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ABSTRACT: Climate disasters such as hurricanes significantly impact coastal communities, posing critical
challenges to their resilience. Besides direct economic and social losses, coastal communities suffer from
indirect cascading consequences of these extreme events. In particular, debris-related impacts pose significant
economic burdens, while also resulting in cascading consequences. These consequences include, for example,
structural damage due to debris impact, functionality impairment to transportation networks affecting access
to emergency facilities, and delayed recovery of other systems. As a result, there is a need to better understand
and model debris and its uncertain impacts on coastal communities in the face of storm events. This paper puts
forward a probabilistic framework to evaluate hurricane-induced debris and its impacts at the community
scale, which is essential in conducting a comprehensive resilience analysis of coastal communities. This
framework poses interdependent probabilistic models spanning from the spatial estimation of debris presence
and volume for hurricane events, to debris-induced physical damages and network level performance impacts
(considering transportation infrastructure as an illustration). Moreover, this study use Monte Carlo approach
to conduct simulations, which is accelerated by utilizing a deep neural network surrogate model in
transportation network connectivity analysis. Select features of the proposed framework are illustrated using
testbed community data and existing or approximated input models relevant to the Galveston region in Texas,
USA. The results indicate the importance of capturing debris impacts when considering community-scale
resilience metrics in coastal regions, without which the consequences of these events and equity of access to
emergency facilities in the aftermath of them can be underestimated.

mental health issues (Almutairi et al. 2020; Lowe et

1. INTRODUCTION al. 2015). Debris generated during extreme climate

Climate-induced events, such as hurricanes and
tsunamis, exert a pronounced impact on
communities, thereby creating critical impediments
to their capacity for recovery and adaptation. As an
example, the overall costs and damages from
weather and climate disasters in the United States
since 1980 exceed $2.275 trillion (Smith 2020).
Additionally, the ability of coastal communities and
their infrastructure to withstand and recover from
extreme events is affected by the chain reaction of
consequences that follow (Almutairi et al. 2020;
Dong and Li 2016). These consequences can range
from connectivity loss to critical facilities (e.g., due
to debris accumulation) to long-term physical and

events accounts for a significant proportion of
disaster recovery costs, estimated at approximately
27%. Additionally, the damages to roadway
infrastructure in conjunction with debris can impede
the functionality of transportation networks (FEMA
2007; Tuzun Aksu and Ozdamar 2014). For
example, accessibility to emergency facilities is
critical in the aftermath of extreme events, which
highly relies on transportation networks (Cui et al.
2016; Green et al. 2017). Concerns regarding the
annual risks of such consequences associated
withstorm induced debris are expected to rise given
projections of climate change and land-use
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modification (Field 2012; Highfield et al. 2014;
Masozera et al. 2007; Winsemius et al. 2016).

Several studies have focused on predicting
debris generated from weather and climate disasters
such as hurricanes, tsunamis, and floods. Escobedo
et al. (2009) proposed a model to predict tree debris
using data from seven hurricanes in Florida. HAZUS
(FEMA 2012) proposed models to predict hurricane-
induced debris from the built environment and trees
using hazard and structural measures, which is one
of the most widespread methods. More recently,
Gonzalez-Duenas et al. (2022) developed a data-
driven model to predict the amount of waterborne
debris following a severe storm using machine
learning techniques. However, these models focus on
predicting the total volume of debris in specific
areas, rather than providing insight into its
distribution at a resolution sufficient for inferring
infrastructure impacts. This lack of information
hampers decision-making regarding the impact of
debris on connectivity loss in roadway infrastructure,
for example. To address this gap, recent studies have
begun to focus on debris dispersion and its effect on
community-level connectivity (Kameshwar et al.
2021; Nistor et al. 2017; Park and Cox 2019).
Despite recent advancements in debris dispersion
modeling, current models are limited in their ability
to predict the distribution of debris, particularly in
regards to its impact on community-level
connectivity in roadway infrastructure. This study
aims to address this limitation by proposing a
probabilistic  debris  dispersion model that
incorporates uncertainty in order to more accurately
evaluate the distribution of debris and its impact on
community-level connectivity.

Identifying areas without access to emergency
facilities, including medical centers and fire stations,
is crucial to support emergency response (Green et
al. 2017; Albano et al. 2014). This is important since
the prompt emergency response is pivotal for the
safety of residents within communities (Kocatepe et
al. 2019). While few studies evaluated connectivity
to emergency facilities considering debris presence,
a comprehensive probabilistic methodology that
captures the range of uncertainties in the problem is
also lacking (Kameshwar et al. 2021). To address the
mentioned knowledge gaps, this study presents a
probabilistic methodology to evaluate connectivity
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loss to emergency facilities in the aftermath of
hurricane events considering debris presence.

