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Abstract

Recent advances in the capacity of large lan-
guage models to generate human-like text have
resulted in their increased adoption in user-
facing settings. In parallel, these improvements
have prompted a heated discourse around the
risks of societal harms they introduce, whether
inadvertent or malicious. Several studies have
explored these harms and called for their miti-
gation via development of safer, fairer models.
Going beyond enumerating the risks of harms,
this work provides a survey of practical meth-
ods for addressing potential threats and societal
harms from language generation models. We
draw on several prior works’ taxonomies of
language model risks to present a structured
overview of strategies for detecting and ame-
liorating different kinds of risks/harms of lan-
guage generators. Bridging diverse strands of
research, this survey aims to serve as a practical
guide for both LM researchers and practition-
ers, with explanations of different mitigation
strategies’ motivations, their limitations, and
open problems for future research.

1 Introduction

The new wave of large language models (LMs;
Brown et al.,, 2020; Chowdhery et al., 2022;
Zhang et al., 2022b) capable of generating text
with human-like fluency, coherence, and realism
(Zellers et al., 2020; Ippolito et al., 2020) has
caused a paradigm shift in our society.! With appli-
cations like OpenAI’s ChatGPT, Microsoft’s Bing,
and Google’s Bard, bringing such LMs directly to
users, we are beginning to see the impact in fields
like education (Schulten, 2023; Gleason, 2022),
healthcare (Patel and Lam, 2023), law (ChatGPT
and Perlman, 2022), science (Stokel-Walker, 2023),
and more. Since language is inherently a tool of
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"While the majority of these models are trained on English,
recent studies have also obtained similar advancements in
other languages (Lin et al., 2021; Shliazhko et al., 2022).
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Figure 1: Overview of Intervention Strategies. A typical
ML/NLP model development process involves data col-
lection/curation, model training and design, inference,
and finally application deployment. For each phase
of this development cycle, different techniques can be
adopted to mitigate harms. Our survey presents a tax-
onomy of intervention strategies organized around the
different phases where they can be applied.
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power—the primary means by which people and so-
cieties perpetuate stereotypes and manipulate opin-
ions (Bar-Tal et al., 2013; Chong and Druckman,
2007, inter alia)—LMs that are deployed to mil-
lions of users also hold similar power, but our un-
derstanding of their risks/harms has lagged behind
(Bender et al., 2021).

Indeed, LMs have been shown to introduce vul-
nerabilities and threats, both inadvertent and mali-
cious, to individual users, social groups, and con-
tent integrity. Without social context and content
control, deployed language generators have quickly
derailed to racist, homophobic, hateful comments
(Hunt, 2016; Jang, 2021; Wolf et al., 2017; Vincent,
2022), compromised user privacy (Carlini et al.,
2021), spread disinformation (Shao et al., 2018),
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and even encouraged suicide (Daws, 2020). Prior
works have outlined these risks (Maynez et al.,
2020; Sheng et al., 2021; Weidinger et al., 2022;
Zhuo et al., 2023), proposed taxonomies (Wei-
dinger et al., 2022), discussed their points of origin,
and advocated for future research on ethical de-
velopment of LMs (Bender et al., 2021; Solaiman
etal., 2019).

Howeyver, there is little work that summarizes
actionable approaches and technical solutions
to preventing or mitigating these potential harms.
In this survey, we present a comprehensive, uni-
fied taxonomy of relevant mitigation strategies
proposed in prior literature, specifically focusing
on language generation models.

We organize these strategies based on where
they fit in different stages of LM development: in
data collection, modeling, decoding, and deploy-
ment. Within each of these categories, our taxon-
omy brings together prior works that have been
treated as disjoint areas targeting different types of
harms (toxic/biased language and misinformation).
In addition, we identify their gaps and highlight
directions for future research. These include incor-
porating sociocultural context to produce socially-
sensitive interventions, detecting and handling gen-
erations with different intents (inadvertent vs. mali-
cious), and going beyond an English, Western/US-
centric view to account for the challenges of ethics
in multilingual language generation.

2 Background

Throughout this paper, we use the term language
models (LMs) to refer to their classic definition
as generative models, which predict the next to-
ken given the preceding generated context. This
paradigm also subsumes conditional LMs that de-
pend on additional inputs via an encoder. We pro-
vide more details in Appendix A.

2.1 Risks in Language Generation

Before diving into mitigation techniques (§3), we
briefly outline potential harms that LMs can cause,
following Weidinger et al. (2022)’s taxonomy.

Discrimination, Toxicity, and Exclusion: The
scope of linguistic diversity in human commu-
nication is enormous and is linked to personal,
social, and cultural factors (Holmes and Wilson,
2017; Eckert and McConnell-Ginet, 2003; Coates,
2016; Chambers, 1995). As such, language pro-
duced in the real world reflects sociocultural stereo-

