


2 Methodology

We now discuss our methodology. For simplic-

ity, in this section, let us assume a multi-reference

translation dataset, where each sample has two ref-

erence translations produced by human translators,

denoted by Ref-A and Ref-B. We will generalize

our methodology to other tasks in §3.

We begin by computing a “base” metric score

by considering Ref-A as hypotheses and Ref-B as

references. Since Ref-A is produced by human

translators, we assume that it is less likely to con-

tain translation errors than machine-generated text,

and it should be assigned a high score by the metric.

Due to these two assumptions, and to disambiguate

from the reference set (Ref-B), we term Ref-A as

the gold hypothesis set.

For each test, we apply a synthesized error type

(e.g., truncation) to the gold hypothesis set to con-

struct a noised hypothesis set. We make sure that

the amount or type of induced errors is sufficient

to be distinctive from the original gold hypothesis

(to be detailed in §5). The source texts and the

references are left intact.

To determine whether a metric passes a test, a

simple rank-based protocol is used: We claim that

the metric fails the test for this dataset if the noised

hypothesis set is not scored worse than the base

score (from the gold set).1 This rank-based pro-

tocol can be easily extended to the comparison of

different gradations of the same noise type (con-

trolled by hyper-parameters). For example, a 20%-

truncation is expected to rank lower than a 10%-

truncation, as more information is lost.

3 Tasks and Datasets

Our tests cover three ubiquitous text generation

tasks: open-ended generation, translation, and sum-

marization. We now describe the dataset used for

each task and the setting for gold hypotheses.

For open-ended generation, we use the WikiText-

103 dataset (Merity et al., 2016). We randomly

select 2000 paragraphs of length around 256 to-

kens from the dataset (preprocessing detailed in Ap-

pendix B.2). The samples typically contain seven

or eight sentences. We divide them into two sets

with 1000 samples each, and set one as the refer-

ences and the other as the gold hypotheses. The

reference set is only used for the MAUVE metric

(more details given in Appendix A).

1As we will introduce in §4, all metrics except MAUVE
are sample-level, and we compare the average score assigned
to the gold/noised hypothesis set.

For summarization, we use the popular CNN-

Dailymail (CNNDM) dataset (Hermann et al.,

2015). Kryscinski et al. (2020) collected 10 addi-

tional human-annotated summaries (different from

the original reference summary) for each of 100

samples in the test set. We set the CNNDM refer-

ence summaries to be the gold hypotheses, and use

these 10 annotations as references. Correspond-

ingly, the multi-reference version of metrics are

used. The gold hypotheses typically contain three

sentences.

For translation, we use the evaluation dataset

from the WMT21 metrics shared task (Akhbardeh

et al., 2021). We only use the source text and

reference translations. We report results on the

German-English (De-En) language pair, which con-

tains 1000 translation pairs. There are two human-

translated references (human-A and human-B) for

each sample. We use human-A as the gold hypoth-

esis and human-B as the reference. We also repeat

key experiments on the Chinese-English (Zh-En)

data and obtain very similar observations. There-

fore, we omit the Zh-En results for brevity.

Most samples in WMT only contain one sen-

tence, which makes some of our tests impossible

(e.g., sentence switching). For this reason, we build

a paragraph-level translation dataset based on the

Zh-En part of the TED-Talks task (Duh, 2018).

It contains 100 samples, where each sample has

two human-translated references and on average

contains 7 sentences. We name this dataset as TED-

MT, and discuss how we build it in Appendix B.1.

4 Metrics

For open-ended text generation, we test MAUVE

(Pillutla et al., 2021), GPT-PPL and MLM-PPL

(Salazar et al., 2020). We report the negated

GPT/MLM-PPL so that all metric scores are the

higher the better.

MAUVE is a reference-based metric computed

using contextualized embeddings from PLMs. We

explore MAUVE with GPT2-large, RoBERTa-

large, and ELECTRA-large (Clark et al., 2020)

features. In Pillutla et al. (2021), the exploration

is centered around the GPT-2 feature. However, in

this work we find the choice of feature has a crucial

impact on the metric’s robustness.

GPT-PPL denotes perplexity from the GPT2-

large (Radford et al., 2019) model. MLM-PPL

is the masked language model perplexity from a

RoBERTa-large model (Liu et al., 2019). We use a

definition similar to the formulation in Salazar et al.
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Blind Spot Section Affected Metrics (and Variant)

positioned error §5.1 MAUVE (-GPT2)
injection §5.2 UniEval (-rel/-overall)

high-freq n-gram §5.3 GPT-PPL, MLM-PPL
self-evaluation §5.4 GPT-PPL, BARTScore (-faithful)

truncation §5.5, App. I BERTScore (-p/-f), BARTScore (-p/-f/-faithful), COMET-QE, PRISM-QE,
ROUGE (-2/-L), MAUVE (-GPT2), UniEval (-overall)

sentence switching §5.5 MAUVE (-GPT2/-RoBERTa), BARTScore (-r)
copy-source App. D COMET-QE, BARTSc (-r/-f/-faithful), BERTSc (-r), UniEval (-overall)
repetition App. E GPT-PPL, MLM-PPL, BARTScore (all variants)

BERT-diverge App. I COMET-QE
article removal App. I COMET-QE

noised punctuation App. I BARTScore (-r), ROUGE (-2/-L)
a few other fluency errors App. I BARTScore (-r)

Table 1: A catalogue of the blind spots identified in this work for various metrics. Some of the tests are deferred to

appendix to save space.

