
ar
X

iv
:2

10
8.

12
97

6v
3

 [c
s.D

S]
 1

7
Ju

l 2
02

3

Approximating Pandora’s Box with Correlations

Shuchi Chawla
UT-Austin

shuchi@cs.utexas.edu

Evangelia Gergatsouli
UW-Madison

evagerg@cs.wisc.edu

Jeremy McMahan
UW-Madison

jmcmahan@wisc.edu

Christos Tzamos
UW-Madison & University of Athens

tzamos@wisc.edu

We revisit the classic Pandora’s Box (PB) problem under correlated distributions on the box
values. Recent work of [CGT+20] obtained constant approximate algorithms for a restricted class
of policies for the problem that visit boxes in a fixed order. In this work, we study the complexity
of approximating the optimal policy which may adaptively choose which box to visit next based on
the values seen so far.

Our main result establishes an approximation-preserving equivalence of PB to the well studied
Uniform Decision Tree (UDT) problem from stochastic optimization and a variant of the Min-Sum

Set Cover (MSSCf) problem. For distributions of support m, UDT admits a logm approxima-
tion, and while a constant factor approximation in polynomial time is a long-standing open problem,
constant factor approximations are achievable in subexponential time [LLM20]. Our main result
implies that the same properties hold for PB and MSSCf .

We also study the case where the distribution over values is given more succinctly as a mixture
of m product distributions. This problem is again related to a noisy variant of the Optimal Decision
Tree which is significantly more challenging. We give a constant-factor approximation that runs in
time nÕ(m2/ε2) when the mixture components on every box are either identical or separated in TV
distance by ε.

http://arxiv.org/abs/2108.12976v3

1 Introduction

Many everyday tasks involve making decisions under uncertainty; for example driving to work
using the fastest route or buying a house at the best price. Although we don’t know how the
future outcomes of our current decisions will turn out, we can often use some prior information to
facilitate the decision making process. For example, having driven on the possible routes to work
before, we know which is usually the busiest one. It is also common in such cases that we can
remove part of the uncertainty by paying some additional cost. This type of online decision making
in the presence of costly information can be modeled as the so-called Pandora’s Box problem,
first formalized by Weitzman in [Wei79]. In this problem, the algorithm is given n alternatives
called boxes, each containing a value from a known distribution. The exact value is not known,
but can be revealed at a known opening cost specific to the box. The goal of the algorithm is to
decide which box to open next and whether to select a value and stop, such that the total opening
cost plus the minimum value revealed is minimized. In the case of independent distributions on
the boxes’ values, this problem has a very elegant and simple optimal solution, as described by
Weitzman [Wei79]: calculate an index for each box1, open the boxes in increasing order of index,
and stop when the expected gain is worse than the value already obtained.

Weitzman’s model makes the crucial assumption that the distributions on the values are in-
dependent across boxes. This, however, is not always the case in practice and as it turns out,
the simple algorithm of the independent case fails to find the optimal solution under correlated
distributions. Generally, the complexity of the Pandora’s Box with correlations is not yet well
understood. In this work we develop the first approximately-optimal policies for the
Pandora’s Box problem with correlated values.

We consider two standard models of correlation where the distribution over values can be
specified explicitly in a succinct manner. In the first, the distribution over values has a small
support of size m. In the second the distribution is a mixture of m product distributions, each of
which can be specified succinctly. We present approximations for both settings.

A primary challenge in approximating Pandora’s Box with correlations is that the optimal
solution can be an adaptive policy that determines which box to open depending on the instanti-
ations of values in all of the boxes opened previously. It is not clear that such a policy can even
be described succinctly. Furthermore, the choice of which box to open is complicated by the need
to balance two desiderata – finding a low value box quickly versus learning information about the
values in unopened boxes (a.k.a. the state of the world or realized scenario) quickly. Indeed, the
value contained in a box can provide the algorithm with crucial information about other boxes,
and inform the choice of which box to open next; an aspect that is completely missing in the
independent values setting studied by Weitzman.

Contribution 1: Connection to Decision Tree and a general purpose approximation.

Some aspects of the Pandora’s Box problem have been studied separately in other contexts. For
example, in the Optimal Decision Tree problem (DT) [GB09, LLM20], the goal is to identify
an unknown hypothesis, out of m possible ones, by performing a sequence of costly tests, whose
outcomes depend on the realized hypothesis. This problem has an informational structure similar to
that in Pandora’s Box. In particular, we can think of every possible joint instantiation of values
in boxes as a possible hypothesis, and every opening of a box as a test. The difference between the
two problems is that while in Optimal Decision Tree we want to identify the realized hypothesis

1This is a special case of Gittins index [GJ74].

1

exactly, in Pandora’s Box it suffices to terminate the process as soon as we have found a low
value box.

Another closely related problem is the Min Sum Set Cover [FLT04], where boxes only have
two kinds of values – acceptable or unacceptable – and the goal is to find an acceptable value as
quickly as possible. A primary difference relative to Pandora’s Box is that unacceptable boxes
provide no further information about the values in unopened boxes.

One of the main contributions of our work is to unearth connections between Pandora’s Box

and the two problems described above. We show that Pandora’s Box is essentially equivalent
to a special case of Optimal Decision Tree (called Uniform Decision Tree or UDT) where
the underlying distribution over hypotheses is uniform – the approximation ratios of these two
problems are related within log-log factors. Surprisingly, in contrast, the non-uniform DT appears
to be harder than non-uniform Pandora’s Box. We relate these two problems by showing that
both are in turn related to a new version of Min Sum Set Cover, that we call Min Sum Set

Cover with Feedback (MSSCf). These connections are summarized in Figure 1. We can thus
build on the rich history and large collection of results on these problems to offer efficient algorithms
for Pandora’s Box. We obtain a polynomial time Õ(logm) approximation for Pandora’s Box,
wherem is the number of distinct value vectors (a.k.a. scenarios) that may arise; as well as constant
factor approximations in subexponential time.

PB UMSSCfUMSSCf UDT
Section 4 Section 5

Log-log factors Constant factors

Figure 1: A summary of our approximation preserving reductions

It is an important open question whether constant factor approximations exist for Uniform

Decision Tree: the best known lower-bound on the approximation ratio is 4 while it is known that
it is not NP-hard to obtain super-constant approximations under the Exponential Time Hypothesis.
The same properties transfer also to Pandora’s Box andMin Sum Set Cover with Feedback.
Pinning down the tight approximation ratio for any of these problems will directly answer these
questions for any other problem in the equivalence class we establish.

The key technical component in our reductions is to find an appropriate stopping rule for
Pandora’s Box: after opening a few boxes, how should the algorithm determine whether a small
enough value has been found or whether further exploration is necessary? We develop an iterative
algorithm that in each phase finds an appropriate threshold, with the exploration terminating as
soon as a value smaller than the threshold is found, such that there is a constant probability of
stopping in each phase. Within each phase then the exploration problem can be solved via a
reduction to UDT. The challenge is in defining the stopping thresholds in a manner that allows
us to relate the algorithm’s total cost to that of the optimal policy.

Contribution 2: Approximation for the mixture of distributions model.

Having established the general purpose reductions between Pandora’s Box and DT, we turn to
the mixture of product distributions model of correlation. This special case of Pandora’s Box

interpolates between Weitzman’s independent values setting and the fully general correlated values
setting. In this setting, we use the term “scenario” to denote the different product distributions
in the mixture. The information gathering component of the problem is now about determining
which product distribution in the mixture the box values are realized from. Once the algorithm

2

has determined the realized scenario (a.k.a. product distribution), the remaining problem amounts
to implementing Weitzman’s strategy for that scenario.

We observe that this model of correlation for Pandora’s Box is related to the noisy version
of DT, where the results of some tests for a given realized hypothesis are not deterministic. One
challenge for DT in this setting is that any individual test may give us very little information
distinguishing different scenarios, and one needs to combine information across sequences of many
tests in order to isolate scenarios. This challenge is inherited by Pandora’s Box.

Previous work on noisy DT obtained algorithms whose approximations and runtimes depend
on the amount of noise. In contrast, we consider settings where the level of noise is arbitrary, but
where the mixtures satisfy a separability assumption. In particular, we assume that for any given
box, if we consider the marginal distributions of the value in the box under different scenarios,
these distributions are either identical or sufficiently different (e.g., at least ε in TV distance)
across different scenarios. Under this assumption, we design a constant-factor approximation for
Pandora’s Box that runs in nÕ(m2/ε2) (Theorem 6.1), where n is the number of boxes. The formal
result and the algorithm is presented in Section 6.

1.1 Related work

The Pandora’s Box problem was first introduced by Weitzman in the Economics literature
[Wei79]. Since then, there has been a long line of research studying Pandora’s Box and its many
variants ; non-obligatory inspection [Dov18, BK19, BC22, FLL22], with order constraints [HAKS13,
BFLL20], with correlation [CGT+20, GT23], with combinatorial costs [BEFF23], competitive in-
formation design [DFH+23], delegated version [BDP22], and finally in an online setting [EHLM19].
Multiple works also study the generalized setting where more information can be obtained for
a price [CFG+00, GK01, CJK+15, CHKK15] and in settings with more complex combinatorial
constraints [Sin18, GGM06, GN13, ASW16, GNS16, GNS17, GJSS19].

Chawla et al. [CGT+20] were the first to study Pandora’s Box with correlated values, but
they designed approximations relative to a simpler benchmark, namely the optimal performance
achievable using a so-called Partially Adaptive strategy that cannot adapt the order in which it
opens boxes to the values revealed. In general, optimal strategies can decide both the ordering of the
boxes and the stopping time based on the values revealed. [CGT+20] designed an algorithm with
performance no more than a constant factor worse than the optimal Partially Adaptive strategy.

InMin Sum Set Cover the line of work was initiated by [FLT04], and continued with improve-
ments and generalizations to more complex constraints by [AGY09, MBMW05, BGK10, SW11].

Optimal decision tree is an old problem studied in a variety of settings ([PKSR02, PD92, GB09,
GKR10]), while its most notable application is in active learning settings. It was proven to be
NP-Hard by Hyafil and Rivest [HR76]. Since then the problem of finding the best approximation
algorithm was an active one [GG74, Lov85, KPB99, Das04, CPR+11, CPRS09, GB09, GNR17,
CJLM10, AH12], where finally a greedy logm for the general case was given by [GB09]. This
approximation ratio is proven to be the best possible [CPR+11]. For the case of Uniform decision
tree less is known, until recently the best algorithm was the same as the optimal decision tree, and
the lower bound was 4 [CPR+11]. The recent work of Li et al. [LLM20] showed that there is an
algorithm strictly better than logm for the uniform decision tree.

The noisy version of optimal decision tree was first studied in [GKR10]2, which gave an algorithm
with runtime that depends exponentially on the number of noisy outcomes. Subsequently, Jia et
al. in [JNNR19] gave an (min(r, h) + logm)-approximation algorithm, where r (resp. h) is the

2This result is based on a result from [GK11] which turned out to be wrong [NS17]. The correct results are
presented in [GK17]

3

maximum number of different test results per test (resp. scenario) using a reduction to Adaptive
Submodular Ranking problem [KNN17]. In the case of large number of noisy outcome they obtain
a logm approximation exploiting the connection to Stochastic Set Cover [LPRY08, INvdZ16].

2 Preliminaries

In this paper we study the connections between three different sequential decision making problems
– Optimal Decision Tree, Pandora’s Box, and Min Sum Set Cover. We describe these
problems formally below.

