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Abstract— We formulate grasp learning as a neural field and
present Neural Grasp Distance Fields (NGDF). Here, the input
is a 6D pose of a robot end effector and output is a distance
to a continuous manifold of valid grasps for an object. In
contrast to current approaches that predict a set of discrete
candidate grasps, the distance-based NGDF representation is
easily interpreted as a cost, and minimizing this cost produces
a successful grasp pose. This grasp distance cost can be
incorporated directly into a trajectory optimizer for joint
optimization with other costs such as trajectory smoothness
and collision avoidance. During optimization, as the various
costs are balanced and minimized, the grasp target is allowed
to smoothly vary, as the learned grasp field is continuous.
We evaluate NGDF on joint grasp and motion planning in
simulation and the real world, outperforming baselines by 63%
execution success while generalizing to unseen query poses
and unseen object shapes. Project page: https://sites.
google.com/view/neural-grasp-distance-fields.

I. INTRODUCTION

We present Neural Grasp Distance Fields (NGDF), which

model the continuous manifold of valid grasp poses as the

level set of a neural implicit function. Given a 6D query pose,

NGDF predicts the unsigned distance between the query and

the closest valid grasp on the manifold (see Fig. 1).

Neural implicit fields have driven recent advancements in

novel view synthesis [1] and 3D reconstruction [2], [3], [4],

[5]. These approaches represent distributions as continuous

functions that take a query as input and predict its relation-

ship to the learned distribution. In 3D shape reconstruction,

for instance, neural implicit fields are used to represent the

surface of a shape: 3D points are used as queries, and the

output is the distance to the surface, or occupancy at the

query point. Unlike explicit methods, neural implicit fields

can encode complex topological distributions and are not

limited by resolution.

With NGDF, formulating grasp learning as a neural field

allows us to interpret the implicit function as a cost such

that a query pose can be optimized to result in a grasp pose.

Prior grasp estimation methods largely output a discrete set

of candidate grasps [6], [7], [8], [9], [10], from which one

grasp must be selected to perform downstream planning.

Instead, we incorporate the grasp distance cost directly into

a gradient-based optimizer [11] to jointly optimize the grasp

and reaching motion from an initial trajectory. During each

optimization iteration, NGDF estimates the distance between

the final gripper pose of the trajectory and the grasp level set.

This “grasp distance” is minimized as a cost, along with other

trajectory costs such as smoothness and collision avoidance.

The gradient of the grasp cost for updating the trajectory

is computed through fully differentiable operations. This

(a) Discrete Grasp Set (b) Continuous Grasp Manifold with NGDF

Fig. 1: (a) Existing grasp estimation methods produce discrete grasp
sets which do not represent the true continuous manifold of possible
grasps. (b) Our work, Neural Grasp Distance Fields (NGDF), learns
a continuous grasp manifold: given a query pose q and an object
shape embedding z, NGDF outputs the distance d between q and
the closest grasp. This distance can be leveraged as a cost for
optimization, facilitating joint grasp and motion planning.

optimization results in a smooth, collision-free trajectory that

reaches a valid grasp pose.

In experiments, we find that NGDF learns the level set of

valid grasp poses, outperforms baselines by 63% execution

success on simulated reaching and grasping, and generalizes

to unseen object shapes and poses in the real world. The

key contributions of the paper are:

• Neural Grasp Distance Fields (NGDF), a neural implicit

function that predicts the distance between a query

pose and the closest grasp, representing the manifold

of grasps as a continuous level set.

• A gradient-based optimization algorithm that incorpo-

rates NGDF for joint reach and grasp planning.

II. RELATED WORK

While grasping and motion planning are well-studied

topics in robotics, prior works often propose different system

designs with different assumptions, making comparison and

contextualization difficult. We summarize the most important

design decisions for 6-DOF grasp and motion planning and

trace the decisions in representative methods (see Fig. 2).