(2020) and provide details in Appendix A.

For translation and summarization, we test

BERTScore (Zhang et al., 2020), MoverScore

(Zhao et al., 2019), BARTScore (Yuan et al., 2021),

UniEval (Zhong et al., 2022), COMET (Rei et al.,

2020), PRISM (Thompson and Post, 2020), and

BLEURT (Sellam et al., 2020). Among these met-

rics, PRISM and BLEURT are only applied for

translation, and UniEval is only applied for summa-

rization. While COMET was originally proposed

for translation, Kasai et al. (2022b) showed it has

superior human correlation for CNNDM. There-

fore, we also include it for summarization. We also

include the traditional metrics BLEU (for transla-

tion), and ROUGE-2/L (for summarization).

Both BERTScore and BARTScore have vari-

ants for precision (-p), recall (-r), and f-measure

(-f). In addition, BARTScore has a faithfulness

(-faithful) variant. We test two model options,

namely BARTScore-cnn and BARTScore-para.2

UniEval reports scores on four aspects: coherence,

consistency, fluency, and relevance, and the overall

score is the average of the four.

By default, the metrics for translation and sum-

marization are reference-based.3 COMET and

PRISM have a quality estimation (QE) variant (Spe-

cia et al., 2021), where users do not need to provide

any reference.

In most cases, we directly use the released pack-

age or code for each metric and follow the recom-

mended hyper-parameter or variant setting. We

defer further implementation details and variant

explanations to Appendix A.

2For BARTS-cnn, the Bart model is finetuned on the CN-
NDM dataset (Hermann et al., 2015). For BARTS-para, it is
further finetuned on the ParaBank2 dataset (Hu et al., 2019).

3There are two exceptions: The BARTScore-faithful and
UniEval-relevance do not utilize reference.

5 Stress Tests and Results

We organize our findings into subsections each con-

taining a set of tests with the corresponding moti-

vation, description, results, and implications with

practical workarounds. In general we perform each

test for all metrics, and we primarily discuss met-

rics found to be problematic for brevity.

We group and order our tests by their motiva-

tions: The positioned-error (§5.1) and injection

(§5.2) tests are mainly motivated by certain metric

design choices; The freq-ngram (§5.3) and self-

evaluation (§5.4) tests are motivated by certain

PLM properties; Finally, the fluency/consistency

(§5.5) tests mimic general errors that human or

machine writers could make. See Table 1 for a

catalogue along with the metrics affected.

5.1 The Positioned Error Test

For MAUVE, the features for reference/hypothesis

texts are extracted using the PLM representation

of the final token. Hence, it could be suboptimal if

the PLM is biased to encode only the local context

(Khandelwal et al., 2018; He et al., 2021).

To test for this bias, we create synthetic errors

by replacing a span of 10 consecutive tokens in

different positions of the gold hypothesis with (1)

10 random tokens from the vocabulary, or (2) ran-

domly shuffled tokens of the original span. We

experiment with three different error positions by

replacing the tokens at the very start, the middle,

and the very end of the gold hypotheses. A robust

metric should give a significantly lower score to

this clearly modified distribution of the hypotheses.

Shown in Table 2, MAUVE-GPT2 shows only

a marginal drop (around 3%) for the random or

shuffle errors in the start and middle positions. In

comparison, MAUVE-RoBERTa penalizes errors

in all positions severely, which aligns better with
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Evaluator
Generator

BT-base BT-large T5-small T5-base

BT-base -0.270 -0.361 -0.367 -0.392
BT-large -0.357 -0.278 -0.390 -0.389
T5-small -0.359 -0.397 -0.227 -0.362
T5-base -0.335 -0.344 -0.331 -0.226

nPPL -4.323 -3.684 -4.903 -3.803
BS-para-p -3.790 -3.762 -3.847 -3.786

Table 6: Scores from BARTScore-cnn-faithful using

different PLMs as evaluator or generator. BT refers to

BART and BS refers to BARTScore. Negated perplexity

(nPPL) with the gold hypothesis are also reported for

each model. In each row, scores marked by orange and

bold are higher than scores marked by brown.

use the BARTScore-cnn-faithful variant, and fine-

tune all models on the CNNDM dataset (details in

Appendix H). The results are shown in Table 6. For

this experiment, we do not assume the supremacy

of one model over the other, as that requires more

rigorous human evaluation.

We observe an interesting but worrisome phe-

nomenon: BART and T5 based evaluators strongly

favor generators based on their own respective base

models. This bias extends to different-sized vari-

ants of the base models as well. It is, however,

less pronounced for the reference-based variant

BARTScore-para.

Implication Overall, these results show that the

log-probability-based metrics could be unfairly bi-

ased towards their underlying PLMs. Basing the

metric on different PLM could give inconsistent

ranking for the same set of systems.

Hence, practitioners should avoid situations

where the generation system and the metric are

based on the exact same PLM, or where systems

based on different types of PLMs are compared

with a metric based on one of them. In such cases,

the scores should be complemented with additional

evaluations from reference-based metrics.6

5.5 Fluency & Consistency Tests

The tests we discussed so far have been motivated

by certain metric design choices or properties of

the underlying PLMs. In this section, we move to

more general tests, where we synthesize a range of

perturbations that mimic human or machine errors.

6While prior works follow this guideline by intuition (Liu
et al., 2021), we show an explicit empirical analysis in support
of this practice, which was previously lacking in the literature.

5.5.1 Noise Types and Setup

Our tests cover two important aspects of natural

language: fluency and consistency (some of our

consistency tests are also related to coherence).