Optimal Decision Tree

In the Optimal Decision Tree problem (denoted DT) we are given a set S of m scenarios s ∈ S,
each occurring with (known) probability ps; and n tests T = {Ti}i∈[n], each with cost 1. Nature
picks a scenario s ∈ S from the distribution p but this scenario is unknown to the algorithm. The
goal of the algorithm is to determine which scenario is realized by running a subset of the tests T .
When test Ti is run and the realized scenario is s, the test returns a result Ti(s) ∈ R.

Output. The output of the algorithm is a decision tree where at each node there is a test that
is performed, and the branches are the outcomes of the test. In each of the leaves there is an
individual scenario that is the only one consistent with the results of the test in the unique path
from the root to this leaf. Observe that there is a single leaf corresponding to each scenario s. We
can represent the tree as an adaptive policy defined as follows:

Definition 2.1 (Adaptive Policy π). An adaptive policy π : ∪X⊆T R
X → T is a function that

given a set of tests done so far and their results, returns the next test to be performed.

Objective. For a given decision tree or policy π, let costs(π) denote the total cost of all of the
tests on the unique path in the tree from the root to the leaf labeled with scenario s. The objective
of the algorithm is to find a policy π that minimizes the average cost

∑

s∈S pscosts(π).
We use the term Uniform Decision Tree (UDT) to denote the special case of the problem where
ps = 1/m for all scenarios s.

Pandora’s Box

In the Pandora’s Box problem we are given n boxes, each with cost ci ≥ 0 and value vi. The
values {vi}i∈[n] are distributed according to known distribution D. We assume that D is an arbitrary
correlated distribution over vectors {vi}i∈[n] ∈ Rn. We call vectors of values scenarios and use
s = {vi}i∈[n] to denote a possible realization of the scenario. As in DT, nature picks a scenario
from the distribution D and this realization is a priori unknown to the algorithm. The goal of the
algorithm is to pick a box of small value. The algorithm can observe the values realized in the
boxes by opening any box i at its respective costs ci.

Output. The output of the algorithm is an adaptive policy π for opening boxes and a stopping
condition. The policy π takes as input a subset of the boxes and their associated values, and either
returns the index of a box i ∈ [n] to be opened next or stops and selects the minimum value seen
so far. That is, π : ∪X⊆[n]R

X → [n] ∪ {⊥} where ⊥ denotes stopping.

4

Objective. For a given policy π, let π(s) denote the set of boxes opened by the policy prior to
stopping when the realized scenario is s. The objective of the algorithm is to minimize the expected
cost of the boxes opened plus the minimum value discovered, where the expectation is taken over
all possible realizations of the values in each box.3 Formally the objective is given by

Es∼D



 min
i∈π(s)

vis +
∑

i∈π(s)

ci



,

For simplicity of presentation, from now on we assume that ci = 1 for all boxes, but we show in
Section E how to adapt our results to handle non-unit costs, without any loss in the approximation
factors.

We use UPB to denote the special case of the problem where the distribution D is uniform over
m scenarios.

Min Sum Set Cover with Feedback

In Min Sum Set Cover, we are given n elements and a collection of m sets S over them, and a
distribution D over the sets. The output of the algorithm is an ordering π over the elements. The
cost of the ordering for a particular set s ∈ S is the index of the first element in the ordering that
belongs to the set s, that is, costs(π) = min{i : π(i) ∈ s}. The goal of the algorithm is to minimize
the expected cost Es∼D[costs(π)].

We define a variant of the Min Sum Set Cover problem, called Min Sum Set Cover with

Feedback (MSSCf). As in the original problem, we are given a set of n elements, a collection of
m sets S and a distribution D over the sets. Nature instantiates a set s ∈ S from the distribution
D; the realization is unknown to the algorithm. Furthermore, in this variant, each element provides
feedback to the algorithm when the algorithm ”visits” this element; this feedback takes on the value
fi(s) ∈ R for element i ∈ [n] if the realized set is s ∈ S.

Output. The algorithm once again produces an ordering π over the elements. Observe that the
feedback allows the algorithm to adapt its ordering to previously observed values. Accordingly, π is
an adaptive policy that maps a subset of the elements and their associated feedback, to the index
of another element i ∈ [n]. That is, π : ∪X⊆[n]R

X → [n].

Objective. As before, the cost of the ordering for a particular set s ∈ S is the index of the first
element in the ordering that belongs to the set s, that is, costs(π) = min{i : π(i) ∈ s}. The goal of
the algorithm is to minimize the expected cost Es∼D[costs(π)].

Commonalities and notation

As the reader has observed, we capture the commonalities between the different problems through
the use of similar notation. Scenarios in DT correspond to value vectors in PB and to sets in
MSSCf ; all are denoted by s, lie in the set S, and are drawn by nature from a known joint distri-
bution D. Tests inDT correspond to boxes in PB and elements inMSSCf ; we index each by i ∈ [n].
The algorithm for each problem produces an adaptive ordering π over these tests/boxes/elements.
Test outcomes Ti(s) in DT correspond to box values vi(s) in PB and feedback fi(s) in MSSCf .

3In the original version of the problem studied by Weitzman [Wei79] the values are independent across boxes, and
the goal is to maximize the value collected minus the costs paid, in contrast to the minimization version we study
here.

5

We will use the terminology and notation across different problems interchangeably in the rest of
the paper.

2.1 Modeling Correlation

In this work we study two general ways of modeling the correlation between the values in the boxes.

Explicit Distributions. In this case, D is a distribution over m scenarios where the j’th scenario
is realized with probability pj, for j ∈ [m]. Every scenario corresponds to a fixed and known vector
of values contained in each box. Specifically, box i has value vij ∈ R+ ∪ {∞} for scenario j.

Mixture of Distributions. We also consider a more general setting, where D is a mixture of
m product distributions. Specifically, each scenario j is a product distribution; instead of giving
a deterministic value for every box i, the result is drawn from distribution Dij . This setting is a
generalization of the explicit distributions setting described before.

3 Roadmap of the Reductions and Implications

In Figure 2, we give an overview of all the main technical reductions shown in Sections 4 and 5.
An arrow A → B means that we gave an approximation preserving reduction from problem A
to problem B. Therefore an algorithm for B that achieves approximation ratio α gives also an
algorithm for A with approximation ratio O(α) (or O(α log α) in the case of black dashed lines).
For the exact guarantees we refer to the formal statement of the respective theorem. The gray lines
denote less important claims or trivial reductions (e.g. in the case of A being a subproblem of B).

PB

UMSSCfMSSCf

UDT

DT

Claim 4.1

Claim 5.1

Claim 5.1

Thm 4.2

Thm 5.2

Thm 4.2

Main Theorem (log factors)

Main Theorem (const. factors)

Minor Claim

Subproblem

Figure 2: Summary of all our reductions. Bold black lines denote our main theorems, gray dashed
are minor claims, and dotted lines are trivial reductions.

6

3.1 Approximating Pandora’s Box

Given our reductions and using the best known results for Uniform Decision Tree from [LLM20]
we immediately obtain efficient approximation algorithms for Pandora’s Box. We repeat the
results of [LLM20] below.

Theorem 3.1 (Theorems 3.1 and 3.2 from [LLM20]).

• There is a O(logm/ log OPT)-approximation algorithm for UDT that runs in polynomial
time, where OPT is the cost of the optimal solution of the UDT instance.

• There is a 9+ε
α -approximation algorithm for UDT that runs in time nÕ(mα) for any α ∈ (0, 1).

Using the results of Theorem 3.1 combined with Theorem 4.2 and Claim 5.1 we get the following
corollary.

Corollary 3.1. From the best-known results for UDT, we have that

• There is a Õ(logm)-approximation algorithm for PB that runs in polynomial time4.

• There is a Õ(1/α)-approximation algorithm for PB that runs in time nÕ(mα) for any α ∈
(0, 1).

An immediate implication of the above corollary is that it is not NP-hard to obtain a super-
constant approximation for PB, formally stated below.

Corollary 3.2. It is not NP-hard to achieve any superconstant approximation for PB assuming
the Exponential Time Hypothesis.

Observe that the logarithmic approximation achieved in Corollary 3.1 loses a log logm factor
(hence the Õ) as it relies on the more complex reduction of Theorem 4.2. If we choose to use the
more direct reduction of Theorem A.1 to the Optimal Decision Tree where the tests have non-
unit costs (which also admits a O(logm)-approximation [GNR17, KNN17]), we get the following
corollary.

Corollary 3.3. There exists an efficient algorithm that is O(logm)-approximate for Pandora’s

Box and with or without unit-cost boxes.

3.2 Constant approximation for Partially Adaptive PB

Moving on, we show how our reduction can be used to obtain and improve the results of [CGT+20].
Recall that in [CGT+20] the authors presented a constant factor approximation algorithm against
a Partially Adaptive benchmark where the order of opening boxes must be fixed up front.

In such a case, the reduction of Section 4 can be used to reduce PB to the standard Min Sum

Set Cover (i.e. without feedback), which admits a 4-approximation [FLT04].

Corollary 3.4. There exists a polynomial time algorithm for PB that is O(1)-competitive against
the partially adaptive benchmark.

The same result applies even in the case of non-uniform opening costs. This is because a 4-
approximate algorithm for Min Sum Set Cover is known even when elements have arbitrary
costs [MBMW05]. The case of non-uniform opening costs has also been considered for Pandora’s
Box by [CGT+20] but only provide an algorithm to handle polynomially bounded opening costs.

4If additionally the possible number of outcomes is a constant K, this gives a O(logm) approximation without
losing an extra logarithmic factor, since OPT ≥ logK m, as observed by [LLM20].

7

4 Connecting Pandora’s Box and MSSCf

In this section we establish the connection between Pandora’s Box and Min Sum Set Cover

with Feedback. We show that the two problems are equivalent up to logarithmic factors in
approximation ratio.

One direction of this equivalence is easy to see in fact: Min Sum Set Cover with Feedback

is a special case of Pandora’s Box. Note that in both problems we examine boxes/elements in an
adaptive order. In PB we stop when we find a sufficiently small value; in MSSCf we stop when we
find an element that belongs to the instantiated scenario. To establish a formal connection, given
an instance of MSSCf , we can define the ”value” of each element i in scenario s as being 0 if the
element belongs to the set s and as being L+ fi(s) for some sufficiently large value L where fi(s)
is the feedback of element i for set s. This places the instance within the framework of PB and
a PB algorithm can be used to solve it. We formally describe this reduction in Section B of the
Appendix.

Claim 4.1. If there exists an α(n,m)-approximation algorithm for PB then there exists a α(n,m)-
approximation for MSSCf .

The more interesting direction is a reduction from PB to MSSCf . In fact we show that a
general instance of PB can be reduced to the simpler uniform version of Min Sum Set Cover

with Feedback. We devote the rest of this section to proving the following theorem.

Theorem 4.2 (Pandora’s Box to MSSCf). If there exists an a(n,m) approximation algorithm
for UMSSCf then there exists a O(α(n +m,m2) log α(n +m,m2))-approximation for PB.

Guessing a stopping rule and an intermediate problem

The feedback structure in PB and MSSCf is quite similar, and the main component in which
the two problems differ is the stopping condition. In MSSCf , an algorithm can stop examining
elements as soon as it finds one that ”covers” the realized set. In PB, when the algorithm observes
a value in a box, it is not immediately apparent whether the value is small enough to stop or
whether the algorithm should probe further, especially if the scenario is not fully identified. The
key to relating the two problems is to ”guess” an appropriate stopping condition for PB, namely
an appropriate threshold T such that as soon as the algorithm observes a value smaller than this
threshold, it stops. We say that the realized scenario is ”covered”.

