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Abstract

With the advent of pretrained language mod-

els (LMs), increasing research efforts have

been focusing on infusing commonsense and

domain-specific knowledge to prepare LMs

for downstream tasks. These works attempt

to leverage knowledge graphs, the de facto

standard of symbolic knowledge representation,

along with pretrained LMs. While existing ap-

proaches have leveraged external knowledge,

it remains an open question how to jointly in-

corporate knowledge graphs representing vary-

ing contexts—from local (e.g., sentence), to

document-level, to global knowledge—to en-

able knowledge-rich exchange across these con-

texts. Such rich contextualization can be es-

pecially beneficial for long document under-

standing tasks since standard pretrained LMs

are typically bounded by the input sequence

length. In light of these challenges, we pro-

pose KALM, a Knowledge-Aware Language

Model that jointly leverages knowledge in lo-

cal, document-level, and global contexts for

long document understanding. KALM first en-

codes long documents and knowledge graphs

into the three knowledge-aware context repre-

sentations. It then processes each context with

context-specific layers, followed by a “con-

text fusion” layer that facilitates knowledge

exchange to derive an overarching document

representation. Extensive experiments demon-

strate that KALM achieves state-of-the-art per-

formance on six long document understanding

tasks and datasets. Further analyses reveal that

the three knowledge-aware contexts are com-

plementary and they all contribute to model

performance, while the importance and infor-

mation exchange patterns of different contexts

vary with respect to different tasks and datasets.
1

1Code and data are publicly available at https://github.
com/BunsenFeng/KALM.

1 Introduction

Large language models (LMs) have become the

dominant paradigm in NLP research, while knowl-

edge graphs (KGs) are the de facto standard of

symbolic knowledge representation. Recent ad-

vances in knowledge-aware NLP focus on combin-

ing the two paradigms (Wang et al., 2021b; Zhang

et al., 2021; He et al., 2021), infusing encyclopedic

(Vrandečić and Krötzsch, 2014; Pellissier Tanon

et al., 2020), commonsense (Speer et al., 2017),

and domain-specific (Feng et al., 2021; Chang

et al., 2020) knowledge with LMs. Knowledge-

grounded models achieved state-of-the-art perfor-

mance in tasks including question answering (Sun

et al., 2022), commonsense reasoning (Kim et al.,

2022; Liu et al., 2021), and social text analysis

(Zhang et al., 2022; Hu et al., 2021).

Prior approaches to infusing LMs with knowl-

edge typically focused on three hitherto orthogonal

directions: incorporating knowledge related to lo-

cal (e.g., sentence-level), document-level, or global

context. Local context approaches argue that sen-

tences mention entities, and the external knowledge

of entities, such as textual descriptions (Balachan-

dran et al., 2021; Wang et al., 2021b) and metadata

(Ostapenko et al., 2022), help LMs realize they are

more than tokens. Document-level approaches ar-

gue that core idea entities are repeatedly mentioned

throughout the document, while related concepts

might be discussed in different paragraphs. These

methods attempt to leverage entities and knowledge

across paragraphs with document graphs (Feng

et al., 2021; Zhang et al., 2022; Hu et al., 2021).

Global context approaches argue that unmentioned

yet connecting entities help connect the dots for

knowledge-based reasoning, thus knowledge graph

subgraphs are encoded with graph neural networks

alongside textual content (Zhang et al., 2021; Ya-

sunaga et al., 2021). However, despite their indi-

vidual pros and cons, how to integrate the three
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document contexts in a knowledge-aware way re-

mains an open problem.

Controlling for varying scopes of knowledge and

context representations could benefit numerous lan-

guage understanding tasks, especially those cen-

tered around long documents. Bounded by the

inherent limitation of input sequence length, exist-

ing knowledge-aware LMs are mostly designed to

handle short texts (Wang et al., 2021b; Zhang et al.,

2021). However, processing long documents con-

taining thousands of tokens (Beltagy et al., 2021)

requires attending to varying document contexts,

disambiguating long-distance co-referring entities

and events, and more.

In light of these challenges, we propose KALM,

a Knowledge-Aware Language Model for long

document understanding. Specifically, KALM first

derives three context- and knowledge-aware rep-

resentations from the long input document and

an external knowledge graph: the local context

represented as raw text, the document-level con-

text represented as a document graph, and the

global context represented as a knowledge graph

subgraph. KALM layers then encode each con-

text with context-specific layers, followed by our

proposed novel ContextFusion layers to enable

knowledge-rich information exchange across the

three knowledge-aware contexts. A unified docu-

ment representation is then derived from context-

specific representations that also interact with other

contexts. An illustration of the proposed KALM is

presented in Figure 1.

While KALM is a general method for long doc-

ument understanding, we evaluate the model on

six tasks and datasets that are particularly sensi-

tive to broader contexts and external knowledge:

political perspective detection, misinformation de-

tection, and roll call vote prediction. Extensive

experiments demonstrate that KALM outperforms

pretrained LMs, task-agnostic knowledge-aware

baselines, and strong task-specific baselines on all

six datasets. In ablation experiments, we further

establish KALM’s ability to enable information

exchange, better handle long documents, and im-

prove data efficiency. In addition, KALM and the

proposed ContextFusion layers reveal and help in-

terpret the roles and information exchange patterns

of different contexts.

2 KALM Methodology

2.1 Problem Definition

Let d = {d1, . . . ,dn} denote a document with

n paragraphs, where each paragraph contains a

sequence of ni tokens di = {wi1, . . . , wini
}.

