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Abstract: Orientation estimation is the core to a variety of vision and robotics
tasks such as camera and object pose estimation. Deep learning has offered a way
to develop image-based orientation estimators; however, such estimators often re-
quire training on a large labeled dataset, which can be time-intensive to collect. In
this work, we explore whether self-supervised learning from unlabeled data can
be used to alleviate this issue. Specifically, we assume access to estimates of the
relative orientation between neighboring poses, such that can be obtained via a lo-
cal alignment method. While self-supervised learning has been used successfully
for translational object keypoints, in this work, we show that naively applying rel-
ative supervision to the rotational group SO(3) will often fail to converge due to
the non-convexity of the rotational space. To tackle this challenge, we propose a
new algorithm for self-supervised orientation estimation which utilizes Modified
Rodrigues Parameters to stereographically project the closed manifold of SO(3)
to the open manifold of R3, allowing the optimization to be done in an open Eu-
clidean space. We empirically validate the benefits of the proposed algorithm for
rotational averaging problem in two settings: (1) direct optimization on rotation
parameters, and (2) optimization of parameters of a convolutional neural network
that predicts object orientations from images. In both settings, we demonstrate
that our proposed algorithm is able to converge to a consistent relative orienta-
tion frame much faster than algorithms that purely operate in the SO(3) space.
Additional information can be found on our website.

1 Introduction

Pose estimation is a critical component for a wide variety of computer vision and robotic tasks. It is a
common primitive for grasping, manipulation, and planning tasks. For motion planning and control,
estimating an object’s pose can help a robot avoid collisions or plan how to use the object for a given
task. The current top performing methods for pose estimation use machine learning to estimate the
object’s pose from an image; however, training these estimators tends to rely on direct supervision
of the object orientation [1, 2, 3]. Obtaining such supervision can be difficult and requires either
time-consuming annotations or synthetic data, which might differ from the real world. In this work,
we explore whether self-supervised learning can be used to alleviate this issue by training an object
orientation estimator from unlabeled data. Specifically, we assume that we can estimate the relative
rotation of an object between neighboring object poses in a self-supervised manner. Such relative
supervision can be easily obtained in practice, for example through a local registration method such
as Iterative Closest Point (ICP) [4] or camera pose estimation.

Relative self-supervision has been previously used for representation learning in estimating transla-
tional keypoints [5, 6, 7]. These methods use only relative supervision to ensure that the keypoints
are consistent across views of the object, and do not directly supervise the keypoint locations. In this
work, we explore whether such relative self-supervision can similarly be used in estimating object
orientations. We show that naively applying such relative supervision to rotations on the SO(3)
manifold will often fail to converge. Unlike self-supervised learning of translational keypoints, the
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rotational averaging problem [8] is inherently non-convex, with many local optima. While there exist
global optimization algorithms which jointly optimize all pairs of rotations for this problem [9, 10],
they are not easily integrated into the iterative, stochastic gradient descent methods used to train
neural network-based pose estimators.

To address this issue, we propose a new algorithm, Iterative Modified Rodrigues Projective Averag-
ing, which uses Modified Rodrigues Parameters to map from the closed manifold of SO(3) to the
open space of R3. In doing so, we obtain faster convergence with a lower likelihood of falling into
local optima. Our experiments show that our method converges faster and more consistently than the
standard SO(3) optimization and can easily be integrated into a neural network training pipeline.
Additionally, in the Appendix A, we include an intuitive theoretical example describing how, while
not all local optima are removed, the dimensionality of a set of problematic configurations is greatly
reduced when optimizing using our algorithm, as compared to optimizing in the space of SO(3).

The primary contributions of this work are:

• We propose a new algorithm, Iterative Modified Rodrigues Projective Averaging, which is
an iterative method for learning rotation estimation using only relative supervision and can
be applied to neural network optimization.

• We empirically investigate the convergence behavior of our algorithm as compared to opti-
mizing on the SO(3) manifold.

• We demonstrate that our algorithm can be used to train a neural network-based pose esti-
mator using only relative supervision.

2 Related Work

Averaging and Consensus Estimation: Consensus methods, sometimes referred to as averaging
methods, have a long history of research. The goal of these methods is, given a distributed set
of estimates, to produce a consistent prediction of a value using relative information. While there
are iterative algorithms with good convergence properties in Euclidean space [11, 12, 13, 14, 15],
optimizing over the closed manifold of SO(3) can be more difficult, as the region is non-convex,
with many local minima. Hartley et al. [8, 16] describe several methods of finding a consistent set
of rotations, though their convergence is similarly not guaranteed outside of a radius r ≤ π

2 ball
in SO(3). Wang and Singer [10] find an exact solution to this problem, using a combination of a
semidefinite programming relaxation and a robust penalty function. More recently, Shonan Rota-
tion Averaging [9] shows that projecting to higher dimensional spaces allows for the recovery of
a globally optimal solution using semidefinite programming. Chatterjee and Govindu [17, 18] use
iterative re-weighted least-squares to recover a global optimal solution using global error estimates.
Shi and Lerman [19] extends this work, using cycle consistency and message passing. These solu-
tions require global error estimates or semidefinate programming, which are incompatible with the
stochastic gradient descent methods used to train neural networks.

