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Abstract

With the advent of pretrained language mod-
els (LMs), increasing research efforts have
been focusing on infusing commonsense and
domain-specific knowledge to prepare LMs
for downstream tasks. These works attempt
to leverage knowledge graphs, the de facto
standard of symbolic knowledge representation,
along with pretrained LMs. While existing ap-
proaches have leveraged external knowledge,
it remains an open question how to jointly in-
corporate knowledge graphs representing vary-
ing contexts—from local (e.g., sentence), to
document-level, to global knowledge—to en-
able knowledge-rich exchange across these con-
texts. Such rich contextualization can be es-
pecially beneficial for long document under-
standing tasks since standard pretrained LMs
are typically bounded by the input sequence
length. In light of these challenges, we pro-
pose KALM, a Knowledge-Aware Language
Model that jointly leverages knowledge in lo-
cal, document-level, and global contexts for
long document understanding. KALM first en-
codes long documents and knowledge graphs
into the three knowledge-aware context repre-
sentations. It then processes each context with
context-specific layers, followed by a “con-
text fusion” layer that facilitates knowledge
exchange to derive an overarching document
representation. Extensive experiments demon-
strate that KALM achieves state-of-the-art per-
formance on six long document understanding
tasks and datasets. Further analyses reveal that
the three knowledge-aware contexts are com-
plementary and they all contribute to model
performance, while the importance and infor-
mation exchange patterns of different contexts
vary with respect to different tasks and datasets.
1

1 Introduction

Large language models (LMs) have become the
dominant paradigm in NLP research, while knowl-
edge graphs (KGs) are the de facto standard of
symbolic knowledge representation. Recent ad-
vances in knowledge-aware NLP focus on combin-
ing the two paradigms (Wang et al., 2021b; Zhang
et al., 2021; He et al., 2021), infusing encyclopedic
(Vrandeci¢ and Krotzsch, 2014; Pellissier Tanon
et al., 2020), commonsense (Speer et al., 2017),
and domain-specific (Feng et al., 2021; Chang
et al., 2020) knowledge with LMs. Knowledge-
grounded models achieved state-of-the-art perfor-
mance in tasks including question answering (Sun
et al., 2022), commonsense reasoning (Kim et al.,
2022; Liu et al., 2021), and social text analysis
(Zhang et al., 2022; Hu et al., 2021).

Prior approaches to infusing LMs with knowl-
edge typically focused on three hitherto orthogonal
directions: incorporating knowledge related to lo-
cal (e.g., sentence-level), document-level, or global
context. Local context approaches argue that sen-
tences mention entities, and the external knowledge
of entities, such as textual descriptions (Balachan-
dran et al., 2021; Wang et al., 2021b) and metadata
(Ostapenko et al., 2022), help LMs realize they are
more than tokens. Document-level approaches ar-
gue that core idea entities are repeatedly mentioned
throughout the document, while related concepts
might be discussed in different paragraphs. These
methods attempt to leverage entities and knowledge
across paragraphs with document graphs (Feng
et al., 2021; Zhang et al., 2022; Hu et al., 2021).
Global context approaches argue that unmentioned
yet connecting entities help connect the dots for
knowledge-based reasoning, thus knowledge graph
subgraphs are encoded with graph neural networks
alongside textual content (Zhang et al., 2021; Ya-

sunaga et al., 2021). However, despite their indi-
vidual pros and cons, how to integrate the three
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document contexts in a knowledge-aware way re-
mains an open problem.

Controlling for varying scopes of knowledge and
context representations could benefit numerous lan-
guage understanding tasks, especially those cen-
tered around long documents. Bounded by the
inherent limitation of input sequence length, exist-
ing knowledge-aware LMs are mostly designed to
handle short texts (Wang et al., 2021b; Zhang et al.,
2021). However, processing long documents con-
taining thousands of tokens (Beltagy et al., 2021)
requires attending to varying document contexts,
disambiguating long-distance co-referring entities
and events, and more.

In light of these challenges, we propose KALM,
a Knowledge-Aware Language Model for long
document understanding. Specifically, KALM first
derives three context- and knowledge-aware rep-
resentations from the long input document and
an external knowledge graph: the local context
represented as raw text, the document-level con-
text represented as a document graph, and the
global context represented as a knowledge graph
subgraph. KALM layers then encode each con-
text with context-specific layers, followed by our
proposed novel ContextFusion layers to enable
knowledge-rich information exchange across the
three knowledge-aware contexts. A unified docu-
ment representation is then derived from context-
specific representations that also interact with other
contexts. An illustration of the proposed KALM is
presented in Figure 1.

While KALM is a general method for long doc-
ument understanding, we evaluate the model on
six tasks and datasets that are particularly sensi-
tive to broader contexts and external knowledge:
political perspective detection, misinformation de-
tection, and roll call vote prediction. Extensive
experiments demonstrate that KALM outperforms
pretrained LMs, task-agnostic knowledge-aware
baselines, and strong task-specific baselines on all
six datasets. In ablation experiments, we further
establish KALM’s ability to enable information
exchange, better handle long documents, and im-
prove data efficiency. In addition, KALM and the
proposed ContextFusion layers reveal and help in-
terpret the roles and information exchange patterns
of different contexts.

2 KALM Methodology

2.1 Problem Definition

Letd = {di,...,d,} denote a document with
n paragraphs, where each paragraph contains a
sequence of n; tokens d; = {wj1,..., Wi, }.
Knowledge-aware long document understanding
assumes the access to an external knowledge graph
KG = (E,R,A,¢,p), where € = {e1,...,en}
denotes the entity set, R = {ry,...,rap} de-
notes the relation set, A is the adjacency ma-
trix where a;; = k indicates (e;, 7y, e;) € KG,
€(-) : &€ = strand ¢(-) : R — str map the entities
and relations to their textual descriptions.

Given pre-defined document labels, knowledge-
aware natural language understanding aims to learn
document representations and classify d into its
corresponding label with the help of KG.

2.2 Knowledge-Aware Contexts

We hypothesize that a holistic representation of
long documents should incorporate contexts and
relevant knowledge at three levels: the local context
(e.g., a sentence with descriptions of mentioned en-
tities), the broader document context (e.g., a long
document with cross-paragraph entity reference
structure), and the global/external context repre-
sented as external knowledge (e.g., relevant knowl-
edge base subgraphs). Each of the three contexts
uses different granularities of external knowledge,
while existing works fall short of jointly integrat-
ing the three types of representations. To this end,
KALM firstly employs different ways to introduce
knowledge in different levels of contexts.