Knowledge-aware long document understanding

assumes the access to an external knowledge graph

KG = (E ,R,A, ϵ, φ), where E = {e1, . . . , eN }
denotes the entity set, R = {r1, . . . , rM} de-

notes the relation set, A is the adjacency ma-

trix where aij = k indicates (ei, rk, ej) ∈ KG,

ϵ(·) : E → str and φ(·) : R → str map the entities

and relations to their textual descriptions.

Given pre-defined document labels, knowledge-

aware natural language understanding aims to learn

document representations and classify d into its

corresponding label with the help of KG.

2.2 Knowledge-Aware Contexts

We hypothesize that a holistic representation of

long documents should incorporate contexts and

relevant knowledge at three levels: the local context

(e.g., a sentence with descriptions of mentioned en-

tities), the broader document context (e.g., a long

document with cross-paragraph entity reference

structure), and the global/external context repre-

sented as external knowledge (e.g., relevant knowl-

edge base subgraphs). Each of the three contexts

uses different granularities of external knowledge,

while existing works fall short of jointly integrat-

ing the three types of representations. To this end,

KALM firstly employs different ways to introduce

knowledge in different levels of contexts.

Local context. Represented as the raw text of

sentences and paragraphs, the local context models

the smallest unit in long document understanding.

Prior works attempted to add sentence metadata

(e.g., tense, sentiment, topic) (Zhang et al., 2022),

adopt sentence-level pretraining tasks based on KG

triples (Wang et al., 2021b), or leverage knowledge

graph embeddings along with textual representa-

tions (Hu et al., 2021). While these methods were

effective, in the face of LM-centered NLP research,

they are ad-hoc add-ons and not fully compatible

with existing pretrained LMs. As a result, KALM

proposes to directly concatenate the textual descrip-

tions of entities ϵ(ei) to the paragraph if ei is men-

tioned. In this way, the original text is directly

augmented with the entity descriptions, informing

the LM that entities such as "Kepler" are more than
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K
(0) = {k

(0)
0 , . . . ,k

(0)
|ρ(d)|}

= {θrand,KGE(e1), . . . ,KGE(e|ρ(d)|)}

where KGE(·) denotes the knowledge graph em-

beddings trained on the original KG, |ρ(d)| indi-

cates the number of mentioned entities identified in

document d. We use TransE (Bordes et al., 2013)

to learn KB embeddings and use them for KGE(·),
while the knowledge base embeddings are kept

frozen in the KALM training process.

2.3 KALM Layers

After obtaining the local, document-level, and

global context representations of long documents,

we employ KALM layers to learn document repre-

sentations. Specifically, each KALM layer consists

of three context-specific layers to process each con-

text. A ContextFusion layer is then adopted to

enable the knowledge-rich information exchange

across the three contexts.

2.3.1 Context-Specific Layers

Local context layer. The local context is rep-

resented as a sequence of vectors extracted from

the knowledge-enriched text with the help of pre-

trained LMs. We adopt transformer encoder layers

(Vaswani et al., 2017) to encode the local context:

T̃
(ℓ)

= {t̃
(ℓ)
0 , . . . , t̃(ℓ)n }

= ϕ
(

TrmEnc({t
(ℓ)
0 , . . . , t(ℓ)n })

)

where ϕ(·) denotes non-linearity, TrmEnc denotes

the transformer encoder layer, and t̃
(ℓ)
0 denotes the

transformed representation of the fusion token. We

omit the layer subscript (ℓ) for brevity.

Document-level context layer. The document-

level context is represented as a document graph

based on knowledge coreference. To better exploit

the entity-based relations in the document graph,

we propose a knowledge-aware GNN architecture

to enable knowledge-guided message passing on

the document graph:

G̃ = {g̃0, . . . , g̃n = GNN
(

{g0, . . . ,gn}
)

where GNN(·) denotes the proposed knowledge-

guided graph neural networks as follows:

g̃i = ϕ
(

αi,iΘgi +
∑

j∈N (i)

Θgj

)

where αi,j denotes the knowledge-guided attention

weight and is defined as follows:

αi,j =
exp

(

ELU(aT [Θgi||Θgj ||Θf(KGE(agij))])

)

∑
k∈N (i) exp

(

ELU(aT [Θgi||Θgk||Θf(KGE(ag
ik
))])

)

where g̃0 denotes the transformed representation of

the fusion node, a and Θ are learnable parameters,

agij is the i-th row and j-th column value of adja-

cency matrix Ag of the document graph, ELU de-

notes the exponential linear unit activation function

(Clevert et al., 2015), and f(·) is a learnable linear

layer. Θf(KGE(agij)) is responsible for enabling

the knowledge-guided message passing on the doc-

ument graph, enabling KALM to incorporate the

entity and concept patterns in different paragraphs

and their document-level interactions.

Global context layer. The global context is repre-

sented as a relevant knowledge graph subgraph. We

follow previous works and adopt GATs (Veličković

et al., 2018) to encode the global context:

K̃ = {k̃0, . . . , k̃|ρ(d)|}

= GAT
(

{k0, . . . ,k|ρ(d)|}
)

where k̃0 denotes the transformed representation

of the fusion entity.

