N = N(ε) such that any
even n > N has a decomposition

(2.2) n = q1 + q2 + q3 + q4 with (1− ε)
n

4
≤ qj ≤ (1 + ε)

n

4
,
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where q1, . . . , q4 are prime numbers. Indeed, by the Prime Number Theorem,
there exists a prime number q1 such that (1− ε/2)n

4
≤ q1 ≤ (1 + ε/2)n

4
. Then

m = n− q1 is odd, and thus by a stronger version of Vinogradov’s theorem, it
can be decomposed as

(2.3) m = q2 + q3 + q4, where (1− ε/2)
m

3
≤ qj ≤ (1 + ε/2)

m

3
,

and q2, q3, q4 are primes. This immediately implies (2.2). Actually, decomposi-
tions with bounds tighter than (2.3) are available. More precisely, one can find
a representations such as (2.3) with |qj −m/3| < mθ for some θ ∈ (0, 1), see
e.g., [3, 11, 17]. However, the weaker version presented above will be sufficient
for our purposes.

Without loss of generality, assume that q1 ≥ · · · ≥ q4 =: q. We will consider
the case q3 > q4 first. This is the most non-trivial case, and the other ones will
be treated in the same way after obvious modifications. For j = {1, . . . , 4},
let Uj be the matrix Uqj constructed in Corollary 2.4, and denote by U top

j the

submatrix formed by the q top rows of Uj. For j ∈ {1, 2, 3}, denote by U bottom
j

the submatrix of Uj formed by its qj − q bottom rows. We will construct the
matrix W = V ⊤ in the following block form:

W =



W1,1 W1,2 W1,3 W1,4
...

. . .
...

...
. . .

...
W4,1 W4,2 W4,3 W4,4

W5,1 W5,2 W5,3 W5,4

W6,1 W6,2 W6,3 W6,4

W7,1 W7,2 W7,3 W7,4


=

(
W top

W bottom

)
,

where the matrix W top consists of the upper 4 block rows of W , and W bottom

consists of the lower three. Here Wj,k is a q × qk matrix if 1 ≤ j, k ≤ 4 and a
(qj−4 − q)× qk matrix if j = 5, 6, 7, 1 ≤ k ≤ 4.
Let us define the matrices Wj,k. The matrix W top will be deterministic,

and the matrix W bottom will consist of deterministic and random blocks. For
1 ≤ j, k ≤ 4, set Wj,k = εj,kU

top
k , where εj,k, j, k ∈ {1, . . . , 4} form a 4 × 4

Walsh matrix: 
ε1,1 ε1,2 ε1,3 ε1,4
ε2,1 ε2,2 ε2,3 ε2,4
ε3,1 ε3,2 ε3,3 ε3,4
ε4,1 ε4,2 ε4,3 ε4,4

 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

Now, let us define the matrices Wj,k for j = 5, 6, 7. Set Wj,j−4 = U bottom
j−4 . For

j = 5, 6, 7 and k ̸= j − 4, let Wj,k be a random matrix with i.i.d. Rademacher
entries.
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Consider the (4q) × (4q) matrix W top(W top)⊤ first. The diagonal blocks of
this matrix are close to nIq. More precisely, for any j ∈ {1, . . . , 4},∥∥∥∥∥

4∑
k=1

Wj,kW
⊤
j,k − nIq

∥∥∥∥∥ =

∥∥∥∥∥
4∑

k=1

(
U top
k (U top

k )⊤ − qkIq
)∥∥∥∥∥ ≤

4∑
k=1

∥∥Uk(Uk)⊤ − qkIqk
∥∥

≤ 12δqn,

where the first inequality follows since U top
k (U top

k )⊤ is a submatrix of Uk(Uk)
⊤

and the second one from (2.1).
Let us consider the off-diagonal blocks now. If i ̸= j, i, j ∈ {1, . . . , 4} then

similarly∥∥∥∥∥
4∑

k=1

Wj,kW
⊤
i,k

∥∥∥∥∥ =

∥∥∥∥∥
4∑

k=1

εi,kεj,kU
top
k (U top

k )⊤

∥∥∥∥∥
≤

∥∥∥∥∥
4∑

k=1

εi,kεj,k
(
U top
k (U top

k )⊤ − qkIq
)∥∥∥∥∥+

∣∣∣∣∣
4∑

k=1

εj,kεi,kqk

∣∣∣∣∣
≤ 12δqn+ εn,

where the first estimate follows from the triangle inequality, and the second
one from qk ∈ [(1− ε)n