To formalize this approach, we introduce an intermediate problem called Pandora’s Box with
costly outside option T (also called threshold), denoted by PB≤T . In this version the objective is
to minimize the cost of finding a value ≤ T , while we have the extra option to quit searching by
opening an outside option box of cost T . We say that a scenario is covered in a given run of the
algorithm if it does not choose the outside option box T .

We show that Pandora’s Box can be reduced to PB≤T with a logarithmic loss in approxi-
mation factor, and then PB≤T can be reduced to Min Sum Set Cover with Feedback with a
constant factor loss. The following two results capture the details of these reductions.

Claim 4.3. If there exists an α(n,m) approximation algorithm for UMSSCf then there exists an
3α(n +m,m2)-approximation for UPB≤T .

It is also worth noting that PB≤T is a special case of the Adaptive Ranking problem which
directly implies a logm approximation factor (given in [KNN17]).

8

Main Lemma 4.4. Given a polynomial-time α(n,m)-approximation algorithm for UPB≤T , there
exists a polynomial-time O(α(n,m) log α(n,m))-approximation for PB.

The relationship between PB≤T and Min Sum Set Cover with Feedback is relatively
straightforward and requires explicitly relating the structure of feedback in the two problems. We
describe the details in Section B of the Appendix.

Putting it all together. The proof of Theorem 4.2 follows by combining Claim 4.3 with Lem-
mas 4.5 and 4.4 presented in the following sections. Proofs of Claims 4.1, 4.3 deferred to Section B
of the Appendix. The rest of this section is devoted to proving Lemmas 4.5 and 4.4. The landscape
of reductions shown in this section is presented in Figure 3.

PB

UPB≤TPB≤T

UMSSCfMSSCf

Lem 4.5 Lem 4.4

Claim 4.3 Claim 4.3

Claim 4.1
Main Lemma (log factors)

Claim (const. factors)

Minor Claim

Subproblem

Figure 3: Reductions shown in this section. Claim 4.3 alongside Lemmas 4.5 and 4.4 are part of
Theorem 4.2.

4.1 Reducing Pandora’s Box to PB≤T

Recall that a solution to Pandora’s Box involves two components ; (1) the order in which to
open boxes and (2) a stopping rule. The goal of the reduction to PB≤T is to simplify the stopping
rule of the problem, by making values either 0 or ∞, therefore allowing us to focus on the order in
which boxes are opened, rather than which value to stop at. We start by presenting our main tool,
a reduction to Min Sum Set Cover with Feedback in Section 4.1.1 and then improve upon
that to reduce from the uniform version of MSSCf (Section 4.1.2).

4.1.1 Main Tool

The high level idea in this reduction is that we repeatedly run the algorithm for PB≤T with
increasingly larger value of T with the goal of covering some mass of scenarios at every step. The
thresholds for every run have to be cleverly chosen to guarantee that enough mass is covered at
every run. The distributions on the boxes remain the same, and this reduction does not increase
the number of boxes, therefore avoiding the issues faced by the naive reduction given in Section A
of the Appendix. Formally, we show the following lemma.

Main Lemma 4.5. Given a polynomial-time α(n,m)-approximation algorithm for PB≤T , there
exists a polynomial-time O(α(n,m) log α(n,m))-approximation for PB.

9

Algorithm 1: Reduction from PB to PB≤T .

Input: Oracle A(T) for PB≤T , set of all scenarios S.
1 i← 0 // Number of current Phase

2 while S)= ∅ do
3 Use A to find smallest Ti via Binary Search s.t.

Pr [accepting the outside option Ti] ≤ 0.2
4 Call the oracle A(Ti) on set S to obtain policy πi
5 S ← S\ {scenarios with total cost ≤ Ti}
6 end
7 for i← 0 to ∞ do
8 Run policy πi until it terminates and selects a box, or accumulates probing cost Ti.
9 end

We will now analyze the policy produced by this algorithm.

Proof of Main Lemma 4.5. We start with some notation. Given an instance I of PB, we repeatedly
run PB≤T in phases. Phase i consists of running PB≤T with threshold Ti on a sub instance of the
original problem where we are left with a smaller set of scenarios, with their probabilities reweighted
to sum to 1. Call this set of scenarios Si for phase i and the corresponding instance Ii. After every
phase i, we remove the probability mass that was covered5, and run PB≤T on this new instance
with a new threshold Ti+1. In each phase, the boxes, costs and values remain the same, but the
stopping condition changes: thresholds Ti increase in every subsequent phase. The thresholds are
chosen such that at the end of each phase, 0.8 of the remaining probability mass is covered. The
reduction process is formally shown in Algorithm 1.

Accounting for the cost of the policy. We first note that the total cost of the policy in phase
i conditioned on reaching that phase is at most 2Ti: if the policy terminates in that phase, it selects
a box with value at most Ti. Furthermore, the policy incurs probing cost at most Ti in the phase.
We can therefore bound the total cost of the policy as ≤ 2

∑∞
i=0(0.2)

iTi.

We will now relate the thresholds Ti to the cost of the optimal PB policy for I. To this end, we
define corresponding thresholds for the optimal policy that we call p-thresholds. Let π∗

I denote the
optimal PB policy for I and let cs denote the cost incurred by π∗

I when scenario i is realized. A
p-threshold is the minimum possible threshold T such that at most p mass of the scenarios has cost
more than T in PB, formally defined below.

Definition 4.6 (p-Threshold). Let I be an instance of PB and cs be the cost of scenario s ∈ S in
π∗
I , we define the p-threshold as

tp = min{T : Pr [cs > T] ≤ p}.

The following two lemmas relate the cost of the optimal policy to the p-thresholds, and the
p-thresholds to the thresholds Ti our algorithm finds. The proofs of both lemmas are deferred to
Section B.1 of the Appendix. We first formally define a sub-instance of the given Pandora’s Box

instance.
5Recall, a scenario is covered if it does not choose the outside option box.

10

Definition 4.7 (Sub-instance). Let I be an instance of {PB≤T ,PB} with set of scenarios SI each
with probability pIs . For any q ∈ [0, 1] we call I ′ a q-sub instance of I if SI′ ⊆ SI and

∑

s∈S
I′
pIs = q.

Lemma 4.8. (Optimal Lower Bound) Let I be the instance of PB. For any q < 1, any α > 1,
and β ≥ 2, for the optimal policy π∗

I for PB it that

cost(π∗
I) ≥

∞
∑

i=0

1

βα
· (q)i tqi/βα.

Lemma 4.9. Given an instance I of PB; an α-approximation algorithm AT to PB≤T ; and any
q < 1 and β ≥ 2, suppose that the threshold T satisfies

T ≥ tq/(βα) + βα
∑

cs∈[tq,tq/(βα)]
s∈S

cs
ps
q
.

Then if AT is run on a q-sub instance of I with threshold T , at most a total mass of (2/β)q of the
scenarios pick the outside option box T .

Calculating the thresholds. For every phase i we choose a threshold Ti such that Ti = min{T :
Pr [cs > T] ≤ 0.2} i.e. at most 0.2 of the probability mass of the scenarios are not covered. In
order to select this threshold, we do binary search starting from T = 1, running every time the
α-approximation algorithm for PB≤T with outside option box T and checking how many scenarios
select it. We denote by Inti = [t(0.2)i , t(0.2)i/(10α)] the relevant interval of costs at every run of the

algorithm, then by Lemma 4.9 for β = 10, we know that for remaining total probability mass (0.2)i,
any threshold which satisfies

Ti ≥ t(0.2)i−1/10a + 10α
∑

s∈S
cs∈Inti

cs
ps

(0.2)i

also satisfies the desired covering property, i.e. at least 0.8 mass of the current scenarios is covered.
Therefore the threshold

Ti found by our binary search satisfies the following

Ti = t(0.2)i−1/10a + 10α
∑

s∈S
cs∈Inti

cs
ps

(0.2)i
. (1)

Bounding the final cost. To bound the final cost, we recall that at the end of every phase we
cover 0.8 of the remaining scenarios. Furthermore, we observe that each threshold Ti is charged
in the above Equation (1) to optimal costs of scenarios corresponding to intervals of the form
Inti = [t(0.2)i , t(0.2)i/(10α)]. Note that these intervals are overlapping. We therefore get

cost(πI) ≤ 2
∞
∑

i=0

(0.2)iTi

= 2
∞
∑

i=0






(0.2)it(0.2)i−1/10a + 10α

∑

s∈S
cs∈Inti

csps






From equation (1)

11

≤ 4 · 10απ∗
I + 20α

∞
∑

i=0

∑

s∈S
cs∈Inti

csps Using Lemma 4.8 for β = 10, q = 0.2

≤ 40α logα · π∗
I .

Where the last inequality follows since each scenario with cost cs can belong to at most log α
intervals, therefore we get the theorem.

Notice the generality of this reduction; the distributions on the values are preserved, and we
did not make any more assumptions on the scenarios or values throughout the proof. Therefore we
can apply this tool regardless of the type of correlation or the way it is given to us, e.g. we could be
given a parametric distribution, or an explicitly given distribution, as we see in the next section.

4.1.2 An Even Stronger Tool

Moving one step further, we show that if we instead of PB≤T we had an α-approximation algorithm
for UPB≤T we can obtain the same guarantees as the ones described in Lemma 4.5. Observe that
we cannot directly use Algorithm 1 since the oracle now requires that all scenarios have the same
probability, while this might not be the case in the initial PB instance. The theorem stated formally
follows.

Main Lemma 4.4. Given a polynomial-time α(n,m)-approximation algorithm for UPB≤T , there
exists a polynomial-time O(α(n,m) log α(n,m))-approximation for PB.

We are going to highlight the differences with the proof of Main Lemma 4.5, and show how
to change Algorithm 1 to work with the new oracle, that requires the scenarios to have uniform
probability. The function Expand shown in Algorithm 2 is used to transform the instance of sce-
narios to a uniform one where every scenario has the same probability by creating multiple copies
of the more likely scenarios. The function is formally described in Algorithm 3 in Section B.2 of
the Appendix, alongside the proof of Main Lemma 4.4.

Algorithm 2: Reduction from PB to UPB≤T .

Input: Oracle A(T) for UPB≤T , set of all scenarios S, c = 1/10, δ = 0.1.
1 i← 0 // Number of current Phase

2 while S)= ∅ do

3 Let L =
{

s ∈ S : ps ≤ c · 1
|S|

}

// Remove low probability scenarios

4 S ′ = S \ L
5 UI = Expand(S ′)
6 In instance UI use A to find smallest Ti via Binary Search s.t. Pr [accepting Ti] ≤ δ
7 Call the oracle A(Ti)
8 S ←

(

S ′ \ {s ∈ S ′ : cs ≤ Ti}
)

∪ L
9 end

5 Connecting MSSCf and Optimal Decision Tree

In this section we establish the connection between Min Sum Set Cover with Feedback and
Optimal Decision Tree. We show that the uniform versions of these problems are equivalent up

12

to constant factors in approximation ratio. The results of this section are summarized in Figure 4
and the two results below.

UMSSCfMSSCf

UDT

DT

Claim 5.1

Claim 5.1 Thm 5.2

Main Theorem: const. factors

Minor Claim

Subproblem

Figure 4: Summary of reductions in Section 5

Claim 5.1. If there exists an α(n,m)-approximation algorithm for DT (UDT) then there exists a
(1 + α(n,m))-approximation algorithm for MSSCf (resp. UMSSCf).

Theorem 5.2 (Uniform Decision Tree to UMSSCf). Given an α(m,n)-approximation algo-
rithm for UMSSCf then there exists an O(α(n +m,m))-approximation algorithm for UDT.