Supervised Orientation Estimation: Past work has explored using a neural network to predict an
object’s orientation. Traditionally, these methods rely on supervising the rotations using a known
absolute orientation, whether in the form of quaternions [20, 1, 21], axis-angle [22], or Euler an-
gles [23]. More recently, 6D [24, 2], 9D [25], and 10D [26] representations have been developed
for continuity and smoothness. Recently, Terzakis et al. [27] introduced Modified Rodrigues Param-
eters, a projection of the unit quaternion sphere S

3 to R
3 used in attitude control [28], to a range

of common computer vision problems. Terzakis et al. [27] does not, however, address the unique
problems found in the rotation averaging problem.

Recently, there has been research into mapping the Riemannian optimization to the Euclidean opti-
mization used for network training [29, 30, 31, 32, 33]. These methods focus on applying tangent
space gradients from losses in 3D transformation groups. Specifically, Projective Manifold Gradient
Layer [29] ensures that the gradients take into account any projection operations, such that the gra-
dients point towards the nearest valid representation in the projection’s preimage. While this does
map the Riemannian optimization into a Euclidean problem, it does not solve the problems caused
by the closed manifold of SO(3), as this does not alter the underlying topology of this manifold.
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3 Problem Definition

We formally describe the problem of self-supervised orientation estimation below. We assume that
we are given a set of inputs observations {I1, . . . , IN}, of an object where, in each input observation
Ii, the object is viewed from an unknown orientation Ri. These inputs could be in the form of
images, point clouds, or some other object representation. While we do not know the absolute object
orientations Ri in any reference frame, we assume that we do know a subset of the relative rotations
Rij , possibly from a local registration method like ICP, between the object in images Ij and Ii, such

that Ri = R
j
iRj . Our goal is to learn a function f(Ii) that estimates an orientation of the object in

each image, f(Ii) = R̂i that minimizes the pairwise error between all input pairs and their ground

truth relative rotations, with respect to the geodesic distance metric d(Ri, Rj) = ‖ log(R⊤
i Rj)‖2.

Given a set of rotationsR = {R1, . . . , RN}, the core optimization objective is thus:

min
R̂i,R̂j∈R

∑

i,j

d(R̂i, R
j
i R̂j) (1)

Note that this optimization does not have a unique solution, since the solution R̂i := SRi, ∀i
minimizes this error for any constant rotation S. In many robotics tasks, relative rotations can be
accurately estimated only when their magnitude is small as many registration algorithms, such as
ICP, requires a good initialization near the optimum. Following this observation, we assume that we
can only accurately supervise relative rotations when they are small in magnitude. This leads to a
local neighborhood structure where each rotationRi is connected toRj only in a local neighborhood
around Ri, when d(Ri, Rj) < ǫ, and the set of all Rj’s connected to Ri form the neighborhood set
ofNi. While the algorithms described in this manuscript do not rely on this angle ǫ, it can be scaled
as needed based on the accuracy of the relative rotation estimation method (e.g. ICP, etc).

Our eventual goal is to represent the function f(Ii) = R̂i as a neural network. Thus, we restrict
the methods with which we compare to iterative methods that are updated using only a sampled
subset of the rotations (as opposed to methods that perform a global optimization over the entire
set of rotations {R1, . . . , RN}). This requirement is to match the conditions required by stochastic
gradient descent, the primary method of training neural networks.

4 Baselines

Preliminaries. The 3D rotational space of SO(3) , {R ∈ R
3×3 : R⊤R = I3×3, det (R) = 1} is

a compact matrix Lie group, which topologically is a compact manifold. Due to the compactness
of the SO(3) manifold, there exist configurations of pairs of points where multiple, non-unique
geodesically minimal paths exist between them; for instance, there are two unique geodesically
minimal paths for a pair of antipodal points on a circle, and there are infinitely many for a pair of
antipodal points on a sphere. This is not the case in an open manifold like the 3D Euclidean space of
R

3, over which there exists a unique geodesically minimal path between any arbitrary pair of points.
The distinction in compactness between the 3D rotational space of SO(3) and 3D Euclidean space
makes optimization over SO(3) more ill-conditioned than over the space of R3. This results in the
optimization over the rotational space being non-convex. These properties of the SO(3) manifold
will affect the convergence of self-supervised orientation estimation, which we discuss below.