2.3.2 ContextFusion Layer

The local, document, and global contexts model

external knowledge within sentences, across the

document, and beyond the document. These con-

texts are closely connected and a robust long doc-

ument understanding method should reflect their

interactions. Existing approaches mostly leverage

only one or two of the contexts (Wang et al., 2021b;

Feng et al., 2021; Zhang et al., 2022), falling short

of jointly leveraging the three knowledge-aware

contexts. In addition, they mostly adopted direct

concatenation or MLP layers (Zhang et al., 2022,

2021; Hu et al., 2021), falling short of enabling

context-specific information to flow across con-

texts in a knowledge-rich manner. As a result, we

propose the ContextFusion layer to tackle these

challenges. We firstly take a local perspective and
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extract the representations of the fusion tokens,

nodes, and entities in each context:

[

tL,gL,kL

]

=
[

t̃0, g̃0, k̃0

]

We then take a global perspective and use

the fusion token/node/entity as the query to con-

duct attentive pooling ap(·, ·) across all other to-

kens/nodes/entities in each context:

[

tG,gG,kG

]

=
[

ap
(

t̃0, {t̃i}
n
i=1

)

,

ap
(

g̃0, {g̃i}
n
i=1

)

, ap
(

k̃0, {k̃i}
n
i=1

)

]

where attentive pooling ap(·, ·) is defined as:

ap
(

q, {ki}
n
i=1

)

=

n
∑

i=1

exp
(

q · ki

)

∑n
j=1 exp

(

q · kj

)ki

In this way, the fusion token/node/entity in each

context serves as the information exchange portal.

We then use a transformer encoder layer to enable

information exchange across the contexts:

[

t̃L, g̃L, k̃L, t̃G, g̃G, k̃G

]

= ϕ
(

TrmEnc
([

tL,gL,kL, tG,gG,kG

]))

As a result, t̃L, g̃L, and k̃L are the representa-

tions of the fusion token/node/entity that incorpo-

rates information from other contexts. We formu-

late the output of the l-th layer as follows:

T
(ℓ+1) = {t̃

(ℓ)
L , t̃

(ℓ)
1 , . . . , t̃(ℓ)n },

G
(ℓ+1) = {g̃

(ℓ)
L , g̃

(ℓ)
1 , . . . , g̃(ℓ)

n },

K
(ℓ+1) = {k̃

(ℓ)
L , k̃

(ℓ)
1 , . . . , k̃(ℓ)

n }

Our proposed ContextFusion layer is interactive

since it enables the information to flow across dif-

ferent document contexts, instead of direct concate-

nation or hierarchical processing. The attention

weights in TrmEnc(·) of the ContextFusion layer

could also provide insights into the roles and im-

portance of each document context, which will be

further explored in Section 3.3. To the best of

our knowledge, KALM is the first work to jointly

consider the three levels of document context and

enable information exchange across document con-

texts.

2.4 Learning and Inference

After a total of P KALM layers, we obtain the fi-

nal document representation as
[

t̃
(P)
L , g̃

(P)
L , k̃

(P)
L

]

.

Given the document label a ∈ A, the la-

bel probability is formulated as p(a|d) ∝

exp
(

MLPa([t̃
(P)
L , g̃

(P)
L , k̃

(P)
L ])

)

. We then opti-

mize KALM with the cross entropy loss func-

tion. At inference time, the predicted label is

argmaxap(a|d).

3 Experiment

3.1 Experiment Settings

Tasks and Datasets. We propose KALM, a gen-

eral method for knowledge-aware long document

understanding. We evaluate KALM on three tasks

that especially benefit from external knowledge

and broader context: political perspective detec-

tion, misinformation detection, and roll call vote

prediction. We follow previous works to adopt Se-

mEval (Kiesel et al., 2019) and Allsides (Li and

Goldwasser, 2019) for political perspective detec-

tion, LUN (Rashkin et al., 2017) and SLN (Rubin

et al., 2016) for misinformation detection, and the

2 datasets proposed in Mou et al. (2021) for roll

call vote prediction. For external KGs, we follow

existing works to adopt the KGs in KGAP (Feng

et al., 2021), CompareNet (Hu et al., 2021), and

ConceptNet (Speer et al., 2017) for the three tasks.

Baseline methods. We compare KALM with

three types of baseline methods for holistic evalu-

ation: pretrained LMs, task-agnostic knowledge-

aware methods, and task-specific models. For pre-

trained LMs, we evaluate RoBERTa (Liu et al.,

2019b), Electra (Clark et al., 2019), DeBERTa (He

et al., 2020), BART (Lewis et al., 2020), and Long-

Former (Beltagy et al., 2020) on the three tasks.

For task-agnostic baselines, we evaluate KGAP

(Feng et al., 2021), GreaseLM (Zhang et al., 2021),

and GreaseLM+ on the three tasks. Task-specific

models are introduced in the following sections.

For pretrained LMs, task-agnostic methods, and

KALM, we run each method five times and report

the average performance and standard deviation.

For task-specific models, we compare with the re-

sults originally reported since we follow the exact

same experiment settings and data splits.

3.2 Model Performance

We present the performance of task-specific meth-

ods, pretrained LMs, task-agnostic knowledge-
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Table 1: Model performance on three tasks and six datasets. Acc, MaF, miF, and BAcc denote accuracy, macro-

averaged F1-score, micro-averaged F1-score, and balanced accuracy. Best performance is shown in bold. Certain

task-specific models did not report standard deviation in the original paper.

Task Dataset Metric Task SOTA Best LM
Knowledge-Aware LMs

KALM
KELM KnowBERT Joshi et al. KGAP GreaseLM GreaseLM+

PDD
SemEval

Acc 89.90 (±0.6) 86.99 (±1.9) 86.40 (±2.3) 84.73 (±3.4) 81.88 (±2.1) 87.73 (±1.8) 86.64 (±1.5) 85.66 (±1.8) 91.45 (±0.8)
MaF 86.11 (±1.1) 80.62 (±3.8) 83.98 (±1.0) 75.72 (±5.3) 77.15 (±3.8) 82.00 (±3.1) 80.32 (±3.0) 77.23 (±4.1) 87.65 (±1.2)

Allsides
Acc 87.17 (±0.2) 68.71 (±4.3) 80.71 (±2.4) 60.56 (±0.7) 80.88 (±2.1) 83.65 (±1.3) 80.23 (±1.2) 82.16 (±5.5) 87.26 (±0.2)
MaF 86.72 (±0.3) 65.39 (±5.7) 79.74 (±2.7) 58.81 (±0.5) 79.73 (±2.3) 82.92 (±1.4) 79.17 (±1.2) 80.81 (±7.1) 86.79 (±0.2)