4
, (1 + ε)n

4
]. Combining the two inequalities, we obtain

(2.4)
∥∥W top(W top)⊤ − nI4q

∥∥ ≤ 12δqn+ 12(12δqn+ εn) ≤ 13εn

for all sufficiently large n.
Let us introduce auxiliary (n− 4q)× n matrices S and R defined by

S =

U bottom
1 0 0 0
0 U bottom

2 0 0
0 0 U bottom

3 0

 R = W bottom − S.

In other words, R is the random part of the matrix W bottom, i.e.,

R =

 0 W5,2 W5,3 W5,4

W6,1 0 W6,3 W6,4

W7,1 W7,2 0 W7,4


is an (n − 4q) × n matrix with zeros along the block diagonal corresponding
to the positions of U bottom

1 , U bottom
2 , and U bottom

3 and i.i.d. Rademacher entries
elsewhere.

Recall that n− 4q ≤ 4εn. In view of Corollary 2.4 and inequality (2.1),

∥S∥ ≤
√

n

4
(1 + δq),

∥∥S(W top)⊤
∥∥ ≤ 12δqn,(2.5)

∥S∥2HS ≤ 3εn · (1 + ε)
n

4
≤ εn.
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Also, ∥∥∥SS⊤ − n

4
In−4q

∥∥∥ ≤ max
j=1,2,3

∥∥U bottom
j (U bottom

j )⊤ − qjIqj−q
∥∥+ ε

n

4

≤ ε
n

2
.

Let R̃ be an (n − 4q) × n matrix with i.i.d. Rademacher entries. Then a
simple symmetrization argument yields

P
(∥∥SR⊤∥∥ ≥ C

√
εn
)
≤ 2P

(∥∥∥SR̃⊤
∥∥∥ ≥ (C/2)

√
εn
)

which in combination with [19, Theorem 3.2] implies that

P
(∥∥SR⊤∥∥ ≤ C

√
εn
)
≥ 1− exp(−cεn).

Another application of symmetrization yields

P(∥R∥ ≥ 4
√
n) ≤ 2P(∥R̃∥ ≥ 2

√
n) ≤ exp(−cn).

Fix a matrix R for which

(2.6)
∥∥SR⊤∥∥ ≤ C

√
εn and ∥R∥ ≤ 4

√
n

at the same time.
Let x ∈ Sn−1. Following the previous convention, we write

x =

(
xtop

xbottom

)
,

where xtop ∈ R4q and xbottom ∈ Rn−4q. Assume first that
∥∥xbottom∥∥

2
≥ η, where

the constant η > 0 will be chosen below. Then∥∥W⊤x
∥∥
2
≥ 1

∥S∥
·
∥∥SW⊤x

∥∥
2

≥ 1

∥S∥
·
(∥∥S(W bottom)⊤xbottom

∥∥
2
−
∥∥S(W top)⊤xtop

∥∥
2

)
≥ (1− 2δn)

√
4

n
·(∥∥SS⊤xbottom
∥∥
2
−
∥∥SR⊤xbottom

∥∥
2
−
∥∥S(W top)⊤xtop

∥∥
2

)
≥ (1− 2δn)

√
4

n
·(

(1− 2ε)
n

4

∥∥xbottom∥∥
2
−
∥∥SR⊤∥∥− ∥∥S(W top)⊤

∥∥)
≥ (1− 4δn)

√
n

4
·
(
(1− 2ε)

∥∥xbottom∥∥
2
− C1

√
ε
)

≥ η

4

√
n

if η and ε are chosen so that (1− 2ε)η − C1

√
ε > η/2.
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Assume now that ∥xbottom∥2 < η. Then ∥xtop∥2 > 1− η, and (2.4) yields∥∥W⊤x
∥∥
2
≥
∥∥(W top)⊤xtop