Local context. Represented as the raw text of
sentences and paragraphs, the local context models
the smallest unit in long document understanding.
Prior works attempted to add sentence metadata
(e.g., tense, sentiment, topic) (Zhang et al., 2022),
adopt sentence-level pretraining tasks based on KG
triples (Wang et al., 2021b), or leverage knowledge
graph embeddings along with textual representa-
tions (Hu et al., 2021). While these methods were
effective, in the face of LM-centered NLP research,
they are ad-hoc add-ons and not fully compatible
with existing pretrained LMs. As a result, KALM
proposes to directly concatenate the textual descrip-
tions of entities €(e;) to the paragraph if e; is men-
tioned. In this way, the original text is directly
augmented with the entity descriptions, informing
the LM that entities such as "Kepler" are more than
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Figure 1: Overview of KALM, which encodes long documents and knowledge graphs into local, document, and
global contexts while enabling information exchange across contexts.

mere tokens and help to combat the spurious corre-
lations of pretrained LMs (McMilin). For each aug-
mented paragraph d;, we adopt LM(-) and mean
pooling to extract a paragraph representation. We
use pretrained BART encoder (Lewis et al., 2020)
as LM(-) without further notice. We also add a
fusion token at the beginning of the paragraph se-
quence for information exchange across contexts.
After processing all n paragraphs, we obtain the
local context representation T©) as follows:

7O = (£t}
= {Orana, LM(d}), ... ,LM(d.,)}

where 0,,,s denotes a randomly initialized vector
of the fusion token in the local context and the
superscript (0) indicates the 0-th layer.

Document-level context. Represented as the
structure of the full document, the document-
level context is responsible for modeling cross-
paragraph entities and knowledge on a document
level. While existing works attempted to incorpo-
rate external knowledge in documents via docu-
ment graphs (Feng et al., 2021; Hu et al., 2021),
they fall short of leveraging the overlapping entities
and concepts between paragraphs that underpin the
reasoning of long documents. To this end, we pro-
pose knowledge coreference, a simple and effective
mechanism for modeling text-knowledge interac-
tion on the document level. Specifically, a docu-
ment graph with n 4+ 1 nodes is constructed, con-
sisting of one fusion node and n paragraph nodes.
If paragraph ¢ and j both mention entity ey, in the
external KB, node ¢ and j in the document graph
are connected with relation type k. In addition, the

fusion node is connected to every paragraph node
with a super-relation. As a result, we obtain the ad-
jacency matrix of the document graph A9. Paired
with the knowledge-guided GNN to be introduced
in Section 2.3, knowledge coreference enables the
information flow across paragraphs guided by ex-
ternal knowledge. Node feature initialization of the
document graph is as follows:

GO — (). &)
= {Oana, LM(dy), . .., LM(dy)}

Global context. Represented as external knowl-
edge graphs, the global context is responsible for
leveraging unseen entities and facilitating KG-
based reasoning. Existing works mainly focused on
extracting knowledge graph subgraphs (Yasunaga
et al., 2021; Zhang et al., 2021) and encoding them
alongside document content. Though many tricks
are proposed to extract and prune KG subgraphs,
in KALM, we employ a straightforward approach:
for all mentioned entities in the long document,
KALM merges their k-hop neighborhood to obtain
a knowledge graph subgraph. We use & = 2 follow-
ing previous works (Zhang et al., 2021; Vashishth
et al., 2019), striking a balance between KB struc-
ture and computational efficiency while KALM
could support any k settings. A fusion entity is
then introduced and connected with every other
entity, resulting in a connected graph. In this way,
KALM cuts back on the preprocessing for model-
ing global knowledge and better preserve the infor-
mation in the KG. Knowledge graph embedding
methods (Bordes et al., 2013) are then adopted to
initialize node features of the KG subgraph:
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0 0
KO =k, k0,1

= {0rana, KGE(e1), ..., KGE(e|p(a))) }

where KGE(-) denotes the knowledge graph em-
beddings trained on the original KG, |p(d)| indi-
cates the number of mentioned entities identified in
document d. We use TransE (Bordes et al., 2013)
to learn KB embeddings and use them for KGE(+),
while the knowledge base embeddings are kept
frozen in the KALM training process.

2.3 KALM Layers

After obtaining the local, document-level, and
global context representations of long documents,
we employ KALM layers to learn document repre-
sentations. Specifically, each KALM layer consists
of three context-specific layers to process each con-
text. A ContextFusion layer is then adopted to
enable the knowledge-rich information exchange
across the three contexts.

2.3.1 Context-Specific Layers

Local context layer. The local context is rep-
resented as a sequence of vectors extracted from
the knowledge-enriched text with the help of pre-
trained LMs. We adopt transformer encoder layers
(Vaswani et al., 2017) to encode the local context:

9= @00y
- ¢(TrmEnc({tff), . ,t§f>}))

where ¢(-) denotes non-linearity, TrmEnc denotes
the transformer encoder layer, and 'E[(f) denotes the
transformed representation of the fusion token. We

omit the layer subscript (¢) for brevity.

Document-level context layer. The document-
level context is represented as a document graph
based on knowledge coreference. To better exploit
the entity-based relations in the document graph,
we propose a knowledge-aware GNN architecture
to enable knowledge-guided message passing on
the document graph:

G=1{80,....8n = GNN({go,---,gn})

where GNN(+) denotes the proposed knowledge-
guided graph neural networks as follows:

g =0(0i08 + Y Og))
JEN()

where o; ; denotes the knowledge-guided attention
weight and is defined as follows:

exp (ELU@T{egin@gjH@f(KGE(afj)m)

g =
2 kenr(s) &XP (ELU(aT[®gi|I®gkll®f(KGE(a§k))]))

where gy denotes the transformed representation of
the fusion node, a and ® are learnable parameters,
afj is the i-th row and j-th column value of adja-
cency matrix AY of the document graph, ELU de-
notes the exponential linear unit activation function
(Clevert et al., 2015), and f(-) is a learnable linear
layer. © f (KGE(afj)) is responsible for enabling
the knowledge-guided message passing on the doc-
ument graph, enabling KALM to incorporate the
entity and concept patterns in different paragraphs
and their document-level interactions.

Global context layer. The global context is repre-
sented as a relevant knowledge graph subgraph. We
follow previous works and adopt GATs (Velickovi¢
et al., 2018) to encode the global context:

K = {ko,....kja}
— GAT ({km . 7k|p(d>|}>

where kg denotes the transformed representation
of the fusion entity.

2.3.2 ContextFusion Layer

The local, document, and global contexts model
external knowledge within sentences, across the
document, and beyond the document. These con-
texts are closely connected and a robust long doc-
ument understanding method should reflect their
interactions. Existing approaches mostly leverage
only one or two of the contexts (Wang et al., 2021b;
Feng et al., 2021; Zhang et al., 2022), falling short
of jointly leveraging the three knowledge-aware
contexts. In addition, they mostly adopted direct
concatenation or MLP layers (Zhang et al., 2022,
2021; Hu et al., 2021), falling short of enabling
context-specific information to flow across con-
texts in a knowledge-rich manner. As a result, we
propose the ContextFusion layer to tackle these
challenges. We firstly take a local perspective and
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extract the representations of the fusion tokens,
nodes, and entities in each context:

[tL,gLa kL} = [Eo,go,f(o}

We then take a global perspective and use
the fusion token/node/entity as the query to con-
duct attentive pooling ap(-, -) across all other to-
kens/nodes/entities in each context:

[tc,ga,ka} = [ap(fo,{ﬁ}?ﬂ),
ap(&o, {8i}i=1), ap (ko, {Ri}?:1)]

where attentive pooling ap(-, -) is defined as:

ap(q, {ki}j—1)

exp(q - k;) '
ZZJ 1exp(q k)kl

In this way, the fusion token/node/entity in each
context serves as the information exchange portal.
We then use a transformer encoder layer to enable
information exchange across the contexts:

|:EL7gLa RLafca gGa lA&Gj|
= ¢(T‘I‘mEnC<|:tL,gL, kLatGa gaG, kG]))

As a result, t7, gr, and RL are the representa-
tions of the fusion token/node/entity that incorpo-
rates information from other contexts. We formu-
late the output of the [-th layer as follows:

T(Z+1) = {E(LE)vfgz)7 s 7E$’LE)}7

G = (g g8,
KD = () 10kl

Our proposed ContextFusion layer is interactive
since it enables the information to flow across dif-
ferent document contexts, instead of direct concate-
nation or hierarchical processing. The attention
weights in TrmEnc(-) of the ContextFusion layer
could also provide insights into the roles and im-
portance of each document context, which will be
further explored in Section 3.3. To the best of
our knowledge, KALM is the first work to jointly
consider the three levels of document context and
enable information exchange across document con-
texts.