MD
SLN

MiF 89.17 88.17 (±0.6) 84.11 (±0.6) 78.67 (±3.2) 82.72 (±5.1) 92.17 (±1.2) 73.83 (±0.9) 88.17 (±0.8) 94.22 (±1.2)
MaF 89.12 88.46 (±4.9) 82.80 (±1.3) 79.80 (±2.0) 83.98 (±3.7) 92.30 (±0.9) 75.20 (±0.8) 88.64 (±0.6) 94.18 (±1.1)

LUN
MiF 69.05 60.10 (±1.7) 59.28 (±2.1) 59.66 (±1.1) 58.57 (±3.4) 65.52 (±2.3) 56.54 (±1.5) 64.29 (±2.4) 71.28 (±1.7)
MaF 68.26 58.57 (±2.1) 57.30 (±1.6) 59.19 (±1.3) 56.73 (±4.0) 63.94 (±2.9) 55.75 (±1.6) 62.65 (±3.7) 69.82 (±1.2)

RCVP
Random

BAcc 90.33 89.94 (±0.2) 89.13 (±1.1) 86.72 (±0.9) 92.43 (±0.5) 77.98 (±0.5) 89.99 (±1.5) 91.01 (±0.2) 92.36 (±0.4)
MaF 84.92 86.10 (±0.7) 84.76 (±2.0) 79.33 (±2.4) 89.64 (±0.6) 68.11 (±6.0) 84.72 (±3.0) 87.29 (±0.3) 89.33 (±0.4)

Time-based
BAcc 89.92 90.40 (±0.8) 90.80 (±0.2) 87.07 (±0.9) 92.63 (±1.6) 77.90 (±0.6) 88.21 (±2.7) 91.69 (±0.1) 94.46 (±0.4)
MaF 84.35 85.21 (±2.1) 86.62 (±0.4) 78.90 (±1.9) 89.31 (±2.4) 70.81 (±4.6) 79.73 (±7.4) 87.95 (±0.3) 91.97 (±0.5)

Table 2: Ablation study of the three document contexts and the ContextFusion layer. Best performance is shown in

bold. The local, document, and global contexts all contribute to model performance, while the ContextFusion layer

is better than existing strategies at enabling information exchange across contexts.

Task Dataset Metric
Ours Remove Context Substitute ContextFusion

KALM w/o local w/o document w/o global MInt concat sum

PDD
SemEval

Acc 91.45 (±0.8) 83.55 (±0.8) 83.57 (±1.1) 84.11 (±0.9) 81.91 (±0.9) 83.52 (±1.8) 83.21 (±1.0)
MaF 87.65 (±1.2) 74.25 (±1.3) 76.13 (±2.0) 74.92 (±1.8) 70.47 (±3.6) 74.27 (±4.0) 73.59 (±2.1)

Allsides
Acc 87.26 (±0.2) 83.72 (±4.0) 82.88 (±5.1) 80.59 (±6.3) 83.08 (±4.0) 83.27 (±4.2) 83.50 (±3.5)
MaF 86.79 (±0.2) 83.10 (±4.2) 81.86 (±6.2) 78.98 (±8.1) 82.39 (±4.2) 82.28 (±5.3) 82.64 (±4.0)

MD
SLN

MiF 94.22 (±1.2) 80.94 (±5.5) 83.50 (±5.7) 83.94 (±4.7) 86.33 (±2.1) 82.67 (±9.2) 79.89 (±6.3)
MaF 94.18 (±1.1) 82.95 (±4.4) 85.55 (±4.4) 85.65 (±3.4) 86.79 (±1.9) 85.26 (±6.2) 82.71 (±4.1)

LUN
MiF 71.28 (±1.7) 41.13 (±5.8) 50.18 (±6.3) 57.94 (±4.1) 48.78 (±6.3) 53.52 (±6.5) 63.27 (±4.0)
MaF 69.82 (±1.2) 35.95 (±7.3) 47.27 (±7.3) 55.58 (±4.6) 44.11 (±9.0) 48.98 (±7.9) 61.86 (±4.4)

RCVP
Random

BAcc 92.36 (±0.3) 91.29 (±2.4) 91.35 (±0.4) 91.34 (±0.5) 92.14 (±0.5) 91.82 (±0.8) 91.18 (±1.5)
MaF 89.33 (±0.4) 88.16 (±2.5) 87.81 (±0.8) 88.50 (±0.4) 89.35 (±0.7) 89.01 (±1.0) 88.19 (±1.6)

Time-based
BAcc 94.46 (±0.4) 93.58 (±1.4) 93.47 (±0.5) 93.91 (±0.5) 93.06 (±1.7) 92.37 (±2.2) 93.06 (±1.0)
MaF 91.97 (±0.5) 90.60 (±2.1) 90.73 (±0.6) 91.29 (±0.5) 90.06 (±2.4) 88.56 (±4.5) 90.21 (±1.1)

aware baselines, and KALM in Table 1. We select

the best-performing task-specific baseline (Task

SOTA) and pretrained language model (BestLM),

while the full results are available in Tables 4, 5,

and 6 in the appendix. Table 1 demonstrates that:

• KALM consistently outperforms all task-specific

models, pretrained language models, and

knowledge-aware methods on all three tasks and

six datasets/settings. Statistical significance tests

in Section A.4 further demonstrates KALM’s su-

periority over existing models.

• Knowledge-aware LMs generally outperform

pretrained LMs, which did not incorporate exter-

nal knowledge bases in the pretraining process.