While infrastructure system reliability and
resilience simulations are becoming more complex
and popular in decision-making, there is high
demand for more efficient ways to conduct these
analyses. One of the most popular approaches to
quantify the uncertain impact of natural hazards on
communities and infrastructures is through the use of
Monte Carlo simulation for sampling and uncertainty
propagation. However, this method suffers from high
computational costs, especially when used for
complex systems (Nabian and Meidani 2018). One
of the ways to accelerate these types of simulations
is using surrogate models. Surrogates can
approximately describe the relationship between
inputs and outputs of the system and become a
substitute for heavy simulations (Nabian and
Meidani 2018). While there are several surrogate
modeling techniques, each one suitable for different
problems and available data, a deep neural network
(DNN) is used for this study. In fact, DNN surrogate
has been constructed and used to speed up the
connectivity analysis, which is the most time-
consuming parts of the simulation.

The remainder of this paper is structured as
follows: First, the overarching probabilistic
methodology is presented with details of models,
which includes the introduction of a developed
debris dispersion model along with the use of deep
neural network surrogate model for network impact
computation (section 2). Then, the proposed
methodology is showcased by applying it to
Galveston Island, TX (section 3). Section 4
concludes the paper with the key contribution,
findings, conclusions, and recommendations for
future work.

2. METHODOLOGY

The proposed methodology in this study requires a
set of interacting probabilistic models, which are
explained separately in the following sections. It is
emphasized that the proposed methodology is not
limited to the specific models showcased in the
application of this study.
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2.1. Hazard Modeling

Hazard group models consist of event selection and
intensity estimation models. Multiple scenarios with
various return periods can be considered along with
hindcasts of previous historical events or scenarios
of interest to stakeholders of a region. In the present
study, output from the current state-of-the-art
ADCIRC+SWAN simulation model (ADCIRC;
SWAN) is used to evaluate the intensity measures
needed for debris and damage models.

2.2. Debris Modeling

This model receives the event intensity measures
evaluated by hazard models and then predicts the
volume of the debris in the interested area. In the
current study, the state-of-the-art probabilistic model
developed by Gonzalez-Duenas et al. (2022b) is
adopted, which was developed using gaussian
process regression to predict uncertain debris
volume. Moreover, it uses a wide range of variables
related to the storm, built environment,
demographics of the region, and natural
environment, which makes it an advantageous
choice compared to other available models. For
example, considered storm and hazard-related
parameters include surge depth, bathymetry, wave
height, wave period, wave direction, water velocity,
among others. Furthermore, this model evaluates the
debris volume in three different low, intermediate,
and high resolutions that are square grid cells of 500,
250, and 125 m. The results of this model (debris
volume in each cell) are used as an input for the
debris dispersion model, which is proposed in the
next section.

Existing models can estimate the volume of
debris within an area (or cell), but fail to indicate the
spatial distribution of it at a resolution required for
subsequent analyses of infrastructure impacts. For
instance,  considering  debris  impacts on
transportation network, we are interested in knowing
not only the volume of debris within an interested
area but also if the debris is accumulated on
roadways and whether it hinders functionality of the
network. This process is uncertain, which
necessitates use of probabilistic models with high
resolutions. Although some studies have recently
begun to addressed the question of debris dispersion
experimentally and numerically, they are either
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limited to other hazard events such as a tsunami or
disperse debris in a deterministic way that can result
in a bias in the predictions (Kameshwar et al. 2021).
Hence, to address the knowledge gap, a debris
dispersion model is developed in the current study.

The debris dispersion model is developed using
the concept of random fields. A random field is a
random function over an arbitrary domain that takes
a random value at each point in the domain. In fact,
a random field is the representation of the joint
probability distribution for a set of random variables
(Adler and Taylor 2007). While it has many
applications in physics, biology, ecology, and data
science, this is the first time that it has been used for
debris dispersion (Hernandez-Lemus 2021). Given
the volume of debris, the distribution of the debris
can be evaluated using a random field function. For
the purpose of this study, a conditional random field
function is used to account for locations that debris
tends to get stuck there. For instance, there is a higher
chance for debris to accumulate near the buildings’
locations.

2.3. Transportation Network Performance

Debris accumulation on the roadways can prevent
emergency vehicles from having a complete access
to the transportation network. While most of the
studies only consider damages to the roadway
infrastructures, this study aims to evaluate debris
impacts on the transportation network, without
which the connectivity loss in the aftermath of
hurricane events can be underestimated.