Fluency tests focus on grammaticality, while con-

sistency tests focus on temporal order, logic, or

alignment with the source text.

Similar to previous sections, in each test we ap-

ply one type of noise to the gold hypothesis. The

noise can be regarded as an exaggeration of the

errors human or machine writers could make. In

total, we design 10 fluency tests and 8 consistency

tests. For brevity, we only discuss a subset of them

in this section, which are listed in Table 7. The

tests can generally be applied to all three tasks with

a few exceptions (detailed in Appendix I).

Most tests involve a hyper-parameter influencing

the amount of noise added. This enables us to test

how the metric behaves as we induce different lev-

els of noise. To quantify the noise level, we define

noise-ratio, based on the Levenshtein distance:

1

|H|

∑

h∈H

Levenshtein(h′, h)

len(h)
, (1)

where H is the set of gold hypotheses, and h′ is

the noised hypothesis. We employ the noise-ratio

as a crude proxy to quantify the amount of noise

across different noise types.7 For more details on

the setup, please see Appendix I.

For each noise type, a robust metric should give

monotonically decreasing scores with an increasing

noise-ratio. We claim a metric fails the test if it

deviates from this expectation.

5.5.2 Results

Results for a subset of metrics/tests are shown in

Figure 4. Unsurprisingly, most tests are passed by

the metrics. However, the truncation and sentence

switching tests give striking results. We will focus

on these two tests here, and defer more complete

results and discussion to Appendix I.

A number of popular metrics fail the trunca-

tion test, including (some variants of) BARTScore,

BERTScore, ROUGE, COMET, PRISM, UniEval,

and MAUVE (Some figures are deferred to Ap-

pendix I), spanning across CNNDM, TED-MT, and

WikiText datasets. This is undesirable because trun-

cation not only makes the hypothesis disfluent but

also causes a serious loss of information.
7One shortcoming of the Levenshtein distance is that

it does not allow the switching operation. Therefore, for
switching-based noise types, we divide the noise-ratio by 2.
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swering (Ribeiro et al., 2019), reading comprehen-

sion (Sugawara et al., 2020) and text classification

(Prabhakaran et al., 2019). Ribeiro et al. (2020)

proposed a task-agnostic methodology, which syn-

thesizes a large number of examinations for NLP

models. Ruder et al. (2021) subsequently extended

this methodology to a multilingual setting. Goel

et al. (2021) built a more complete model evalua-

tion system by integrating subpopulations, trans-

formations, evaluation sets, and adversarial attacks.

This work follows the same high-level spirit, while

our focus is on NLG metrics.

Analysis of PLM This work takes inspiration

from research analyzing the behavior of PLM’s rep-

resentations (Belinkov and Glass, 2019). Masked

LMs such as BERT have been shown to be insen-

sitive to word order (Pham et al., 2021), negation

(Ettinger, 2020), and named entities (Balasubrama-

nian et al., 2020). GPT-like models were shown

to prefer repetitive text (Holtzman et al., 2020).

Staliūnaitė and Iacobacci (2020) studies what types

of linguistic knowledge BERT acquires with a fo-

cus on compositional and lexical semantics. There

are also important lines of work on layer representa-

tion probing (Belinkov, 2022), or attention analysis

(Dong et al., 2021; Ji et al., 2022).

8 Conclusion

Using PLMs for NLG metrics is a double-edged

sword. While the metrics benefit from the models’

powerful representations, their black-box nature

may cause unexpected behavior. This work shows

that stress tests, complementary to the standard

human correlation tests, are powerful tools to cover

corner cases, detect the metrics’ blind spots, and

point out aspects where the metric could improve.

As a major implication for metric users, we sug-

gest using combinations of metrics so that they can

cover each other’s blind spots. While this has been

an existing practice for a majority of work in the

field, our results on the blind spots provide an ex-

plicit empirical argument for its importance. While

we are still positive about the future of using PLM

for NLG metrics, we call for more caution and

awareness of potential blind spots from both metric

users and developers. More generally speaking, a

deeper understanding of the PLMs is in need.

Limitations

We have primarily focused our analysis on similar-

ity or log-probability based metrics for NLG. There

are other important and interesting metrics that fu-

ture work could examine. For example, Deng et al.

(2021) developed a family of interpretable metrics

for various NLG tasks with the concept of informa-

tion alignment. Xu et al. (2022) recently proposed

a metric based on stratified error synthesis. In ad-

dition, there are several task-specific metrics for

paraphrase generation (Shen et al., 2022), image

captioning (Hessel et al., 2021; Kasai et al., 2022a),

dialogue (Mehri and Eskenazi, 2020), controlled

text generation (Ke et al., 2022), etc., which would

be interesting to evaluate.

In §5.5, we design a number of fluency and con-

sistency tests. It would be interesting to expand

this set to be broader or more sophisticated (Ng

et al., 2014). Also, there are other important as-

pects of text generation to consider, such as factu-

ality (Wang et al., 2020; Pagnoni et al., 2021).

All of our diagnostic data are synthetically cre-

ated. While it provides valuable insights on the

metric’s behavior, it does not have a good cover-

age of errors in real-world settings. Expanding

our analysis to real-world errors in a scalable way

would be an important future direction.

Last but not least, we evaluate our proposed

stress tests only on English texts. However, many

language-specific properties can induce potential

blind spots for metrics, especially for low-resource

languages (Haddow et al., 2022) where PLMs may

provide poor text representations. An important fu-

ture direction is expanding the tests to multilingual

settings (Thompson and Post, 2020; Pires et al.,

2019).