2.4 Learning and Inference

After a total of P KALM layers, we obtain the fi-

nal document representation as { (Lm,g(f) E(LP) .
Given the document label ¢ € A, the la-
bel probability is formulated as p(ald)
exp(MLPa([fg)),gg)),l;gj)])). We then opti-
mize KALM with the cross entropy loss func-
tion. At inference time, the predicted label is

argmax,p(ald).
3 Experiment

3.1 Experiment Settings

Tasks and Datasets. We propose KALM, a gen-
eral method for knowledge-aware long document
understanding. We evaluate KALM on three tasks
that especially benefit from external knowledge
and broader context: political perspective detec-
tion, misinformation detection, and roll call vote
prediction. We follow previous works to adopt Se-
mEval (Kiesel et al., 2019) and Allsides (Li and
Goldwasser, 2019) for political perspective detec-
tion, LUN (Rashkin et al., 2017) and SLN (Rubin
et al., 2016) for misinformation detection, and the
2 datasets proposed in Mou et al. (2021) for roll
call vote prediction. For external KGs, we follow
existing works to adopt the KGs in KGAP (Feng
et al., 2021), CompareNet (Hu et al., 2021), and
ConceptNet (Speer et al., 2017) for the three tasks.

Baseline methods. We compare KALM with
three types of baseline methods for holistic evalu-
ation: pretrained LMs, task-agnostic knowledge-
aware methods, and task-specific models. For pre-
trained LMs, we evaluate RoBERTa (Liu et al.,
2019b), Electra (Clark et al., 2019), DeBERTa (He
et al., 2020), BART (Lewis et al., 2020), and Long-
Former (Beltagy et al., 2020) on the three tasks.
For task-agnostic baselines, we evaluate KGAP
(Feng et al., 2021), GreaseLM (Zhang et al., 2021),
and GreaseLM+ on the three tasks. Task-specific
models are introduced in the following sections.
For pretrained LMs, task-agnostic methods, and
KALM, we run each method five times and report
the average performance and standard deviation.
For task-specific models, we compare with the re-
sults originally reported since we follow the exact
same experiment settings and data splits.

3.2 Model Performance

We present the performance of task-specific meth-
ods, pretrained LMs, task-agnostic knowledge-
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Table 1: Model performance on three tasks and six datasets. Acc, MaF, miF, and BAcc denote accuracy, macro-
averaged F1-score, micro-averaged F1-score, and balanced accuracy. Best performance is shown in bold. Certain
task-specific models did not report standard deviation in the original paper.

Knowledge-Aware LMs

Task Dataset Metric  Task SOTA Best LM KALM
KELM KnowBERT Joshi et al. KGAP GreaseLM GreaseLM+
SemEval Acc 89.90 (£0.6) 86.99 (+£1.9) 86.40 (£2.3) 84.73 (£3.4) 81.88 (+2.1) 87.73 (£1.8) 86.64 (+£1.5) 85.66 (£1.8) 91.45 (£0.8)
PDD . MaF 86.11 (£1.1) 80.62 (+3.8) 83.98 (£1.0) 75.72 io 3) 77.15(£3.8) 82.00(+3.1) 80.32(£3.0) 77.23 (i4 1) 87.65(+1.2)
Allsides Acc 87.17 (£0.2) 68.71 (+4.3) 80.71 (£2.4) 60.56 (+0.7) 80.88 (+£2.1) 83.65 (£1.3) 80.23 (+1.2) 82.16 (£5.5) 87.26 (+0.2)
MaF 86.72 (£0.3) 65.39 (+£5.7) 79.74 (£2.7) 58.81 (£0.5) 79.73 (+£2.3) 82.92(£1.4) 79.17(+1.2) 80.81 (j:? 1) 86.79 (+0.2)
SLN MiF 89.17 88.17 (£0.6) 84.11 (+£0.6) 78.67 (£3.2) 82.72 (£5.1) 92.17 (£1.2) 73.83 (£0.9) 88.17 (+£0.8) 94.22 (+1.2)
MD MaF 89.12 88.46 (£4.9) 82.80 (+1.3) 79.80 (£2.0) 83.98 (+3.7) 92.30 (£0.9) 75.20 (+0.8) 88.64 (£0.6) 94.18 (+1.1)
LUN MiF 69.05 60.10 (+£1.7) 59.28 (+2.1) 59.66 (+1.1) 58.57 (is 4) 6552 (£2.3) 56.54 (£1.5) 64.20 (£2.4) 71.28 (+£1.7)
MaF 68.26 58.57 (£2.1) 57.30 (£1.6) 59.19 (£1.3) 56.73 (£4.0) 63.94 (£2.9) 55.75 (£1.6) 62.65 (£3.7) 69.82 (+1.2)
Random BAcc 90.33 89.94 (£0.2) 89.13 (+1.1) 86.72 (£0.9) 92.43 (+£0.5) 77.98 (£0.5) 89.99 (+1.5) 91.01 (+0.2) 92.36 (+0.4)
RCVP MaF 84.92 86.10 (£0.7) 84.76 (+£2.0) 79.33 (£2.4) 89.64 (+£0.6) 68.11 (£6.0) 84.72 (£3.0) 87.29 (+0.3) 89.33 (+0.4)
Time-based BAcc 89.92 90.40 (£0.8)  90.80 (:tO 2) 87.07(£0.9) 92.63 (£1.6) 77.90 (£0.6) 88.21 (£2.7) 91.69 (+£0.1) 94.46 (+£0.4)
MaF 84.35 85.21 (£2.1) 86.62 (£0.4) 78.90 (+£1.9) 89.31 (£2.4) 70.81 (+4.6) 79.73 (£7.4) 87.95(£0.3) 91.97 (+0.5)

Table 2: Ablation study of the three document contexts and the ContextFusion layer. Best performance is shown in
bold. The local, document, and global contexts all contribute to model performance, while the ContextFusion layer
is better than existing strategies at enabling information exchange across contexts.