A. 6-DOF Grasp Estimation

6-DOF grasp estimation is a well-studied task [17], [18]

that aims to predict successful grasps in SE(3) for target

objects; we focus here on recent, data-driven methods. State-

of-the-art methods take point clouds as input and output a

discrete set of grasps, representing only a subset of the true

continuous grasp set [7], [6], [8], [9], [10]. Outputting a finer

discretization comes with a cost of a greater computational
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Fig. 2: Columns illustrate design decisions within grasp and motion planning pipelines. The left-most column highlights representative
pipelines like OMG-Planner [15], CBiRRT [16], and baseline B1 from Table II which uses a SOTA grasp estimator [6]. The respective
design choices for these methods are traced through the columns. We identify learned continuous representations as an under-explored
option for grasp estimation, and propose NGDF as a solution that does not require a heuristic grasp selection step since the grasp pose
is jointly optimized with motion planning.

complexity for both grasp estimation as well as grasp selec-

tion: a final grasp must be chosen from the predicted set.

Because these methods only predict discrete grasp sets, they

necessitate a multi-stage approach, which can be brittle if any

of the stages (grasp estimation, selection, or motion planning)

fails. Our single-stage approach models grasps as the level set

of a continuous implicit function to jointly optimize grasping

and motion planning.

B. Joint Grasp Selection and Motion Planning

Following the multi-stage paradigm above, several works

assume a grasp set is provided by an upstream method, and

address the downstream task of planning a reaching trajec-

tory. Berenson et al. [16] model grasp sets as a continuous

range of poses called Task Space Regions, and use sampling-

based planning to satisfy the constraint. GOMP [19], uses

sequential quadratic programming on discrete grasp sets for

fast bin picking. Goal-set CHOMP [20] incorporates hard

constraints like goal sets into trajectory optimization. The

methods above do not address the problem of switching

between grasps during planning; OMG-Planner [15] there-

fore proposes online learning to estimate goal costs and

switch to the minimum cost grasp at every optimization iter-

ation. OMG-Planner used ground-truth grasp sets per object,

though their method can use estimated grasp sets as well. Our

approach does not assume grasps are provided and does not

require explicit grasp selection; instead, NGDF estimates and

updates the grasp pose during trajectory optimization itself.

Other works propose closed-loop methods for 6-DOF

grasping. Wang et al. [21] learn a latent space of trajectories

for closed-loop grasping. Song et al. [22] learn a closed-

loop policy from human demonstrations. Temporal Grasp-

Net [23] updates a discrete grasp set over time by querying

a grasp evaluator. In this work, we introduce a novel implicit

representation for the grasp manifold. We focus on open-

loop planning and leave closed-loop planning with NGDF

as future work.

C. Implicit Neural Representations

Recent advances in vision and graphics research have used

implicit neural representations to achieve impressive results

on novel view synthesis [1] and 3D reconstruction [3], [5],

[2], [4]. Karunratakul et al. [24] learn an implicit represen-

tation for human grasp poses. Inspired by these works, we

learn an implicit neural function to predict distances between

query gripper poses and grasp poses, and use this function

to optimize grasp trajectories.

The robotics community has also explored neural implicit

functions for a variety of manipulation tasks [25], [26], [27],

[28], [29], [30], [31]. GIGA [32] proposed using neural

implicit functions to model both 3D shape and grasp quality.

However, GIGA predicts a single grasp parameterization per

3D location, and requires a sampling procedure to select

the final pose from the implicit set. Our approach predicts

grasp distance, allowing multiple grasp orientations per 3D

location, and uses optimization to minimize grasp distance

and achieve the grasp pose.

Concurrent works have proposed continuous representa-

tions for dexterous hands [33] and multiple grippers [34].

Urain et al. [35] represents grasps as diffusion fields, framing

joint grasp and motion planning as an inverse diffusion

process. In this paper, we use an implicit function to represent

grasp distance, and use gradient-based trajectory optimiza-

tion for joint grasp and motion planning.

