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ON KITAEV’S DETERMINANT FORMULA

ALEXANDER ELGART AND MARTIN FRAAS

Abstract. We establish a su�cient condition under which det
�
ABA�1B�1

�
= 1 for a pair

of bounded, invertible operators A,B on a Hilbert space.

1. Kitaev’s formula and traces of certain commutators

In a finite dimensional Hilbert space H, the determinantal formula

det
�
ABA

�1
B

�1
�
= 1 (1.1)

holds for any invertible operators A,B 2 L(H). Its naive generalization to the infinite dimen-
sional case (via the Fredholm extension, see e.g., [S, Sections 3] for a background and basic
properties) fails. A simple counterexample can be constructed using the Helton-Howe-Pincus
formula, [E]: Let C and D be bounded operators on a Hilbert space H such that [C,D] 2 S1

(the Schatten trace class), where [C,D] = CD �DC stands for the commutator of C and D.
Then eCeDe�C�D = I + S, where I denotes the identity map and S 2 S1. In particular, the
Fredholm operator below is well defined and satisfies

det
�
eCeDe�C�D

�
= e

1
2 tr[C,D]

. (1.2)

Thus eCeDe�Ce�D
� I 2 S1 and using a basic property of the Fredholm determinant

det
�
eCeDe�Ce�D

�
= det

�
eCeDe�C�D

�
det

�
eC+De�Ce�D

�
= etr[C,D] (1.3)

for such operators C and D.
Let R,L denote the forward and backward shift operators on `

2(N) (with respect to the
standard basis {en}), and let z 2 C. Then, the operators A = ezR, B = eL are bounded and
invertible, and moreover [R,L] = P1, the orthogonal projection onto Span(e1). Hence, denoting
by I the identity map, (1.3) implies that ABA

�1
B

�1
� I 2 S1 and

det
�
ABA

�1
B

�1
�
= ez,

i.e., the expression on the left hand side can take any non-zero complex value.
It is therefore an interesting question to determine under which conditions (1.1) actually

holds. Another motivation to study this object comes from physics, where it can be linked to
the quantization of transport in quantum systems, [K]. Indeed, if both (1.1) and (1.3) hold,
one can deduce the quantization of tr[C,D], i.e., tr[C,D] 2 2⇡iZ. Kitaev observed via a formal
computation that, if a pair of unitaries U1 = eiC , U2 = eiD with bounded self-adjoint operators
C,D satisfy (U1� I)(U2� I), (U2� I)(U1� I) 2 S1, then (1.1) holds, implying the quantization
for the case [C,D] 2 S1.

This suggest the following

Conjecture 1.1. Let H be a complex, separable Hilbert space. Suppose that

(i) A,B 2 L(H) are invertible;
(ii) (A� I)(B � I), (B � I)(A� I) 2 S1.

Then (1.1) holds.
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While we don’t know how to prove Conjecture 1.1, the purpose of this Note is to present an
elementary derivation of the following weaker result.

Theorem 1.2. Assume in addition to (i)-(ii) that

(iii) (A⇤
� I)(B � I), (B � I)(A⇤

� I) 2 S1.

Then, (1.1) holds.

Let us stress that the condition (iii) is not a necessary, but only a su�cient condition. This
can be seen from the following assertion (whose proof can be found in Section 2).

Proposition 1.3. Let C be a quasinilpotent operator and D bounded, such that
�
eC � I

� �
eD � I

�
,
�
eD � I

� �
eC � I

�
2 S

1
. (1.4)

Then

det
�
eCeDe�Ce�D

�
= 1.

We now construct a simple example, that shows that condition (iii) is not a necessary, based
on this observation.

Example 1. Let C = D = ML, where L is the backward shift operator on `
2(N), and M is a

multiplication operator on the same space defined by

Men =

(
1p
n
en n 2 2N

0 n 2 2N � 1
.

Then (1.1) holds trivially for A = eC , B = eD as C,D commute. We also note that C2 = 0 (so
C is nilpotent) and eC � I = C (so (1.4) holds as well). However,

�
eC � I

� �
eC

⇤
� I

�
= CC

⇤ =
M

2
/2 S1, so (iii) in Theorem 1.2 is not satisfied.

Remark 1.4. We next note that if A (or B) is normal, then (ii) is equivalent to (iii), so in
this case Conjecture 1.1 becomes a theorem, confirming Kitaev’s formal observation. In fact,
the proofs of Theorem 1.2 and Proposition 1.3 can be combined to show that Conjecture 1.1 is
satisfied for the so-called spectral operators, introduced by Dunford, [D].

As we have already mentioned, (1.3) immediately implies

Corollary 1.5. If C,D 2 L(H) satisfy (1.4) and [C,D] 2 S
1, then tr[C,D] 2 2⇡iZ.