This suggests that incorporating external knowl-

edge bases could enrich document representa-

tions and boost downstream task performance.

• GreaseLM+ outperforms GreaseLM by adding

the global context, which suggests the impor-

tance of jointly leveraging the three document

contexts. KALM further introduces information

exchange across contexts through the Context-

Fuion layer and achieves state-of-the-art perfor-

mance. We further investigate the importance of

three document contexts and the ContextFusion

layer in Section 2.3.2.

3.3 Context Exchange Study

By jointly modeling three document contexts and

employing the ContextFusion layer, KALM facil-

itates information exchange across the three doc-

ument contexts. We conduct an ablation study to

examine whether the contexts and the ContextFu-

sion layer are essential in the KALM architecture.

Specifically, we remove the three contexts one at a

time and change the ContextFusion layer into MInt

(Zhang et al., 2021), concatenation, and sum. Table

2 demonstrates that:

• All three levels of document contexts, local, doc-

ument, and global, contribute to model perfor-

mance. These results substantiate the necessity

of jointly leveraging the three document contexts

for long document understanding.

• When substituting our proposed ContextFusion
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knowledge graphs for long document understand-

ing without using entity linking tools.

Ethics Statement

KALM is a knowledge-aware long document un-

derstanding approach that jointly leverages pre-

trained LMs and knowledge graphs on three levels

of contexts. Consequently, KALM might exhibit

many of the biases of the adopted language models

(Liang et al., 2021; Nadeem et al., 2021) and knowl-

edge graphs (Fisher et al., 2020, 2019; Mehrabi

et al., 2021; Du et al., 2022; Keidar et al., 2021).

As a result, KALM might leverage the biased and

unethical correlations in LMs and KGs to arrive

at conclusions. We encourage KALM users to au-

dit its output before using it beyond the standard

benchmarks. We leave it to future work on how to

leverage knowledge graphs in pretrained LMs with

a focus on fairness and equity.
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A Additional Experiments

A.1 Context Exchange Study (cont.)

In Section 3.3, we conducted an ablation study of

the three knowledge-aware contexts and explored

how the ContextFusion layer enables the interpre-

tation of context contribution and information ex-

change patterns. It is demonstrated that the three

contexts play different roles with respect to datasets

and KALM layers. In addition, we explore whether

the role and information exchange patterns of con-

texts change when the training progresses. Fig-

ure 5 illustrates the results with respect to training

epochs, which shows that the attention matrices

started out dense and ended sparse, indicating that

the role of different contexts is gradually developed

through time.

A.2 Long Document Study (cont.)

We present error analysis with respect to docu-

ment length and knowledge intensity on more

baseline methods, including language models

(RoBERTa, BART, LongFormer), knowledge-

aware LMs (KGAP, GreaseLM, GreaseLM+), and

our proposed KALM in Figure 6. Our conclusion

still holds true: KALM successfully improves per-

formance on documents that are longer and contain

more external knowledge, which are positioned in

the top-right corner of the figure.

A.3 Manual Error Analysis

We manually examined 20 news articles from

the LUN misinformation detection dataset where

KALM made a mistake. Several news articles fo-

cused on the same topic of marijuana legalization,

and some others focused on international affairs

such as the conflict in Iraq. These articles feature

entities and knowledge that are much more recent
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Sample ID Example Sentences

1853
... the legalization of recreational marijuana ... has created new markets for pot-infused products ...

... children who were taken to emergency departments due to accidental THC ingestion ...

1169
Mr. Kerry met with Iraqi foreign minister Hoshyar Zebari about providing help in fighting the ISIS jihadists ...

... territory north and north-east of Baghdad where the predominantly Sunni militants have penetrated within ...

Table 3: Example sentences in the articles where KALM made a mistake. Emerging entities that are not covered by

existing knowledge graphs are in bold.

Table 4: Model performance on the task of political perspective detection.

Baseline
SemEval Allsides

Acc MaF Acc MaF

task
specific

HLSTM 81.71 / 76.45 74.95
MAN 86.21 84.33 85.00 84.25
KCD 89.90 (±0.6) 86.11 (±1.1) 87.17 (±0.2) 86.72 (±0.3)

language

model

RoBERTa 85.56 (±1.6) 77.94 (±3.5) 68.71 (±4.3) 65.39 (±5.7)
Electra 78.87 (±2.8) 62.85 (±7.9) 63.14 (±2.3) 58.24 (±3.8)
DeBERTa 86.99 (±1.9) 80.62 (±3.8) 67.86 (±4.3) 63.50 (±5.9)
BART 86.62 (±1.5) 79.87 (±2.6) 60.56 (±3.8) 54.64 (±5.4)
LongFormer 82.81 (±2.3) 73.09 (±4.5) 62.88 (±3.0) 58.03 (±4.6)

task
agnostic

KELM 86.40 (±2.3) 83.98 (±1.0) 80.71 (±2.4) 79.74 (±2.7)
KnowBERT-Wordnet 81.71 (±5.5) 72.28 (±6.7) 60.54 (±0.4) 58.77 (±0.6)
KnowBERT-Wikidata 76.72 (±3.0) 66.21 (±5.0) 60.56 (±0.7) 58.81 (±0.5)
KnowBERT-W+W 84.73 (±3.4) 75.72 (±5.3) 60.44 (±0.3) 58.46 (±0.5)
Joshi et al. 81.88 (±2.1) 77.15 (±3.8) 80.88 (±2.1) 79.73 (±2.3)
KGAP 87.73 (±1.8) 82.00 (±3.1) 83.65 (±1.3) 82.92 (±1.4)
GreaseLM 86.64 (±1.5) 80.32 (±3.0) 80.23 (±1.2) 79.17 (±1.2)
GreaseLM+ 85.66 (±1.8) 77.23 (±4.1) 82.16 (±5.5) 80.81 (±7.1)
KALM (Ours) 91.45 (±0.8) 87.65 (±1.2) 87.26 (±0.2) 86.79 (±0.2)

B Experiment Details

B.1 Dataset Details

We present important dataset details in Table 7. We

follow the exact same dataset settings and splits in

previous works (Zhang et al., 2022; Hu et al., 2021;

Feng et al., 2022a) for fair comparison.