types and presuppositions that LMs can overfit
to and amplify (Bar-Tal et al., 2013; Zhao et al.,
2017; Sun et al., 2019), leading to several types
of harms. (1) Stereotyping and discrimination oc-
curs when generated text reinforces discriminatory
stereotypes and perpetuates biases against disad-
vantaged groups, based on factors like gender, race,
religion, sexuality, (Bender et al., 2021), and inter-
sectional identities (Crenshaw, 2017). Evidence for
this behavior has been substantially corroborated in
NLP literature (Blodgett et al., 2020; Nadeem et al.,
2021; Nozza et al., 2021; Liang et al., 2021; Field
et al., 2021; Lin et al., 2022a, inter alia). (2) Toxic-
ity describes generated language that is offensive,
threatening, violent, or otherwise harmful (Gehman
et al., 2020; Rae et al., 2021; Abid et al., 2021). It
can range from overtly toxic content, such as vi-
olent hate speech, to more subtle, veiled toxicity,
such as microaggressions (Breitfeller et al., 2019).
(3) Exclusion refers to the disparate performance
of models across language variations. Models may
fail to understand or generate “non-standard” di-
alects and sociolects, essentially excluding speak-
ers of such variants from their user base (Joshi et al.,
2020; Koenecke et al., 2020; Winata et al., 2021).

Factual Errors, Misinformation, and Disinfor-
mation: LMs are able to generate fluent outputs
that users may easily mistake for human-written
text (Ippolito et al., 2020), but such utterances may
be factually incorrect or misleading (Maynez et al.,
2020; Xu, 2020; Lin et al., 2022b; Bickmore et al.,
2018; Daws, 2020). This can cause harm inadver-
tently (via misinformation) or can also be used ma-
liciously (disinformation; Bradshaw and Howard,
2019; Beskow, 2020; Buchanan et al., 2021).

Privacy Violations: L[Ms’ vast training corpora
often contain sensitive information, and LMs can
memorize these details and generate them verbatim
when prompted by users, leading to privacy viola-
tions (Kim, 2016; Mirshghallah et al., 2020; Brown
et al., 2022). LMs have been shown to leak person-
ally identifiable information, such as social security
numbers, phone numbers, bank account informa-
tion (Carlini et al., 2021), and private clinical notes
(Lehman et al., 2021); they have even leaked soft-
ware code and other protected intellectual property
(Ippolito et al., 2022). Deploying large LMs can
thus pose serious security risks to people whose
private information might have found its way into
a model’s training data.
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Other Underexplored Issues: Weidinger et al.
(2022) discuss other malicious applications, as well
as the economical and environmental impacts of
LMs. While extremely important, mitigating these
risks requires not only technical innovation, but
also the development of regulatory practices and
policies in an interdisciplinary effort. We focus on
algorithmic solutions in this survey, leaving this
discussion for future work.

3 Taxonomy of Intervention Strategies

The development pipeline of a typical machine
learning model involves several critical decisions
where risks of harms can arise. Stakeholders have
access to different pipeline components and there-
fore may employ different intervention strategies.
For example, while a researcher involved in data cu-
ration can intervene before training, an application
developer with limited access to a black-box model
might only be able to intervene at inference. We
present a taxonomy of intervention strategies orga-
nized by the stages of a model development life-
cycle (Fig. 1), aiming to showcase the tools that can
be employed at different stages. We step backward
through the pipeline, beginning with application-
level interventions employed post-deployment and
peeling back the layers through output-level inter-
ventions, model interventions, and finally ending
at data-level interventions (summarized in Tab. 1).

3.1 Application Level Interventions
3.1.1 Harm Detection and Redaction

In order to mitigate harms at the application level,
we first need to be able to detect problematic, in-
correct, and unreliable model outputs (Raji et al.,
2020). User-facing applications can employ de-
tectors to intervene before harmful text reaches a
user. Such detectors are typically coarse, binary
text classifiers, often trained for a single task, such
as predicting toxicity (Nobata et al., 2016; David-
son et al., 2017b; Xiang et al., 2021), or the factual
accuracy of the outputs (Kryscinski et al., 2020;
Goyal and Durrett, 2020; Wang et al., 2020).
Early approaches to building toxicity detec-
tors focused on linear models relying on hand-
designed features based on lexicons, e.g., hate-
base, (Xiang et al., 2012; Dadvar et al., 2012;
Burnap and Williams, 2015; Liu and Forss, 2015),
n-grams, capitalization/punctuation details (Chen
etal., 2012; Waseem and Hovy, 2016; Nobata et al.,
2016; Xu et al., 2012; Burnap and Williams, 2016).

For misinformation detection, features like the pres-
ence of new entities or facts in generated document
summaries have been employed which can indicate
hallucination (Zhao et al., 2020; King et al., 2022).

Linear classifiers, while interpretable, tend to
overfit to lexical features, are prone to false posi-
tives, and are easy for malicious users to bypass
(Kurita et al., 2019). Neural text classifiers, on the
other hand, can incorporate contextual information
and have been shown to be more robust (Gambéck
and Sikdar, 2017; Pitsilis et al., 2018). When built
by finetuning pretrained LMs instead of training
from scratch, they naturally lead to even better per-
formance (d’Sa et al., 2020; Xiang et al., 2021).
Based on these models several toxicity detection
tools like Perspective API, OpenAl content filter or
ToxiGEN are now publicly available.

To train classifiers for toxicity detection, anno-
tated datasets in several domains have been col-
lected for English (Davidson et al., 2017a; Waseem
and Hovy, 2016; Wiegand et al., 2018; Pavlopou-
los et al., 2017; Mubarak et al., 2017; Moon et al.,
2020), especially to detect overtly toxic text. Hu-
man annotation efforts for more subtle toxicities
like microaggressions, however, is challenging due
to annotators’ own biases (Breitfeller et al., 2019).
Hence, unsupervised or distantly supervised ap-
proaches have been adopted to detect them (Ko-
rzeniowski et al., 2019; Field and Tsvetkov, 2020;
Sabri et al., 2021). Compared to English, such re-
sources for other languages are severely lacking
(Ousidhoum et al., 2019a).