One can of course suspect, based on the vanishment of the trace of the commutator in the
finite dimensional case, that in fact the only allowed value for tr[C,D] in the statement above
is zero. To this end, we construct

Example 2. There exist self-adjoint operators C,D satisfying the assumptions of Corollary 1.5
such that tr[C,D] = �8⇡i. Specifically, let C = f(x) := 2⇡i x

hxi where hxi = (1 + x
2)1/2 and let

D = f(p), where x and p = �i
d
dx are the position and momentum operators on L(R), see [S,

Section 4] for details (we note that here f(p) is understood as a convolution operator, see [RS,
Theorem IX.29]). Then (1.4) is satisfied, [C,D] 2 S

1, and tr[C,D] = �8⇡i.

We will verify the validity of this construction at the end of Section 2.
Since U

k
� I = (U � I)

Pk�1
j=0 U

j for any unitary U and any k 2 Z, one deduces from this
example that there are operators C,D satisfying Corollary 1.5 above such that tr[C,D] = 8k⇡i
for any k 2 Z.

2. Proofs

Proof of Theorem 1.2.
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Lemma 2.1. Assume that the assumptions of Theorem 1.2 hold. Let A = U |A| be the polar
decomposition for A. Then U is in fact a unitary operator, |A| is invertible, there are C,D that
are normal and bounded such that |A| = eC , U = eD, and we have

(|A|� I) (B � I), (B � I) (|A|� I) , (U � I) (B � I), (B � I) (U � I) 2 S1. (2.1)

In addition, the formula

det
�
ABA

�1
B

�1
�
= det

�
|A|B |A|

�1
B

�1
�
det

�
BU

⇤
B

�1
U
�

(2.2)

holds.

Proof. The fact that U and |A| are invertible (and consequently have exponential representation
in terms of normal operators) follows directly from the invertibility of A, so we only need to
establish (2.1)–(2.2). To this end, we note that

(A⇤
A� I)(B � I) = (A⇤ + I)(A� I)(B � I)� (A� I)(B � I) + (A⇤

� I)(B � I) 2 S1

by (ii-iii). Hence

(|A|� I)(B � I) = (|A|+ I)�1(A⇤
A� I)(B � I) 2 S1

as well. An identical argument yields the inclusion (B � I)(|A|� I) 2 S1. We also have

(B � I)(U � I) = (B � I)(A� |A|)|A|
�1

= (B � I)(A� I)|A|
�1

� (B � I)(|A|� I)|A|
�1

2 S1.

Finally, we have

(U � I)(B � I) = (A� |A|)|A|
�1(B � I) = (A� |A|)(B � I) + (A� |A|)(|A|

�1
� I)(B � I)

= (A� I)(B � I)� (|A|� I)(B � I)� (A� |A|)|A|
�1(|A|� I)(B � I) 2 S1,

so we established (2.1).
The relation (2.2) follows from the fact that |A|B|A|

�1
B

�1 = I + K, BU
⇤
B

�1
U = I + M

with K,M 2 S1 by

ABA
�1

B
�1 = I + [A,B]A�1

B
�1 (2.3)

and (2.1), the representation

ABA
�1

B
�1 = U

�
|A|B|A|

�1
B

�1
� �

BU
⇤
B

�1
U
�
U

⇤
,

as well as the basic properties of the Fredholm determinant. ⇤

Applying Lemma 2.1 twice, we see that the statement of Theorem 1.2 follows from

Proposition 2.2. Let A,B be bounded normal operators in H that satisfy
�
eA � I

� �
eB � I

�
,
�
eB � I

� �
eA � I

�
2 S1.

Then

det
�
eAeBe�Ae�B

�
= 1.

⇤

Proof of Proposition 2.2. We will use the following:

Lemma 2.3. Let B,D be a pair of bounded operators on H that satisfy

D
�
eB � I

�
,
�
eB � I

�
D 2 S1.

Then

det
�
eDeBe�De�B

�
= 1.
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Proof. Using a basic property of the Fredholm determinant, we have

det
�
eDeBe�De�B

�
= det

⇣
eBe�De�BeDe(e

BDe�B�D)e�(e
BDe�B�D)

⌘

= det
⇣
e�eBDe�B

eDe(e
BDe�B�D)

⌘
det

⇣
e�(e

BDe�B�D)
⌘
,

where both determinants on the right hand side are well-defined. We now use (1.2) to evaluate
the first determinator on the right hand side:

det
⇣
e�eBDe�B

eDe(e
BDe�B�D)

⌘
= exp

�
�

1
2tr

⇥
eBDe�B

, D
⇤�

= 1,

since
tr
⇥
eBDe�B

, D
⇤
= tr

⇥
eBDe�B

�D,D
⇤
= 0,

where in the last step we used eBDe�B
�D = [eB � I,D]e�B

2 S1. We recall a consequence of
Lidskii’s theorem: If X,Y 2 L(H) are such that XY, Y X 2 S1, then tr (XY ) = tr (Y X). Thus

tr
�
eBDe�B

�D
�
= tr

��
eB � I

� �
De�B

��
� tr

��
De�B

� �
eB � I

��
= 0, (2.4)

Using det
�
eE

�
= etrE for E 2 S1 and (2.4), we get

det
⇣
e�(e

BDe�B�D)
⌘
= 1.