The formal proofs of these statements can be found in Section C of the Appendix. Here we
sketch the main ideas.

One direction of this equivalence is again easy to see. The main difference between Optimal

Decision Tree andMSSCf is that the former requires scenarios to be exactly identified whereas in
the latter it suffices to simply find an element that covers the scenario. In particular, in MSSCf an
algorithm could cover a scenario without identifying it by, for example, covering it with an element
that covers multiple scenarios. To reduce MSSCf to DT we simply introduce extra feedback
into all of the elements of the MSSCf instance such that the elements isolate any scenarios they
cover. (That is, if the algorithm picks an element that covers some subset of scenarios, this element
provides feedback about which of the covered scenarios materialized.) This allows us to relate the
cost of isolation and the cost of covering to within the cost of a single additional test, implying
Claim 5.1.

Proof Sketch of Theorem 5.2. The other direction is more complicated, as we want to ensure
that covering implies isolation. Given an instance of UDT, we create a special element for each
scenario which is the unique element covering the scenario and also isolates the scenario from all
other scenarios. The intention is that an algorithm for MSSCf on this new instance only chooses
the special isolating element in a scenario after it has identified the scenario. If that happens, then
the algorithm’s policy is a feasible solution to the UDT instance and incurs no extra cost. The
problem is that an algorithm for MSSCf over the modified instance may use the special covering
element before isolating a scenario. We argue that this choice can be ”postponed” in the policy to
a point at which isolation is nearly achieved without incurring too much extra cost. This involves
careful analysis of the policy’s decision tree and we present details in the appendix.

Why our reduction does not work for DT. Our analysis above heavily uses the fact that the
probabilities of all scenarios in the UDT instance are equal. This is because the ”postponement”

13

of elements charges increased costs of some scenarios to costs of other scenarios. In fact, our
reduction above fails in the case of non-uniform distributions over scenarios – it can generate an
MSSCf instance with optimal cost much smaller than that of the original DT instance.

To see this, consider an example with m scenarios where scenarios 1 through m−1 happen with
probability ε/(m− 1) and scenario m happens with probability 1− ε. There are m− 1 tests of cost
1 each. Test i for i ∈ [m− 1] isolates scenario i from all others. Observe that the optimal cost of
this DT instance is at least (1− ε)(m− 1) as all m− 1 tests need to be run to isolate scenario m.
Our construction of the MSSCf instance adds another isolating test for scenario m. A solution to
this instance can use this new test at the beginning to identify scenario m and then run other tests
with the remaining ε probability. As a result, it incurs cost at most (1− ε) + ε(m− 1), which is a
factor of 1/ε cheaper than that of the original DT instance.

6 Mixture of Product Distributions

In this section we switch gears and consider the case where we are given a mixture of m product
distributions. Observe that using the tool described in Section 4.1.1, we can reduce this problem
to PB≤T . This now is equivalent to the noisy version of DT [GK17, JNNR19] where for a specific
scenario, the result of each test is not deterministic and can get different values with different
probabilities.

Comparison with previous work: previous work on noisy decision tree, considers limited
noise models or the runtime and approximation ratio depends on the type of noise. For example
in the main result of [JNNR19], the noise outcomes are binary with equal probability. The authors
mention that it is possible to extend the following ways:

• to probabilities within [δ, 1 − δ], incurring an extra 1/δ factor in the approximation

• to non-binary noise outcomes, incurring an extra at most m factor in the approximation

Additionally, their algorithm works by expanding the scenarios for every possible noise outcome
(e.g. to 2m for binary noise). In our work the number of noisy outcomes does not affect the number
of scenarios whatsoever.

In our work, we obtain a constant approximation factor, that does not depend in any way
on the type of the noise. Additionally, the outcomes of the noisy tests can be arbitrary, and do
not affect either the approximation factor or the runtime. We only require a separability condition
to hold ; the distributions either differ enough or are exactly the same. Formally, we require
that for any two scenarios s1, s2 ∈ S and for every box i, the distributions Dis1 and Dis2 satisfy
|Dis1 −Dis2 | ∈ R≥ε ∪ {0}, where |A− B| is the total variation distance of distributions A and B.

6.1 A DP Algorithm for noisy PB≤T

We move on to designing a dynamic programming algorithm to solve the PB≤T problem, in the
case of a mixtures of product distributions. The guarantees of our dynamic programming algorithm
are given in the following theorem.

Theorem 6.1. For any β > 0, let πDP and π∗ be the policies produced by Algorithm DP(β)

described by Equation (2) and the optimal policy respectively and UB = m2

ε2 log m2T
cminβ

. Then it holds
that

c(πDP) ≤ (1 + β)c(π∗).

and the DP runs in time nUB, where n is the number of boxes and cmin is the minimum cost box.

14

Using the reduction described in Section 4.1.1 and the previous theorem we can get a constant-
approximation algorithm for the initial PB problem given a mixture of product distributions.
Observe that in the reduction, for every instance of PB≤T it runs, the chosen threshold T satisfies
that T ≤ (β + 1)c(π∗

T)/0.2 where π∗
T is the optimal policy for the threshold T . The inequality

holds since the algorithm for the threshold T is a (β + 1) approximation and it covers 80% of the
scenarios left (i.e. pays 0.2T for the rest). This is formalized in the following corollary.

Corollary 6.1. Given an instance of PB on m scenarios, and the DP algorithm described in
Equation (2), then using Algorithm 1 we obtain an O(1)-approximation algorithm for PB that runs

in nÕ(m2/ε2).

Observe that the naive DP, that keeps track of all the boxes and possible outcomes, has space
exponential in the number of boxes, which can be very large. In our DP, we exploit the separability
property of the distributions by distinguishing the boxes in two different types based on a given
set of scenarios. Informally, the informative boxes help us distinguish between two scenarios, by
giving us enough TV distance, while the non-informative always have zero TV distance. The formal
definition follows.

Definition 6.2 (Informative and non-informative boxes). Let S ⊆ S be a set of scenarios. Then
we call a box k informative if there exist si, sj ∈ S such that

|Dksi −Dksj | ≥ ε.

We denote the set of all informative boxes by IB(S). Similarly, the boxes for which the above does
not hold are called non-informative and the set of these boxes is denoted by NIB(S).

Recursive calls of the DP: Our dynamic program chooses at every step one of the following
options:

1. open an informative box: this step contributes towards eliminating improbable scenarios.
From the definition of informative boxes, every time such a box is opened, it gives TV distance
at least ε between at least two scenarios, making one of them more probable than the other.
We show (Lemma 6.3) that it takes a finite amount of these boxes to decide, with high
probability, which scenario is the one realized (i.e. eliminating all but one scenarios).

2. open a non-informative box: this is a greedy step; the best non-informative box to open
next is the one that maximizes the probability of finding a value smaller than T . Given a set
S of scenarios that are not yet eliminated, there is a unique next non-informative box which
is best. We denote by NIB∗(S) the function that returns this next best non-informative box.
Observe that the non-informative boxes do not affect the greedy ordering of which is the next
best, since they do not affect which scenarios are eliminated.

State space of the DP: the DP keeps track of the following three quantities:

1. a list M which consists of sets of informative boxes opened and numbers of non-informative
ones opened in between the sets of informative ones. Specifically, M has the following form:
M = S1|x1|S2|x2| . . . |SL|xL6 where Si is a set of informative boxes, and xi ∈ N is the number
of non-informative boxes opened exactly after the boxes in set Si. We also denote by IB(M)
the informative boxes in the list M .

6If bi for i ∈ [n] are boxes, the list M looks like this: b3b6b13|5|b42b1|6|b2

15

In order to update M at every recursive call, we either append a new informative box bi
opened (denoted by M |bi) or, when a non-informative box is opened, we add 1 at the end,
denoted by M + 1.

2. a list E of m2 tuples of integers (zij , tij), one for each pair of distinct scenarios (si, sj) with
i, j ∈ [m]. The number zij keeps track of the number of informative boxes between si and
sj that the value discovered had higher probability for scenario si, and the number tij is the
total number of informative for scenarios si and sj opened. Every time an informative box
is opened, we increase the tij variables for the scenarios the box was informative and add 1
to the zij if the value discovered had higher probability in si. When a non-informative box is
opened, the list remains the same.We denote this update by E++.

3. a list S of the scenarios not yet eliminated. Every time an informative test is performed,
and the list E updated, if for some scenario si there exists another scenario sj such that
tij > 1/ε2 log(1/δ) and |zij − E[zij |si]| ≤ ε/2 then sj is removed from S, otherwise si is
removed7. This update is denoted by S++.

Base cases: if a value below T is found, the algorithm stops. The other base case is when |S| = 1,
which means that the scenario realized is identified, we either take the outside option T or search
the boxes for a value below T , whichever is cheapest. If the scenario is identified correctly, the
DP finds the expected optimal for this scenario. We later show that we make a mistake only with
low probability, thus increasing the cost only by a constant factor. We denote by Nat(·, ·, ·) the
“nature’s” move, where the value in the box we chose is realized, and Sol(·, ·, ·) is the minimum
value obtained by opening boxes. The recursive formula is shown below.

Sol(M,E,S) =



















min(T, cNIB∗(S) +Nat(M+1, E, S)) if |S| = 1

min
(

T, min
i∈IB(M)

(ci+Nat(M |i, E, S))

, cNIB∗(S) +Nat(M+1, E, S)
)

else

Nat(M,E,S) =

{

0 if vlast box opened ≤ T

Sol(M,E++, S++) else

(2)

The final solution is DP(β) = Sol(∅, E0,S), where E0 is a list of tuples of the form (0, 0), and in
order to update S we set δ = βcmin/(m2T).

Lemma 6.3. Let s1, s2 ∈ S be any two scenarios. Then after opening log(1/δ)
ε2 informative boxes,

we can eliminate one scenario with probability at least 1− δ.

We defer the proof of this lemma and Theorem 6.1 to Section D of the Appendix.

References

[AGY09] Yossi Azar, Iftah Gamzu, and Xiaoxin Yin. Multiple intents re-ranking. In Michael
Mitzenmacher, editor, Proceedings of the 41st Annual ACM Symposium on Theory of
Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 669–678.
ACM, 2009.

7This is the process of elimination in the proof of Lemma 6.3

16

[AH12] Micah Adler and Brent Heeringa. Approximating optimal binary decision trees. Al-
gorithmica, 62(3-4):1112–1121, 2012.

[ASW16] Marek Adamczyk, Maxim Sviridenko, and Justin Ward. Submodular stochastic prob-
ing on matroids. Math. Oper. Res., 41(3):1022–1038, 2016.

[BC22] Hedyeh Beyhaghi and Linda Cai. Pandora’s problem with nonobligatory inspection:
Optimal structure and a PTAS. CoRR, abs/2212.01524, 2022.

[BDP22] Curtis Bechtel, Shaddin Dughmi, and Neel Patel. Delegated pandora’s box. In
David M. Pennock, Ilya Segal, and Sven Seuken, editors, EC ’22: The 23rd ACM
Conference on Economics and Computation, Boulder, CO, USA, July 11 - 15, 2022,
pages 666–693. ACM, 2022.

[BEFF23] Ben Berger, Tomer Ezra, Michal Feldman, and Federico Fusco. Pandora’s problem
with combinatorial cost. CoRR, abs/2303.01078, 2023.

[BFLL20] Shant Boodaghians, Federico Fusco, Philip Lazos, and Stefano Leonardi. Pandora’s
box problem with order constraints. In Péter Biró, Jason D. Hartline, Michael Os-
trovsky, and Ariel D. Procaccia, editors, EC ’20: The 21st ACM Conference on Eco-
nomics and Computation, Virtual Event, Hungary, July 13-17, 2020, pages 439–458.
ACM, 2020.