III. BACKGROUND

Neural Implicit Functions. Neural implicit functions

(NIFs) are neural networks that take a query q ∈ R
d and

optionally a context embedding z ∈ Z to output a scalar

value that represents a relationship to an underlying distri-

bution: f(q, z) : Rd × Z 7→ R. In the domain of 3D shape

reconstruction, the context z is a latent shape embedding,

the query q is a 3D point, and the scalar output is either

distance to the closest surface [2], [4], or occupancy [3],

[5]. The shape surface is represented by the zero level

set in distance-based methods, or the decision boundary in

occupancy-based methods. Unlike explicit functions, NIFs

are not limited by resolution as they predict a value at any

query point, and also better represent underlying distributions

that are disjoint [28]. Our approach leverages both properties

in learning a manifold of grasps.
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Fig. 3: We use NGDF as a goal cost function on the final state of a trajectory during gradient-based optimization. Given the current robot
joint configuration and a point cloud of an object or scene, the current gripper pose and a shape embedding are computed as inputs for
NGDF. Then, NGDF predicts the distance of the current gripper pose to the closest grasp (Sec. IV-A). The predicted distance is used as
the cost and the gradient with respect to the joint configuration is computed with backpropagation. This cost (with gradient) is used with
other costs like smoothness and collision avoidance to update the trajectory (Sec. IV-B).

Gradient-based Trajectory Optimization. A mapping

from time t to robot joint configuration p is defined as a

trajectory ξ : [0, T ] → p. Trajectory optimization aims to

find the optimal trajectory given an objective functional U :

ξ∗ = argminξ U [ξ], s.t. ξ(0) = ps, ξ(T ) = pg (1)

for a given start ps and goal pg configuration. In manipu-

lation, the objective U contains cost terms for smoothness

and collision avoidance. CHOMP [11] solves for ξ∗ with

functional gradient descent:

ξt+1 = ξt − ηA−1∇̄U(ξt) (2)

where A is an acceleration metric that helps propagate

updates over the entire trajectory.

IV. METHOD

In this work, we represent a set of poses M ⊂ SE(3)
as the level set of a neural implicit function. This implicit

function takes a query pose q as input and estimates its

distance to the learned level set. Sec. IV-A describes how

Neural Grasp Distance Fields (NGDF) leverage this insight

to learn the level set of valid grasp poses. Sec. IV-B explains

how to incorporate NGDF into a trajectory optimization

framework to jointly reason over smooth and collision-free

reaching trajectories that end at a valid grasp pose. Fig. 3

provides an overview of our method.

A. Neural Grasp Distance Fields

Given a query pose q ∈ SE(3) and a shape embedding z ∈
Z , NGDF defines an implicit function: NGDF(q, z) = d,

where d is the distance from q to the closest valid grasp g ∈
M ⊂ SE(3) for an object in a scene. Valid grasps are poses

where a gripper can stably grasp an object by closing its

fingers. For the distance metric d we combine translation and

orientation distances into a single “control points” metric [7]:

di = ‖T (q; ci)− T (g; ci)‖1 , i = 0, . . . , N (3)

where T (·; ci) is the transformation of a predefined set of

points {ci} on the gripper. Since q and g belong to SE(3),
the distance could be defined based on the manifold geodesic

distance between those poses, however we find that the

control points based distance metric balances the translation

and rotation costs better in practice. NGDF estimates the

distance for each control point c0...N separately: d(q,g) =
[

d0, . . . , dN
]T

. During training, the estimated distances d̂

are supervised with L1 loss: L = ‖d̂− d‖1.

B. Optimization of Grasping Trajectories using NGDF

For a given query pose, NGDF outputs the distance to

the closest grasp pose. We now show how to enable joint

optimization for reaching and grasping with NGDF. We

incorporate NGDF as a goal cost estimator within a gradient-

based trajectory optimizer that already has cost terms for

smoothness and collision avoidance.

In this work, we combine NGDF with CHOMP [11]

(described in Sec. III), though NGDF can be used in

any gradient-based trajectory optimization algorithm. Since

CHOMP specifies a fixed goal pg , we modify CHOMP

to include pg as a variable in the optimization following

Dragan et al. [20]. We then add our grasp cost Fgrasp as the

variable goal cost to the objective functional U :

U [ξ] = λ1Fgrasp[ξ]+ λ2Fsmooth[ξ] + λ3Fobs[ξ] (4)

where λi are cost weights.