Ethics Statement

Although the goal of our study is for more reliable

evaluation, there is a risk of dual use of our tests:

We investigate stress tests to identify blind spots

in existing generation metrics, but a subset of the

approaches (e.g., copy-source or injection) could

be used for cheating in an evaluation. By an explicit

discussion of how these blind spots can be utilized,

we hope to increase awareness in the community

of scenarios in which the metrics are not perfect

and could be manipulated. Towards mitigating the

risks, we have discussed countermeasures that can

be adopted to cover or detect such blind spots.
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Supplemental Materials

A Implementation Details of Metrics or

Tests

MLM-PPL The high-level motivation for MLM-

PPL (Salazar et al., 2020) is using a bidirectional

masked language model to compute a quantity

similar to next-token perplexity in autoregressive

models, by masking candidate tokens one by one

and obtaining perplexity from masked token log

probability. We follow a similar formulation of

the “pseudo-perplexity” in Salazar et al. (2020).

Given a sequence W = (w1, . . . ,w|W |), we

replace a token wt with the mask token [M],

and predict it using all past and future tokens

W \t = (w1, . . . ,wt−1, [M ],wt+1, . . . ,w|W |).
Let logPMLM(wt | W \t) denote the conditional

log probability of predicting each token wt given

its context. MLM-PPL is defined as below:

MLM-PPL(W ) =

exp



−
1

|W |

|W |
∑

t=1

logPMLM(wt | W \t)



 .

MAUVE We use the default hyperparameter set-

tings recommended in Pillutla et al. (2021). c = 5
is set for the scaling constant. For the quantization

algorithm, we use k-means with 500 iterations and

n/10 clusters, where n is the number of genera-

tions.

We now explain why we set the reference set to

be different from the gold set. According to the

definition of MAUVE, if we set the gold and ref

set to be exactly the same, then the score for the

gold set will be 1.0 (full-score). In this setting, any

stress test will be passed because the score of the

perturbed set can only be lower. Since MAUVE is a

distribution-based metric, in principle it is enough

to ensure that the ref set is from the data distribu-

tion.

BERTScore As suggested by Zhang et al. (2020),

the f-measure variant of BERTScore is used for

translation. However, the paper does not have rec-

ommendations for summarization. Therefore we

test all three variants (precision, recall, f-measure).

BARTScore As introduced in Yuan et al. (2021),

BARTScore has four variants to tackle different

scenarios, and each variant defines a pair of input-

output for BART: precision (reference to hypoth-

esis), recall (hypothesis to reference), f-measure,

and faithfulness (source to hypothesis).

As suggested by the paper, for translation we

use the f-measure. However, for summarization,

the recommendations are a bit vague. In the main

sections, we mainly report the faithfulness variant

as it is used by the paper for the SummEval dataset

(which is based on CNNDM). We also test the

other three variants and defer their results to the

appendix.

In addition to BARTScore-cnn and BARTScore-

para, BARTScore also has a prompted modeling

option which we currently do not have the capacity

to test. We leave it as future work.

ROUGE Following common practice, we use the

f-measure of ROUGE-2 or ROUGE-L.

Test Implementation Our test code for transla-

tion or summarization is built upon the released

code from BARTScore.8 We also benefit from the

Hugging Face library (Wolf et al., 2020).9 Some

fluency and consistency tests are built using the

spaCy library.10 For the negation test, we utilize

released code from the NLP CheckList (Ribeiro

et al., 2020).11

B More Information on Datasets

B.1 The TED-MT Dataset

We find it hard to locate a public MT dataset satis-

fying: (1) Each sample has multiple references. (2)

Each sample contains multiple sentences. There-

fore, we decide to manually build one.

We build a paragraph-level translation dataset

based on the Zh-En part of the Multitarget TED

Talks Task (MTTT) (Duh, 2018). The original

dataset contains consecutive sentences in a TED

talk. We first manually form 100 coherent para-

graphs by selecting spans of samples in the test

and dev splits. Each paragraph contains at least 4

sentences and at most 10 sentences. Correspond-

ingly, the English reference of the paragraph is the

concatenation of the reference of each sentence.

One additional translation for each sample is

needed. Two graduate students who are fluent in

both English and Chinese help provide one addi-

tional translation for each paragraph. Each transla-

tor handles 50 samples. And then the translations

are switched so that they can correct each other’s

errors. An example is given in Table 19. In our

8
https://github.com/neulab/BARTScore.

9
https://github.com/huggingface/transformers.

10
https://github.com/explosion/spaCy.

11
https://github.com/marcotcr/checklist.
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Noise Type
MAUVE Variant

GPT2 RoBERTa ELECTRA

Gold 0.961[0.007] 0.969[0.007] 0.966[0.010]

Random-Start 0.949[0.016] (−1.3%) 0.037[0.007] (−96.1%) 0.025[0.002] (−97.4%)
Random-Middle 0.898[0.034] (−6.5%) 0.100[0.013] (−89.7%) 0.032[0.004] (−96.6%)

Random-End 0.005[0.039] (−99.4%) 0.036[0.014] (−96.3%) 0.010[0.003] (−99.0%)

Shuffle-Start 0.916[0.013] (−4.7%) 0.342[0.027] (−64.7%) 0.044[0.013] (−95.5%)
Shuffle-Middle 0.943[0.001] (−1.8%) 0.603[0.005] (−37.8%) 0.164[0.001] (−83.1%)

Shuffle-End 0.020[0.002] (−97.9%) 0.242[0.024] (−75.0%) 0.041[0.005] (−95.7%)

Table 8: Complete results for the positioned error test. “Random” indicates the token span is replaced with random

tokens from the vocabulary. “Shuffle” means the tokens within the span are shuffled in-place. MAUVE-GPT2 is

insensitive to errors at the start and middle of hypotheses, while MAUVE-RoBERTa and -ELECTRA are more

robust. The percentage shown is score change w.r.t. the gold hypotheses. The subscript shown is the standard

deviation across 5 runs.

experiments, the original reference is set to be the

the gold hypothesis, and the added translation is

used as reference for the metrics.