[BGK10] Nikhil Bansal, Anupam Gupta, and Ravishankar Krishnaswamy. A constant factor
approximation algorithm for generalized min-sum set cover. In Proceedings of the
Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010,
Austin, Texas, USA, January 17-19, 2010, pages 1539–1545, 2010.

[BK19] Hedyeh Beyhaghi and Robert Kleinberg. Pandora’s problem with nonobligatory in-
spection. In Anna Karlin, Nicole Immorlica, and Ramesh Johari, editors, Proceedings
of the 2019 ACM Conference on Economics and Computation, EC 2019, Phoenix, AZ,
USA, June 24-28, 2019, pages 131–132. ACM, 2019.

[CFG+00] Moses Charikar, Ronald Fagin, Venkatesan Guruswami, Jon M. Kleinberg, Prabhakar
Raghavan, and Amit Sahai. Query strategies for priced information (extended ab-
stract). In Proceedings of the Thirty-Second Annual ACM Symposium on Theory of
Computing, May 21-23, 2000, Portland, OR, USA, pages 582–591, 2000.

[CGT+20] Shuchi Chawla, Evangelia Gergatsouli, Yifeng Teng, Christos Tzamos, and Ruimin
Zhang. Pandora’s box with correlations: Learning and approximation. In 61st IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC,
USA, November 16-19, 2020, pages 1214–1225. IEEE, 2020.

[CHKK15] Yuxin Chen, S. Hamed Hassani, Amin Karbasi, and Andreas Krause. Sequential
information maximization: When is greedy near-optimal? In Proceedings of The 28th
Conference on Learning Theory, COLT 2015, Paris, France, July 3-6, 2015, pages
338–363, 2015.

[CJK+15] Yuxin Chen, Shervin Javdani, Amin Karbasi, J. Andrew Bagnell, Siddhartha S. Srini-
vasa, and Andreas Krause. Submodular surrogates for value of information. In Pro-
ceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January
25-30, 2015, Austin, Texas, USA., pages 3511–3518, 2015.

17

[CJLM10] Ferdinando Cicalese, Tobias Jacobs, Eduardo Sany Laber, and Marco Molinaro. On
greedy algorithms for decision trees. In Otfried Cheong, Kyung-Yong Chwa, and
Kunsoo Park, editors, Algorithms and Computation - 21st International Symposium,
ISAAC 2010, Jeju Island, Korea, December 15-17, 2010, Proceedings, Part II, volume
6507 of Lecture Notes in Computer Science, pages 206–217. Springer, 2010.

[CPR+11] Venkatesan T. Chakaravarthy, Vinayaka Pandit, Sambuddha Roy, Pranjal Awasthi,
and Mukesh K. Mohania. Decision trees for entity identification: Approximation
algorithms and hardness results. ACM Trans. Algorithms, 7(2):15:1–15:22, 2011.

[CPRS09] Venkatesan T. Chakaravarthy, Vinayaka Pandit, Sambuddha Roy, and Yogish Sab-
harwal. Approximating decision trees with multiway branches. In Susanne Albers,
Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, and Wolfgang
Thomas, editors, Automata, Languages and Programming, 36th International Collo-
quium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part I, volume
5555 of Lecture Notes in Computer Science, pages 210–221. Springer, 2009.

[Das04] Sanjoy Dasgupta. Analysis of a greedy active learning strategy. In Advances in Neural
Information Processing Systems 17 [Neural Information Processing Systems, NIPS
2004, December 13-18, 2004, Vancouver, British Columbia, Canada], pages 337–344,
2004.

[DFH+23] Bolin Ding, Yiding Feng, Chien-Ju Ho, Wei Tang, and Haifeng Xu. Competitive infor-
mation design for pandora’s box. In Nikhil Bansal and Viswanath Nagarajan, editors,
Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023,
Florence, Italy, January 22-25, 2023, pages 353–381. SIAM, 2023.

[Dov18] Laura Doval. Whether or not to open pandora’s box. J. Econ. Theory, 175:127–158,
2018.

[EHLM19] Hossein Esfandiari, Mohammad Taghi Hajiaghayi, Brendan Lucier, and Michael
Mitzenmacher. Online pandora’s boxes and bandits. In The Thirty-Third AAAI
Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Appli-
cations of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii,
USA, January 27 - February 1, 2019, pages 1885–1892. AAAI Press, 2019.

[FLL22] Hu Fu, Jiawei Li, and Daogao Liu. Pandora box problem with nonobligatory in-
spection: Hardness and improved approximation algorithms. CoRR, abs/2207.09545,
2022.

[FLT04] Uriel Feige, László Lovász, and Prasad Tetali. Approximating min sum set cover.
Algorithmica, 40(4):219–234, 2004.

[GB09] Andrew Guillory and Jeff A. Bilmes. Average-case active learning with costs. In Ricard
Gavaldà, Gábor Lugosi, Thomas Zeugmann, and Sandra Zilles, editors, Algorithmic
Learning Theory, 20th International Conference, ALT 2009, Porto, Portugal, October
3-5, 2009. Proceedings, volume 5809 of Lecture Notes in Computer Science, pages
141–155. Springer, 2009.

[GG74] M. R. Garey and Ronald L. Graham. Performance bounds on the splitting algorithm
for binary testing. Acta Informatica, 3:347–355, 1974.

18

[GGM06] Ashish Goel, Sudipto Guha, and Kamesh Munagala. Asking the right questions:
model-driven optimization using probes. In Proceedings of the Twenty-Fifth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June 26-
28, 2006, Chicago, Illinois, USA, pages 203–212, 2006.

[GJ74] J.C. Gittins and D.M. Jones. A dynamic allocation index for the sequential design of
experiments. Progress in Statistics, pages 241–266, 1974.

[GJSS19] Anupam Gupta, Haotian Jiang, Ziv Scully, and Sahil Singla. The markovian price of
information. In Integer Programming and Combinatorial Optimization - 20th Interna-
tional Conference, IPCO 2019, Ann Arbor, MI, USA, May 22-24, 2019, Proceedings,
pages 233–246, 2019.

[GK01] Anupam Gupta and Amit Kumar. Sorting and selection with structured costs. In 42nd
Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-17 October
2001, Las Vegas, Nevada, USA, pages 416–425, 2001.

[GK11] Daniel Golovin and Andreas Krause. Adaptive submodularity: Theory and applica-
tions in active learning and stochastic optimization. J. Artif. Intell. Res., 42:427–486,
2011.

[GK17] Daniel Golovin and Andreas Krause. Adaptive submodularity: A new approach to
active learning and stochastic optimization. CoRR, abs/1003.3967, 2017.

[GKR10] Daniel Golovin, Andreas Krause, and Debajyoti Ray. Near-optimal bayesian active
learning with noisy observations. In John D. Lafferty, Christopher K. I. Williams,
John Shawe-Taylor, Richard S. Zemel, and Aron Culotta, editors, Advances in Neural
Information Processing Systems 23: 24th Annual Conference on Neural Information
Processing Systems 2010. Proceedings of a meeting held 6-9 December 2010, Vancou-
ver, British Columbia, Canada, pages 766–774. Curran Associates, Inc., 2010.

[GN13] Anupam Gupta and Viswanath Nagarajan. A stochastic probing problem with applica-
tions. In Integer Programming and Combinatorial Optimization - 16th International
Conference, IPCO 2013, Valparáıso, Chile, March 18-20, 2013. Proceedings, pages
205–216, 2013.

[GNR17] Anupam Gupta, Viswanath Nagarajan, and R. Ravi. Approximation algorithms for
optimal decision trees and adaptive TSP problems. Math. Oper. Res., 42(3):876–896,
2017.

[GNS16] Anupam Gupta, Viswanath Nagarajan, and Sahil Singla. Algorithms and adaptivity
gaps for stochastic probing. In Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12,
2016, pages 1731–1747, 2016.

[GNS17] Anupam Gupta, Viswanath Nagarajan, and Sahil Singla. Adaptivity gaps for stochas-
tic probing: Submodular and XOS functions. In Proceedings of the Twenty-Eighth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain,
Hotel Porta Fira, January 16-19, pages 1688–1702, 2017.

[GT23] Evangelia Gergatsouli and Christos Tzamos. Weitzman’s rule for pandora’s box with
correlations. CoRR, abs/2301.13534, 2023.

19

[HAKS13] Noam Hazon, Yonatan Aumann, Sarit Kraus, and David Sarne. Physical search prob-
lems with probabilistic knowledge. Artif. Intell., 196:26–52, 2013.

[HR76] Laurent Hyafil and Ronald L. Rivest. Constructing optimal binary decision trees is
np-complete. Inf. Process. Lett., 5(1):15–17, 1976.

[INvdZ16] Sungjin Im, Viswanath Nagarajan, and Ruben van der Zwaan. Minimum latency
submodular cover. ACM Trans. Algorithms, 13(1):13:1–13:28, 2016.

[JNNR19] Su Jia, Viswanath Nagarajan, Fatemeh Navidi, and R. Ravi. Optimal decision tree
with noisy outcomes. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Flo-
rence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pages 3298–3308, 2019.

[KNN17] Prabhanjan Kambadur, Viswanath Nagarajan, and Fatemeh Navidi. Adaptive sub-
modular ranking. In Integer Programming and Combinatorial Optimization - 19th
International Conference, IPCO 2017, Waterloo, ON, Canada, June 26-28, 2017,
Proceedings, pages 317–329, 2017.

[KPB99] S. Rao Kosaraju, Teresa M. Przytycka, and Ryan S. Borgstrom. On an optimal split
tree problem. In Frank K. H. A. Dehne, Arvind Gupta, Jörg-Rüdiger Sack, and
Roberto Tamassia, editors, Algorithms and Data Structures, 6th International Work-
shop, WADS ’99, Vancouver, British Columbia, Canada, August 11-14, 1999, Pro-
ceedings, volume 1663 of Lecture Notes in Computer Science, pages 157–168. Springer,
1999.

[LLM20] Ray Li, Percy Liang, and Stephen Mussmann. A tight analysis of greedy yields subex-
ponential time approximation for uniform decision tree. In Shuchi Chawla, editor,
Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020,
Salt Lake City, UT, USA, January 5-8, 2020, pages 102–121. SIAM, 2020.

[Lov85] Donald W. Loveland. Performance bounds for binary testing with arbitrary weights.
Acta Informatica, 22(1):101–114, 1985.

[LPRY08] Zhen Liu, Srinivasan Parthasarathy, Anand Ranganathan, and Hao Yang. Near-
optimal algorithms for shared filter evaluation in data stream systems. In Jason Tsong-
Li Wang, editor, Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, pages
133–146. ACM, 2008.

[MBMW05] Kamesh Munagala, Shivnath Babu, Rajeev Motwani, and Jennifer Widom. The
pipelined set cover problem. In Thomas Eiter and Leonid Libkin, editors, Database
Theory - ICDT 2005, 10th International Conference, Edinburgh, UK, January 5-7,
2005, Proceedings, volume 3363 of Lecture Notes in Computer Science, pages 83–98.
Springer, 2005.

[NS17] Feng Nan and Venkatesh Saligrama. Comments on the proof of adaptive stochastic set
cover based on adaptive submodularity and its implications for the group identification
problem in ”group-based active query selection for rapid diagnosis in time-critical
situations”. IEEE Trans. Inf. Theory, 63(11):7612–7614, 2017.