⇤
Let P be the spectral projection �2⇡iZ(A), where �W stands for the indicator of a set W .

Then, eAP = I for a normal operator A and det
�
eAP eBe�AP e�B

�
= 1. Let � 2 (0, 1/2], let

W = {x 2 C : dist (x, 2⇡iZ) � �}, and let Q� = �W (A), and let P� = I �Q�.
We first observe that since eA � I is invertible on Range (Q�), we have

Q�
�
eB � I

�
=

⇣�
eA � I

��1
Q�

⌘ �
eA � I

� �
eB � I

�
2 S1,

and similarly �
eB � I

�
Q� 2 S1.

Thus, by Lemma 2.3 we deduce

det
�
eAQ�eBe�AQ�e�B

�
= 1. (2.5)

Next, we note that
⇥
eAP� , eB

⇤
=

⇥
P�

�
eA � I

�
,
�
eB � I

�⇤
!

�!0

⇥
P
�
eA � I

�
,
�
eB � I

�⇤
=

⇥
eAP

, eB
⇤
,

where the convergence is in the trace norm sense (this follows from SOT � limP� = P and the
assumptions of Proposition 2.2). This implies

det
�
eAP�eBe�AP�e�B

�
= det

�
I +

⇥
eAP� , eB

⇤
e�AP�e�B

�
! det

�
eAP eBe�AP e�B

�
= 1 (2.6)

as � ! 0. We now can combine (2.5) and (2.6) to get

det
�
eAeBe�Ae�B

�
= det

�
eAP�eBe�AP�e�B

�
det

�
eBe�AQ�e�BeAQ�

�
!

�!0
1. (2.7)

⇤
Proof of Proposition 1.3. The statement follows from

C
�
eB � I

�
,
�
eB � I

�
C 2 S1 (2.8)

and Lemma 2.3.
To show (2.8), we observe that, denoting

D :=
1X

k=0

C
k

(k + 1)!
,

we have eC � I = DC. Hence, (2.8) will follow provided that D is invertible, as

C
�
eB � I

�
= D

�1
�
eC � I

� �
eB � I

�
.
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To prove that D is invertible, it su�ces to show that D � I is a (quasi)nilpotent operator. To
this end, we can bound

k(I �D)nk = k(CE)nk  kC
n
k kEk

n
, E =

1X

k=0

C
k

(k + 2)!
.

We have

kEk 

1X

k=0

kCk
k

(k + 2)!
 ekCk

,

so
k(I �D)nk1/n  kC

n
k
1/n ekCk

! 0 as n ! 1,

so D � I is indeed (quasi)nilpotent, and we are done. ⇤
Verification of Example 2. We first note that the conditions (1.4) are satisfied by [RS1, Theorem
XI.21] since there exists a C > 0 such that

���ef(x) � 1
��� hxi2  C.

We will use the integral representation

⇡

2

1

hpi
=

Z 1

0

dt

p2 + 1 + t2
,

which implies

[C,D] = [C, p]
2⇡i

hpi
+ p


C,

2⇡i

hpi

�

= �f
0(x)

2⇡

hpi
+ 4

Z 1

0

p

p2 + 1 + t2

�
f
0(x)p+ pf

0(x)
� 1

p2 + 1 + t2
dt.

The integral can be written as
Z 1

0
f
0(x)

2p2

(p2 + 1 + t2)2
dt�

Z 1

0


f
0(x),

p

p2 + 1 + t2

�
p

p2 + 1 + t2
dt

�

Z 1

0


f
0(x),

p
2

p2 + 1 + t2

�
1

p2 + 1 + t2
dt.

We note that the integrands in the second and third terms have trace norms decaying faster
than 1

t2+1 in t, in particular these terms are trace class, see, e.g., [S, Section 4] for the trace
class properties of the products of functions F (x)G(p). Hence, we get

[C,D] = �4f 0(x)

Z 1

0

✓
1

p2 + 1 + t2
�

2p2

(p2 + 1 + t2)2

◆
dt+ T = �if

0(x)f 0(p) + T ,

where T is a trace class operator. Since f 0(x) = 2⇡i
hxi3 , we see that f

0(x)f 0(p) 2 L
1, so [C,D] 2 S1

as well. In fact, tr T = 0 (this term originates from the commutator of f 0(x) with functions of
p that decay in p su�ciently fast), so

tr [C,D] = itr f 0(x)f 0(p) =
i

2⇡

✓Z

R
f
0
◆2

= �8⇡i,

where in the second step we have used the fact that f 0(p) is a convolution operator,

(f 0(p)�)(x) = (2⇡)�1/2
Z

ˇ(f 0)(x� y)�(y)dy, ˇ(f 0)(x) := (2⇡)�1/2
Z

eixp(f 0)(p)dp,

see [RS, Theorem IX.29]. ⇤
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