Information-related harms can arise either in-
advertently (due to model errors) or deliberately
(due to malicious users). Detecting manipulation
in the human-written text is an active area of re-
search and those approaches can also be employed
for machine-generated text. Prominent research
directions include automated fact-checking, propa-
ganda, or fake news detection for which several
annotated datasets (Oshikawa et al., 2020; Martino
et al., 2020; Zhou and Zafarani, 2020; Guo et al.,
2022; Huang et al., 2022) and shared tasks (Thorne
et al., 2018; Da San Martino et al., 2019; Feldman
et al., 2021) exist. These approaches have also
been adopted to assist human fact-checkers (Shaar
et al., 2021; Nakov et al., 2021). However, hu-
mans are easily fooled by machine-generated fake
news (Zellers et al., 2020; Ippolito et al., 2020).
An alternate solution is to, not find informational
discrepancies, but simply detect and flag whether
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Toxicity Lexical features (Xiang et al., 2012; Dadvar et al., 2012; Bur-
Feature-based nap and Williams, 2015; Liu and Forss, 2015); n-gram features
Detection (Chen et al., 2012; Waseem and Hovy, 2016; Nobata et al.,
2016; Xu et al., 2012; Burnap and Williams, 2016)
Misinformation ~ Word-Level features (Zhao et al., 2020; King et al., 2022)
Toxicity Supervised: (Gambick and Sikdar, 2017; Pitsilis et al., 2018;
Application Level d’Saetal., 2020; Xiang et al., 2021); Semi- and Unsupervised:
Interventions (Korzeniowski et al., 2019; Field and Tsvetkov, 2020; Sabri
etal., 2021)
Neural Misinformation ~ Supervised fake-news detection (Thorne et al., 2018; Os-
Detection / Factuality hikawa et al., 2020; Martino et al., 2020; Zhou and Zafarani,
2020; Guo et al., 2022); Factual error detection (Kryscinski
et al., 2020; Goyal and Durrett, 2020; Pagnoni et al., 2021)
Disinformation =~ Machine-generated text detection (Dugan et al., 2020;
Gehrmann et al., 2019)
Toxicity Rejection sampling using toxicity detectors (Wang et al.,
Reranking 2022)
Misinformation ~ Ranking using factuality classifiers (Krishna et al., 2022; King
/ Factuality et al., 2022)
Toxicity Autoregressive toxic content control (Yang and Klein, 2021;
Output Level Liu et al., 2021a; Dathathri et al., 2019; Krause et al., 2021;
Interventions Schick et al., 2021; Lu et al., 2021; Pascual et al., 2021; Wolf
Controlled et al., 2020); Non-autoregressive toxic content control(Kumar
Decoding et al., 2022; Mireshghallah et al., 2022)
Privacy Differentially private decoding (Majmudar et al., 2022)
Misinformation  Autoregressive factual error control(King et al., 2022; Lu et al.,
/ Factuality 2022); Non-autoregressive factual error control (Kumar et al.,
2021b)
Toxicity Rewriting harmful text (Pryzant et al., 2020; He et al., 2021b;
Post-processing Ma et al., 2020)
’ Misinformation  Editing factual errors (Cao et al., 2020; Lee et al., 2022a;
/ Factuality Balachandran et al., 2022)
Misinformation ~ Attention (Nan et al., 2021; Zhu et al., 2021), Coreference
Architecture / Factuality (Levy et al., 2021); Text Entailment (Falke et al., 2019; Li
et al., 2018); Others (Wiseman et al., 2018; Falke et al., 2019;
Wan and Bansal, 2022).
Toxicity Class-conditional LMs (Keskar et al., 2019; Gururangan et al.,
2020; Chan et al., 2021); Instruction-based learning (Ouyang
Model Level . et'al., 202,2; Wf.:i etal, 20_22a) . .
Interventions Privacy Differential Private training (Kerrigan et al., 2020; Li et al.,
2022; Shi et al., 2021); Knowledge Unlearning (Jang et al.,
Training 2022)
Misinformation  Structured KBs (Wang et al., 2021b; Liu et al., 2022; Yu et al.,
/ Factuality 2022; Liu et al., 2022; Lewis et al., 2020; de Masson d' Autume
et al., 2019; Izacard and Grave, 2021; Hossain et al., 2020;
Lewis et al., 2020), Retrieval-based (de Masson d'Autume
et al., 2019; Izacard and Grave, 2021; Hossain et al., 2020);
Summarization (Huang et al., 2020), Translation (Bapna and
Firat, 2019), Dialogue models (Dinan et al., 2019; Fan et al.,
2021; Zhang et al., 2020a)
Discrimination ~ Supervised fine-tuning (Gururangan et al., 2020; Chan et al.,
& Toxicity 2021; Liu et al., 2023); RL based fine-tuning (Alabdulkarim
Fine-tuning et al., 2021; Liu et al., 2021b; Ouyang et al., 2022; Stiennon
et al., 2020); Prompt-based learning (Gehman et al., 2020)
Exclusion Adapting for low-resource varieties (Chronopoulou et al.,
2020; Kumar et al., 2021a)
Toxicity Moditying FF layers(Geva et al., 2022)
Model Editing Misinformation ~ Auxiliary editors to modify parameters (De Cao et al., 2021;
/ Factuality Mitchell et al., 2022); Modify parameters associated with
behavior (Meng et al., 2022, 2023)
Toxicity Removing "unwanted” words from corpus (Raffel et al., 2020;
Filtration Brown et al., 2020; Dodge et al., 2021); Removing toxic data
Data using classifiers (Ngo et al., 2021)
Privacy Filtering private/duplicate data (Henderson et al., 2022; Kand-
pal et al., 2022; Lee et al., 2022b)
Discrimination ~ Adding synthetically generated data (Dinan et al., 2020; Liu
Augmentation et al., 2020; Stafanovics et al., 2020)
Toxicity Adding safer example data (Mathew et al., 2018)