Grasp Distance as a Goal Cost. We now define Fgrasp

and derive its functional gradient ∇̄Fgrasp for gradient-

based optimization. For a trajectory (during any iteration of

optimization), we calculate the gripper pose from the final

joint configuration using forward kinematics: qT = FK(ξT).
We then use NGDF to estimate the distance of this gripper

pose to a valid grasp: NGDF(qT , z) = d̂. The norm of this

distance becomes our grasp cost: Fgrasp[ξ] = ‖d̂‖1. We can

compute the gradient of the grasp cost with respect to the

joint configuration ξT through backpropagation:

∂Fgrasp

∂ξT
=

∂Fgrasp

∂qT

∂qT

∂FK

∂FK

∂ξT
(5)

Since the grasp cost only applies to the final config-

uration in a trajectory, the functional gradient ∇̄Fgrasp

contains all zeros except for the last row: ∇̄Fgrasp =

[0,0, . . . ,
∂Fgrasp

∂ξT
]T .



Joint Optimization of Trajectory Costs. Similar to the

objective functional (Eq. 4), the objective functional gradient

∇̄U is a weighted sum of gradients: ∇̄U [ξ] = λ1∇̄Fgrasp +
λ2∇̄Fsmooth + λ3∇̄Fobs. At every optimization iteration,

we compute the costs and functional gradients as described

above, then update the trajectory according to the A-metric

update rule (Eq. 2). Since our objective cost has terms for

minimizing distance to a valid grasp, maintaining smooth-

ness, and avoiding collisions, our algorithm jointly optimizes

all three to produce reaching and grasping trajectories.

C. Implementation Details

Dataset. Training NGDF requires a dataset of point

clouds, valid grasp poses, and query poses. We use the

ACRONYM [36] dataset, which contains object meshes and

successful grasp poses collected in NVIDIA FleX [37]. For

grasp poses, our evaluations in Sec. V are run in PyBul-

let [38], so we relabel the successful grasp poses based on

their success in PyBullet with the same linear and rotational

shaking parameters used in ACRONYM. In addition, we

filter the positive grasp set to only include grasps where the

normals at the mesh and finger contact points are opposed

to each other (-0.98 cosine similarity). Our results in Sec. V-

B show that this filtering improves grasp performance. To

collect query poses for the dataset, we sample 1 million

random SE(3) poses within a 0.5 m radius of the object mesh

centroid. While it is possible that some of the sampled poses

could be positive grasps, we assume they are few in number

and do not run additional grasp evaluation to filter them. For

each sampled pose, we use distance to the closest grasp in

the valid grasp set (see Sec. IV-A) as our supervision.

Architecture. An input point cloud is converted into the

shape embedding z using a VN-OccNet [39] encoder pre-

trained on 3D reconstruction [29]. The input to NGDF is a

concatenation of this shape embedding z with the input query

q’s position and quaternion. The NGDF network is based

on DeepSDF [2] and consists of 8 MLP layers, 512 units

each, and ReLU activations on the hidden layers. A softplus

activation on the output layer ensures positive outputs.

Training Procedure. We freeze the weights of the pre-

trained point encoder during training and only train the

NGDF network. Each training sample consists of a partial

point cloud, a query pose, and the closest valid grasp. Similar

to NDF [29], the partial point cloud is merged together

from 4 camera views and downsampled to 1500 points using

farthest point sampling. Random rotation augmentations are

applied to each sample with 70% probability. Finding the

ground truth closest grasp pose is computationally expensive

and requires multiple simulated grasp attempts per query

pose. Therefore, our supervision is pseudo-ground truth, as

the closest grasp pose comes from a large but discrete set

of grasps [36]. We find that this discrete grasp set is dense

enough to train NGDF, while still representing unseen valid

grasp poses at or near the zero level set (Sec. V-A).

Trajectory Optimization. CHOMP [11] uses a fixed or

decaying step size for functional gradient updates, which

is sufficient for trajectories with fixed start and goal joint

Fig. 4: Grasp Level Set Evaluation. Left: Final predicted pose
(magenta) and its closest grasp pose (green) in the training dataset.
Right: Gripper path (teal) as it is optimized from initial to final
pose. Object meshes shown for visual clarity; our method takes
point clouds as input.

configurations. However, with our modification of CHOMP

in Sec. IV-B to allow a variable goal configuration, we

found that such simple step size strategies resulted in poor

convergence. We address this issue by using Adam [40] to

adaptively update the step size (“CHOMP-Adam”). We use

differentiable SE(3) operations [41] and a differentiable robot

model [42] to backpropagate gradients from the output of

NGDF to the robot joint configuration (Eq. 5).