. Ours Remove Context Substitute ContextFusion
Task Dataset Metric
KALM w/o local w/o document  w/o global Mint concat sum
SemEval Acc 91.45 (+0.8) 83.55 (£0.8) 83.57 (£1.1) 84.11 (+0.9) 81.91 (£0.9) 83.52 (£1.8) 83.21 (£+1.0)
PDD MaF 87.65 (£1.2) 74.25(£1.3) 76.13 (£2.0) 74.92 (£1.8) 70.47 (£3.6) 74.27 (£4.0) 73.59 (£2.1)
Allsides Acc 87.26 (+£0.2) 83.72(+4.0) 82.88 (£5.1) 80.59 (£6.3) 83.08 (£4.0) 83.27 (£4.2) 83.50 (£3.5)
MaF 86.79 (£0.2) 83.10 (£4.2) 81.86 (£6.2) 78.98 (+£8.1) 82.39 (£4.2) 82.28 (+5.3) 82.64 (+4.0)
SLN MiF 94.22 (+£1.2) 80.94 (£5.5) 83.50 (£5.7) 83.94 (+£4.7) 86.33 (£2.1) 82.67 (£9.2) 79.89 (£+6.3)
MD MaF 94.18 (+1.1) 82.95(£4.4) 85.55 (+4.4) 85.65 (+3.4) 86.79 (£1.9) 85.26 (£6.2) 82.71 (+4.1)
LUN MiF 71.28 (+£1.7) 41.13 (+5.8) 50.18 (£6.3) 57.94 (£4.1) 48.78 (£6.3) 53.52 (£6.5) 63.27 (£4.0)
MaF 69.82 (+£1.2) 35.95 (£7.3) 47.27 (£7.3) 55.58 (£4.6) 44.11 (£9.0) 48.98 (£7.9) 61.86 (+4.4)
Random BAcc 92.36 (+0.3) 91.29 (£2.4) 91.35(£0.4) 91.34 (+£0.5) 92.14 (£0.5) 91.82 (+0.8) 91.18 (£+1.5)
RCVP MaF 89.33 (+£0.4) 88.16 (£2.5) 87.81 (£0.8) 88.50 (+0.4) 89.35(+0.7) 89.01 (£1.0) 88.19 (£+1.6)
Time-based BAcc 94.46 (+£0.4) 93.58 (£1.4) 93.47 (£0.5) 93.91 (£0.5) 93.06 (£1.7) 92.37 (£2.2) 93.06 (£1.0)
MaF 91.97 (+£0.5) 90.60 (+£2.1) 90.73 (£0.6) 91.29 (£0.5) 90.06 (£2.4) 88.56 (£4.5) 90.21 (£1.1)

aware baselines, and KALM in Table 1. We select
the best-performing task-specific baseline (Task
SOTA) and pretrained language model (BestLM),
while the full results are available in Tables 4, 5,
and 6 in the appendix. Table 1 demonstrates that:

* KALM consistently outperforms all task-specific
models, pretrained language models, and
knowledge-aware methods on all three tasks and
six datasets/settings. Statistical significance tests
in Section A.4 further demonstrates KALM’s su-
periority over existing models.

* Knowledge-aware LMs generally outperform
pretrained LMs, which did not incorporate exter-
nal knowledge bases in the pretraining process.
This suggests that incorporating external knowl-
edge bases could enrich document representa-
tions and boost downstream task performance.

* GreaseLM+ outperforms GreaseLM by adding
the global context, which suggests the impor-
tance of jointly leveraging the three document
contexts. KALM further introduces information

exchange across contexts through the Context-
Fuion layer and achieves state-of-the-art perfor-
mance. We further investigate the importance of
three document contexts and the ContextFusion
layer in Section 2.3.2.

3.3 Context Exchange Study

By jointly modeling three document contexts and
employing the ContextFusion layer, KALM facil-
itates information exchange across the three doc-
ument contexts. We conduct an ablation study to
examine whether the contexts and the ContextFu-
sion layer are essential in the KALM architecture.
Specifically, we remove the three contexts one at a
time and change the ContextFusion layer into MInt
(Zhang et al., 2021), concatenation, and sum. Table
2 demonstrates that:

¢ All three levels of document contexts, local, doc-
ument, and global, contribute to model perfor-
mance. These results substantiate the necessity
of jointly leveraging the three document contexts
for long document understanding.

* When substituting our proposed ContextFusion
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Figure 2: Interpreting the roles of contexts in the ContextFusion layer. t1, tg, g1, 8¢, ki, kg denote the context
representations in equations (9) and (10), so that the first two columns indicate how the local context attends to
information in other contexts, the next two columns for the document context, and the last two for the global context.

layers with three existing combination strate-
gies, MlInt (Zhang et al., 2021), direct concate-
nation, and summation, performance drops are
observed across multiple datasets. This suggests
that the proposed ContextFusionn layer success-
fully boost model performance by enabling infor-
mation exchange across contexts.

In addition to boosting model performance, the
ContextFusion layer probes how different contexts
contribute to document understanding. We calcu-
late the average of attention weights’ absolute val-
ues of the multi-head attention in the TrmEnc(-)
layer of ContextFusion and illustrate in Figure 2,
which shows that the three contexts’ contribution
and information exchange patterns vary with re-
spect to datasets and KALM layers. Specifically,
local and global contexts are important for the LUN
dataset, document and global contexts are impor-
tant for the task of roll call vote prediction, and the
SLN dataset equally leverages the three contexts.
However, for the task of political perspective de-
tection, the importance of the three aspects varies
with the depth of KALM layers. This is especially
salient on SemEval, where KALM firstly takes a
view of the whole document, then draws from both
local and document-level contexts, and closes by
leveraging global knowledge to derive an overall
document representation.

In summary, the ContextFusion layer in KALM
successfully identifies the relative importance and
information exchange patterns of the three contexts,
providing insights into how KALM arrives at the
conclusion and which context should be the focus

of future research. We further demonstrate that
the role and importance of each context change as
training progresses in Section A.1 in the appendix.

3.4 Long Document Study

KALM complements the scarce literature in
knowledge-aware long document understanding.
In addition to more input tokens, it often relies on
more knowledge reference and knowledge reason-
ing. To examine whether KALM indeed improved
in the face of longer documents and more exter-
nal knowledge, we illustrate the performance of
KALM and competitive baselines with respect to
document length and knowledge intensity in Figure
3. Specifically, we use the number of mentioned
entities to represent knowledge intensity and the
number of sentences to represent document length,
mapping each data point onto a two-dimensional
space. It is illustrated that while baseline methods
are prone to mistakes when the document is long
and knowledge is rich, KALM alleviates this issue
and performs better in the top-right corner. We
further analyze KALM and more baseline meth-
ods’ performance on long documents with great
knowledge intensity in Figure 6 in the appendix.

3.5 Data Efficiency Study

Existing works argue that introducing knowledge
graphs to NLP tasks could improve data efficiency
and help alleviate the need for extensive train-
ing data (Zhang et al., 2022). By introducing
knowledge to all three document contexts and
enabling knowledge-rich context information ex-
change, KALM might be in a better position to
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Figure 3: Error analysis of KALM and baseline methods. KALM successfully improves in the top-right corner,
which represents documents with more sentences and more entailed knowledge.

tackle this issue. To examine whether KALM has
indeed improved data efficiency, we compare the
performance of KALM with competitive baselines
when trained on partial training sets and illustrate
the results in Figure 4. It is demonstrated that while
performance did not change greatly with 30% to
100% training data, baseline methods witness sig-
nificant performance drops when only 10% to 20%
of data are available. In contrast, KALM maintains
steady performance with as little as 10% of training
data.