While self-supervised learning for objects translation, specifically in the form of object keypoints [5,
6, 7], has shown great success, in this work, we show that naively applying such an iterative self-
supervised formulation to the rotational group SO(3) will often fail to converge. Below we discuss
two approaches to self-supervised orientation estimation in SO(3).

Quaternion Averaging: A standard objective in rotation estimation is to minimize the geodesic
distance between a predicted unit quaternion and its corresponding ground-truth orientation [34, 8],
θ = arccos(2〈q̂i, qgt〉2) where q̂i is the predicted orientation for image i and qgt is the ground-truth
orientation. An objective function is often defined to directly minimize this geodesic distance [34].

In our task, defined above (Section 3), we are given the relative rotation q
j
i between some pairs of

rotations qi and qj . Using this relative supervision, we can use the geodesic distance between a
sampled estimate, q̂i, its desired relative position with respect to a sampled neighbor and a known
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relative rotation q
j
i , q̃i = q

j
i ⊗ q̂j , leading to the loss

Lq = 1− 〈q̂i, qji ⊗ q̂j〉2 (2)

where ⊗ denotes the quaternion multiplication. Note that this loss is monotonically related to the
geodesic distance when using unit quaternions, while avoiding the need to compute an arccos.

SO(3) Averaging: To optimize the rotations with respect to the non-Euclidean geometry of
the rotational manifold of SO(3), one approach is described by Manton [35]. Each orien-
tation is iteratively updated in the tangent space using the logmap of SO(3) and projected
back to SO(3) using the exponential map. Specifically, we can take the gradient of the loss

LSO(3) =
∥

∥

∥
log

(

R⊤
i R

j
iRj

)∥

∥

∥

2

(3a) ∇r̂iLSO(3) = r∆ = log
(

R⊤
i R

j
iRj

)

(3b)

which gives the update step R̂i ← R̂i exp(γr∆), where γ is the learning rate and log is the logmap
of SO(3). When optimizing the full set of orientations, this algorithm can fall into local optima due
to the closed nature of the space which allows any orientation to be reached by more than one unique
straight paths, as the space wraps around on itself.

5 Method

We propose an alternative that projects the optimization to an open image and optimizes the
distances in that space. Specifically, we use the Modified Rodriguez Projection to minimize the
relative error between neighboring poses in R

3. We provide experiments in Section 6 that show
that self-supervised orientation estimation using Modified Rodriguez Projection converges much
faster than self-supervised orientation estimation in SO(3), with theoretic analysis of an illustrative
example available in the Appendix A.

Iterative Modified Rodrigues Projective Averaging

Figure 1: Projection of relative supervision, q
j

i , shown

in red, between rotations q̂j := φ−1(ψ̂j) and −q̃i, into
the MRP space update, ψ∆, shown in green. While
q̃i could have been selected as the the goal rotation, it
would have induced a much larger movement in the pro-
jected space.

As mentioned previously, optimizing on a
closed space, such as SO(3) or S3 can be prob-
lematic, since the relative distance between two
points can eventually be minimized by mov-
ing them in the exact opposite direction of the
minimum path between them. To alleviate this
issue, we would like to instead perform self-
supervised learning in an open space, where
this symmetry is broken. This can be done us-
ing Modified Rodrigues Parameters (MRP) [36,
27]. MRP is the stereographic projection of the
closed manifold of the quaternion sphere S

3 to
R

3, and has been widely used in attitude esti-
mation and control [28]. In combining this pro-
jection with the mapping between SO(3) and
S
3, this projection can be used to optimize ro-

tations. We define a unit quaternion q = [ρ ν] ∈ S
3 , {x ∈ R

4 : ‖x‖ = 1}, where ρ ∈ R defines

the scalar component and ν ∈ R
3 defines the imaginary vector component of the unit quaternion.

The projection operator φ(q) = ψ ∈ R
3 and its inverse φ−1(ψ) = q ∈ S

3 are given by [36, 27]

where ψ = φ ([ρ ν]) = ν
1+ρ and [ρ ν] = φ−1(ψ) =

[

1−‖ψ‖2

1+‖ψ‖2

2ψ
1+‖ψ‖2

]

. Given this projective

orientation space, we need to map our relative rotation R
j
i into the projective space in order to use

these relative rotations for the self-supervised learning task.

This projection is required, as the relative supervision is in SO(3), and the direction and magnitude
of this relative measurement are distorted differently in different regions of the projective MRP

space. Given a pair of estimated projected rotations ψ̂i := φ(q̂i) and ψ̂j := φ(q̂j), we project ψ̂j

back to a unit quaternion φ−1(ψ̂j) = q̂j ∈ S
3 and rotate it according to R

j
i , q̃i = q

j
i ⊗ q̂j , where ⊗

is quaternion multiplication and q
j
i is the quaternion form of R

j
i . The resulting unit quaternion q̃i is
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then projected back into the Modified Rodrigues Parameter space, ψ̃i. A simplified visual analogy
of this process is shown in Figure 1.