V. EXPERIMENTS

We first evaluate how well NGDFs represent valid grasp

manifolds as their zero level sets (Sec. V-A). Then we

perform a full system evaluation with NGDFs on a “reach-

ing and grasping” task (Sec. V-B), where an NGDF is

used within a gradient-based trajectory optimizer as a goal

cost function. We evaluate generalization on grasping intra-

category unseen objects (Sec. V-C), and demonstrate grasp-

ing on a real robot system (Sec. V-D).

A. NGDF Level Set Evaluation

First, we investigate whether the learned level set of an

NGDF represents successful grasps. Our evaluation proce-

dure considers driving an initial query pose to the learned

level set. We use the distance output from NGDF as a loss,

and update the query pose with Adam [40] using backprop-

agated gradients. Note that this evaluation optimizes just the

gripper pose; full-arm trajectory optimization is considered

in the next subsection. We evaluate NGDF on three objects:

Bottle, Bowl, and Mug. For this evaluation, we train a single

NGDF model for each object, and evaluate models trained

with and without the dataset filtering procedure described

in Sec. IV-C. We run the optimization for 3k steps with a

learning rate of 1e-4. Since we represent poses as positions

and quaternions, we normalize the quaternion after each

gradient update to ensure valid rotations.



TABLE I: NGDF Grasp Level Set Results

Train Set Error (m) ↓ Grasp Success ↑

Bottle-NoFilter 0.023± 0.01 0.480

Bottle 0.029± 0.01 0.880

Bowl-NoFilter 0.036± 0.02 0.540

Bowl 0.033± 0.01 0.760

Mug-NoFilter 0.038± 0.01 0.680

Mug 0.035± 0.01 0.860

Results are averaged over 50 unseen query poses per object,
sampled from within a 0.5 m radius of the object centroid.

The quantitative results on grasp level set optimization are

shown in Table I. We use two metrics for this evaluation.

The “Train Set Error” metric is the minimum control points

distance (Eq. 3) between the optimized gripper pose and the

closest grasp pose in the discrete training set. Since NGDF

should learn a continuous level set and interpolate between

grasps in the training set, we expect NGDF not to achieve

zero error on this metric, but it provides a good surrogate for

comparing models. The “Grasp Success” metric measures the

grasp quality of the optimized gripper poses. For each pose,

we load the target object in PyBullet [38] and attempt a grasp

at the specified pose. The robot gripper is always initialized

to the same position; the object is transformed relative to

the gripper. Linear and rotational shaking are applied after

gripping the object [36], and the grasp is successful if the

object is still gripped after the shaking.

Our results show that while NGDFs trained on filtered

and unfiltered data have similar Train Set Error, the Grasp

Success for filtered data models is much higher. These

results also indicate that NGDFs have learned continuous

level sets, since the mean distance predicted by NGDF after

optimization is less than 1e-5, much lower than the minimum

distance to the training set of grasps. Fig. 4 shows examples

of the optimization path and achieved gripper pose.

B. Simulated Reaching and Grasping Evaluation

Next, we evaluate our method on a full reaching and

grasping task, which requires planning a smooth, collision-

free grasping trajectory for the full robot arm starting from

an initial robot joint configuration. This evaluates the full

pipeline as opposed to just the stand-alone gripper pose in

the previous subsection. The task is considered successful if

the robot executes the trajectory, closes its fingers to grasp

the object, and lifts the object without losing it. We place

Bottle, Bowl, and Mug objects in simulation in 30 random

orientations each (see Appendix Fig. S2 in [43], left-most

column), thus 90 trials in total. Our results indicate that

even in a seemingly simple setting, randomly oriented objects

present an overall challenging benchmark.

For this evaluation, we train a separate NGDF (similar

to NeRF approaches [1], [26]) for each object, though

our method can be extended to generalize across objects

like other shape-conditioned implicit approaches [2]. We

also evaluate intra-category (known class, unseen shape)

generalization in the next subsection. We run 500 iterations

of CHOMP-Adam (see Sec. IV-C) with a learning rate of

3e-3. The grasp cost is weighted heavily relative to the

collision and smoothness costs. The trajectory is initialized

using inverse kinematics so the gripper pose of the final joint

configuration is within 0.3 m of the center of the object point

cloud; the rest of the initial trajectory is interpolated between

the start and end joint configurations.