4 Related Work

Knowledge graphs are playing an increasingly im-
portant role in language models and NLP research.
Commonsense (Speer et al., 2017; Ilievski et al.,
2021; Bosselut et al., 2019; West et al., 2022; Li
et al., 2022a) and domain-specific KGs (Feng et al.,
2021; Li et al., 2022b; Gyori et al., 2017) serve as
external knowledge to augment pretrained LMs,
which achieves state-of-the-art performance on
question answering (Zhang et al., 2021; Yasunaga
et al., 2021; Mitra et al., 2022; Bosselut et al., 2021;
Oguz et al., 2022; Feng et al., 2022b; Heo et al.,
2022; Ma et al., 2022; Li and Moens, 2022; Zhou
and Small, 2019), social text analysis (Hu et al.,
2021; Zhang et al., 2022; Reddy et al., 2022), com-
monsense reasoning (Kim et al., 2022; Jung et al.,
2022; Amayuelas et al., 2021; Liu et al., 2022),
and text generation (Rony et al., 2022). These ap-
proaches (Lu et al., 2022; Zhang et al., 2019; Yu
et al., 2022b; Sun et al., 2020; Yamada et al., 2020;
Qiu et al., 2019a; Xie et al., 2022) could be mainly
categorized by the three levels of the context where
knowledge injection happens.

Local context approaches focus on entity men-

tions and external knowledge in individual sen-
tences to enable fine-grained knowledge inclusion.
A straightforward way is to encode KG entities
with KG embeddings (Bordes et al., 2013; Lin et al.,
2015; Cucala et al., 2021; Sun et al., 2018) and in-
fuse the embeddings with language representations
(Hu et al., 2021; Feng et al., 2021; Kang et al.,
2022). Later approaches focus on augmenting pre-
trained LMs with KGs by introducing knowledge-
aware training tasks and LM architectures (Wang
et al., 2021b,a; Sridhar and Yang, 2022; Moiseev
etal., 2022; Kauretal., 2022; Hu et al., 2022; Arora
et al., 2022; de Jong et al., 2021; Meng et al., 2021;
Heetal., 2021). Topic models were also introduced
to enrich document representation learning (Gupta
et al., 2018; Chaudhary et al., 2020; Wang et al.,
2018). However, local context approaches fall short
of leveraging inter-sentence and inter-entity knowl-
edge, resulting in models that could not grasp the
full picture of the text-knowledge interactions.

Document-level models analyze documents by
jointly considering external knowledge across sen-
tences and paragraphs. The predominant way of
achieving document-level knowledge infusion is
through "document graphs" (Zhang et al., 2022),
where textual content, external knowledge bases,
and other sources of information are encoded and
represented as different components in graphs, of-
ten heterogeneous information networks (Hu et al.,
2021; Feng et al., 2021; Zhang et al., 2022; Yu
et al., 2022a). Graph neural networks are then em-
ployed to learn representations, which fuse both
textual information and external KGs. However,
document-level approaches fall short of preserving
the original KG structure, resulting in models with
reduced knowledge reasoning abilities.
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Figure 4: KALM and competitive baselines’ performance when training data decreases from 100% to 10%. KALM
maintains steady performance with as little as 10% to 20% of training data, while baseline methods witness serious

performance deterioration.

Global context approaches focus on the KG, ex-
tracting relevant KG subgraphs based on entity
mentions. Pruned with certain mechanisms (Ya-
sunaga et al., 2021) or not (Qiu et al., 2019b), these
KG subgraphs are encoded with GNNs, and such
representations are fused with LMs from simple
concatenation (Hu et al., 2021) to deeper interac-
tions (Zhang et al., 2021). However, global context
approaches leverage external KGs in a stand-alone
manner, falling short of enabling the dynamic inte-
gration of textual content and external KGs.

While existing approaches successfully intro-
duced external KG to LMs, long document un-
derstanding poses new challenges to knowledge-
aware NLP. Long documents possess greater knowl-
edge intensity where more entities are mentioned,
more relations are leveraged, and more reason-
ing is required to fully understand the nuances,
while existing approaches are mostly designed for
sparse knowledge scenarios. In addition, long doc-
uments also exhibit the phenomenon of knowledge
co-reference, where central ideas and entities are
reiterated throughout the document and co-exist
in different levels of document contexts. In light
of these challenges, we propose KALM to jointly
leverage the local, document, and global contexts
of long documents for knowledge incorporation.

5 Conclusion

In this paper, we propose KALM, a knowledge-
aware long document understanding approach that
introduces external knowledge to three levels of
document contexts and enables interactive ex-
change across them. Extensive experiments demon-

strate that KALM achieves state-of-the-art perfor-
mance on three tasks across six datasets. Our anal-
ysis shows that KALM provides insights into the
roles and patterns of individual contexts, improves
the handling of long documents with greater knowl-
edge intensity, and has better data efficiency than
existing works.

Limitations

Our proposed KALM has two limitations:

* KALM relies on existing knowledge graphs to
facilitate knowledge-aware long document under-
standing. While knowledge graphs are effective
and prevalent tools for modeling real-world sym-
bolic knowledge, they are often sparse and hardly
exhaustive (Tan et al., 2022; Pujara et al., 2017).
In addition, external knowledge is not only lim-
ited to knowledge graphs but also exists in tex-
tual, visual, and other symbolic forms. We leave
it to future work on how to jointly leverage mul-
tiple forms and sources of external knowledge in
document understanding.

* KALM leverages TagMe (Ferragina and Scaiella,
2011) to identify entity mentions and build the
three knowledge-aware contexts. While TagMe
and other entity identification tools are effective,
they are not 100% correct, resulting in poten-
tially omitted entities and external knowledge. In
addition, running TagMe on hundreds of thou-
sands of long documents is time-consuming and
resource-consuming even if processed in parallel.
We leave it to future work on how to leverage
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knowledge graphs for long document understand-
ing without using entity linking tools.

Ethics Statement

KALM is a knowledge-aware long document un-
derstanding approach that jointly leverages pre-
trained LMs and knowledge graphs on three levels
of contexts. Consequently, KALM might exhibit
many of the biases of the adopted language models
(Liang et al., 2021; Nadeem et al., 2021) and knowl-
edge graphs (Fisher et al., 2020, 2019; Mehrabi
et al., 2021; Du et al., 2022; Keidar et al., 2021).
As aresult, KALM might leverage the biased and
unethical correlations in LMs and KGs to arrive
at conclusions. We encourage KALM users to au-
dit its output before using it beyond the standard
benchmarks. We leave it to future work on how to
leverage knowledge graphs in pretrained LMs with
a focus on fairness and equity.
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A Additional Experiments
A.1 Context Exchange Study (cont.)

In Section 3.3, we conducted an ablation study of
the three knowledge-aware contexts and explored
how the ContextFusion layer enables the interpre-
tation of context contribution and information ex-
change patterns. It is demonstrated that the three
contexts play different roles with respect to datasets
and KALM layers. In addition, we explore whether
the role and information exchange patterns of con-
texts change when the training progresses. Fig-
ure 5 illustrates the results with respect to training
epochs, which shows that the attention matrices
started out dense and ended sparse, indicating that
the role of different contexts is gradually developed
through time.