∥∥
2
−
∥∥(W bottom)⊤

∥∥ · ∥∥xbottom∥∥
2

≥ (1− 7ε)
√
n ·
∥∥xtop∥∥

2
− C2

√
n ·
∥∥xbottom∥∥

2

≥ (1− 7ε)
√
n · (1− η)− C2

√
n · η

≥ 1

2

√
n

if η is chosen so that C2η < 1
4
. Choosing the parameters ε and η sufficiently

small, we can reconcile the two restrictions, i.e., select ε, η so that the inequal-
ities

(1− 2ε)η − C1

√
ε > η/2 and C2η <

1

4
hold at the same time. With this choice, the previous argument shows that∥∥W⊤x

∥∥
2
≥ min

(
η

4
,
1

2

)√
n

for all x ∈ Sn−1, which means that

smin(W
⊤) ≥ c

√
n.

Obtaining a bound for smax(W ) is easier. Inequalities (2.4) and (2.5) imply∥∥W top
∥∥ ≤ 2

√
n and ∥S∥ ≤

√
n.

This in combination with (2.6) yields

smax(W
⊤) ≤ C

√
n,

which proves the theorem in the case q3 > q.
If qj = q for some j ∈ {1, 2, 3}, then we repeat the same argument with

the block rows of W containing qj − q = 0 rows removed. For instance, if
q1 > q and q2 = q3 = q, then we consider the n × n matrix W with W top

being the same as in the previous case and W bottom = (W5,1 · · ·W5,4) which is
a (q1 − q)× n matrix.

This completes the proof of the theorem in the case when n is even.

Assume that n is odd. By Corollary 2.2, if n is sufficiently large, then we
can find an even number

m ∈
[(

1− ε

2

) n

4
,
(
1 +

ε

2

) n

4

]
for which there exists an Hadamard matrix V of size m×m. Note that n−m
is odd and

n−m ∈
[(

1− ε

2

) 3n

4
,
(
1 +

ε

2

) 3n

4

]
,

so using Vinogradov’s theorem again, we obtain a decomposition

n−m = q1 + q2 + q3,

where q1, q2, q3 are prime numbers and 1−ε
4
n ≤ qj ≤ 1+ε

4
n. At this point

we can apply the same argument we used in the case of an even n with one
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of the matrices U1, . . . , U4 replaced by V . This completes the proof of the
theorem. □

3. Submatrices with a small condition number

In this section we prove Theorem 1.1. As was explained in the Introduction,
the proof relies on finding columns of A which are close to columns of a scaled
copy of the matrix V constructed in the previous section. Conditioned on the
event that such selection is possible, we prove that with high probability, the
constructed submatrix has a bounded condition number. We start with the
latter task, namely with analyzing a random matrix close to V .

Lemma 3.1. Let V be an n× n matrix with ±1 entries such that

c3.1
√
n ≤ smin(V ) ≤ smax(V ) ≤ C3.1

√
n

for some 0 < c3.1 ≤ C3.1.
There exists δ ∈ (0, 1) for which any n× n matrix Y with i.i.d. entries Yi,j

such that

EYi,j = 0 and |Yi,j| ≤ δ a.s.

satisfies

P
(
κ(V + Y ) ≤ 4

C3.1

c3.1

)
≥ 1− exp(−cn).

Proof. The proof of Lemma 3.1 uses the basic net argument, see e.g., [22].
Since Y has i.i.d. centered subgaussian entries with ∥Yi,j∥ψ2

≤ ∥Yi,j∥∞ ≤ δ,

P(∥Y ∥ ≥ C
√
δn) ≤ exp(−cn).

Therefore,

P(smax(V + Y ) ≥ 2C3.1

√
n) ≤ P(∥V ∥+ ∥Y ∥ ≥ 2C3.1

√
n) ≤ exp(−cn),

as we can always assume that C3.1 ≥ 1 and choose δ sufficiently small. Simi-
larly,

P(smin(V + Y ) ≤ 1

2
c3.1

√
n) ≤ P(smin(V )− ∥Y ∥ ≤ 1

2
c3.1

√
n) ≤ exp(−cn),

where as before, the last inequality holds for any sufficiently small δ. The
result follows by combining the two bounds above. □

We now proceed to proving the main result, Theorem 1.1.