B.2 Baseline Details

We compare KALM with pretrained language

models, task-specific baselines, and task-agnostic

knowledge-aware methods to ensure a holistic eval-

uation. In the following, we provide a brief de-

scription of each of the baseline methods. We also

highlight whether one approach leverages knowl-

edge graphs and the three document contexts in

Table 9.

• HLSTM (Yang et al., 2016) is short for hier-

archical long short-term memory networks. It

was used in previous works (Li and Goldwasser,

2019, 2021) for political perspective detection.

• MAN (Li and Goldwasser, 2021) proposes to

leverage social and linguistic information to de-

sign pretraining tasks and fine-tune on the task

of political perspective detection.

• KCD (Zhang et al., 2022) proposes to leverage

multi-hop knowledge reasoning with knowledge

walks and textual cues with document graphs for

political perspective detection.

• Rubin et al. (2016) proposes the SLN dataset

and leverages satirical cues for misinformation

detection.

• Rashkin et al. (2017) proposes the LUN dataset

and argues that misinformation detection should

have more fine-grained labels than true or false.

• GCN (Welling and Kipf, 2016) and GAT

(Veličković et al., 2018) are leveraged along with

the attention mechanism by Hu et al. (2021) for

misinformation detection on graphs.

• CompareNet (Hu et al., 2021) proposes to lever-

age knowledge graphs and compare the textual
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Table 5: Model performance on the task of misinformation detection.

Baseline
SLN LUN

MiF MaPrecision MaRecall MaF MiF MaPrecision MaRecall MaF

task
specific

Rubin et al. / 88.00 82.00 / / / / /
Rashkin et al. / / / / / / / 65.00
GCN + Attn 85.27 85.59 85.27 85.24 67.08 68.60 67.00 66.42
GAT + Attn 84.72 85.65 84.72 84.62 66.95 68.05 66.86 66.37
CompareNet 89.17 89.82 89.17 89.12 69.05 72.94 69.04 68.26

language

model

RoBERTa 88.17 (±0.6) 89.02 (±1.8) 88.17 (±0.6) 87.34 (±1.2) 59.09 (±1.7) 62.49 (±2.6) 59.11 (±1.6) 55.52 (±1.5)
Electra 75.44 (±2.2) 83.22 (±0.6) 75.44 (±2.2) 67.53 (±4.1) 60.10 (±1.7) 63.26 (±1.2) 60.11 (±1.7) 58.57 (±2.1)
DeBERTa 86.89 (±6.6) 89.43 (±3.7) 86.89 (±6.6) 88.46 (±4.9) 57.62 (±3.1) 64.03 (±0.9) 57.63 (±3.1) 52.24 (±5.3)
BART 86.06 (±0.6) 86.13 (±0.5) 86.06 (±0.6) 86.12 (±0.6) 59.05 (±2.2) 60.89 (±4.5) 59.07 (±2.2) 54.18 (±2.8)
LongFormer 88.00 (±2.5) 88.84 (±1.5) 87.44 (±2.5) 86.29 (±3.4) out-of-memory

task
agnostic

KELM 84.11 (±0.6) 85.23 (±0.7) 84.11 (±0.6) 82.80 (±1.3) 59.28 (±2.1) 61.09 (±2.8) 59.29 (±2.1) 57.30 (±1.6)
KnowBERT-Wordnet 74.72 (±3.3) 77.22 (±1.8) 74.72 (±3.3) 72.74 (±8.5) 55.63 (±1.8) 56.29 (±2.0) 55.63 (±1.8) 55.02 (±1.7)
KnowBERT-Wikidata 72.17 (±2.5) 73.57 (±0.6) 72.17 (±2.5) 69.41 (±6.9) 57.57 (±0.5) 57.27 (±0.6) 57.57 (±0.5) 56.76 (±0.6)
KnowBERT-W+W 78.67 (±3.2) 79.36 (±3.1) 78.67 (±3.2) 79.80 (±0.9) 65.52 (±2.3) 67.50 (±1.6) 65.53 (±2.3) 63.94 (±2.0)
Joshi et al. 92.72 (±5.1) 84.95 (±2.8) 83.37 (±5.2) 83.98 (±3.7) 58.57 (±3.4) 62.56 (±4.0) 58.59 (±3.4) 56.73 (±4.0)
KGAP 92.17 (±1.2) 92.67 (±0.9) 92.17 (±1.2) 92.30 (±0.9) 65.52 (±2.3) 67.50 (±1.6) 65.53 (±2.3) 63.94 (±2.9)
GreaseLM 73.83 (±0.9) 74.33 (±0.8) 73.83 (±0.9) 75.20 (±0.8) 56.54 (±1.5) 58.12 (±2.7) 56.55 (±1.5) 55.75 (±1.6)
GreaseLM+ 88.17 (±0.8) 88.56 (±0.6) 88.17 (±0.8) 88.64 (±0.6) 64.29 (±2.4) 65.13 (±2.7) 64.31 (±2.4) 62.65 (±3.7)
KALM (Ours) 94.22 (±1.2) 94.33 (±1.1) 94.22 (±1.1) 94.18 (±1.1) 71.28 (±1.7) 72.33 (±2.7) 71.29 (±1.7) 69.82 (±1.2)

Table 6: Model performance on the task of roll call vote prediction.