While this relative rotation could be applied and projected at either the sampled point ψ̂i, or the

neighboring location ψ̂j , we select the neighboring location ψ̂j , as it does not require us to compute

gradients through the forward or inverse projections φ(·) and φ−1(·), respectively. This projected

rotation ψ̃i represents the value ψ̂i should hold, relative to the current predicted rotation ψ̂j . It
should be noted that φ(q) 6= φ(−q), while q and −q represent the same rotation. In terms of the
projective space, this means that the sign of q̃i matters. To remove this ambiguity, we select the

nearest projection to ψ̂i in the projective MRP space. It should be noted that this is different from
selecting the closer antipode on S

3, as the large deformations found near the south pole2 can cause
the nearer antipode in S

3 to be further in MRP space. In contrast, if we were to select a consistent
sign for the scalar component q̃i, for example ensuring the scalar component is always positive, a

small change in ψ̂j can cause large changes in ψ̃i when φ−1(ψ̂j) is near the equator of S3. While
this change is required to stabilize our optimization, it does add some ambiguity to the direction of
optimization. However, the directions to each of the projected locations, φ(q̃i) and φ(−q̃i), can only

be anti-parallel (pulling in exactly opposite directions) if ψ̃i − ψ̂i intersects the origin in R
3.

The loss with respect to a given estimate, ψ̂i, can then be written as the l2 distance be-

tween its current value and the projected relative location, ψ̃i, relative to a given neighbor, ψ̂j :

LΨ+ =
∥

∥

∥
ψ̂i − φ(q̃i)

∥

∥

∥

2

(4a) LΨ− =
∥

∥

∥
ψ̂i − φ(−q̃i)

∥

∥

∥

2

(4b) LΨ = min(LΨ−,LΨ+) (4c)

where we recall that, q̃i = q
j
i ⊗ q̂j , and q̂j = φ−1(ψ̂j).

Note that, while ψ̂j is a predicted value, we do not pass gradients through it, allowing it to anchor

the update to a consistent orientation. The gradient update3 is then given by:

∇
ψ̂i
LΨ = ψ∆ =

{

ψ̂i − φ (q̃i) , if LΨ+ < LΨ−

ψ̂i − φ (−q̃i) , otherwise
(5)

Additionally, a maximum gradient step, η, in the projective space is imposed, ψ∆ ← η ψ∆

‖ψ∆‖ , if

the gradient exceeds a defined amount.This prevents extremely large steps from being taken, as the
projective transform can distort the space.

6 Experiments

Next, we perform experiments to show that our method converges faster and more consistently than
the alternative approaches. Our empirical results are grouped into two settings: (1) direct optimiza-
tion of randomly generated rotations, Section 6.1, and (2) optimization of the parameters of a con-
volutional neural network using synthetically rendered images, Section 6.2. In both cases, relative
orientations between elements in a neighborhood are provided. We show Iterative Modified Ro-
drigues Projective Averaging is able to converge faster and more often than alternative approaches.
We further show in Section 6.2 that our method can easily be used to supervise convolutional neural
networks, when only relative orientation information is available.

6.1 Direct Parameter Optimization

We evaluate the convergence behaviour of our Iterative Modified Rodrigues Projective Averaging
method, MRP (Ours) , described in Section 5, as well as the SO(3) averaging method, described in
Section 4. For the SO(3) averaging method, we implement both the pure Riemannian optimization,
SO(3), as well as a method using a Projective Manifold Gradient Layer [29] to map the Riemannian
gradient of the SO(3) averaging loss, Equation 3a, to a Euclidean optimization in R

D, where we
test D = 4, 6, and 9, 4D PMG [29], 6D PMG [24], 9D PMG [25], respectively. Additionally, we
evaluate direct quaternion optimization, described in Sections 4, Quaternion.

2The south pole in this case is described by the quaternion −1 + 0i+ 0j + 0k
3We omit a constant factor for brevity, and integrate it into the learning rate, γ.
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Figure 2: Relative rotation consensus with direct optimization of rotation parameters over 50 unique environ-
ments with 100 random generated orientations each (left) and Alamo 1DSfM [37] (right). Median average-
pair-wise angular error (◦) between each estimated rotations is shown, with shaded region representing the first
and third quartile for each method. The max average-pair-wise angular error for each algorithm at each iteration
is shown as a dashed line.