Proof ot Theorem 1.1. Since the distribution of entries of A is non-degenerate,
there exists a > 0 such that for any ν > 0

P (|ai,j − a| < ν) > 0.

By the symmetry of distribution, we also have the same property for −a in
place of a.
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Let δ > 0 be as in Lemma 3.1, and denote ν = a
4
δ. Let Z be a random

variable having the same distribution as ai,j conditioned on the event that
|ai,j − a| ≤ ν. More precisely, for a Borel set E ⊂ R, set

P(Z ∈ E) =
1

P(|ai,j − a| ≤ ν)
P(ai,j ∈ E & |ai,j − a| ≤ ν).

Set

R =
Z − EZ

EZ
.

Then R is a centered random variable such that

|R| ≤ 2ν

(1− δ/4)a
≤ δ a.s.

Let C > 0 be a constant to be chosen later, and assume that N ≥ exp(2Cn).
Partition [N ] into a union of sets I1, . . . , In such that

|Ij| ≥
⌊
N

n

⌋
≥ exp(Cn).

Let V be the n×n matrix with ±1 entries constructed in Theorem 1.2. Denote
its columns by V1, . . . , Vn and the columns of A by A1, . . . , AN . Let M be a
number to be chosen later. Let E be the event that for any j ∈ [n], there exist
at least M numbers k ∈ Ij with

∥Ak − aVj∥∞ ≤ ν.

If E occurs, denote by k(j, 1), . . . , k(j,M) the first M numbers k ∈ Ij having
this property. Then conditioned on E , for any m ∈ [M ], the matrix AE,m with
columns Ak(1,m), . . . , Ak(n,m) has the same distribution as EZ · (V +Y ), where
Y is an n×n random matrix whose entries have the form Yi,j = Vi,jRi,j, where
Ri,j are independent copies of R. In view of Lemma 3.1, this implies that for
any m ∈ [M ],

P
(
κ(AE,m) ≤ 4

C3.1

c3.1
| E
)

≥ 1− exp(−cn).

Since conditionally on E , the matrices AE,1, . . . , AE,M are independent, Bern-
stein’s inequality allows to conclude that

P
(
κ(AE,m) ≤ 4

C3.1

c3.1
for at least M/2 numbers m ∈ [M ] | E

)
≥ 1−exp(−c′M).

To complete the proof, we have to show that the probability of Ec is small. To
this end, denote η = P(|ai,j − a| ≤ ν). Then by the symmetry of distribution
of the entries of A, P(|ai′,j′ − aVi,j| ≤ ν) = η for any i′, j′. Let j ∈ [n]. For any
k ∈ Ij,

P(∥Ak − aVj∥∞ ≤ ν) = ηn.

Set

M =
N

2
· ηn =

1

2
exp

(
Cn− log

(
1

η

)
· n
)

≥ exp

(
Cn

2

)
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where the last inequality holds if C = C(η) is chosen sufficiently large. Note
that the events ∥Ak − aVj∥∞ ≤ ν are independent for all k ∈ Ij. At this point,
Bernstein’s inequality yields

P(∥Ak − aVj∥∞ ≤ ν for less than M numbers k ∈ Ij) ≤ exp(−c′′M)

≤ exp

[
− exp

(
Cn

4

)]
.

Therefore,

P(Ec) ≤
n∑
j=1

P(∥Ak − aVj∥∞ ≤ ν for less than M numbers k ∈ Ij)

≤ n · exp
[
− exp

(
Cn

4

)]
≤ exp

[
− exp

(
Cn

8

)]
.