20

[PD92] Krishna R. Pattipati and Mahesh Dontamsetty. On a generalized test sequencing
problem. IEEE Trans. Syst. Man Cybern., 22(2):392–396, 1992.

[PKSR02] Vili Podgorelec, Peter Kokol, Bruno Stiglic, and Ivan Rozman. Decision trees: An
overview and their use in medicine. Journal of medical systems, 26:445–63, 11 2002.

[Sin18] Sahil Singla. The price of information in combinatorial optimization. In Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2018, New Orleans, LA, USA, January 7-10, 2018, pages 2523–2532, 2018.

[SW11] Martin Skutella and David P. Williamson. A note on the generalized min-sum set
cover problem. Oper. Res. Lett., 39(6):433–436, 2011.

[Wei79] Martin L Weitzman. Optimal Search for the Best Alternative. Econometrica,
47(3):641–654, May 1979.

21

A A Naive Reduction to PB≤T

In this section we present a straightforward reduction from Pandora’s Box to PB≤T as an al-
ternative to Theorem 4.2. This reduction has a simpler construction compared to the reduction
of Section 4, and does not lose a logarithmic factor in the approximation, it however faces the
following issues.

1. It incurs an extra computational cost, since it adds a number of boxes that depends on the
size of the values’ support.

2. It requires opening costs, which means that the oracle for Pandora’s Box with outside
option should be able to handle non-unit costs on the boxes, even if the original PB problem
had unit-cost boxes.

We denote by PBc
≤T the version of Pandora’s Box with outside option that has non-unit

cost boxes, and formally state the guarantees of our naive reduction below.

Theorem A.1. For n boxes and m scenarios, given an α(n,m)-approximation algorithm for PBc
≤T

for arbitrary T , there exits a 2α(n · |supp(v)|,m)-approximation for PB that runs in polynomial
time in the number of scenarios, number of boxes, and the number of values.

Figure 5 summarizes all the reductions from PB to PB≤T and in Table 1 we compare the
properties of the naive reduction of this section, to the ones show in Section 4. The main differences
are that there is a blow-up in the number of boxes that depends on the support, while losing only
constant factors in the approximation.

UPB≤T

PB

PB≤T PB
c
≤T

Main Lem. 4.4
Main Lem. 4.5

Thm A.1
Main Lemma (log factors)

Main Theorem (const. factors)

Subproblem

Figure 5: Reductions shown in Section 4.1

Reducing PB to
PBc

≤T , Theorem A.1 (U)PB≤T , Main Lemma 4.5 (4.4)
Costs of boxes Introduces non-unit costs Maintains costs

Probabilities Maintains probabilities
Maintains probabilities

(Makes probabilities uniform)
of extra scenarios 0 0
of extra boxes n · supp(v) 0

Approximation loss 2α(n · supp(v),m) O(α(n,m) log a(n,m))

Table 1: Differences of reductions of Theorems A.1, and the Main Lemmas 4.5 and 4.4 that comprise
Theorem 4.2.

The main idea is that we can move the information about the values contained in the boxes into
the cost of the boxes. We do achieve this effect by creating one new box for every (box, value)-pair.

22

Note, that doing this risks losing the information about the realized scenario that the original boxes
revealed. To retain this information, we keep the original boxes, but replace their values by high
values. The high values guarantee the effect of the new boxes is retained. Now, we can formalize
this intuition.

PB≤T Instance. Given an instance I of PB, we construct an instance I ′ of PB≤T . We need T
to be sufficiently large so that the outside option is never chosen. The net effect is that a policy for
PB is easily inferred from a policy for PB≤T . We define the instance I ′ to have the same scenarios
si and same scenario probabilities pi as I. We choose T = ∞8, and define the new values by
v′i,j = vi,j +T +1. Note that all of these values will be larger than T and so a feasible policy cannot
terminate after receiving such a value. At the same time, these values ensure the same branching
behaviour as before since each distinct value is mapped one to one to a new distinct value. Next,
we add additional “final” boxes for each pair (j, v) where j is a box and v a potential value of box
j. Each “final” box (j, v) has cost cj + v. Box (j, v) has value 0 for the scenarios where box j gives
exactly value v and values T + 1 for all other scenarios. Formally,

v′i,(j,v) =

{

0 if vi,j = v

T + 1 else

Intuitively, these “final” boxes indicate to a policy that this will be the last box opened, and so
its values, which are at least that of the best values of the boxes chosen, should now be taken into
account in the cost of the solution.

In order to prove Theorem A.1, we use two key lemmas. In Lemma A.2 we show that the
optimal value for the transformed instance I ′ of PB≤T is not much higher than the optimal value
for original instance I. In Lemma A.3 we show how to obtain a policy for the initial instance with
values, given a policy for the problem with a threshold.

Lemma A.2. Given the instance I of PB and the constructed instance I ′ of PB≤T it holds that

c(π∗
I′) ≤ 2c(π∗

I).

Proof. We show that given an optimal policy for PB, we can construct a feasible policy π′ for I ′

such that c(π0) ≤ 2c(π∗
I). We construct the policy π′ by opening the same boxes as π and finally

opening the corresponding “values” box, in order to find the 0 needed to stop.
Fix any scenario i, and suppose box j achieved the smallest value Vi,j of all boxes opened under

scenario i. Since j is opened, in the instance I ′ we open box (j, vi,j), and from the construction of
I ′ we have that v′i,(j,vi,j) = 0. Since on every branch we open a box with values 09, we see that π′

is a feasible policy for I ′. Under scenario i, we have that the cost of π(i) is

c(π(i)) = min
k∈π(i)

vi,k +
∑

k∈π(i)

ck.

In contrast, the minimum cost following π′(i) is 0 and there is the additional cost of the “values”
box. Formally, the cost of π′(i) is

c(π′(i)) = 0 +
∑

k∈π(i)

ck + c(j,vi,j) = min
k∈π(i)

vi,k +
∑

k∈π(i)

ck + cj = c(π(i)) + cj

8We set T to a value larger than
∑

i ci +maxi,j vij .
9
π opens at least one box.

23

Since cj appears in the cost of π(i), we know that c(π(i)) ≥ cj . Thus, c(π′(i)) = c(π(i)) + cj ≤
2c(π(i)), which implies that c(π′) ≤ 2c(π∗

I) for our feasible policy π′. Observing that c(π′) ≥ c(π∗
I′)

for any policy, completes the proof.

Lemma A.3. Given a policy π′ for the constructed instance I ′ of PB≤T , there exists a feasible
policy π for the instance I of PB with no larger expected cost. Furthermore, any branch of π can
be constructed from π′ in polynomial time.

Proof of Lemma A.3. We construct a policy π for I using the policy π′. Fix some branch of π′.
If π′ opens box j along this branch, we define policy π to open the same box along this branch.
When π′ opens a “final” box (j, v), we define the policy π to open box j if it has not been opened
already.

Next, we show this policy π has no larger expected cost than π′. There are two cases to consider
depending on where the “final” box (j, v) is opened:

1. “Final” box (j, v) is at a leaf of π′: since π′ has finite expected cost and this is the first
“final” box we encountered, the result must be 0. Therefore, under π the values will be v by
definition of I ′. Observe that in this case, c(π) ≤ c(π′) since the (at most) extra v paid by π
for the value term, has already been paid by the box cost in π′ when box (j, v) was opened.

2. “Final” box (j, v) is at an intermediate node of π′: after π opens box j, we copy the subtree
of π′ that follows the 0 branch into the branch of π that follows the v branch. Also, we copy
the subtree of π′ that follows the ∞1 branch into each branch that has a value different from
v (the non-v branches). The cost of this new subtree is cj instead of the original cj + v. The
v branch may accrue an additional cost of v or smaller if j was not the smallest values box
on this branch, so in total, the v branch has cost at most its original cost.

However, the non-v branches have a v term removed going down the tree. Specifically, since
the feedback of (j, v) down the non-v branch was ∞1, some other box with 0 values had to
be opened at some point, and this box is still available to be used as the final values for this
branch later on (since if this branch already had a 0, it would have stopped). Thus, the cost
of this subtree is at most that originally, and has one fewer “final” box opened.

Putting these cases together implies that c(π) ≤ c(π′).
Lastly, we argue that any branch of π can be computed efficiently. To compute a branch for π,

we follow the corresponding branch of π′. As we go along this branch, we open box j whenever π′

opens box (j, v) and remember the feedback. We use the feedback to know which boxes of π′ to
open in the future. Hence, we can compute a branch of π from π′ in polynomial time.

We are now ready to give the proof of Lemma A.1.

Proof of Lemma A.1. Suppose we have an α-approximation for PB≤T . Given an instance I to PB,
we construct the instance I ′ for PB≤T as described and then run the approximation algorithm on
I ′ to get a policy πI′. Next, we prune the tree as described in Lemma A.3 to get a policy, πI of
no worse cost. Our policy will use time at most polynomially more than the policy for PB≤T since
each branch of πI can be computed in polynomial time from πI′ . Hence, the runtime is polynomial
in the size of I ′. We also note that we added at most mn total “final” boxes to construct our new
instance I ′, and so this algorithm will run in polynomial time in m and n. Thus, by Lemma A.3
and Lemma A.2 we know the cost of the constructed policy is

c(π) ≤ c(π′) ≤ αc(π∗
I′) ≤ 2αc(π∗

I)

24

Hence, this algorithm is a 2α-approximation for PB.

B Proofs from Section 4

Claim 4.1. If there exists an α(n,m)-approximation algorithm for PB then there exists a α(n,m)-
approximation for MSSCf .

Proof of Claim 4.1. Let I be an instance of MSSCf . We create an instance I ′ of PB the following
way: for every set sj of I that gives feedback fij when element ei is selected, we create a scenario
sj with the same probability and whose value for box i, is either 0 if ei ∈ sj or ∞fij otherwise,
where ∞fij denotes an extremely large value which is different for different values of the feedback
fij. Observe that any solution to the PB instance gives a solution to the MSSCf at the same cost
and vice versa.

Claim 4.3. If there exists an α(n,m) approximation algorithm for UMSSCf then there exists an
3α(n +m,m2)-approximation for UPB≤T .

Before formally proving this claim, recall the correspondence of scenarios and boxes of PB-type
problems, to elements and sets of MSSC-type problems. The idea for the reduction is to create T
copies of sets for each scenario in the initial PB≤T instance and one element per box, where if the
price a box gives for a scenario i is < T then the corresponding element belongs to all T copies of
the set i. The final step is to “simulate” the outside option T , for which we we create T elements
where the k’th one belongs only to the k’th copy of each set.

Proof of Claim 4.3. Given an instance I of UPB≤T with outside cost box bT , we construct the
instance I ′ of UMSSCf as follows.

Construction of the instance. For every scenario si in the initial instance, we create T sets
denoted by sik where k ∈ [T]. Each of these sets has equal probability pik = 1/(mT). We
additionally create one element eB per box B, which belongs to every set sik for all k iff vBi < T in
the initial instance, otherwise gives feedback vBi. In order to simulate box bT without introducing
an element with non-unit cost, we use a sequence of T outside option elements eTk where eTk ∈ sik
for all i ∈ [m] i.e. element eTik belongs to “copy k” of every set 10.

Construction of the policy. We construct policy πI by ignoring any outside option elements
that πI′ selects until πI′ has chosen at least T/2 such elements, at which point πI takes the outside
option box bT . To show feasibility we need that for every scenario either bT is chosen or some box
with vij ≤ T . If bT is not chosen, then less than T/2 isolating elements were chosen, therefore in
instance of UMSSCf some sub-sets will have to be covered by another element eB , corresponding
to a box. This corresponding box however gives a value ≤ T in the initial UPB≤T instance.