Avg Pairwise Angular Error < 5◦ Normalized AUC
Algorithm Mean Steps Max Steps Min Steps Mean Max Min

SO(3) 157.7K Not Converged 85.0K 24.47 82.92 7.55
4D PMG [29] 126.1K Not Converged 27.0K 15.67 52.40 3.06
6D PMG [24] 235.9K Not Converged 80.0K 43.53 89.15 11.34
9D PMG [25] 284.5K Not Converged 150.0K 62.94 101.77 17.77

Quaternion 160.3K Not Converged 40.0K 23.55 84.85 3.47
MRP (Ours) 37.5K 160.0K 15.0K 5.08 15.56 2.18

Table 1: Number of iteration steps until convergence and Normalized Area Under Curve (nAUC) over 50 unique
environments of 100 randomly generated orientations. 300K optimization steps are taken for each experiment.

Uniformly Sampled Rotations. We test the performance of each algorithm when directly optimiz-

ing the rotation parameters of a set of size N = 100 with known relative rotations R
j
i , and local

neighborhood structure. Ground truth and initial estimated rotations are both randomly sampled
from a uniform distribution in SO(3). Each rotation, Ri, has a neighborhood, Ni, consisting
of the closest |Ni| = 3 rotations with respect to geodesic distance. The connectivity of this
neighborhood graph is checked to ensure the graph contains only a single connected component.
We test all algorithms over 50 sets of unique environments, each with N = 100 randomly generated
orientations as described above. The estimated rotations are updated by each algorithm in batches
of size 8, for 300K iterations.

As the goal of our algorithm is to improve the convergence properties of iterative averaging meth-
ods, we analyze each algorithm at various stages of optimization. We are particularly interested in
the average number of update steps until the algorithm has converged, which we define as when the
average angular error between all pairs of rotations is below 5◦. As we can see in Figure 2, the Itera-
tive Modified Rodrigues Projective Averaging method, MRP (Ours), converges before the standard
SO(3) averaging method. On average, our method converged to within 5◦ in 37K steps. The next
best method, 4D PMG [29], which takes over three times as many iterations to converge to the same

% Avg Pairwise Angular Error < 5◦ Final Error(◦)
Algorithm 30K 70K 100K 150K 300K Mean Median

SO(3) 0% 0% 6% 57% 94% 2.056 0.10
4D PMG [29] 2% 32% 46% 72% 90% 1.969 0.14
6D PMG [24] 0% 0% 4% 20% 52% 20.096 3.20
9D PMG [25] 0% 0% 0% 2% 20% 40.125 43.02

Quaternion 0% 12% 30% 56% 82% 9.72 0.04
MRP (Ours) 66% 88% 96% 98% 100% 0.004 0.004

Table 2: Percentage of experiments converged and final angular errors over 50 unique environments of 100
randomly generated orientations. 300K optimization steps are taken for each experiment.
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level of accuracy. Further, Table 1 shows that our method is the only one to converge across all
environments within 300K iterations. For each method, we also compute the mean area under the
pairwise error curve, with the number of steps normalized to between zero and one (nAUC), also
shown in Table 1. We find that in the best, average, and worst case scenarios, our method has the best
convergence behavior. To quantify convergence behavior, we also compute the percentage of trials
that achieve average pairwise angular error below 5◦ at different stages of training, as shown on the
left in Table 2. We find that at each stage of training, the Iterative Modified Rodrigues Projective
Averaging, MRP (Ours), training has a lower average pairwise error, shown in Table 2. Our method
also converged far more often at each stage of training, also shown in Table 2.

Structure from Motion Dataset. To test our algorithms under natural noise conditions, we also
evaluate our algorithm on the 1DSfM [37] structure from motions datasets. Each environment is
tested with 5 random initializations and the estimated rotations are updated by each algorithm in
batches of size 64, for 20K iterations. The results of a subset of the environments are shown in
Table 3 and the remainder can be found in Appendix C. The noise characteristics of relative rotations
in this dataset are similar to those found when capturing relative poses, but, unlike the Uniformly
Sampled Rotations environments, the distribution of rotations does not fully cover the orientation
space. As a result, all methods converge relatively quickly. Our algorithm outperforms the baselines
in terms of accuracy. While the Quaternion optimization converges slightly faster, it consistently
finds a lower accuracy configuration, resulting in a low nAUC, but higher relative and absolute
accuracy. More details can be found in the Appendix C.

Mean Relative Mean Absolute
Error (◦) Error (◦) Mean nAUC

Algorithm E. Island Alamo E. Island Alamo E. Island Alamo

4D PGM [29] 11.94 15.00 7.34 9.94 25.60 47.20
6D PGM [24] 11.26 18.84 6.90 13.09 27.77 58.04
9D PGM [25] 10.22 16.32 6.32 11.43 29.31 60.14

Quaternion 11.58 13.40 7.23 8.93 16.01 22.57
MRP (Ours) 8.84 9.89 5.49 6.56 16.21 25.61

IRLS-GM[17] - - 3.04 3.64 - -
IRLS-ℓ 1

2

[18] - - 2.71 3.67 - -

MLP[19] - - 2.61 3.44 - -

Table 3: Rotation Averaging Results on 1DSfM [37] dataset. Results before the double lines are comparisons
of local method after 20K iterations. Results under the double lines are obtained from global methods which
are incompatible with SGD training.