Let L = M/2, and α = 4C3.1

c3.1
. Combining the previous inequalities, we obtain

that

P
(
exist disjoint subsets I1, . . . , IL of [N ] such that

|Ij| = n and κ(AIj) < α for all j ∈ [L]
)

≥ P (κ(AE,m) < α for at least M/2 numbers m ∈ [M ] | E) · (1− P(Ec))

≥ 1− exp(−c′M)− exp

[
− exp

(
Cn

8

)]
≥ 1− exp (− exp(βn))

for an appropriate β > 0. This completes the proof of the theorem. □

4. No submatrices with a small condition number

In this section, we prove Theorem 1.3.

Proof. Without loss of generality, we can assume that ∥X∥2 = (EX2)1/2 = 1.
Throughout the proof, we denote by C, c, c′, etc. constants depending only on
∥X∥ψ2

.
Consider an n × n random matrix B whose entries are independent copies

of X. We claim that

(4.1) P(∥B∥ ≤ c
√
n) ≤ exp(−c′n2).

Indeed, denoting the columns of B by B1, . . . , Bn, and applying the Hanson-
Wright inequality [19, Theorem 2.1], we get

P(∥B∥ ≤ 1

2

√
n) ≤ P(∥Bj∥2 ≤

1

2

√
n for all j ∈ [n])

≤
(
P
[
E ∥Bj∥22 − ∥Bj∥22 ≥

1

2
n

])n
≤ exp(−c′n2).

Furthermore, we assert that

(4.2) P(sn(B) ≥ 2
√
εn) ≤ exp(−c′ε2n2)
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for any ε > 0. Proving (4.2) relies on a standard fact from linear algebra.

Lemma 4.1. Let M be an n × n matrix. Let k < n, and denote H =
span(Mek+1, . . . ,Men), where e1, . . . , en is the standard basis of Rn. Then

sn(M) ≤ min
j=1,...,k

∥PH⊥Mej∥2 ,

where PH⊥ is the orthogonal projection on H⊥.

Proof. Without loss of generality, we can assume that the matrix M is in-
vertible. Let j ∈ [k]. Choosing an appropriate u ∈ span(ek+1, . . . , en), we
obtain

1 ≤ ∥ej − u∥2 ≤
∥∥M−1

∥∥ · ∥Mej −Mu∥2 = s−1
n (M) · ∥PH⊥Mej∥2 ,

where the equality holds after optimization over u. The lemma follows. □

To prove (4.2), we apply Lemma 4.1 to B setting k = ⌊εn⌋. It yields
P(sn(B) ≥ 2

√
εn) ≤ P(∥PH⊥Bej∥2 ≥ 2

√
εn for all j ∈ [k]).

Conditioning on Bk+1, . . . , Bn, we can rewrite the right hand side ov the above
inequality as

E
(
P
[
∥PH⊥Bej∥2 ≥ 2

√
εn for all j ∈ [k] | Bk+1, . . . , Bn

])
=E

(
P
[
∥PH⊥Be1∥2 ≥ 2

√
εn | Bk+1, . . . , Bn

])k
using independence of the columns of B. The conditional probability can
be estimated by applying the Hanson-Wright inequality again. Applying [19,
Theorem 2.1] to the vector B1 = Be1 having i.i.d. centered subgaussian coor-
dinates, we get

P
[
∥PH⊥Be1∥2 ≥ 2

√
εn | Bk+1, . . . , Bn

]
≤ P

[
∥PH⊥Be1∥2 − ∥PH⊥∥HS ≥

√
εn | Bk+1, . . . , Bn

]
≤ exp(−cεn).

Taking the expectation with respect to Bk+1, . . . , Bn and combining it with
the previous inequality completes the proof of (4.2).

Using (4.2) with ε = t−2/4 together with (4.1), we derive

P(κ(B) < t) ≤ exp

(
−c′

n2

t4

)
.

The proposition follows by using this inequality for B = AI and taking the
union bound over I ⊂ [N ]:

P (∃I ⊂ [N ] |I| = n and κ(AI) < t) ≤
(
N

n

)
exp

(
−c′

n2

t4

)
≤ exp

(
n log

(
eN

n

)
− c′

n2

t4

)
≤ exp

(
−(c′ − c̃)

n2

t4

)
,
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where the last inequality follows from the assumption on N . Setting c̃ = c′/2
completes the proof. □
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