Baseline
Random Time-Based

BAcc MaF BAcc MaF

task
specific

ideal-point 86.46 80.02 / /
ideal-vector 87.35 80.15 81.95 75.49
Vote 90.22 84.92 89.76 84.35
PAR 90.33 / 89.92 /

language

model

RoBERTa 89.94 (±0.2) 86.10 (±0.7) 90.40 (±0.8) 84.78 (±2.2)
Electra 87.47 (±0.3) 80.23 (±0.7) 88.92 (±0.4) 82.50 (±1.7)
DeBERTa 86.98 (±0.4) 80.07 (±1.2) 88.59 (±0.1) 81.38 (±1.0)
BART 89.76 (±0.5) 85.52 (±0.6) 90.25 (±0.6) 85.21 (±2.1)
LongFormer 88.69 (±0.4) 83.52 (±1.2) 89.32 (±1.4) 83.42 (±3.8)

task
agnostic

KELM 89.13 (±1.1) 84.76 (±2.0) 90.80 (±0.2) 86.62 (±0.4)
KnowBERT-Wordnet 86.72 (±0.9) 79.33 (±2.4) 86.92 (±0.6) 78.90 (±1.9)
KnowBERT-Wikidata 85.98 (±0.8) 78.48 (±1.0) 86.45 (±0.5) 78.21 (±0.7)
KnowBERT-W+W 85.75 (±1.0) 78.70 (±2.4) 87.07 (±1.0) 78.42 (±2.2)
Joshi et al. 91.43 (±0.5) 89.64 (±0.6) 92.63 (±1.6) 89.31 (±2.4)
KGAP 77.98 (±0.5) 68.11 (±6.0) 77.90 (±0.6) 70.81 (±4.6)
GreaseLM 89.99 (±1.5) 84.72 (±3.0) 88.21 (±2.7) 79.73 (±7.4)
GreaseLM+ 91.01 (±0.2) 87.29 (±0.3) 91.69 (±0.1) 87.95 (±0.3)
KALM (Ours) 92.36 (±0.3) 89.33 (±0.4) 94.46 (±0.4) 91.97 (±0.5)

content to external knowledge for misinforma-

tion detection.

• Ideal-point (Gerrish and Blei, 2011) and ideal-

vector (Kraft et al., 2016) propose to use 1d and

2d representations of political actors for roll call

vote prediction.

• Vote (Mou et al., 2021) proposes to jointly lever-

age legislation text and the social network infor-

mation for roll call vote prediction.

• PAR (Feng et al., 2022a) proposes to learn leg-

islator representations with social context and

expert knowledge for roll call vote prediction.

• RoBERTa (Liu et al., 2019b), Electra (Clark

et al., 2019), DeBERTa (He et al., 2020), BART

(Lewis et al., 2020), and LongFormer (Beltagy

et al., 2020) are pretrained language models.

We use the pretrained weights roberta-base,

electra-small-discriminator, deberta-v3-base,

bart-base, and longformer-base-4096 in Hug-

gingface Transformers (Wolf et al., 2020) to

extract sentence representations, average across

the whole document, and classify with softmax

layers.

• KELM (Agarwal et al., 2021) proposes to gener-

ate synthetic pretraining corpora based on struc-

tured knowledge bases. In this paper, we further

pretrained the roberta-base checkpoint on the

KELM synthetic corpus and report performance
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Task Dataset # Document # Class Class Distribution Document Length Originally Proposed In

PPD
SemEval 645 2 407 / 238 793.00 ± 736.93 Kiesel et al. (2019)

Allsides 10,385 3 4,164 / 3,931 / 2,290 1316.81 ± 2978.71 Li and Goldwasser (2019)

MD
SLN 360 2 180 / 180

551.32 ± 661.82
Rubin et al. (2016)

LUN 51,854 4 10,745 / 14,797 / 7,692 / 18,620 Rashkin et al. (2017)

RCVP
random

1,155 2 304,655 / 95,464 653.94 ± 424.32 Mou et al. (2021)
time-based

Table 7: Dataset statistics. The number of long documents and class distribution does not add up for RCVP since

multiple legislators vote on the same legislation.

Hyperparameter
PPD MD RCVP

SemEval Allsides SLN LUN random time-based

max epochs 50 25 3 5 100

optimizer RAdam (Liu et al., 2019a)

seed LM BART (Lewis et al., 2020)

KB embedding TransE (Bordes et al., 2013)

dimension of hidden layers 512 512 128

learning rate 1e-3 1e-3 1e-4

weight decay 1e-5 1e-5 1e-5

# KALM layers 2 2 2

# attention heads 8 8 8

dropout 0.5 0.5 0.5

batch size 16 16 4

Table 8: Hyperparameter settings of KALM.

on downstream tasks.

• KnowBERT (Peters et al., 2019) is one of the

first works to leverage external knowledge bases

to enrich language representations. We used the

three pretrained models, KnowBERT-Wordnet,

KnowBERT-Wikidata, and KnowBERT-W+W

for document representation extraction and report

performance on downstream tasks.

• Joshi et al. (2020) proposes to learn contex-

tualized language representations by adding

Wikipedia text to the input sequences and jointly

learning text representations. This is similar

to KALM’s setting with only the local context,

where Wikipedia descriptions of entities are con-

catenated to input texts.

• KGAP (Feng et al., 2021) proposes to construct

document graphs to jointly encode textual con-

tent and external knowledge. Gated relational

graph convolutional networks are then adopted

for document representation learning.

• GreaseLM (Zhang et al., 2021) proposes to en-

code textual content with language model layers,

encode knowledge graph subgraphs with graph

neural networks and KG embeddings, and adopt

MInt layers to fuse the two for question answer-

ing. In this paper, we implement GreaseLM by

using MInt layers to fuse the local and global

contexts.