6.2 Neural Network Optimization

Mean Median
Algorithm Error (◦) Error (◦) 5◦ Acc (%)

4D PMG [29] 123.84 123.96 0
Quaternion 28.83 21.74 50

MRP (Ours) 3.71 3.73 100

Oracle 1.58 1.56 100

Table 4: Final results for image based rotation estima-
tion. Final mean and median angular error (◦) and percent-
age of seeds below 5◦ after 10K steps over 8 unique envi-
ronments of 100 random rotations.

To show that the Iterative Modified
Rodrigues Projective Averaging method,
MRP (Ours), can be used to learn orienta-
tion using neural networks by optimizing
the parameters of a simple CNN, specifi-
cally a ResNet18 [38], we follow the pro-
cedure as in Section 6.1 with some minor
changes. Instead of operating directly on a
set of rotation parameters, we learn a func-

tion ψ̂i = f(Ii) from rendered images of
the YCB drill [1] model rendered at each
of 100 random orientations Ri. We con-
tinue to only supervise each method de-
scribed in Section 6.1 using the relative rotations between each image.

We compare the best performing methods, and, as a lower bound, we also train an oracle network,
Oracle, with the ground truth rotations, Ri and cosine quaternion loss. We use a batch size of
32 and the Adam [39] optimizer with a learning rate of 10−4 for all experiments. All methods
are trained for a maximum of 10K steps, over 8 environments, each with 100 images of randomly
generated rotations. We report final mean and median pairwise angular error, and the percentage

7



Final Test Angular Pairwise Error

Algorithm Mean (◦) Max (◦) Min (◦)

4D PMG [29] 17.39 ± 1.14 19.42 16.07

6D PMG [29, 24] 15.20 ± 0.77 16.43 14.44

9D PMG [29, 25] 14.61 ± 0.50 15.66 14.18

10D PMG [29, 26] 19.28 ± 7.58 37.76 15.03

Quaternion 16.52 ± 4.12 26.57 14.38

MRP (Ours) 13.63 ± 0.78 15.08 12.62

(a)

Final Test Angular Pairwise Error

Algorithm Mean (◦) Max (◦) Min (◦)

4D PMG [29] 34.57 ± 2.21 38.13 31.90

6D PMG [29, 24] 31.58 ± 2.24 35.66 28.42

9D PMG [29, 25] 31.80 ± 1.52 34.87 29.96

10D PMG [29, 26] 32.23 ± 2.10 36.98 29.87

Quaternion 31.92 ± 1.00 33.61 30.61

MRP (Ours) 29.46 ± 0.66 30.74 28.62

(b)

Table 7: 3D Object Pose Estimation via Relative Supervision on Pascal3D+ test images for sofa, bicycle.
Final mean test angular pairwise error on Pascal3D+ sofa (a), bicycle (b) images after 80K training iterations,
over 8 random seeds.

of runs converged below 5◦ pairwise angular error as 5◦ Acc. We find that MRP (Ours) is able to
converge to a rotational frame consistent with the relative rotations used for supervision relatively
quickly, with a significantly lower average-pairwise-error than all other relative methods, shown in
Table 4.

We perform experiments for generalization to unseen poses and find that a curriculum is required
(see Appendix D for details). For the generalization experiments, we found that MRP (Ours)
achieves a mean pairwise angular error or 5.19◦, Quaternion achieves 12.41◦, and 4D PMG [29]
never converged, with final error of 125.09◦.

6.3 3D Object Rotation Estimation via Relative Supervision from Pascal3D+ Images

Experimental Setup. Pascal3D+ [40] is a standard benchmark for categorical 6D object pose esti-
mation from real images. Following [29, 25], we discard occluded or truncated objects and augment
with rendered images from [23]. We report 3D object pose estimation results on two object cat-
egories: sofa and bicycle. We compare our method MRP with five baselines: Quaternion, 4D
PMG [29], 6D PMG [24], 9D PMG [25] and 10D PMG [26], all of which use ResNet18 [38]
backbone to predict the object representation. Each model is supervised using the geodesic error
between the relative orientation of the predicted absolute orientations, and the relative orientation
between the ground truth absolute orientations, for each image pair. We use the same batch size of
20 as in [25, 29], and use Adam [39] with learning rate of 10−4.