We will make this dataset available in the public

version of this manuscript.

B.2 WikiText Preprocessing

For the gold/reference hypotheses of the WikiText-

103 dataset, we sample paragraphs with more than

256 tokens and conduct preprocessing to clean up

dataset artifacts and special symbols. First, we trim

extra space around {’.’, ’,’, ’?’, ’!’, ’:’, ’;’, ’(’, ’)’,

"’s", ’%’}. Next, we remove the special token ’@’

in the dot ’@.@’ and hyphen ’@-@’ tokens. We

also remove extra space around quotation marks.

Finally, the text is truncated to the last full sentence

under a total length of 256, which is to ensure the

gold hypotheses are of similar length.

C Details on the Positioned Error Test

C.1 Auxiliary Results

The full set of results for the positioned error test is

shown in Table 8. MAUVE-GPT2 is insensitive to

errors at the start and middle positions. In contrast,

both MAUVE-RoBERTa and MAUVE-ELECTRA

give significantly lower scores for erroneous text

compared to the gold hypothesis. We also observe

MAUVE-ELECTRA is more sensitive compared

to MAUVE-RoBERTa.

C.2 Attention Pattern Analysis

Here we provide details about the attention pat-

tern analysis. We input two random samples (non-

cherry-picked) from the WikiText dataset to GPT2-

large and RoBERTa-large and visualize the atten-

tion distribution over the relative position in the

Model Decoding

GPT2-small Nucleus p = 0.9
GPT2-small Pure Sampling

GPT2-medium Nucleus p = 0.9
GPT2-medium Pure Sampling

GPT2-large Nucleus p = 0.95
GPT2-large Pure Sampling
GPT2-XL Nucleus p = 0.95
GPT2-XL Pure Sampling

Table 9: Generation settings for the test on MAUVE

correlation with human judgment.

text. The sample is truncated to length 200 for the

convenience of this analysis.

As shown in Figure 11, we average the attention

distribution over all transformer layers and atten-

tion heads and then group 20 x 20 (attention-from

and attention-to) tokens into one attention block

for ease of presentation. We also include a high-

granularity version where we group 2 x 2 tokens

into one attention block.

C.3 MAUVE Correlation with Human

Judgment

We reproduce MAUVE’s correlation with human

judgment in Pillutla et al. (2021) on the three

MAUVE variants based on GPT2, RoBERTa, and

ELECTRA, on the WebText dataset with the re-

leased code.12 Note that Pillutla et al. (2021) only

considered MAUVE-GPT2, and the correlation

scores for the RoBERTa/ELECTRA variants were

not tested.

We follow their pairwise setup of evaluation:

Each annotator receives the prompt and continu-

ation from two different generation settings and

12
https://github.com/krishnap25/

mauve-experiments.
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Aspect
MAUVE Variant

GPT2 RoBERTa ELECTRA

Human-like 0.952 0.929 0.976
Interesting 0.738 0.786 0.857
Sensible 0.881 0.881 0.976

Table 10: Spearman rank correlation between MAUVE

and human judgment on the WebText dataset for differ-

ent metric variants.

selects the setting that is favored using a 5-point

Likert scale. The annotators are asked about three

aspects: whether the continuation is human-like,

interesting, or sensible. There are 8 generation set-

tings that consist of different (model, decoding)

choices specified in Table 9 plus human written

continuations. We use their provided human anno-

tation directly. Also following Pillutla et al. (2021),

we convert the pairwise preference scores into rank-

ings by fitting a Bradley-Terry model (Marden,

1995), and compute the Spearman rank correlation

between the MAUVE score and the fitted Bradley-

Terry coefficients. We refer readers to Pillutla et al.

(2021) for more details.

The results are shown in Table 10.13 Compared

to MAUVE-GPT2, although MAUVE-RoBERTa

is slightly superior in the “interesting” aspect, it

has a lower correlation on the human-like judg-

ment. Nevertheless, MAUVE-ELECTRA shows a

clearly superior correlation with human judgment

on all three aspects compared to both the GPT-2

and RoBERTa variants. It also performs best in our

stress tests.

D The Copy-Source Test

A number of metrics are based on the similarity

between the hypothesis and the reference or source.

Therefore, for tasks like summarization and trans-

lation, one could try to fool the metric by simply

submitting a direct copy of the source text. We

term it the copy-source test.

As reported in Table 11, for both translation and

summarization datasets, we find that COMET-QE,

BERTScore-r, several variants of BARTScore, and

UniEval-overall not just fail to account for this

simple trick but in fact obtain higher scores than

gold hypotheses.

13Due to the stochastic nature of sampling, our reproduced
generation is not guaranteed to be the exact replication of
the ones used in Pillutla et al. (2021), which is currently not
released. As a result, we observe slightly different correlation
numbers for MAUVE-GPT2 compared to Pillutla et al. (2021).