A.2 Long Document Study (cont.)

We present error analysis with respect to docu-
ment length and knowledge intensity on more
baseline methods, including language models
(RoBERTa, BART, LongFormer), knowledge-
aware LMs (KGAP, GreaseLM, GreaseLM+), and
our proposed KALM in Figure 6. Our conclusion
still holds true: KALM successfully improves per-
formance on documents that are longer and contain
more external knowledge, which are positioned in
the top-right corner of the figure.

A.3 Manual Error Analysis

We manually examined 20 news articles from
the LUN misinformation detection dataset where
KALM made a mistake. Several news articles fo-
cused on the same topic of marijuana legalization,
and some others focused on international affairs
such as the conflict in Iraq. These articles feature
entities and knowledge that are much more recent
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Figure 6: Error analysis of KALM and baselines. KALM successfully improves in the top-right corner, which
represents documents with more sentences and more entailed knowledge.

such as "pot-infused products" and "ISIS jihadists",
which are emerging concepts and generally not cov-
ered by existing knowledge graphs. We present the
relevant sentences in Table 3. This indicates the
need for more comprehensive, up-to-date, and tem-
poral knowledge graphs that grow with the world.

A.4 Significance Testing

To examine whether KALM significantly outper-
forms baselines on the three tasks, we conduct one-
way repeated measures ANOVA test for the results
in Table 4, Table 5, and Table 6. It is demon-
strated that the performance gain is significant
on five of the six datasets, specifically SemEval
(against the second-best KCD on Acc and MaF),
SLN (against the second-best KGAP on MiF and
MaRecall), LUN (against the second-best Com-
pareNet on MiF, MaF and MaRecall), Random
(against the second-best GreasesLM+ on BAcc and
MaF), and Time-Based (against the second-best
GreaseLM+ on BAcc and MaF).

A.5 Task-Specific Model Performance

We present the full results for task-specific meth-
ods, pretrained language models, knowledge-aware
task-agnostic models, and KALM on the three tasks
and six datasets/settings in Tables 4, 5, and 6.

A.6 Islocal context enough?

Though long document understanding requires at-
tending to a long sequence of tokens, it is possible
that sometimes only one or two sentences would
give away the label of the document. We examine
this by removing the document-level and global
contexts in KALM, leaving only the local context
to simulate this scenario. Comparing the local-
only variant with the full KALM, there are 14.78%,
10.53%, 8.21%, 4.85%, 1.4%, and 3.18% perfor-
mance drops across the six datasets in terms of
macro-averaged F1-score. As a result, it is neces-
sary to go beyond local context windows in long
document understanding.
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Sample ID Example Sentences

1853

... the legalization of recreational marijuana ... has created new markets for pot-infused products ...

... children who were taken to emergency departments due to accidental THC ingestion ...

1169

Mr. Kerry met with Iraqi foreign minister Hoshyar Zebari about providing help in fighting the ISIS jihadists ...
... territory north and north-east of Baghdad where the predominantly Sunni militants have penetrated within ...

Table 3: Example sentences in the articles where KALM made a mistake. Emerging entities that are not covered by

existing knowledge graphs are in bold.

Table 4: Model performance on the task of political perspective detection.

. SemEval Allsides
Baseline

Acc MaF Acc MaF

task HLSTM 81.71 / 76.45 74.95

specific MAN 86.21 84.33 85.00 84.25
KCD 89.90 (£0.6) 86.11 (+1.1) 87.17 (+£0.2) 86.72 (£0.3)
RoBERTa 85.56 (£1.6) 77.94 (+£3.5) 68.71 (£4.3) 65.39 (£5.7)
language Electra 78.87 (£2.8) 62.85(£7.9) 63.14 (£2.3) 58.24 (£3.8)
model DeBERTa 86.99 (£1.9) 80.62 (+3.8) 67.86 (+£4.3) 63.50 (£5.9)
BART 86.62 (£1.5) 79.87 (+2.6) 60.56 (£3.8) 54.64 (£5.4)
LongFormer 82.81 (£2.3) 73.09 (£4.5) 62.88 (£3.0) 58.03 (£4.6)
KELM 86.40 (£2.3) 83.98 (£1.0) 80.71 (£2.4) 79.74 (£2.7)
KnowBERT-Wordnet ~ 81.71 (+5.5) 72.28 (£6.7) 60.54 (+0.4) 58.77 (+0.6)
KnowBERT-Wikidata 76.72 (£3.0) 66.21 (£5.0) 60.56 (£0.7) 58.81 (+0.5)
task KnowBERT-W+W 84.73 (£3.4) 75.72 (£5.3) 60.44 (£0.3) 58.46 (£+0.5)
agnostic Joshi et al. 81.88 (£2.1) 77.15(+3.8) 80.88 (£2.1) 79.73 (£2.3)
KGAP 87.73 (£1.8) 82.00 (+3.1) 83.65 (£1.3) 82.92(+1.4)
GreaseLM 86.64 (£1.5) 80.32 (£3.0) 80.23 (£1.2) 79.17 (£1.2)
GreaseLM+ 85.66 (£1.8) 77.23 (+4.1) 82.16 (£5.5) 80.81 (£7.1)
KALM (Ours) 91.45 (£0.8) 87.65(+1.2) 87.26 (+£0.2) 86.79 (£0.2)

B Experiment Details

B.1 Dataset Details
We present important dataset details in Table 7. We

follow the exact same dataset settings and splitsin ¢

previous works (Zhang et al., 2022; Hu et al., 2021;
Feng et al., 2022a) for fair comparison.

B.2 Baseline Details

We compare KALM with pretrained language *

models, task-specific baselines, and task-agnostic
knowledge-aware methods to ensure a holistic eval-
uation. In the following, we provide a brief de-
scription of each of the baseline methods. We also
highlight whether one approach leverages knowl-
edge graphs and the three document contexts in
Table 9.

* HLSTM (Yang et al., 2016) is short for hier-
archical long short-term memory networks. It
was used in previous works (Li and Goldwasser,
2019, 2021) for political perspective detection.

* MAN (Li and Goldwasser, 2021) proposes to
2132

leverage social and linguistic information to de-
sign pretraining tasks and fine-tune on the task
of political perspective detection.

KCD (Zhang et al., 2022) proposes to leverage
multi-hop knowledge reasoning with knowledge
walks and textual cues with document graphs for
political perspective detection.

Rubin et al. (2016) proposes the SLN dataset
and leverages satirical cues for misinformation
detection.

Rashkin et al. (2017) proposes the LUN dataset
and argues that misinformation detection should
have more fine-grained labels than true or false.

GCN (Welling and Kipf, 2016) and GAT
(Velickovi¢ et al., 2018) are leveraged along with
the attention mechanism by Hu et al. (2021) for
misinformation detection on graphs.

CompareNet (Hu et al., 2021) proposes to lever-
age knowledge graphs and compare the textual



Table 5: Model performance on the task of misinformation detection.