Result Analysis. Results for sofa are showed in Table 7(a); bicycle are showed in Table 7(b). For
sofa category, we find that after 80K training iterations, MRP (Ours) achieves a mean angular
pairwise error of 13.63◦ on the test set, outperforms all other baselines. 10D PMG achieves the
worst error out of all methods, with final angular pairwise error of 19.28◦. For bicycle category,
we find that after 80K training iterations, MRP (Ours) achieves a mean angular pairwise error of
29.46◦ on the test set, outperforms all other baselines. In both the sofa and the bicycle category,
we find that MRP (Ours) has the fastest convergence speed, in addition to achieving the lowest test
angular error. More details can be found in Appendix E.

7 Conclusion and Limitations

In this paper, we show that through the use of Modified Rodrigues Parameters, we are able to
open the closed manifold of SO(3), improving the convergence behavior of the rotation averaging
problem. Additionally, we show that our method, Iterative Modified Rodrigues Projective Aver-
aging, is able to outperform the naive application of relative-orientation supervision in both direct
parameter optimization and image-based rotations estimation from neural networks. While this
parameterization is valuable for learning rotations through relative supervision, it is not without
limitations. One of the primary ones is the need for a curriculum to generalizing to unseen relative
rotations. Without this, our experiment show that all representations fall into the local optima of
predicting a constant orientation. Additionally, in the generalization experiments, we were only
able to achieve a final error of 5 degrees, which may not be accurate enough for many fine motor
tasks. We hope our method allows more systems to convert the relative supervision of relative
methods, like ICP, to consistent and accurate absolute poses.
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A Intuitive Example

We present an intuitive example of when optimizing a set of orientations to solve the rotation av-
eraging problem described in Equation (1), in the main text, can fail. In this example, we show
the benefits of the Iterative Modified Rodrigues Projective Averaging approach over the baseline
approach. We show that, while both SO(3) averaging and Iterative Modified Rodrigues Projective
Averaging share a class of non-optimal critical points, in the projective case, these critical points are
a subset of the problematic configurations for SO(3) averaging.

A.1 Examples of Critical Points

In this section, we analyze a class of critical points shared by both standard SO(3) averaging and
Iterative Modified Rodrigues Projective Averaging. For simplicity, we will examine the N = 3

rotation case, where R = {R1, R2, R3} with relative rotations of R
j
i := RiR

⊤
j . As this is an

iterative algorithm, we need to initialize our predicted rotations to some values R̂ = {R̂1, R̂2, R̂3}.
In this case, we initialize each predictions to R̂i := RiR0 exp

((

θ0 + i 2π
N

)

ω0

)

where R0 is an
arbitrary but constant rotational offset, ω0 and θ0 define an arbitrary, but constant axis and constant

rotation, about which each initial estimate R̂i is rotated an additional angle of θi. We find that if
we use the previously described methods to update this initial configuration, under certain values

of R , R0, θ0, and ω0, the expected update at each value R̂i is 0, forming a critical point for each
algorithm.
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A.1.1 Critical Point for SO(3) Averaging

Given the initial predictions of R̂ defined above, for all values of R , R0, θ0, and ω0, we find that
the expectation of the gradient of SO(3) averaging loss, Ei,j

[

∇r̂iLSO(3)

]

, is 0. The gradient of
any sampled pair i, j is given by

∇iLi,jSO(3) : = ∇r̂iLSO(3)

(

R̂i, R̂j , R
j
i

)

= log
(

R̂⊤
i R

j
i R̂j

)

= log
(

(RiR0 exp (θiω0))
⊤
R
j
iRjR0 exp (θjω0)

)

= log (exp ((θj − θi)ω0))

= wrap[−π,π) [(θj − θi)]ω0

= wrap[−π,π)

[

2π

N
(j − i)

]

ω0

=
2π

N
(j − i)ω0.

This lead to an expected gradient of each estimate rotation R̂i of

Ej

[

∇r̂iLSO(3)

(

R̂i, R̂j , R
j
i

) ∣

∣

∣
i = 1

]

=
1

2
wrap[−π,π)





∑

j 6=i

2π

N
(j − i)



ω0 = 0.

For all estimates R̂i, this sums to an integer multiple of 2πω0, which, due to the definition of the
SO(3) exponential map, wraps to 0.

A.1.2 Critical Point for Iterative Modified Rodrigues Projective Averaging

When optimizing using our Iterative Modified Rodrigues Projective Averaging method, we find that
this configuration is only a critical point when the relative orientations between each pair of rotations

are equal and opposite, i.e., R
j
i = Rk⊤i → R

j
i = exp

(

± 2π
N
ω0

)

and the predicted orientations are
initialized at identity: R0 = I. This only happens when the true orientations R are evenly spaced
about an axis of rotations: Ri := exp

((

θ0 − i 2πN
)

ω0

)

, leaving only axis of rotation ω0 and the
constant angular offset θ0 about that axis as free parameters.