Table 1: Strategies for mitigating various risks and harms from language models.
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the text has been machine-generated (Gehrmann
etal.,2019; Dugan et al., 2020; Ippolito et al., 2020;
Mitchell et al., 2023), putting the onus to trust the
information on the users (Jawahar et al., 2020).

To detect inadvertent factual errors, prior works
have developed classifiers by training them to de-
tect heuristically introduced synthetic errors in fac-
tually correct text (Kryscinski et al., 2020; Goyal
and Durrett, 2020), or question-answering errors
using targeted QA models (Scialom et al., 2021).
Being trained on synthetic data, such detectors typ-
ically do not generalize and have low human judg-
ment correlations (Pagnoni et al., 2021).

Relying on the detectors, the most straightfor-
ward way a user-facing application can prevent
harm is to not display the text at all (redacting) or to
display it with a warning sign (flagging) (Xu et al.,
2020). Even when the detectors are imperfect, ex-
plicitly flagging problematic outputs is still useful
because it signals users to take model outputs with
a grain of salt. However, this strategy is not always
applicable: for example, in speech-based dialogue
agents, “displaying” a warning sign is a nontrivial
UX decision, and in auto-complete assistants (such
as in Gmail Smart Compose), redacting is not an
option and simply warning may not dissuade users
from accepting the generated text.

Challenges: Predicting whether a text is harmful is
often highly contextual and subjective. For toxicity
detection, factors like region, political views, and
the users’ sociocultural background affect whether
they perceive the text as toxic (Xenos et al., 2021).
Existing datasets are often biased due to their cu-
ration process (Dixon et al., 2018; Wiegand et al.,
2019; Geva et al., 2019; Sap et al., 2021; Kryscin-
ski et al., 2020) and can have unreliable annota-
tions (Ross et al., 2017; Field and Tsvetkov, 2020;
Pagnoni et al., 2021). Further, as with many black-
box models, classifiers overfit to spurious artifacts
(Gururangan et al., 2018; McCoy et al., 2019; Ku-
mar et al., 2019) and amplify biases in their train-
ing data (Zhao et al., 2017; Sun et al., 2019). For
instance, toxicity detectors have been shown to
disproportionately flag African-American English
(AAE) as toxic (Sap et al., 2019). Additionally,
such filters might overfit to a subset of small fea-
tures, with more subtle problematic text evading
such filters. Ippolito et al. (2022) show that block-
ing verbatim training data is insufficient for mitigat-
ing privacy concerns in code-generation. We dis-
cuss these issues further in §4, highlighting future

directions to building finer-grained and explainable
approaches for detecting harmful text.

3.2 Output Level Interventions

Increasingly, practitioners are building applications
using LMs as APIs without explicit knowledge of
how the model was trained or what training data
was used.” Such APIs may vary in how much in-
formation developers can see: some allow access
to all LM parameters, while black box APIs like
GPT3 limit access to model outputs only. Hence,
multiple solutions have been proposed for inter-
vening at model output generation by editing the
outputs with auxiliary models or modifying decod-
ing algorithms.

3.2.1 Post-Factum Editing Model Outputs

Recent studies have explored ways to edit or revise
model-generated text to remove harmful content.
Text editing is a decades-old subfield of NLP that
has traditionally focused on fixing errors in ma-
chine translation (Chollampatt et al., 2020; Simard
et al., 2007; Chatterjee et al., 2020) or grammar
in human-written text (Wang et al., 2021c). While
many approaches in this area are applicable to post-
editing LM outputs, in this survey, we highlight
recent work related to rewriting harmful text.

The first set of works treats the task of rewrit-
ing as a sequence labeling task, where each to-
ken in the output sequence is either substituted,
deleted, or kept the same (Pryzant et al., 2020;
He et al., 2021b). This, however, can be limiting
when the entire output needs rewriting. For text-
to-text tasks, like translation, summarization, etc.
which are trained with parallel data, the same data
can be adapted to train an editing model by con-
verting source-target pairs to source-output-target
triplets using model-generated outputs for each
source, along with an additional signal indicating
errors (obtained using automatic evaluators or hu-
man judgment). For more open-ended tasks, prior
works explored unsupervised solutions for bias cor-
rection (Ma et al., 2020) and semi-supervised meth-
ods to correct factual errors (Cao et al., 2020; Lee
et al., 2022a; Balachandran et al., 2022). Such
methods create synthetic data by inducing errors in
clean text and train a model to correct them.