Given the distribution of debris on ground,
accumulated debris on the roads can make them
impassable. One vehicle can pass through one road,
while the road is considered impassable for the other
due to differences in the ground clearance height. In
the current study, emergency vehicles are considered
for transportation network analysis, such as
ambulances and fire trucks. Lognormal distribution
with a mean of 25 cm and a coefficient of variation
of 0.2 is considered for the ground clearance height
of the emergency vehicles (Sobanjo 2006). In each
sample, one realization of ground clearance is
compared to the height of the debris in each road to
determine whether the road links are impassable for
the particular group of emergency vehicles or not.
Therefore, the updated transportation network and



14" International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14

available roads are different in each sample.
Eventually, using Monte Carlo sampling, the
probability of each road becoming impassible is
evaluated for different types of emergency vehicles.

2.4. Serviceability of Emergency Facilities
While having updated transportation network
condition is crucial for emergency response, it is not
sufficient for identifying isolated regions with
limited access to critical facilities such as medical
centers and fire stations. These facilities have a
critical role in reducing impacts in the aftermath of
hurricane events, which emphasizes the importance
of having access to different parts of the affected
region. To evaluate the access of different parts of
the region to the nearest medical center or fire
station, a connectivity loss ratio (CLR) is used
(Panakkal et al. 2022). CLR is defined as 1 —
D™/DT where D™ is the shortest distance between
the considering node to the nearest particular type of
emergency facilities (e.g., medical centers) under
normal situations and D/ is the shortest distance for
the same pair of nodes after roads condition became
updated due to the hurricane event. CLR can vary
between 0 and 1 with zero denoting no impact from
hurricane event on the network accessibility and one
denoting complete loss of connectivity to the nearest
emergency facility of a certain type. Eventually, the
node results can be aggregated at certain geographic
levels, such as census blocks or census tracts, to
visualize the impacts of hurricane events on the
accessibility of different parts of the community to
emergency facilities. This way, decision-makers can
identify the most vulnerable regions and priorities
risk-reduction activities based on the results.
Connectivity analysis is the most time-
consuming part of the Monte Carlo simulation. As a
result, DNN has been used to make a surrogate
model for accelerating connectivity analysis. DNN is
a type of artificial neural network with multiple
layers of nodes (also known as artificial neurons) that
perform computations and transformations on the
input data to produce output. It is designed to
automatically learn and extract complex features
from input data through the use of backpropagation
and gradient descent optimization algorithms. Part of
the samples has been simulated without any
surrogate model. Then, the results have been used to
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train a DNN model for the connectivity analysis part,
which is then used to accelerate the next simulations.
The configuration of DNN is set based on Nabian
and Meidani (2018).

3. CASE STUDY: GALVESTON ISLAND
In this section, a testbed community is used to
demonstrate the proposed methodology.

3.1. Overview of Galveston Island

Galveston Island, TX, is used to demonstrate the
methodology presented in the previous section.
Galveston is a coastal town in Texas with a total
population of more than 53,000 that forms about
22,000 households. Galveston is primarily adopted
for this study due to its susceptibility to hurricane
hazards since it is located in the hurricane-prone Gulf
of Mexico region. This island has experienced
several major hurricane events, such as Ike (2008)
and Harvey (2017) with $752 million and $345
million cost respectively for debris removal
activities, which make it an ideal testbed for
considering debris impacts on coastal communities
(FEMA 2007). Figure 1 shows Galveston Island and
its location in the Gulf of Mexico.

3.2. Hazard Scenario

While the proposed methodology is compatible with
various sets of hazard models, dynamically coupled
versions of Advanced Circulation (ADCIRC) and
Simulating Waves Nearshore (SWAN) simulation

Gulf of Mexico

U

Galveston Tsland

Figure 1: The study area showing the location of
Galveston Island in the hurricane-prone Gulf of
Mexico.
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results of FEMA 36 storm were used to estimate
needed parameters in the following models. FEMA
36 is a probabilistic 500-year return period storm
event in the Houston-Galveston area, which is
widely used in research studies (Fereshtehnejad et al.
2021). Some of the parameters that have been
estimated using the mentioned simulation are the
surge depth, wave height and direction, flow
velocity, and wind field characteristics.

3.3. Debris Dispersion

Having the outputs of the hazard model, debris
volume can be predicted probabilistically for each
grid in the area of interest. In this study, 250 m grids
are used to predict the volume of the debris based on
the recommendation by Gonzalez-Duenas et al.
(2022a). Figure shows the output of the debris
volume prediction model in Galveston Island for one
sample. It can be seen that most of the debris has
concentrated in the populated area, where buildings
and infrastructures are located. Furthermore, the
southern part of the island is more impacted by the
debris since the storm hit the island from the south
and measurements that are directly correlated with

Debris Volume (m®)
. 14,000

0

e

Figure 2: A realization result of debris volume
prediction model; and debris dispersion model.

the volume of debris were higher at those parts of the
island. Moreover, Figure demonstrates the
distribution of debris using the debris dispersion
model introduced in the methodology section for the
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same sample. It can be seen that debris dispersion is
completely consistent with the debris volume results.