Metric (task) GOLD Copy-source

COMET(wmt) 0.531 -0.079
COMET-QE(wmt) 0.114 0.126

COMET-QE (ted-mt) 0.062 0.073

BertSc-r(sum) 0.266 0.332
BertSc-p(sum) 0.181 -0.177
BertSc-f(sum) 0.223 0.065

BartSc-cnn-p(sum) -2.718 -3.022
BartSc-cnn-r(sum) -3.249 -2.834
BartSc-cnn-f(sum) -2.984 -2.928

BartSc-cnn-faithful(sum) -1.376 -0.368
BS-cnn-failthful-noavg(sum) -82.95 -166.25

BartSc-para-p(sum) -4.023 -4.218
BartSc-para-r(sum) -3.751 -2.948
BartSc-para-f(sum) -3.887 -3.583

BartSc-para-faithful(sum) -2.109 -0.874

COMET(sum) -0.575 -0.584
COMET-QE(sum) 0.059 0.048

UniEval-coherence (sum) 0.897 0.949
UniEval-consistency (sum) 0.859 0.946

UniEval-fluency (sum) 0.919 0.915
UniEval-relevance (sum) 0.781 0.869

UniEval-overall (sum) 0.864 0.920

Table 11: Results of the copy-source test. This sim-

ple trick could fool the metric and get scores higher

than gold hypotheses. For COMET the scores from

the copied source are very close to the gold hypothesis

(marked in orange), which is undesirable.

We attribute these behaviors to some of the

metrics’ design choices. (1) COMET-QE relies

on a cross-lingual RoBERTa encoder, but it does

not check the language ID of the hypothesis. (2)

BARTScore, computed as a length-averaged log-

likelihood, fails to account for the length of the

hypothesis, which in this case is the entire source

article. While removing the average operation is a

natural remedy and indeed leads to a lower score

for the noised hypothesis (shown by BARTS-cnn-

noavg in the table), it is not ideal as it would also

favor overly short summaries. (3) BERTScore-r’s

behavior on summarization, on the other hand, is

not surprising since it is recall-oriented, and is al-

leviated by using the f-measure. (4) The take on

UniEval is more nuanced. Strictly speaking, the

copied source does not degrade the four aspects

UniEval reports. However, they lead to a mislead-

ingly high overall score.

Implication The copy-source trick could be used

to manipulate scores in a contest. Straightforward

solutions can counter this trick. For example, con-

test organizers can implement checks for similar-

ity between submitted hypotheses and the source

text and reject the matches. For summarization,
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Test Example

Rep-2 ... allegiance to one’s family, despite the tur-
moil and dissensions that occur. dissensions
that occur. dissensions that occur.

Freq 4-gram ... in the middle of the site of the the course
of the as part of the the top of the on the
billboard hot in the summer of for the rest of

Table 12: Front-truncated examples of repetition (top)

and the frequent n-gram (bottom) test on WikiText. Top-

50 4-grams are used.

Metric (task) Gold
Repetition

Rep-10 Rep-20 Rep-30

B-cnn-f (wmt) -2.168 -1.889 -1.721 -1.652
B-para-f (wmt) -1.868 -1.956 -1.864 -1.839
BLEURT (wmt) 0.716 0.666 0.683 0.689

B-cnn-p (sum) -2.718 -2.122 -1.675 -1.451
B-cnn-r (sum) -3.249 -3.246 -3.251 -3.252
B-cnn-f (sum) -2.984 -2.684 -2.463 -2.351

B-cnn-faithful (sum) -1.376 -1.486 -1.224 -1.091
B-para-p (sum) -4.023 -3.156 -2.630 -2.362
B-para-r (sum) -3.751 -3.710 -3.693 -3.685
B-para-f (sum) -3.887 -3.433 -3.162 -3.023

B-para-faithful (sum) -2.109 -2.039 -1.759 -1.626

GPT-PPL (wiki) -21.81 -15.48 -10.70 -8.080
MLM-PPL (wiki) -2.635 -2.241 -2.019 -1.867

n-rep-4gram (wiki) -0.007 -0.165 -0.287 -0.378

Table 13: Results for the repetition test. “B-” refers

to “BARTScore-”. Negated rep-4gram (Welleck et al.,

2020), which measures the diversity, is also reported.

it would be useful to check whether the length of

the hypothesis is within the expected range. For

translation, a language ID check is helpful.

E The Repetition Test

It is well-known that GPT-like LMs suffer from a

repetition problem—they tend to assign high likeli-

hood to repetitive text (Holtzman et al., 2020).

For the repetition test, we append to each gold

hypothesis k copies of its last 4-gram to create

a synthetic repetition problem (termed as Rep-k),

with an example available in Table 12. For this test,

a robust metric should give a lower score for Rep-

k compared to gold, because synthetic repetition

degrades quality.

The experimental results for the repetition test

are shown in Table 13. The repetition problem

plagues a wider range of models than expected. In

addition to GPT-PPL, we find BARTScore, and

MLM-PPL (based on RoBERTa) also prefer repeti-

tive text.

As an illustrated example of the repetition test,

Figure 6 shows the per-timestep next-token prob-

ability of a 4-gram repetitive text in the WikiText

dataset, given by GPT-PPL. The first repetition of

the 4-gram “hard to miss.” has a slightly higher

probability compared to the original ending. As

this 4-gram is repeated more times, the probability

given by GPT-PPL becomes increasingly higher.