3.2.2 Decoding Methods

Several search and sampling algorithms have been
introduced recently to improve the quality of LM-

Zsee https://gpt3demo. com/ for examples
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generated text (Graves, 2012; Fan et al., 2018;
Holtzman et al., 2020; Meister et al., 2022). In
parallel, works on controlling decoding algorithms
to promote or demote specific properties in the out-
put text have been developed (Zhang et al., 2022a).

The decoding controls are auxiliary models mea-
suring if the generated text is harmful implemented
similarly to the detectors we discussed in §3.1.1,
such as toxicity/bias classifiers (Dathathri et al.,
2019; Krause et al., 2021; Liu et al., 2021a), fac-
tuality metrics (Kryscinski et al., 2020; Goyal and
Durrett, 2020). A simple way to use the detec-
tors is rejection sampling or reranking: for a given
input, multiple outputs are generated and then
reranked using detector scores to discard dubious
outputs (Krishna et al., 2022; King et al., 2022).
However, this is often intractable for complex phe-
nomena like factual accuracy of a text or when
using multiple controls, since all the generated can-
didates might be rejected.

To tackle these issues, a class of algorithms that
we call guided-autoregressive decoding aims to in-
corporate control by modifying output distributions
at every decoding step. One branch of work adopts
logical controls, where developers directly spec-
ify sets of words that should (or not) appear in the
output (Lu et al., 2021; Pascual et al., 2021). Wolf
et al. (2020) apply this method to zero out the prob-
abilities of offensive terms, King et al. (2022); Lu
et al. (2022) improve factual accuracy of generated
text by up-weighting generation probabilities of
entities present in the source, and Majmudar et al.
(2022) apply it for differentially private decoding.
A second branch of work composes the LM likeli-
hood with the probabilities from the detectors, to
up-weight or down-weight the token probabilities
at each decoding step (Yang and Klein, 2021; Liu
et al., 2021a; Dathathri et al., 2019; Krause et al.,
2021; Schick et al., 2021).

More recent work has also explored ways to in-
duce sentence-level control via non-autoregressive
controlled decoding. These algorithms incorporate
control using Monte Carlo Markov Chain (MCMC)
techniques (Hoang et al., 2017; Qin et al., 2020;
Mireshghallah et al., 2022), in which a full se-
quence is initialized and iteratively updated. They
have been applied for reducing toxicity (Kumar
et al., 2022), and improving fidelity in translation
systems (Kumar et al., 2021b). While promising,
these techniques suffer from slower decoding speed
and need further exploration to be practically used.

Challenges Decoding interventions rely on accu-
rate detectors, hence challenges in designing robust
detectors (§3.1.1) also impact decoding algorithms.
For example, Xu et al. (2021) show that toxicity
avoidance algorithms refrain from generating AAE,
thereby causing another harm (exclusion) while try-
ing to address the first (toxicity). Also, detecting
misinformation and factuality can be extremely
hard using simple detectors that do not provide a
useful signal to guide the decoding process, so prior
works have primarily employed heuristics. Finally,
controlled decoding algorithms are double-edged
in that controls can be reversed by malicious users
to inflict harm—to generate hateful messages, or
to do targeted manipulation by copying users’ per-
sonas. However, this risk should not discourage
research in decoding algorithms; rather, research
on detecting such malicious uses should be con-
ducted in parallel.

3.3 Model Level Interventions

Several recent studies have provided evidence that
certain optimization procedures can result in harm-
ful generations downstream (Hall et al., 2022; Taori
and Hashimoto, 2022). In this section, we describe
approaches that modify LM parameters to prevent
such generations by either architecture/training in-
terventions or finetuning/model editing interven-
tions.

3.3.1 Architecture and Training Algorithms

Closely related to applying control at inference
time are class-conditioned LMs, which are trained
to depend on "control codes" via an additional input
(Keskar et al., 2019; Gururangan et al., 2020; Chan
et al., 2021). When trained with data annotated
for toxicity or bias, these LMs can be prompted
to avoid those outputs. Another recently popular-
ized paradigm in LM training is instruction-based
learning, where in addition to the objective to pre-
dict the next token, models are also trained to solve
NLP tasks with instructions written in natural lan-
guage (Wei et al., 2022a; Sanh et al., 2022). Pro-
viding explicit instructions to not generate harmful
text has shown some promise (Ouyang et al., 2022;
Wei et al., 2022a) and is an interesting avenue for
future work.

In text-to-text tasks like summarization, the goal
is to produce text that is factually consistent with
the input without hallucinating information. An
LM, however, is typically not constrained to predict
tokens grounded in verifiable knowledge, which
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can lead to misinformation. Thus, several studies
explore modifying LM training objectives to incor-
porate factual information using either knowledge
bases (KBs) or graphs (Yu et al., 2022): each to-
ken prediction is scored not only on its likelihood
given context, but also on whether the generation is
grounded in facts in the KBs (Wang et al., 2021b).’