Baseline SLN LUN
MiF MaPrecision MaRecall MaF MiF MaPrecision MaRecall MaF
Rubin et al. / 88.00 82.00 / / / / /
task Rashkin et al. / / / / / / / 65.00
specific  GCN+ Attn 85.27 85.59 85.27 85.24 67.08 68.60 67.00 66.42
GAT + Attn 84.72 85.65 84.72 84.62 66.95 68.05 66.86 66.37
CompareNet 89.17 89.82 89.17 89.12 69.05 72.94 69.04 68.26
RoBERTa 88.17 (£0.6) 89.02 (£1.8) 88.17 (£0.6) 87.34 (£1.2) 59.09 (£1.7) 62.49 (£2.6) 59.11 (+£1.6) 55.52 (+1.5)
Janguage Electra 75.44 (£2.2) 83.22 (£0.6) 75.44 (£2.2) 67.53 (£4.1) 60.10 (£1.7) 63.26 (£1.2) 60.11 (+£1.7) 58.57 (+2.1)
°del  DeBERTa 86.89 (£6.6) 89.43 (£3.7) 86.89 (£6.6) 88.46 (£4.9) 57.62 (£3.1) 64.03 (£0.9) 57.63 (£3.1) 52.24 (£5.3)
m BART 86.06 (£0.6) 86.13 (£0.5) 86.06 (£0.6) 86.12 (£0.6) 59.05 (£2.2) 60.89 (+4.5) 59.07 (+2.2) 54.18 (+2.8)
LongFormer 88.00 (£2.5) 88.84 (£1.5) 87.44 (£2.5) 86.29 (£3.4) out-of-memory
KELM 84.11 (£0.6) 85.23 (£0.7) 84.11 (£0.6) 82.80 (£1.3) 59.28 (£2.1) 61.09 (£2.8) 59.29 (£2.1) 57.30 (+1.6)
KnowBERT-Wordnet ~ 74.72 (£3.3) 77.22 (£1.8) 74.72 (£3.3) 72.74 (£85) 55.63 (+£1.8) 56.29 (+2.0) 55.63 (+1.8) 55.02 (+1.7)
KnowBERT-Wikidata 72.17 (£2.5) 73.57 (£0.6) 72.17 (£2.5) 69.41 (£6.9) 57.57 (£0.5) 57.27 (£0.6) 57.57 (£0.5) 56.76 (0.6)
task  KnOWBERT-WHW  78.67 (£3.2) 79.36 (+3.1) T8.67(+3.2) T79.80 (+0.9) 65.52(+2.3) G67.50 (£1.6) 65.53 (£2.3) 63.94 (£2.0)
agnostic  Joshi etal. 92.72 (£5.1) 84.95 (£2.8) 83.37 (£5.2) 83.98 (£3.7) 5857 (£3.4) 62.56 (£4.0) 58.59 (+£3.4) 56.73 (£4.0)
KGAP 92.17 (£1.2) 92.67 (£0.9) 92.17 (£1.2) 92.30 (£0.9) 65.52 (£2.3) 67.50 (£1.6) 65.53 (+£2.3) 63.94 (+2.9)
GreaseLM 73.83 (£0.9) 74.33 (£0.8) 73.83 (£0.9) 75.20 (£0.8) 56.54 (£1.5) 58.12 (£2.7) 56.55 (£1.5) 55.75 (+1.6)
GreaseLM+ 88.17 (£0.8) 88.56 (£0.6) 88.17 (£0.8) 88.64 (£0.6) 64.29 (£2.4) 65.13 (£2.7) 64.31 (+£2.4) 62.65 (+3.7)
KALM (Ours) 94.22 (+1.2) 94.33 (£1.1) 9422 (£1.1) 9418 (+1.1) 7128 (+1.7) 7233 (+2.7) 7129 (+1.7) 69.82 (+1.2)
Table 6: Model performance on the task of roll call vote prediction.
. Random Time-Based
Baseline
BAcc MaF BAcc MaF
ideal-point 86.46 80.02 / /
task ideal-vector 87.35 80.15 81.95 75.49
specific  Vote 90.22 84.92 89.76 84.35
PAR 90.33 / 89.92 /
RoBERTa 89.94 (£0.2) 86.10 (+0.7) 90.40 (+£0.8) 84.78 (+2.2)
language Electra 87.47 (£0.3) 80.23 (+£0.7) 88.92 (+£0.4) 82.50 (£1.7)
model DeBERTa 86.98 (£0.4) 80.07 (+£1.2) 88.59 (+£0.1) 81.38 (£1.0)
BART 89.76 (£0.5) 85.52 (+0.6) 90.25 (+£0.6) 85.21 (£2.1)
LongFormer 88.69 (£0.4) 83.52 (+1.2) 89.32(+1.4) 83.42(+3.8)
KELM 89.13 (£1.1) 84.76 (+£2.0) 90.80 (+£0.2) 86.62 (£0.4)
KnowBERT-Wordnet  86.72 (+£0.9) 79.33 (£2.4) 86.92 (+0.6) 78.90 (+1.9)
KnowBERT-Wikidata 85.98 (+£0.8) 78.48 (£1.0) 86.45 (+0.5) 78.21 (+0.7)
task KnowBERT-W+W 85.75 (£1.0) 78.70 (£2.4) 87.07 (£1.0) 78.42 (£2.2)
agnostic Joshi et al. 91.43 (£0.5) 89.64 (+0.6) 92.63 (+£1.6) 89.31 (£+2.4)
KGAP 77.98 (£0.5) 68.11 (+6.0) 77.90 (£0.6) 70.81 (+4.6)
GreaseLM 89.99 (£1.5) 84.72(£3.0) 88.21 (£2.7) 79.73 (£7.4)
GreaseLM+ 91.01 (£0.2) 87.29 (+0.3) 91.69 (+£0.1) 87.95 (£0.3)
KALM (Ours) 92.36 (£0.3) 89.33 (+0.4) 94.46 (+0.4) 91.97 (£0.5)

content to external knowledge for misinforma-
tion detection.

Ideal-point (Gerrish and Blei, 2011) and ideal-
vector (Kraft et al., 2016) propose to use 1d and
2d representations of political actors for roll call
vote prediction.

Vote (Mou et al., 2021) proposes to jointly lever-
age legislation text and the social network infor-
mation for roll call vote prediction.

PAR (Feng et al., 2022a) proposes to learn leg-
islator representations with social context and
expert knowledge for roll call vote prediction.

RoBERTa (Liu et al., 2019b), Electra (Clark

et al., 2019), DeBERTa (He et al., 2020), BART
(Lewis et al., 2020), and LongFormer (Beltagy
et al., 2020) are pretrained language models.
We use the pretrained weights roberta-base,
electra-small-discriminator, deberta-v3-base,
bart-base, and longformer-base-4096 in Hug-
gingface Transformers (Wolf et al., 2020) to
extract sentence representations, average across
the whole document, and classify with softmax
layers.