Implication For metric users, it has been an es-

tablished practice (especially for open-ended gen-

eration) to report diversity metrics like rep-4gram

(Welleck et al., 2020) or n-gram entropy (Zhang

et al., 2018), as shown in Table 13. For metric

developers, our results indicate that the degenera-

tion issue can not be ignored even if the LM is not

autoregressive.

F Auxiliary Results for the Injection Test

Table 14 contains auxiliary results of the injection

test for UniEval on the summarization task. We

note several additional interesting observations: (1)

If we omit “And yes, it is relevant.”, the

relevent score gets lower. (2) If we change the tone

from positive to negative, the scores get lower. (3)

Just repeating “Yes” is not effective.

In the lower part of the table, we also observe

that the injection hypothesis can drastically in-

crease the score of a random (irrelevant) reference

summary.

G Auxiliary Results for the Frequent

n-gram Test

An example if the frequent n-gram sequence is

available in Table 12.

In Table 15, results of frequent 4-gram and 3-

gram tests are shown. We observe that it is eas-

ier for the frequent 4-grams to confuse the log-

probability-based metrics. Per-timestep next-token

probability plots for examples of a 4-gram and a

3-gram test are shown in Figure 3 and Figure 7,

respectively. In both cases, there are high probabil-

ity regions concentrated at the end of each n-gram.

For example, “the” in the 3-gram “side of the” gets

a higher probability than the first two tokens, and

“of” in the 4-gram “in the middle of” gets a higher

probability than the first three tokens.

H Details on the Finetuning

(Self-Evaluation)

For GPT-PPL, we finetune the GPT-2 generators

on the WikiText-103 training set for 2 epochs, with
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Noise Type Description

Truncation A portion of tokens at the end of the hypothesis are removed. e.g., She went to.
Article Removal A random portion of articles (the/a/an) in the hypothesis are removed. e.g., She went to office.

Preposition Removal A random portion of prepositions are removed. e.g., She went the office.

Stop-word Removal A random portion of stop-words are removed. e.g., She went office.

Verb Lemmatization A random portion of verbs in the hypothesis are lemmatized. e.g., She go to the office.

Token Drop A random portion of tokens are removed. e.g., She to the offce.

Repeated Token A random portion of tokens are repeated once. e.g., She went to to the office.

Local Swap A random portion of tokens are swapped with the token to the right of it. e.g., She to went the

office.

Middle Swap The left and right part of the sentence is swapped (The cut-off point is right in the middle of the length).
This is to synthesize a wrong subject-verb-object (SVO) order. e.g., To the office she went.

Noised Punctuation A random portion of the punctuations {’,’,’.’,’?’,’!’,’:’} are noised. For example, commas are replaced
by periods and vice versa. e.g., She went to the office,

Sentence Switching Several random pairs of sentences in the hypothesis are switched, breaking temporal/logical order. e.g.,
And she talked to her staff about Paris. She went to the office in Boston.

Sentence Replacement Several sentences in the hypothesis are replaced by a random irrelevant sentence (from the same
dataset). This is an amazing game. And she talked to her staff about business.

Negation A random portion of sentences are negated. e.g., She did not go to the office in Boston. And

she talked to her staff about Paris.

Generic Named Entity A random portion of the named entities in the hypothesis are replaced by a generic phrase, destroying
the information. e.g., She went to the office in a place. And she talked to her staff

about a place.

Named Entity Switching Several random pairs of named entities in the hypothesis are switched, breaking factuality. e.g., She
went to the office in Paris. And she talked to her staff about Boston.

Verb Switching Several random pairs of verbs in the hypothesis are switched. e.g., She talked to the office in

Boston. And she went to her staff about business.

Noun Switching Several random pairs of nouns in the hypothesis are switched. e.g., She went to the staff in

Boston. And she talked to her office about business.

BERT-diverge A random portion of tokens in the hypothesis are replaced one by one by sampling from the top-10
prediction of a masked language model (RoBERTa). At each step, one token at a random position is
replaced by [MASK], and inputed to RoBERTa for prediction. Since this process do not have access
to the source text, the semantics of the hypothesis would gradually diverge. e.g., She ran to the

office in Boston. And she talked to her staff about business.

Table 16: Descriptions of the fluency tests (top) and consistency tests (bottom). Note that the truncation test not only

breaks fluency, but also causes loss of information (consistency). For fluency tests, the example gold hypothesis is

“She went to the office.” For consistency tests, the example gold hypothesis is “She went to the office

in Boston. And she talked to her staff about Paris.” The gold hypothesis here is only for ease of

explanation and it does not exist in the datasets.

to WMT. (4) Similarly, we do not apply named

entity switching or generic named entity to TED-

MT.

Compared to other tests, BERT-diverge is spe-

cial in that its noise is generated automatically by

an MLM, which is an interesting future direction

for metric stress tests. One disadvantage of this

approach is that we do not have a 100% guarantee

that the perturbed hypothesis is indeed “diverged”.

However, we do not observe empirical evidence

of this weakness in the quantitative (Most metrics

drop drastically with this noise) or qualitative ex-

amination.

The complete results for the fluency and consis-

tency tests are shown in Figure 14 for open-ended

generation, Figure 12 for summarization, and Fig-

ure 15/ Figure 16 for translation. For visibility, we

plot fluency test and consistency tests separately

for each metric. Failed tests are highlighted as bold

lines.

Auxiliary Discussion of the Results We now

discuss some interesting results which are not in-

cluded in the main section.