• GreaseLM+ is our extended version of

GreaseLM, which adds the document-level con-

text while keeping the original MInt layer instead

of our proposed ContextFusion layer.

• KALM is our proposed approach for knowledge-

aware long document understanding. It jointly

infuses the local, document-level, and global con-

texts with external knowledge graphs and adopts

ContextFusion layers to derive an overarching

document representation.

B.3 Evaluation Metrics Details

We adopted these evaluation metrics throughout

the paper: Acc (accuracy), MaF (macro-averaged

F1-score), MiF (micro-averaged F1-score), Ma-

Precision (macro-averaged precision), MaRecall
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Table 9: Checklist of whether baselines leverage knowledge graphs and the three document contexts.

Baseline Knowledge Local Document Global

task
specific

HLSTM (Yang et al., 2016) ✗ ✓ ✓ ✗

MAN (Li and Goldwasser, 2021) ✗ ✓ ✓ ✗

KCD (Zhang et al., 2022) ✓ ✓ ✓ ✗

Rubin et al. (2016) ✗ ✓ ✓ ✗

Rashkin et al. (2017) ✗ ✓ ✓ ✗

GCN + Attn (Welling and Kipf, 2016) ✓ ✓ ✓ ✗

GAT + Attn (Veličković et al., 2018) ✓ ✓ ✓ ✗

CompareNet (Hu et al., 2021) ✓ ✓ ✓ ✗

ideal-point (Gerrish and Blei, 2011) ✗ ✓ ✗ ✗

ideal-vector (Kraft et al., 2016) ✗ ✓ ✗ ✗

Vote (Mou et al., 2021) ✗ ✓ ✓ ✗

PAR (Feng et al., 2022a) ✓ ✓ ✓ ✗

language

model

RoBERTa (Liu et al., 2019b) ✗ ✓ ✗ ✗

Electra (Clark et al., 2019) ✗ ✓ ✗ ✗

DeBERTa (He et al., 2020) ✗ ✓ ✗ ✗

BART (Lewis et al., 2020) ✗ ✓ ✗ ✗

LongFormer (Beltagy et al., 2020) ✗ ✓ ✓ ✗

task
agnostic

KELM (Agarwal et al., 2021) ✓ ✓ ✗ ✗

KnowBERT (Peters et al., 2019) ✓ ✓ ✗ ✗

Joshi et al. (2020) ✓ ✓ ✗ ✗

KGAP (Feng et al., 2021) ✓ ✗ ✓ ✗

GreaseLM (Zhang et al., 2021) ✓ ✓ ✗ ✓

GreaseLM+ (ours) ✓ ✓ ✓ ✓

KALM (ours) ✓ ✓ ✓ ✓

(macro-averaged recall), and BAcc (balanced ac-

curacy). These metrics are chosen based on which

metrics are used in previous works regarding the

three tasks.

B.4 Hyperparameter Details

We present KALM’s hyperparameter settings in

Table 8. We conduct hyperparameter searches for

different datasets and report the best setups.

B.5 Where did the numbers come from?

For task-specific baselines, we directly use the re-

sults reported in previous works (Zhang et al., 2022;

Hu et al., 2021; Feng et al., 2022a) since we follow

the same experiment settings and the comparison

is thus fair. For pretrained LMs and task-agnostic

baselines, we run each method five times with dif-

ferent random seeds and report the average perfor-

mance as well as standard deviation. Figure 4 is

an exception, where we only run each method one

time due to computing constraints.

B.6 More experiment details

We provide more details about the experiments that

are worth further explaining.

• Table 6: We implement pretrained LMs and task-

agnostic baselines for roll call vote prediction by

using them to learn representations of legislation

texts, concatenate them with the legislator repre-

sentations learned with PAR (Feng et al., 2022a),

and adopt softmax layers for classification.

• Table 2: We remove each context by only apply-

ing ContextFusion layers to the other two context

representations. We follow the implementation

of MInt described in Zhang et al. (2021). We im-

plement concat and sum by using the concatena-

tion and summation of the three context represen-

tations as the overall document representation.

• Figure 2: The multi-head attention in the Context-

Fusion layer provides a 6 × 6 attention weight

matrix indicating how information flowed across

different contexts. The six rows (columns) stand

for the local view of the local context, the global

view of the local context, the local view of the

document-level context, the global view of the

document-level context, the local view of the

global context, and the global view of the global

context, which are described in detail in Section
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2.3.2. The values in each square are the average

of the absolute values of the attention weights

across all data samples in the validation set.

B.7 Computational Resources Details

We used a GPU cluster with 16 NVIDIA A40

GPUs, 1,988G memory, and 104 CPU cores for

the experiments. Running KALM with the best pa-

rameters takes approximately 1.5, 16, 3, 4, 1, and

1 hour(s) for the six datasets (SemEval, Allsides,

SLN, LUN, random, time-based).

B.8 Scientific Artifact Details

KALM is built with the help of many existing sci-

entific artifacts, including TagMe (Ferragina and

Scaiella, 2011), pytorch (Paszke et al., 2019), py-

torch lightning (Falcon and The PyTorch Lightning

team, 2019), transformers (Wolf et al., 2020), py-

torch geometric (Fey and Lenssen, 2019), sklearn

(Pedregosa et al., 2011), numpy (Harris et al.,

2020), nltk (Bird et al., 2009), OpenKE (Han et al.,

2018), and the three adopted knowledge graphs

(Feng et al., 2021; Hu et al., 2021; Speer et al.,

2017). We commit to make our code and data

publicly available upon acceptance to facilitate re-

production and further research.
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