Approximation ratio. Let si be any scenario in I. We distinguish between the following cases,
depending on whether there are outside option tests on si’s branch.

10Observe that there are exactly T possible options for k for any set. Choosing all these elements costs T and
covers all sets thus simulating bT .

25

1. No outside option tests on si’s branch: scenario si contributes equally in both policies,
since absence of isolating elements implies that all copies of scenario si will be on the same
branch (paying the same cost) in both πI′ and πI

2. Some outside option tests on i’s branch: for this case, from Lemma B.1 we have that
c(πI(si)) ≤ 3c(πI′(si)).

Putting it all together we get

c(πI) ≤ 3c(πI′) ≤ 2α(n +m,m2)c(π∗
I′) ≤ 3α(n +m,m2)c(π∗

I),

where the second inequality follows since we are given an α approximation and the last inequality
since if we are given an optimal policy for UPB≤T , the exact same policy is also feasible for any
I ′ instance of UDT, which has cost at least c(π∗

I′). We also used that T ≤ m, since otherwise the
initial policy would never take the outside option.

Lemma B.1. Let I be an instance of UPB≤T , and I ′ the instance of UMSSCf constructed by
the reduction of Claim 4.3. For a scenario si, if there is at least one outside option test run in πI,
then c(πI(si)) ≤ 3c(πI′(si)).

Proof. For the branch of scenario si, denote by M the box elements chosen before there were T/2
outside option elements, and by N the number of outside option elements in πI′ . Note that the
smallest cost is achieved if all the outside option elements are chosen first11. The copies of scenario
si can be split into two groups; those that were isolated before T/2 outside option elements were
chosen, and those that were isolated after. We distinguish between the following cases, based on
the value of N .

1. N ≥ T/2: in this case each of the copies of si that are isolated after pays at least M+T/2 for
the initial box elements and the initial sequence of outside option elements. For the copies
isolated before, we lower bound the cost by choosing all outside option elements first.

The cost of all the copies in πI′ then is at least

Ki
∑

j=1

T/2
∑

k=1

cp&
T

k +
Ki
∑

j=1

T
∑

k=T/2+1

cp&
T

(T/2 +M) = cpi
T
2 (

T
2 + 1)

2T
+ cpi

T
2 (T/2 +M)

T

≥ cpi(3T/8 +M/2)

≥
3

8
pi(T +M)

Since N ≥ T/2, policy πI will take the outside option box for si, immediately after choosing
the M initial boxes corresponding to the box elements. So, the total contribution si has on
the expected cost of πI is at most pi(M+T) in this case. Hence, we have that si’s contribution
in πI is at most 8

3 ≤ 3 times si’s contribution in πI′.

2. N < T/2: policy πI will only select the M boxes (corresponding to box elements) and this
was sufficient for finding a value less than T . The total contribution of si on c(πI) is exactly
piM . On the other hand, since N < T/2 we know that at least half of the copies will pay M
for all of the box elements. The cost of all the copies is at least

Ki
∑

j=1

T
∑

k=N

cp&
T

M = cpi
T −N

T
M ≥ cpiM/2,

11Since the outside option tests cause some copies to be isolated and so can reduce their cost.

26

therefore, the contribution si has on c(πI′) is at least cpiM/2. Hence, we have c(πI) ≤ 3c(πI′)

B.1 Proofs from subsection 4.1.1

Lemma 4.9. Given an instance I of PB; an α-approximation algorithm AT to PB≤T ; and any
q < 1 and β ≥ 2, suppose that the threshold T satisfies

T ≥ tq/(βα) + βα
∑

cs∈[tq,tq/(βα)]
s∈S

cs
ps
q
.

Then if AT is run on a q-sub instance of I with threshold T , at most a total mass of (2/β)q of the
scenarios pick the outside option box T .

Proof. Consider a policy πIq which runs π∗
I on the instance Iq; and for scenarios with cost cs ≥

tq/(βα) aborts after spending this cost and chooses the outside option T . The cost of this policy is:

c(π∗
Iq) ≤ c(πIq) =

T + tq/(βα)
βα

+
∑

cs∈[tq ,tq/(10α)]
s∈S

cs
ps
q
, (3)

By our assumption on T , this cost is at most 2T/βα. On the other hand since AT is an α-
approximation to the optimal we have that the cost of the algorithm’s solution is at most

αc(π∗
Iq) ≤

2T

β

Since the expected cost of AT is at most 2T/β, then using Markov’s inequality, we get that
Pr [cs ≥ T] ≤ (2T/β)/T = 2/β. Therefore, AT covers at least 1− 2/β mass every time.

Lemma 4.8. (Optimal Lower Bound) Let I be the instance of PB. For any q < 1, any α > 1,
and β ≥ 2, for the optimal policy π∗

I for PB it that

cost(π∗
I) ≥

∞
∑

i=0

1

βα
· (q)i tqi/βα.

Proof. In every interval of the form Ii = [tqi , tqi/(βα)] the optimal policy for PB covers at least
1/(βα) of the probability mass that remains. Since the values belong in the interval Ii in phase i,
it follows that the minimum possible value that the optimal policy might pay is tqi , i.e. the lower
end of the interval. Summing up for all intervals, we get the lemma.

B.2 Proofs from subsection 4.1.2

Algorithm 3: Expand: rescales and returns an instance of UPB.

Input: Set of scenarios S
1 Scale all probabilities by c such that c

∑

s∈S ps = 1
2 Let pmin = mins∈S ps
3 S ′ = for each s ∈ S create ps/pmin copies
4 Each copy has probability 1/|S ′|
5 return S ′

27

Main Lemma 4.4. Given a polynomial-time α(n,m)-approximation algorithm for UPB≤T , there
exists a polynomial-time O(α(n,m) log α(n,m))-approximation for PB.

Proof. The proof in this case follows the steps of the proof of Theorem 4.5, and we are only
highlighting the changes. The process of the reduction is the same as Algorithm 1 with the only
difference that we add two extra steps; (1) we initially remove all low probability scenarios (line 3 -
remove at most c fraction) and (2) we add them back after running UPB≤T (line 8). The reduction
process is formally shown in Algorithm 2.

Calculating the thresholds. For every phase i we choose a threshold Ti such that Ti = min{T :
Pr [cs > T] ≤ δ} i.e. at most δ of the probability mass of the scenarios are not covered, again using
binary search as in Algorithm 1. We denote by Inti = [t(1−c)(δ+c)i , t(1−c)(δ+c)i/(βα)] the relevant
interval of costs at every run of the algorithm, then by Lemma 4.9, we know that for remaining
total probability mass (1− c)(δ + c)i, any threshold which satisfies

Ti ≥ t(1−c)(δ+c)i−1/βα + βα
∑

s∈S
cs∈Inti

cs
ps

(1− c)(δ + c)i

also satisfies the desired covering property, i.e. at least (1− 2/β)(1 − c)(δ + c) mass of the current
scenarios is covered. Therefore the threshold Ti found by our binary search satisfies

Ti = t(1−c)(δ+c)i−1/βα + βα
∑

s∈S
cs∈Inti

cs
ps

(1− c)(δ + c)i
. (4)

Following the proof of Theorem 4.5, Constructing the final policy and Accounting for
the values remain exactly the same as neither of them uses the fact that the scenarios are uniform.

Bounding the final cost. Using the guarantee that at the end of every phase we cover (δ + c)
of the scenarios, observe that the algorithm for PB≤T is run in an interval of the form Inti =
[t(1−c)(δ+c)i , t(1−c)(δ+c)i/(βα)]. Note also that these intervals are overlapping. Bounding the cost of
the final policy πI for all intervals we get

πI ≤
∞
∑

i=0

(1− c)(δ + c)iTi

=
∞
∑

i=0






(1− c)(δ + c)it(1−c)(δ+c)i−1/βα + βα

∑

s∈S
cs∈Inti

csps






From equation (4)

≤ 2 · βαπ∗
I + βα

∞
∑

i=0

∑

s∈S
cs∈Inti

csps Using Lemma 4.8

≤ 2βα logα · π∗
I ,

where the inequalities follow similarly to the proof of Theorem 4.5. Choosing c = δ = 0.1 and
β = 20 we get the theorem.

28

C Proofs from Section 5

Claim 5.1. If there exists an α(n,m)-approximation algorithm for DT (UDT) then there exists a
(1 + α(n,m))-approximation algorithm for MSSCf (resp. UMSSCf).

Proof of Claim 5.1. Let I be an instance of MSSCf . We create an instance I ′ of DT the following
way: for every set sj we create a scenario sj with the same probability and for every element ei we
create a test Tei with the same cost, that gives full feedback whenever an element belongs to a set,
otherwise returns only the element’s feedback fij. Formally, the i-test under scenario sj returns

Tei(sj) =

{

“The feedback is fij” If ei)∈ sj

“The scenario is j” else ,

therefore the test isolates scenario j when ei ∈ sj.

Constructing the policy. Given a policy π′ for the instance I ′ of DT, we can construct a
policy π for I by selecting the element that corresponds to the test π′ chose. When π′ finishes, all
scenarios are identified and for any scenario sj either (1) there is a test in π′ that corresponds to
an element in sj (in the instance I) or (2) there is no such test, but we can pay an extra mini∈sj ci
to select the lowest cost element in this set12.

Observe also that in this instance of DT if we were given the optimal solution, it directly
translates to a solution for MSSCf with the same cost, therefore

c(π∗
I) ≤ c(π′

I′) = c(π∗
I′) (5)

Bounding the cost of the policy. As we described above the total cost of the policy is

c(π) ≤ c(πI′) + Es∈S

[

min
i∈s

ci

]

≤ c(πI′) + c(π∗
I)

≤ a(n,m)c(π∗
I′) + c(π∗

I)

= (1 + a(n,m))c(π∗
I),

where in the last inequality we used equation (5).
Note that for this reduction we did not change the probabilities of the scenarios, therefore if we

had started with uniform probabilities and had an oracle to UDT, we would still get an a(n,m)+1
algorithm for UMSSCf .

In the reduction proof of Theorem 5.2, we are using the following two lemmas, that show that
the policy constructed for UDT via the reduction is feasible and has bounded cost.

Lemma C.1. Given an instance I ′ of UDT and the corresponding instance I of UMSSCf in the
reduction of Theorem 5.2, the policy πI′ constructed for UDT is feasible.

Proof of Lemma C.1. It suffices to show that every scenario is isolated. Fix a scenario si. Observe
that si’s branch has chosen the isolating element Ei in the UMSSCf solution, since that is the the
only element that belongs to set si. Let S be the set of scenarios just before Ei is chosen and note
that by definition si ∈ S.

12Since the scenario is identified, we know exactly which element this is.

29

If |S| = 1, then since πI′ runs tests giving the same branching behavior by definition of πI′ ,
and si is the only scenario left, we have that the branch of πI′ isolates scenario si.

If |S| > 1 then all scenarios/sets in S \ {si} are not covered by choosing element Ei, therefore
they are covered at strictly deeper leaves in the tree. By induction on the depth of the tree, we can
assume that for each scenario sj ∈ (S \ {si}) is isolated in πI′ . We distinguish the following cases
based on when we encounter Ei among the isolating elements on si’s branch.

1. Ei was the first isolating element chosen on the branch: then policy πI′ ignores
element Ei. Since every leaf holds a unique scenario in S \{si}, if we ignore si it follows some
path of tests and either be isolated or end up in a node that originally would have had only
one scenario, as shown in Figure 6. Since there are only two scenarios at that node, policy
πI′ runs the cheapest test distinguishing si from that scenario.