The results are shown in Table II. We compare against

oracle methods that provide upper-bound task performance,

and against baselines that predict discrete grasps. Oracle

methods assume perfect object pose estimation and known

discrete grasp set. All discrete grasp methods run inverse

kinematics over all discrete grasp goals and discard infeasible

grasps. For planning, methods use goal-set CHOMP [20] or

CHOMP [11], depending on whether the goal is fixed or

can vary. “O1” selects the goal with minimum distance to

the initial joint configuration, and keeps it fixed throughout

planning. “OMG” [15] adaptively learns a cost for each

grasp and selects the grasp with minimum cost at every

optimization iteration (Variable Goal).

The baselines that predict discrete grasps use Contact-

Graspnet [6] as the grasp estimator. We use weights (pro-

vided by the authors) that are trained on millions of grasps

and shapes. “B1” selects the grasp goal with the maximum

score estimated by Contact-GraspNet and keeps it fixed

during planning. “B2” selects the grasp goal with minimum

distance to the initial joints and keeps it fixed during plan-

ning. “B3” allows varying grasps during planning using the

minimum distance metric. “B4” uses the same adaptive cost

from OMG [6] to select grasp goals during planning.

Our results show that while oracle methods perform well,

methods that don’t assume known object pose and use

predicted grasps have much lower Execution Success. Of the

predicted grasp methods, NGDF performs best. Surprisingly,

the B3 and B4 variable goal variants do not outperform fixed

goal variants B1 and B2. Failure cases for all methods are

largely due to collisions between the gripper fingers and the

object, which are a relatively small obstacle cost and may

be difficult for the planner to balance with the other costs.

Appendix Fig. S2 in [43] contains qualitative NGDF results,

and App. A contains additional ablation experiments.

C. Intra-Category Generalization

To evaluate whether our method can generalize to shapes

in the same object category, we train an NGDF model on

7 shapes in the “Bottle” category from ACRONYM [36].

Training samples are generated from the meshes using the

same data collection procedure described in Sec. IV-C. We

evaluate performance on a held-out Bottle instance, the

same instance used in the previous evaluations. The intra-

category model achieves 0.63 ± 0.5 execution success on

30 Bottle trials for the reaching and grasping evaluation,

which is comparable with the single-object NGDF results

from Table II, demonstrating intra-category generalization

without loss of performance.

D. Real Robot Reaching and Grasping Evaluation

Finally, we test our method’s reaching and grasping per-

formance on a real robot system. At the start of each trial,



TABLE II: Reaching and Grasping Results

Method Perception Grasp Estimation Grasp Selection Goal Execution Success ↑

O1 (Oracle) Known Object Pose Known Discrete Grasps Min. Distance Fixed 0.96

OMG [15] (Oracle) Known Object Pose Known Discrete Grasps Adaptive Cost Variable 0.99

B1 Unknown Object Pose Predicted Discrete Grasps [6] Max Score Fixed 0.37

B2 Unknown Object Pose Predicted Discrete Grasps [6] Min. Distance Fixed 0.39

B3 Unknown Object Pose Predicted Discrete Grasps [6] Min. Distance Variable 0.38

B4 Unknown Object Pose Predicted Discrete Grasps [6] Adaptive Cost Variable 0.31

NGDF (Ours) Unknown Object Pose Predicted Continuous Grasps N/A Variable 0.61

Middle columns correspond to design decisions found in Fig. 2; color-coded methods also correspond to those shown in the same figure.

Fig. 5: Real System Evaluation. (a) Visualizing the plan and
imperfect object point cloud; (b) executing the plan on hardware
(cameras highlighted with red boxes); (c) lifting the object. (d) The
nine objects used for testing. (e) Additional successful grasps.

an object is placed in a random stable pose. A partial point

cloud of the scene is obtained from four Azure Kinect depth

sensors (Fig. 5b), similar to NDF [29]. The object point cloud

is segmented via plane fitting, then passed as input to NGDF

models from Sec. V-A, which are trained on one instance

per category in simulation. The cloud is also converted to

a signed distance field to enable computing collision costs

with CHOMP [11]. The optimized trajectory is executed

on a Franka Panda robot with impedance control, and the

trial is considered successful if the object is grasped and

lifted without being dropped (Fig. 5c). 9 test objects were

evaluated, 3 from each shape category (Fig. 5d). 3 grasp

attempts were performed per object for a total of 27 trials.