However, existing KBs are limited in size as
manually curating them is an arduous and expen-
sive process. As an alternative, Liu et al. (2022)
propose using automatically generated KBs to train
LMs. In contrast, Lewis et al. (2020); de Mas-
son d'Autume et al. (2019); Izacard and Grave
(2021) use unstructured text as knowledge. Known
as retrieval-augmented LMs, they are trained with
a two-stage approach of first retrieving a document
from an unstructured source like Wikipedia and
using it as additional context for generation, es-
sentially providing evidence for the LM-generated
text. Wang et al. (2021a); Ji et al. (2020) follow a
similar approach to embed commonsense knowl-
edge in LMs. These existing solutions have been
used to tackle content-related harms like factual
consistency in generated text (Huang et al., 2020;
Bapna and Firat, 2019; Dinan et al., 2019; Fan et al.,
2021) but future work in reducing discrimination
and toxicity in LMs may also benefit from KBs that
encode social (Chang et al., 2020), cultural, (Hersh-
covich et al., 2022), and moral norms (Hendrycks
et al., 2021; Jiang et al., 2021). Such LMs aug-
mented with external knowledge can also be dy-
namically updated by modifying the knowledge
source at test time with new information (Khandel-
wal et al., 2020; He et al., 2021a).

While external knowledge helps provides con-
text, models may not rely on them and still hal-
lucinate. To explicitly control for context, re-
cent studies have explored (1) modifying attention
mechanisms to specifically capture relationships
between entities (Nan et al., 2021; Zhu et al., 2021),
(2) improving coreference to mitigate gender bias
in translation (Levy et al., 2021), and (3) using
text entailment to develop loss functions to im-
prove fidelity (Falke et al., 2019; Li et al., 2018).
Some other notable directions in this space involve
fact-aware pretraining (Falke et al., 2019; Wan
and Bansal, 2022) and structured learning frame-
works (Wiseman et al., 2018).

*Knowledge-augmented LMs is a rich field where most
existing work focuses on masked LMs (Zhu et al., 2022) for
solving understanding tasks. Here we highlight papers on
generation.

Finally, to reduce privacy risks in LMs that mem-
orize user information without sacrificing model
capabilities, most prominent solutions are based on
differentially private (DP) learning (Kerrigan et al.,
2020; Shi et al., 2021). DP can provide provable
guarantees on the privacy-utility trade-off, however,
it requires the LMs to be retrained for each private
information that needs to be removed and be quite
expensive.

3.3.2 Finetuning and Model Editing

Designing and training models from scratch to mit-
igate harms can incur heavy environmental and
resource costs. In contrast, an alternative branch
of work has developed methods for modifying the
model parameters of already-trained LMs, which
requires much fewer resources. An elementary way
of doing this is finetuning (a subset of) an LM’s
parameters on small, curated datasets that contain a
well-balanced proportion of data for various demo-
graphics and filtered for nontoxicity (Gururangan
et al., 2020; Chan et al., 2021; Liu et al., 2023).
Such balanced and filtered data encourage mod-
els correct biases learned from skewed and toxic
training data, resulting in safer generated text.

Prompt-tuning based methods (Wang et al.,
2022) have also shown some success where in-
stead of fine-tuning all the parameters, a prompt
(using a small set of parameters) is learned with-
out modifying the rest of the model to perform
a task. This paradigm uses the generative power
of large LMs, while simultaneously nudging the
distribution of generated text toward less harmful
content. These approaches have successfully been
used to reduce toxicity (Gehman et al., 2020) and
exclusion (Chronopoulou et al., 2020; Kumar et al.,
2021a). However, finetuning or prompt-tuning on
a small dataset may lead to overfitting reducing the
general purpose utility of LMs.

Finetuning LMs with reinforcement learning
(RL) has been suggested as a better alternative (Al-
abdulkarim et al., 2021; Liu et al., 2021b; Ouyang
et al., 2022; Stiennon et al., 2020; Lu et al., 2022;
Ramamurthy et al., 2022) for training modern
LMs. RL models do not require carefully balanced
datasets and can instead learn from discrete rewards
such as human feedback (Sun et al., 2020; Ouyang
et al., 2022) or auxiliary model-based feedback
(Perez et al., 2022). It has been shown to reduce
toxic text generated by the models (Bai et al., 2022)
and to encourage models to generate more factual
text (Mao et al., 2020; Stiennon et al., 2020).
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Another less-explored but more computationally
practical alternative to finetuning is model surgery
or editing, which identifies a specific set of neu-
rons that contribute to harmful generations. Culling
such parameters has been shown to reduce toxic-
ity (Geva et al., 2022). In a similar vein, De Cao
et al. (2021); Mitchell et al. (2022); Meng et al.
(2022, 2023) systematically edit model parameters
to revise facts memorized by the model. De Cao
et al. (2021); Mitchell et al. (2022) use auxiliary
editor networks to predict updates to model param-
eters constrained to revise a fact without changing
other facts. Alternatively, Meng et al. (2022, 2023)
use interpretability techniques to identify parame-
ters associated with memorizing said facts and edit
them locally to revise them.

Challenges The biggest argument against mit-
igation techniques involving training LMs from
scratch or augmenting them with knowledge is its
cost, making these interventions infeasible for most
researchers and practitioners. However, even for
organizations with access to large computing re-
sources, research on training safer LMs lags behind
research on training ever-larger LMs on raw data.
We attribute this to the difficulty of curating KBs, as
well as the decreased training and inference speed
that comes with such modifications. Finetuning,
on the other hand, is less costly but may reduce
the general utility of the LMs and has not been
shown to be useful in reducing information-related
harms. Future work may benefit from drawing on
continual (Dhingra et al., 2022) and reinforcement
learning (Ouyang et al., 2022) techniques for more
practical solutions for large models.