3.4. Transportation Network Condition

As mentioned before, different types of vehicles can
be considered in this study. Although access to
emergency facilities for normal vehicles can play an
incontrovertible role in the aftermath of a hurricane
event, connectivity for emergency vehicles is
considered the main shape of emergency response in
the analyses. Figure illustrates the probability of
road closure for emergency vehicles due to debris
presence in the aftermath of the hurricane event.
Debris tends to accumulate in the island's most
populated area, mainly in its central parts.
Consequently, considering debris impacts is crucial
in the coastal community risk and resilience,
particularly in the transportation network analysis,
without which the impacts of hurricanes would be
underestimated.

Road Probability of Closure
Mo

0.0

Figure 3: Probability of road links closure in the
aftermath of hurricane event.

3.5. Network Level Impact

Given that the majority of computational expenses in
the analysis pertain to network connectivity analysis,
it has been deemed appropriate to model it utilizing
a DNN with two hidden layers. The input data is a
set of binary values showing whether the road links
of the network are closed due to debris presence or
not. The outputs are the CLR of 23 different census
tracts, which are used to measure the quality of
connection from those census tracts to emergency
medical centers. Moreover, 30 percent of the data has
been used to validate the surrogate model.

Since the dimension of input data is high
(number of links in the network), the computation
burden of the neural network and its accuracy may
be affected. Hence, Principal Component Analysis
(PCA) has been conducted to reduce the
dimensionality of the input first. Figure shows the
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result of PCA on the data. As shown, the same
accuracy can be achieved by using only half of the
data in the new dimension. As a result, the first 400
principal components of the input data are used to
train the DNN model.
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Figure 4: Percentage of cumulative variance explained
by the principal components of input data.

Figure 5 shows the results of the DNN model
for training and validation. In this study, two hidden
layers have been used with Adam optimizer, a
replacement optimization algorithm for gradian
decent. Furthermore, the mean squared error loss
function and R-squared metric are used with having
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Figure 5: Loss and score change for training and
validation data.

30% of the data for validation. As it can be seen, the
model is trained very fast and can be used as a
substitution for regular and time-consuming
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connectivity analysis, which takes minutes to
complete. The benefits of using the DNN surrogate
model are even more when the network is larger and
more complex.

Finally, the serviceability of emergency facilities
using the CLR, which is defined in the methodology
part, is evaluated. The analyses are conducted
considering emergency vehicles using transportation
network to reach different regions. Figure 6 shows
the average CLR for census tracts. Moreover, the
distributions of CLRs have been shown for some
census tracts, which can give valuable information
for risk assessment and decision-making.

Connectivity Loss Ratio 1

. 1.0 .

Figure 6: Connectivity loss ratio and its distribution for
census tracts to emergency medical centers.

4. CONCLUSION

This study proposed a methodology to evaluate
hurricane-induced debris impacts on coastal
communities’ risk by integrating various models
from hazard to cascading consequences and
introducing a new model on debris distribution
estimation. The results indicate the importance of
considering debris impacts along with damages to
roadway infrastructure in the risk assessment of
coastal transportation networks, without which the
impacts of hurricane events would be
underestimated.  Furthermore, the  proposed
methodology gives a quantitative tool to determine
the most critical components of infrastructure
systems and find the optimal allocation of limited
resources to improve coastal communities’
functionality in the aftermath of hurricane events.
Despite the advances posed in this paper, there are
several lines of future improvement to the model and
opportunities to leverage it. While the debris
dispersion model is able to probabilistically estimate
the location and height of debris in each sample and
cell, it is conditioned only to the location of
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buildings. Other factors such as the local topography
could be considered leveraging the proposed
conditional random field approach. Moreover, this
framework provides a foundation for evaluating
hurricane-induced  debris  effects on  other
infrastructures, such as power networks, where
debris may similarly pose physical and functional
threats to their operation. Conducting a more
comprehensive  simulation would result in
heightened computation costs. Hence, a deep neural
network surrogate model is proposed to remedy this.
Different scale models for transportation networks
besides surrogate models can be used to conduct
Multifidelity Monte Carlo estimation that can make
the simulation process even more efficient
(Peherstorfer et al. 2016). Finally, this work can be
extended to include models of the recovery dynamics
and the process of debris removal which can
influence diverse metrics of community resilience.
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