See App. C in [43] for additional details.

Our overall grasp success rate was 81%, with success per

category being 7/9 Bottles, 9/9 Bowls, and 6/9 Mugs. Our

system successfully grasped every object, despite many of

them being outside of its training distribution in terms of

size and shape. The method also demonstrated robustness

to noisy perception and execution with impedance control.

Failure cases were due to slight collisions between the fingers

and objects, similar to what we observed in simulation.

VI. DISCUSSION

Neural implicit functions have been widely explored for

3D vision tasks such as shape reconstruction. NGDF extends

this concept to grasp estimation, using 6D poses as queries

on grasp manifolds. Our work differs from existing work on

3D reconstruction, not only due to the higher dimensionality

of our problem, but also because of the challenge in acquiring

ground truth labels. The ground truth grasp distance between

an arbitrary query pose and the corresponding closest grasp

is expensive to compute. Instead, we train on large-scale

discrete grasp sets [36] as near-ground truth supervision. Our

experiments in Sec. V-A show that NGDF is able to learn

the continuous grasp manifold as the level set of the neural

field from this discrete supervision.

NGDF decouples the problem of learning a grasp manifold

representation from the problem of finding a good grasp

pose. For the latter, we formulate the distance output of

NGDF as a cost to be minimized. For the full robot motion

planning regime, we jointly optimize the grasp cost with

smoothness and collision costs. We outperform baselines

in Sec. V-B that represent what a practitioner would imple-

ment for a reaching and grasping task. While the performance

of oracle methods indicate room for improvement, our results

show that joint optimization with NGDF is a promising

direction for manipulation. We also demonstrate scalability

with intra-category generalization results in Sec. V-C, and

deploy our method on real hardware in Sec. V-D.

In terms of limitations, NGDF is trained on a gripper-

specific dataset; NGDF for other grippers may require dif-

ferent datasets. The method also depends on upstream object

segmentation. Further, the cost weights are fixed during

optimization in the reach and grasp planning task; learning to

adjust the weights each iteration could improve performance.

VII. CONCLUSION

We propose Neural Grasp Distance Fields (NGDF), which

represent the continuous manifold of grasps as the zero-level

set of a neural field. We formulate the estimated distance as

a cost for a gradient-based trajectory optimizer to jointly

optimize with other trajectory costs such as smoothness and

collision avoidance to perform reach and grasp planning. Our

results show that NGDF outperforms existing methods, while

generalizing to unseen poses and unseen objects.
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APPENDIX

A. Ablations for Neural Grasp Distance Fields

We perform ablation experiments for our trajectory op-

timizer (Table S1). We compare using Adam [40] vs. a

fixed step size (“No-Adam”) for functional gradient descent.

Unlike our method, CHOMP [11] originally uses a fixed

or decaying step size, in the setting where the start and

end trajectory configurations are not optimized (Sec. IV-B).

In our setting, the end configuration is variable to allow

optimization of the grasp pose. No-Adam converges slowly

when the trajectory is far from a valid grasp pose, and

overshoots when near the level set. We also evaluated using

a decaying step size; while this mitigated the overshooting

issue, convergence was still much slower, and the decay rate

required tuning.

“No-Initial-IK” initializes the configuration at every

timestep in the trajectory to the starting joint configuration,

instead of using IK to initialize the trajectory as described

in Sec. V-B. We observe worse performance with No-Initial-

IK as the initial trajectory is farther from the desired grasp

trajectory, making it harder to plan.

TABLE S1: Optimizer Ablation Results

Grasp Execution ↑

NGDF, No-Adam 0.18

NGDF, No-Initial-IK 0.44

NGDF (Ours) 0.61

No-Adam uses CHOMP [11] with a fixed step size instead of
Adam [40] optimization for the functional gradient update. No-
Initial-IK initializes the trajectory so all steps in the plan start at
the initial joint configuration. NGDF uses Adam and initializes the
endpoint of the trajectory using inverse kinematics to achieve the
best performance. 90 trials were performed as in Table II.