3.4 Data Level Interventions

Training any machine learning model requires data,
so a natural approach to creating fairer, more reli-
able LMs is carefully creating balanced training
sets that are broadly representative of different
worldviews. This requires dedicated and expensive
efforts in data curation (Hutchinson et al., 2021;
Jo and Gebru, 2020; Kammoun et al., 2022) and
novel data pipelines (Denton et al., 2020). Existing
works tackling this issue devise semi-automated
solutions, which we categorize as follows.

3.4.1 Data Filtration

This simple technique involves removing problem-
atic documents from the training corpus. As train-
ing sets can be extremely large, sophisticated neural

filters can be prohibitively slow to apply. Hence,
most work has utilized simple filters, such as the
presence of "unwanted" words (Raffel et al., 2020)
or the predictions of linear classifiers (Brown et al.,
2020). To mitigate privacy violations, Henderson
et al. (2022) construct clean training data by filter-
ing private information and Kandpal et al. (2022);
Lee et al. (2022b) filter duplicate training data.

Due to their simplistic setup, these approaches
admit many false negatives (failing to detect doc-
uments with subtle toxicity) and false positives
(erroneously flagging documents that discuss sen-
sitive topics and use hateful speech as exam-
ples; additionally, removing data from different
dialects like AAE), unintentionally exacerbating
risks of marginalization and exclusion (Dodge
et al., 2021)). Alternatively, Ngo et al. (2021) train
an LM on raw data, then feed the LM manually-
curated toxic prompts and filter out documents to
which the LM assigns high probability, and then
retrain the LM on the filtered corpus.

3.4.2 Data Augmentation

While data filtration aims to remove problem-
atic training samples, data augmentation aims
to offset the effect of problematic data by
adding safer/healthier examples to existing datasets.
Mathew et al. (2018) explore adding counterspeech
(comments that counter the hateful or harmful
speech) to datasets in order to balance out the hate
speech already present in web data. Augmenta-
tion with synthetically generated data has also been
explored for gender bias mitigation in dialogue (Di-
nan et al., 2020; Liu et al., 2020) and translation
models (Stafanovics et al., 2020).

Challenges Since language, identity, and soci-
ety are tightly intertwined, aggressive data filtering
methods risk further imbalancing already imbal-
anced data. Besides, models trained on filtered data
may still degrade when toxic inputs are provided
to it. Further, while data augmentation methods
have merit, these methods are extremely difficult
to large scale. Finally, data interventions are pri-
marily designed to address population-centric risks
such as discrimination, toxicity, and, to an extent,
exclusion and privacy—but not factuality which
is a by-product of training. It is challenging to
define (Aly et al., 2022) and detect unsupported
facts (Ansar and Goswami, 2021) in the wild, mak-
ing data interventions insufficient for addressing
misinformation and factuality-related harms.
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4 Discussion and Open Challenges

Though the interventions strategies we discuss
achieve some success, many risks of LMs are still
not well understood. Below we discuss open prob-
lems and avenues for future work to encourage the
development of safer LMs.

Where should one intervene? Different stake-
holders are involved in different model develop-
ment phases with varying access to resources. As
a result, intervention strategies are different de-
pending on the stakeholder. A significant chunk of
the responsibility to develop safer LMs falls on re-
searchers and organizations with access to substan-
tial resources who can implement data or modeling
interventions. In contrast, practitioners building
applications on top of LMs may have access to
neither the training data nor the computational re-
sources required to design and train safe LMs. In
such cases, flagging and decoding approaches are
more practical. In practice, a combination of multi-
ple interventions may be required to both cover a
wide array of risks and improve robustness.

Evolving risks in the ChatGPT era: LMs are
seeing tremendous, rapid growth; larger models are
being released every few months (Shoeybi et al.,
2019; Brown et al., 2020; Zhang et al., 2022b; Zeng
et al., 2023) and deployed in user-facing applica-
tions. Many recent LMs like OpenAI’s ChatGPT
have garnered attention beyond the research com-
munity, impacting a range of fields and crossing
geographical and language barriers to reach users
all over the world (Reuters, 2023; Varghese, 2023;
So-hyun, 2023). In such a fast-moving ecosystem,
it is ever more essential to proactively study and
mitigate LMs’ potential harms. Risk mitigation
research tends to lag behind model development
and is often considered as an afterthought. Though
behaviors may emerge unpredictably (Wei et al.,
2022b), as we outline in this survey, intervention
strategies can and should be applied at different
stages of model development to reduce the poten-
tial for these influential LMs to cause harm.

Risks exist in LMs in all languages: Most re-
search on large LMs, their uses, and their risks is
Western-centric and primarily conducted on the En-
glish language. However, while a few studies have
been conducted on detecting harmful text in non-
English datasets (Ousidhoum et al., 2019b; Leite
et al., 2020; Burtenshaw and Kestemont, 2021; Bo-

goradnikova et al., 2021; Costa-jussa et al., 2022,
inter alia), research on mitigation in non-English
settings is lagging (Pamungkas et al., 2021). Fur-
ther, the definitions of risks themselves change
with different context and across cultures. Hence,
there is a dire need to develop cross-cultural, cross-
lingual analyses as well as mitigation tools.