S Ei

si S \ si

sleafsj sk

Ignoring Box Ei

S

sleaf, sisj sk

Figure 6: Case 1: S is the set of scenarios remaining when Ei is chosen, sleaf is the scenario that
si ends up with.

2. A different element Ej was chosen before Ei: by our construction, instead of ignoring
Ei we now run the cheapest test that distinguishes si from sj, causing i and j to go down
separate branches, as shown in figure 7. We apply the induction hypothesis again to the
scenarios in these sub-branches, therefore, both si and sj are either isolated or end up in a
node with a single scenario and then get distinguished by the last case of πI′ ’s construction.

Hence, πI′ is isolating for any scenario si. Also, notice that any two scenarios that have isolating
boxes on the same branch will end up in distinct subtrees of the lower node.

Lemma C.2. Given an instance I of UMSSCf and an instance I ′ of UDT, in the reduction of
Theorem 5.2 it holds that

c(πI′) ≤ 2c(πI).

Proof of Lemma C.2. Let si be any scenario in S. We use induction on the number of isolating
boxes along si’s branch in I ′. Initially observe that Ei will always exist in si’s branch, in any

30

S ∪ si
Ej

sj S ∪ si

T

Replacing Ej with Ti vs j

S ∪ si
Ti vs j

S1 ∪ si S2 ∪ sj

TT

Figure 7: Case 2: run test Ti vs j to distinguish si and sj. Sets S1 and S2 partition S

feasible solution to I. We use c(Ej) and c(Tk) to denote the costs of box Ej and test Tk, for any
k ∈ [n] and j ∈ [n+m].

1. Only Ei is on the branch: since Ei will be ignored, we end up with si and some other
not yet isolated scenario, let sleaf be that scenario. To isolate si and sleaf we run the cheapest
test that distinguishes between these. From the definition of the cost of Ei we know that
c(Tsi vs sleaf) ≤ c(Ei). Additionally, since c(si) ≤ c(sleaf) and both sleaf and si have probability
1/m, overall we have c(πI) ≤ 2c(πI′). This is also shown in Figure 6.

2. More than one isolating elements are on the branch: similarly, observe that for
any extra isolating element Ej we encounter, we substitute it with a test that distinguishes
between si and sj and costs at most c(Ej). Given that c(si) ≤ c(sleaf) and scenarios are
uniform, we again have c(πI) ≤ 2c(πI′).

Theorem 5.2 (Uniform Decision Tree to UMSSCf). Given an α(m,n)-approximation algo-
rithm for UMSSCf then there exists an O(α(n +m,m))-approximation algorithm for UDT.

Proof of Theorem 5.2. We begin by giving the construction of the policy in the reduction, and
showing the final approximation ratio.

Constructing the policy. Given a policy πI for the instance of UMSSCf , we construct a policy
πI′ . For any test element Bj that πI selects, πI′ runs the equivalent test Tj . For the isolating
elements Ei we distinguish the following cases.

1. If πI selects an isolating element Ei for the first time on the current branch, then πI′ ignores
this element but remembers the set/scenario si, which Ei belonged to.

2. If πI selects another isolating element Ej after some Ei on the branch, then πI′ runs the
minimum cost test that distinguishes scenario sj from sk where Ek was the most recent
isolating element chosen on this branch prior to Ej .

31

3. If we are at the end of πI , there can be at most 2 scenarios remaining on the branch, so πI′

runs the minimum cost test that distinguishes these two scenarios.

By Lemma C.1, we have that the above policy is feasible for UDT.

Approximation ratio. From Lemma C.2 we have that c(πI′) ≤ 2c(πI). For the optimal policy,
we have that c(π∗

I) ≤ 3c(π∗
I′). This holds since if we have an optimal solution to UDT, we can

add an isolating element at every leaf to make it feasible for UMSSCf , by only increasing the cost
by a factor of 313, which means that c(π∗

I) will be less than this transformed UMSSCf solution.
Overall, if πI is computed from an α(n,m)-approximation for UMSSCf , we have

c(πI′) ≤ 2c(πI) ≤ 2α(n +m,m)c(π∗
I) ≤ 6α(n +m,m)c(π∗

I′)

D Proofs from Section 6

Lemma 6.3. Let s1, s2 ∈ S be any two scenarios. Then after opening log(1/δ)
ε2 informative boxes,

we can eliminate one scenario with probability at least 1− δ.

Proof. Let s1, s2 ∈ S be any two scenarios in the instance of PB and let vi be the value returned
by opening the i’th informative box, which has distributions Dis1 and Dis2 for scenarios s1 and s2
respectively. Then by the definition of informative boxes for every such box opened, there is a set
of values v for which PrDis1

[v] ≥ PrDis2
[v] and a set for which the reverse holds. Denote these sets

by M s1
i and M s2

i respectively. We also define the indicator variables Xs1
i = {vi ∈M s1

i }. Define
X =

∑

i∈[k]X
s1
i /k, and observe that E

[

X |s1
]

=
∑

i∈[k]Pr [M s1
i] /k. Since for every box we have

an ε gap in TV distance between the scenarios s1, s2 we have that
∣

∣E
[

X |s1
]

− E
[

X|s2
]
∣

∣ ≥ ε,

therefore if
∣

∣X − E
[

X|s1
]
∣

∣ ≤ ε/2 we conclude that scenario s2 is eliminated, otherwise we eliminate

scenario s1. The probability of error is PrDis1

[

X − E
[

X|s1
]

> ε/2
]

≤ e−2k(ε/2)2 , where we used
Hoeffding’s inequality since Xi ∈ {0, 1}. Since we want the probability of error to be less than δ,

we need to open O
(

log 1/δ
ε2

)

informative boxes.

Proof of Theorem 6.1. We describe how to bound the final cost, and calculate the runtime of the
DP. Denote by L = m2/ε2 log 1/δ where we show that in order to get (1+β)-approximation we set
δ = βcmin

m2T .

Cost of the final solution. Observe that the only case where the DP limits the search space is
when |S| = 1. If the scenario is identified correctly, the DP finds the optimal solution by running
the greedy order; every time choosing the box with the highest probability of a value below T 14.

In order to eliminate all scenarios but one, we should eliminate all but one of the m2 pairs in
the list E. From Lemma 6.3, and a union bound on all m2 pairs, the probability of the last scenario
being the wrong one is at most m2δ. By setting δ = βcmin/(m2T), we get that the probability of
error is at most βcmin/T , in which case we pay at most T , therefore getting an extra βcmin ≤ βc(π∗)
factor.

13This is because for every two scenarios, the UDT solution must distinguish between them, but one of these
scenarios is the max scenario from the definition of Tj , for which we pay less than Tj

14When there is only one scenario, this is exactly Weitzman’s algorithm.

32

Runtime. The DP maintains a list M of sets of informative boxes opened, and numbers of non
informative ones. Recall that M has the following form M = S1|x1|S2|x2| . . . |Sk|xk, where k ≤ L
from Lemma 6.3 and the fact that there are m2 pairs in E. There are in total n boxes, and L
“positions” for them, therefore the size of the state space is

(n
L

)

= O(nL). There is also an extra
n factor for searching in the list of informative boxes at every step of the recursion. Observe that
the numbers of non-informative boxes also add a factor of at most n in the state space. The list
E adds another factor at most nm2

, and the list S a factor of 2m making the total runtime to be
nÕ(m2/ε2).

E Boxes with Non-Unit Costs: Revisiting our Results

In the original Pandora’s Box problem, denoted by PB
c, each box i has a different known cost

ci > 0. Similarly we denote the non-unit cost version of both decision tree-like problems and Min
Sum Set Cover-like problems by adding a superscript c to the problem name. Specifically, we now
define DT

c, UDT
c, MSSC

c
f and UMSSC

c
f , where the tests (elements) have non-unit cost for the

decision tree (min sum set cover) problems. We revisit our results and describe how our reductions
change to incorporate non-unit cost boxes (summary in Figure 8).

PB
c

UMSSC
c
fMSSC

c
f

UDT
c

DT
c

Claim 4.1

Claim 5.1

Claim 5.1

Thm 4.2

Cor E.2

Thm 4.2

Main Theorem (log factors)

Main Theorem (const. factors)

Minor Claim

Subproblem

Figure 8: Summary of all the reductions with non-unit costs. The only result that needs a changed
proof is Corollary E.2 highlighted in bold (previously Theorem 5.2).

Note also, that even though the known results for Optimal Decision Tree (e.g. [GB09,
GNR17]) handle non-unit test costs, the currently known works for Uniform Decision Tree

do not. If however there is an algorithm for Uniform Decision Tree with non-unit costs, our
reductions will handle this obtaining the same approximation guarantees.

33

E.1 Connecting Pandora’s Box and MSSCf

PB
c

UPB
c
≤TPB

c
≤T

UMSSC
c
fMSSC

c
f

Lem 4.5 Lem 4.4

Claim 4.3 Claim 4.3

Claim 4.1
Main Lemma (log factors)

Claim (const. factors)

Minor Claim

Subproblem

Figure 9: Reductions shown in this section. The solid lines are part of Corollary E.1.

All the results of this section hold as they are when we change all versions to incorporate costs.
We did not use the fact that the costs are unit in any of the proofs of Claim 4.1, Claim 4.3 or
Lemmas 4.5, 4.4. We formally restate the main theorem of Section 4 as the following corollary,
where the only change is that it now holds for the cost versions of the problems.

Corollary E.1 (Pandora’s Box to MSSCf with non-unit costs). If there exists an a(n,m) ap-
proximation algorithm for MSSC

c
f then there exists a O(α(n+m,m2) log α(n+m,m2))-approximation

for PB
c. The same result holds if the initial algorithm is for UMSSC

c
f .

E.2 Connecting MSSCf and Optimal Decision Tree

In this section the reduction of Theorem 5.2 uses the fact that the costs are uniform. However we
can easily circumvent this and obtain corollary E.2. Using this, the results for the non-unit costs
versions are summarized in Figure 10.

UMSSC
c
fMSSC

c
f

UDT
c

DT
c

Claim 5.1

Claim 5.1 Cor E.2

Main Theorem (const. factors)

Minor Claim

Subproblem

Figure 10: Summary of reductions for non unit cost boxes.

Corollary E.2 (Uniform Decision Tree with costs toUMSSC
c
f). Given an α(m,n)-approximation

algorithm for UMSSC
c
f then there exists an O(α(n +m,m))-approximation algorithm for UDT

c.

Proof. The proof follows exactly the same way as the proof of Theorem 5.2 with one change: the
cost of an isolating element is the minimum cost test needed to isolate si from scenario sk where

34

sk is the scenario that maximizes this quantity. Formally, if c(i, k) = min{cj |Tj(i))= Tj(k)},
then c(Bi) = maxk∈[m] c(i, k). The reduction follows the exact steps as the one we described in
Section C.

35

	Introduction
	Related work

	Preliminaries
	Modeling Correlation

	Roadmap of the Reductions and Implications
	Approximating Pandora's Box
	Constant approximation for Partially Adaptive PB

	Connecting Pandora's Box and MSSCf
	Reducing Pandora's Box to PBT
	Main Tool
	An Even Stronger Tool

	Connecting MSSCf and Optimal Decision Tree
	Mixture of Product Distributions
	A DP Algorithm for noisy PBT

	A Naive Reduction to PBT
	Proofs from Section 4
	Proofs from subsection 4.1.1
	Proofs from subsection 4.1.2

	Proofs from Section 5
	Proofs from Section 6
	Boxes with Non-Unit Costs: Revisiting our Results
	Connecting Pandora's Box and MSSCf
	Connecting MSSCf and Optimal Decision Tree