B. Simulation Experiment Details

1) Camera Position in Simulation: Fig. S1 shows the

position of the four cameras in simulation.

Fig. S1: Camera poses in simulation visualized as axes. The
negative z axis (in blue) is the camera optical axis and points toward
the robot workspace.

2) Qualitative Results: Fig. S2 visualizes successful grasp

trajectories in simulation for the reaching and grasping task

from Sec. V-A.

Fig. S2: Successful grasp trajectories (left-to-right) planned by our
method for the bowl (top) and mug (bottom).

C. Real System Experiment Details

This section provides system implementation details for

our real world experiments in Sec. V-D. Our system consists

of a 7-DOF Franka Panda robot and four Azure Kinect

cameras (Fig. 5b), a similar setup to NDF [29].

1) Calibration: The Azure Kinect cameras were extrinsi-

cally calibrated using ColoredICP [44]. For camera intrinsics,

the factory calibration was used. Robot-camera extrinsic cal-

ibration was performed using Tsai-Lenz [45]. The calibrated

cameras produce a combined scene point cloud in the robot

base frame.

2) Point Cloud Processing: To segment the object point

cloud from the scene point cloud, we fit a table plane using

RANSAC and remove points belonging to the plane. Outlier

removal and DBScan [46] are used to refine the object point

cloud. Our planner requires a signed distance field (SDF) of

the object for collision avoidance, so we construct a mesh

from the object point cloud, then compute the SDF from the

mesh using the tools provided in Wang et al. [15].

Even with four cameras, careful calibration, and point

cloud processing, we recover partial point clouds with inac-

curacies and noise (see Fig. S3). Despite these deficiencies,

our method achieves a high success rate on real objects in

various configurations (Sec. V-D), demonstrating robustness

to perceptual errors.

3) Control: The output of the planner is a joint angle

trajectory consisting of 30 timesteps. In order to execute the

trajectory on the Franka Panda, the total duration of trajectory

execution is set to 5 seconds, and the trajectory is interpolated

using cubic spline interpolation to provide joint angles at

1 Hz. Impedance control [47] is then used to execute the

high-frequency trajectory.

D. Experimental Setup

Several of the test objects could be grasped via multiple

stable pose configurations. For example, a mug can be

grasped while upright, on its side, or upside down. For

objects with multiple graspable pose configurations, the

configuration was randomly sampled for each trial. The 9 test

objects (see Fig. 5d) had graspable stable pose configurations

shown in Table S2.



(a) Bottle (b) Reconstructed Bottle Mesh, View 1 (c) Reconstructed Bottle Mesh, View 2

(d) Bowl (e) Reconstructed Bowl Mesh, View 1 (f) Reconstructed Bowl Mesh, View 2

(g) Mug (h) Reconstructed Mug Mesh, View 1 (i) Reconstructed Mug Mesh, View 2

Fig. S3: Meshes reconstructed during system evaluations. The first column shows the placement of the objects in each trial, along with
a close-up image of the object itself. The second column shows the meshes reconstructed from the four depth cameras according to the
procedure in Sec. C.2, posed roughly as they appear in the first column. The third column shows the back of each mesh. Note that these
meshes and images are magnified for visual clarity and are not consistently scaled. Even with outlier removal and other mesh processing
techniques, we observe inaccuracies in the reconstruction; however, our method is robust to these inaccuracies as demonstrated by our
results in Sec. V-D.

TABLE S2: Real Object Pose Configurations

Sampled Pose Configurations

Bottle 1 (Protein Drink) Upright, Sideways
Bottle 2 (Mustard Bottle) Upright
Bottle 3 (Coconut Water) Upright, Sideways
Bowl 1 (YCB Bowl) Upright
Bowl 2 (White Bowl) Upright
Bowl 3 (Square Bowl) Upright
Mug 1 (Black Mug) Upright, Sideways, Upside Down
Mug 2 (YCB Mug) Upright, Sideways, Upside Down
Mug 3 (Large Mug) Upright, Sideways, Upside Down

The sampled pose configurations for objects in the real system
evaluation. Objects are numbered left to right according to Fig. 5d.
Some stable poses did not permit grasping and were omitted; for
example, the mustard bottle cannot be grasped lying sideways as it
is too wide.
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