For open-ended generation, both variants of

MAUVE (-GPT2/-RoBERTa) fail the sentence

switching test. Although MLM-PPL does not fail

the test in terms of rank, the slope of the sentence

switching curve is relatively much flatter than the

other noise types, indicating an insensitivity.

Interestingly, while MAUVE-RoBERTa is robust

to truncation, MAUVE-GPT2 only penalizes trun-

cation in a binary manner. The score is much lower

than gold for the first level of noise, but remains

basically the same for other levels compared to the

first level. This implies the GPT2 feature is not

sensitive to the amount of information loss, which
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J.1 Attack Algorithm Details

We fix the targeted LM as RoBERTa since

BERTScore is based on it.

In our iterative perturbation algorithm, for

a hypothesis h = [w1, . . . , wlen(h)], we enu-

merate each token wi in it, and design the

following perturbations: (1) Delete the to-

ken. The perturbed hypothesis becomes h′ =
[w1, . . . , wi−1, wi+1, . . . , wlen(h)], (2) Substitute

the token. We build the candidate token set C
in two ways: (a) Use [MASK] to replace wi, and

employ the masked RoBERTa model to gener-

ate k1 = 8 possible tokens w′ ∈ C1 with the

highest scores (similar to BERT-diverge). (b) Uti-

lize the word embedding in RoBERTa to find the

k2 = 8 possible tokens w′ ∈ C2 closest to wi.

And C = C1 ∪ C2 (Some relatively meaning-

less substitutions, such as punctuation and upper-

case/lowercase replacement will be filtered). In

this way, we can get k1 + k2 perturbed hypotheses

h′ ∈ {[w1, . . . , wi−1, w
′, wi+1, . . . , wlen(h)], w

′ ∈
C}. In our experiments, we set both k1 and k2 to

eight.
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Zh (source): 但首先我有两件事需要事先说明。就两件。第一，我是加拿大人。第二，我是家中七个孩
子里最小的。在加拿大，我们有很好的医保制度。那意味著置换髋骨是免费的。而身为七个小孩中的
老幺，任何事情都是最后一个轮到我。我的髋骨已经折磨了我好多年。我终于去看了医生，那是免费
的。她将我转诊给骨外科医生，那也是免费的。
En (ref-A): But first you need to know two things about me. Just two things. I’m Canadian, and I’m the youngest
of seven kids. Now, in Canada, we have that great healthcare system. That means we get our new hips for free. And
being the youngest of seven, I have never been at the front of the line for anything. OK? So my hip had been hurting
me for years. I finally went to the doctor, which was free. And she referred me to an orthopedic surgeon, also free.
En (ref-B): But first I have two things to clarify. Just two. First, I’m Canadian. Second, I’m the youngest among
seven children in my family. In Canada, we have an excellent medicare system. That means hip arthroplasty is free.
However, being the youngest of the seven, my turn always comes at the last for everything. My hip bone had been
tortured me for years. I finally saw the doctor. It was free. She transferred me to an orthopedic surgeon. It was also
free.

Table 19: A typical example in the TED-MT dataset. Ref-A is the original reference, ref-B is added by us.

Noise Type Example

Gold The German invasion of Norway in 1940 led to Andersen’s life once more taking a turn into illegal
activities. His furniture workshop was used as a weapons depot by the Norwegian resistance movement,
and he took part in looting German military stores. He was first arrested by the Germans after he had
responded to rumours that he was a Nazi by writing the Norwegian national socialist party Nasjonal
Samling’s official publication Fritt Folk and stating that "although I have done many wrong things in
my life, a Nazi I am not. Yours sincerely Johs. S. Andersen". The letter was published unedited by
the newspaper, although Andersen was later arrested by the occupying authorities and sentenced to
one year in prison, after spending half a year in detention. Using techniques he had learned during
his earlier criminal career, Andersen managed to be transferred to prison hospital during his time in
detention. While there he acquired false x-ray images and tuberculosis germs to fake illnesses in other
captured resistance men who were on their way to interrogation. He also infected a German interrogator
with malaria by contaminating his insulin.

Switched (6) His furniture workshop was used as a weapons depot by the Norwegian resistance movement, and he
took part in looting German military stores. Using techniques he had learned during his earlier criminal
career, Andersen managed to be transferred to prison hospital during his time in detention. While there
he acquired false x-ray images and tuberculosis germs to fake illnesses in other captured resistance
men who were on their way to interrogation. The letter was published unedited by the newspaper,
although Andersen was later arrested by the occupying authorities and sentenced to one year in prison,
after spending half a year in detention. S. Andersen". He was first arrested by the Germans after he had
responded to rumours that he was a Nazi by writing the Norwegian national socialist party Nasjonal
Samling’s official publication Fritt Folk and stating that "although I have done many wrong things
in my life, a Nazi I am not. Yours sincerely Johs. The German invasion of Norway in 1940 led to
Andersen’s life once more taking a turn into illegal activities. He also infected a German interrogator
with malaria by contaminating his insulin.

Table 20: Examples of sentence switching on the WikiText dataset. Six sentence pairs are switched. The switched

hypothesis is incoherent on the high level. For example, the gold hypothesis discusses Andersen’s life prior to the

German invasion, his letter and arrest by the Germans, and finally his resistance against Nazis in his detention.

However, in the switched hypothesis, sentences about different sub-topics are mixed together and it is difficult for a

reader to grasp the meaning of this paragraph.
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Figure 12: All results for fluency and consistency tests on the CNNDM dataset. Results for UniEval are shown in

Figure 13.
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Figure 15: All results for fluency and consistency tests on the WMT dataset.
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