* KELM (Agarwal et al., 2021) proposes to gener-

ate synthetic pretraining corpora based on struc-
tured knowledge bases. In this paper, we further
pretrained the roberta-base checkpoint on the
KELM synthetic corpus and report performance
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Task Dataset # Document # Class Class Distribution Document Length  Originally Proposed In

PPD SemEval 645 2 407 /238 793.00 + 736.93 Kiesel et al. (2019)
Allsides 10,385 3 4,164 /3,931/2,290 1316.81 +2978.71 Li and Goldwasser (2019)

MD SLN 360 2 180/ 180 55132 4 661.82 Rublr.letal.(2016)
LUN 51,854 4 10,745 /14,797 / 7,692 / 18,620 Rashkin et al. (2017)

reyp random 1,155 2 304,655 /95,464 653.94 + 424.32 Mou et al. (2021)
time-based

Table 7: Dataset statistics. The number of long documents and class distribution does not add up for RCVP since
multiple legislators vote on the same legislation.

PPD MD RCVP
Hyperparameter
SemEval Allsides SLN LUN random time-based
max epochs 50 25 3 5 100
optimizer RAdam (Liu et al., 2019a)
seed LM BART (Lewis et al., 2020)
KB embedding TransE (Bordes et al., 2013)
dimension of hidden layers 512 512 128
learning rate le-3 le-3 le-4
weight decay le-5 le-5 le-5
# KALM layers 2 2 2
# attention heads 8 8 8
dropout 0.5 0.5 0.5
batch size 16 16 4

Table 8: Hyperparameter settings of KALM.

on downstream tasks.

KnowBERT (Peters et al., 2019) is one of the
first works to leverage external knowledge bases
to enrich language representations. We used the
three pretrained models, KnowBERT-Wordnet,
KnowBERT-Wikidata, and KnowBERT-W+W
for document representation extraction and report
performance on downstream tasks.

Joshi et al. (2020) proposes to learn contex-
tualized language representations by adding
Wikipedia text to the input sequences and jointly
learning text representations. This is similar
to KALM’s setting with only the local context,
where Wikipedia descriptions of entities are con-
catenated to input texts.

KGAP (Feng et al., 2021) proposes to construct
document graphs to jointly encode textual con-
tent and external knowledge. Gated relational
graph convolutional networks are then adopted
for document representation learning.

GreaseLLM (Zhang et al., 2021) proposes to en-
code textual content with language model layers,

encode knowledge graph subgraphs with graph
neural networks and KG embeddings, and adopt
Mint layers to fuse the two for question answer-
ing. In this paper, we implement GreaseLM by
using Mlnt layers to fuse the local and global
contexts.

e GreaseLM+ is our extended version of
GreaselLM, which adds the document-level con-
text while keeping the original MInt layer instead
of our proposed ContextFusion layer.

* KALM is our proposed approach for knowledge-
aware long document understanding. It jointly
infuses the local, document-level, and global con-
texts with external knowledge graphs and adopts
ContextFusion layers to derive an overarching
document representation.

B.3 Evaluation Metrics Details

We adopted these evaluation metrics throughout
the paper: Acc (accuracy), MaF (macro-averaged
Fl1-score), MiF (micro-averaged F1-score), Ma-
Precision (macro-averaged precision), MaRecall
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Table 9: Checklist of whether baselines leverage knowledge graphs and the three document contexts.

Baseline

Knowledge Local Document Global

HLSTM (Yang et al., 2016)
MAN (Li and Goldwasser, 2021)
KCD (Zhang et al., 2022)
Rubin et al. (2016)
Rashkin et al. (2017)
task

specific
CompareNet (Hu et al., 2021)
ideal-point (Gerrish and Blei, 2011)
ideal-vector (Kraft et al., 2016)
Vote (Mou et al., 2021)
PAR (Feng et al., 2022a)

GCN + Attn (Welling and Kipf, 2016)
GAT + Attn (Velickovié et al., 2018)

RoBERTza (Liu et al., 2019b)
Electra (Clark et al., 2019)
language
model  DeBERTa (He et al., 2020)
BART (Lewis et al., 2020)
LongFormer (Beltagy et al., 2020)

KELM (Agarwal et al., 2021)
KnowBERT (Peters et al., 2019)
Joshi et al. (2020)

KGAP (Feng et al., 2021)
GreaseLM (Zhang et al., 2021)
GreaseLM+ (ours)

KALM (ours)

task
agnostic

NN NN NN N3 % % % %[ Ux > > NN N X XN X X%
N N N N S N N N N N N N N N N N N N N N NE NN
AN e T A T A N I N N N NE NE N NRN
NN S X X X X [ ™ X X X X[ X X X X X X X X X X X X

(macro-averaged recall), and BAcc (balanced ac-
curacy). These metrics are chosen based on which
metrics are used in previous works regarding the
three tasks.

B.4 Hyperparameter Details

We present KALM’s hyperparameter settings in
Table 8. We conduct hyperparameter searches for
different datasets and report the best setups.

B.5 Where did the numbers come from?

For task-specific baselines, we directly use the re-
sults reported in previous works (Zhang et al., 2022;
Hu et al., 2021; Feng et al., 2022a) since we follow
the same experiment settings and the comparison
is thus fair. For pretrained LMs and task-agnostic
baselines, we run each method five times with dif-
ferent random seeds and report the average perfor-
mance as well as standard deviation. Figure 4 is
an exception, where we only run each method one
time due to computing constraints.

B.6 More experiment details

We provide more details about the experiments that
are worth further explaining.

* Table 6: We implement pretrained LMs and task-
agnostic baselines for roll call vote prediction by
using them to learn representations of legislation
texts, concatenate them with the legislator repre-
sentations learned with PAR (Feng et al., 2022a),
and adopt softmax layers for classification.

* Table 2: We remove each context by only apply-
ing ContextFusion layers to the other two context
representations. We follow the implementation
of Mlnt described in Zhang et al. (2021). We im-
plement concat and sum by using the concatena-
tion and summation of the three context represen-
tations as the overall document representation.

* Figure 2: The multi-head attention in the Context-
Fusion layer provides a 6 x 6 attention weight
matrix indicating how information flowed across
different contexts. The six rows (columns) stand
for the local view of the local context, the global
view of the local context, the local view of the
document-level context, the global view of the
document-level context, the local view of the
global context, and the global view of the global
context, which are described in detail in Section
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2.3.2. The values in each square are the average
of the absolute values of the attention weights
across all data samples in the validation set.

B.7 Computational Resources Details

We used a GPU cluster with 16 NVIDIA A40
GPUs, 1,988G memory, and 104 CPU cores for
the experiments. Running KALM with the best pa-
rameters takes approximately 1.5, 16, 3,4, 1, and
1 hour(s) for the six datasets (SemEval, Allsides,
SLN, LUN, random, time-based).

B.8 Scientific Artifact Details

KALM is built with the help of many existing sci-
entific artifacts, including TagMe (Ferragina and
Scaiella, 2011), pytorch (Paszke et al., 2019), py-
torch lightning (Falcon and The PyTorch Lightning
team, 2019), transformers (Wolf et al., 2020), py-
torch geometric (Fey and Lenssen, 2019), sklearn
(Pedregosa et al., 2011), numpy (Harris et al.,
2020), nltk (Bird et al., 2009), OpenKE (Han et al.,
2018), and the three adopted knowledge graphs
(Feng et al., 2021; Hu et al., 2021; Speer et al.,
2017). We commit to make our code and data
publicly available upon acceptance to facilitate re-
production and further research.
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