Harm detection beyond simple classifiers
Many of the shortcomings of interventions are at
their root due to poorly defined risk detection meth-
ods. Current detection methods are primarily bi-
nary classifiers on various axes like toxicity and
factuality, but we recommend researchers and prac-
titioners to move beyond simplistic coarse classi-
fiers and towards more fine-grained (Xiang et al.,
2021; Goyal and Durrett, 2020; Da San Martino
et al., 2020), interpretable (Koh and Liang, 2017;
Han and Tsvetkov, 2020, 2021), and explainable
(Pagnoni et al., 2021; Gehrmann et al., 2019) harm
detectors to support better harm mitigation strate-
gies (Lipton, 2018; Jacovi et al., 2021).

Systematic evaluation frameworks for miti-
gation strategies Though LM performance is
usually systematically evaluated through bench-
marks (Wang et al., 2019b,a; BIG-bench collab-
oration, 2022), practices for evaluating harms in
LM-generated text or the effectiveness of mitiga-
tion strategies are not. While there is an emerg-
ing body of work dedicated to benchmarking LM
harms (Rauh et al., 2022), the space of potential
harms is huge and intersectional, and existing work
only covers a fraction of it. Developing a suite
of evaluations or augmenting existing generation
benchmarks (Mille et al., 2021) with axes of risk
evaluations (Ribeiro et al., 2020) will encourage the
development of holistic solutions, bridging discrim-
ination/toxicity and information-related harms—
two related directions in which researchers have
often developed similar solutions.

5 Conclusion

We present a survey of practical methods and tech-
niques for addressing the societal harms and safety
risks of language generation models. Our struc-
tured taxonomy covers a wide variety of interven-
tions at different stages of the model development
pipeline to mitigate harms. This work bridges mul-
tiple strands of research and presents an actionable
overview on methods for preventing harms from
language generation models.

3307



Limitations

The goal of this survey was to present current re-
search on analyzing and mitigating harms of lan-
guage generation. There are multiple documented
and anticipated harms that these models perpetu-
ate, and it is not feasible to address intervention
strategies for each of them. We aimed to generalize
multiple proposed solutions and present them in a
structured form, considering a few popularly stud-
ied harms as case studies. Inevitably, certain harms
and their mitigation strategies might not have been
considered for this survey.

Current research in this field is nascent but fast-
moving. While this survey enlists techniques and
approaches that are popular now, there is a potential
for them to be replaced with newer research. We
anticipate that this survey may need to be updated
or even redone to incorporate new research.

Ethics Statement

In this survey, we present and discuss various risk
analyses and intervention strategies to prevent soci-
etal harms from LMs. We also comment on com-
mon themes across approaches for detecting and
resolving population-centric harms (such as toxic-
ity and discrimination) and misinformation-related
harms, and we recommend future work combining
them. First, many datasets and resources we dis-
cuss may contain biases, and using them in down-
stream applications can lead to risks as we have
outlined. Second, many techniques we discuss have
limitations or are known to exacerbate other kinds
of harms (Xia et al., 2020), and thus, applying them
to newer problems may lead to unseen issues. Fi-
nally, the interventions we identify to raise general
awareness have the potential for misuse: a mali-
cious user can further imbalance the data to train
even more harmful models, use the models and
decoding algorithms to generate fake news, and
target marginalized populations. This, however,
should not discourage the development of mitiga-
tion strategies; rather, more work should be done
to detect and ban malicious users. This requires
not only technological solutions in NLP, but also in
social science, social network analysis, and public
policy.
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term language models (LMs) to refer to their clas-
sic definition as generative models (or decoders),
which predict the next token given the preceding
generated context. For the purposes of this sur-
vey, this paradigm also subsumes conditional (or
sequence-to-sequence) LMs conditioned on inputs
from different modalities such as text, image, or
speech via an encoder. + Unless otherwise spec-
ified, we assume that (1) the LM decoder is pa-
rameterized by a transformer architecture (Vaswani
et al., 2017), and (2) the LM is first pretrained on a
large amount of text (ranging from 100-billions to
trillions of tokens), which, together with their large
number of parameters, have earned such models the
name large language models.>. After pretraining,
LMs are either used in a zero- or few-shot manner
(Brown et al., 2020), or modified for specific tasks
via finetuning all or some of their parameters (Liu
et al., 2023).

The generation tasks this survey focuses on can
be broadly categorized as either (1) transformation
tasks, where a given input is transformed into a tex-
tual output such as machine translation, abstractive
summarization, data-to-text generation, and stylis-
tic re-writing, among others (Prabhumoye et al.,
2018; Raffel et al., 2020; Zhang et al., 2020b; Agha-
janyan et al., 2022), (2) or open-ended tasks such
as dialogue generation, prompt-based autocomple-
tion, story generation, and more (Adiwardana et al.,
2020; Guan et al., 2020).

*While many different strategies to (pre-)train encoder
LMs have been introduced in the literature (Devlin et al.,
2018; Peters et al., 2018), they are generally not conducive to
generating text and are out of scope in this survey.

SWhile some of the studies we will discuss do not rely on
pretraining, we highlight it here since it is one of the primary
drivers of recent advances in language generation (and its
associated risks)
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