As we are trying to update these rotations using a method compatible with stochastic gradient de-
scent, we are concerned with the expectation of our update with respect to a sampled pair. In this
case, the expected loss and update, defined in Equations 4c and 5 in the main paper, respectively, for

any projected rotation ψ̂i and its neighbor ψ̂j is Li,jΨ+ :=
∥

∥

∥
ψ̂i − φ(qji ⊗ φ−1(ψ̂j))

∥

∥

∥

2

where q
j
i is the

quaternion associated with R
j
i . As all ψ̂i are initialized to the identity, i.e., φ(qI) = 0 where qI is

the identity quaternion, we get

Li,jΨ+ :=
∥

∥

∥
−φ−1(qji )

∥

∥

∥

2
∇iLi,jΨ+ := −φ−1(qji )

Li,jΨ− :=
∥

∥

∥
−φ−1(−qji )

∥

∥

∥

2
∇iLi,jΨ− := −φ−1(−qji )

The relative rotations in this configuration are

R
j
i := exp

(

±2π

3
ω0

)

with relative quaternions q
j
i :=

[

cos(π3 ) ± sin(π3 )ω0

]

, which leads to

φ(qji ) =
± sin(π3 )ω0

1 + cos(π3 )
=
±ω0√

3
φ(−qji ) =

∓ sin(π3 )ω0

1− cos(π3 )
= ±
√
3ω0.
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This results in the potential losses for the positive and negative antipodes of

Li,jΨ+ = ‖φ(qji )‖ =
1

3
Li,jΨ− = ‖φ(−qji )‖ = 3

for all pairs of i, j. Selecting the minimum loss antipodes, we get gradients of

∇iLi,jΨ =
∓1√
3
ω0 ∇iLi,jΨ =

±1√
3
ω0,

for j = i + 1 and j = i − 1, respectively. The final expectation of the gradients with respect
neighborhood sampling is

Ej

[

∇
ψ̂i
LSO(3)(ψ̂i, ψ̂j , R

j
i )|i = 1

]

=
1

2

∑

j 6=i

∇iLi,jΨ =
1

2

(

1√
3
ω0 −

1√
3
ω0

)

= 0.

While this demonstrates that our method is not without critical points, even in this simple example, it
shows that this configuration is only problematic when the true rotations are equally spaced around
an axis of rotation, ω0, and the estimates are initialized at identity. This compares very favorably to

the SO(3) algorithm, which can be in a critical point for any set of relative rotations, R
j
i , and with

initialization that can vary with an additional arbitrary constant rotation R0.

B Method Details

A full description of the SO(3) Averaging and Iterative Modified Rodrigues Projective Averaging
is shown in Algorithm 1 and Algorithm 2, respectively. In practice, we find γ = 0.5 and η = 0.1 to
produce the best results.

Algorithm 1: SO(3) Averaging

input : Initial estimates R̂ = {R̂1 . . . R̂N}
input : Local neighborhood Ni for each rotation R̂i
input : Relative rotations R

j
i , ∀j ∈ Ni

input : Learning Rate γ

output: Optimized set R̂i ∈ R̂
1 while Not Converged do

2 Sample a rotation R̂i ∼ R̂ to update

3 Sample a neighbor R̂j ∼ Ni
4 Compute optimal update r∆ with Equation 3b in the main paper

5 Apply update in SO(3): R̂i ← R̂i exp(γr∆)
6 end

7 return R̂

C 1DSfM Datasets

We report results on all structure from motions datasets available in the 1DSfM [1]. Each envi-
ronment is tested with 5 random initializations and the estimated rotations are updated by each
algorithm in batches of size 64, for 20K iterations. While Iterative Modified Rodrigues Projective
Averaging, MRP (Ours) outperform all PMG [2] based methods, the direct Quaternion optimiza-
tion regularly converges to relatively accurate local optima more quickly than ours, as shown in
Table 10 and Figure 4. That being said, our method converges to a more accurate final configuration
for most datasets, with respect to mean relative error, Table 11, mean absolute error, Table 8, and
median absolute error, Table 9. Our method, as well as the baselines, do not appear to perform
well on the larger datasets. As a reminder, this algorithm is specifically designed for training deep
learned methods, not for direct rotation optimization. When training deep learned methods, all of
the weights are shared, allowing the network to use a single example to improve the accuracy of
all rotations near that example. Additionally, we see poor performance on datasets with extremely
large observation noise, specifically Gendarmenmarkt, whose median observation error is over 12
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Algorithm 2: Iterative Modified Rodrigues Projective Averaging

input : Initial estimates Ψ̂ = {ψ̂1 . . . ψ̂N}
input : Local neighborhood Ni for each rotations ψ̂i
input : Relative rotations q

j
i for each j ∈ Ni

input : Learning Rate γ
input : Max gradient η

output: Optimized set ψ̂i ∈ Ψ̂
1 while Not Converged do

2 Sample a projected rotation ψ̂i to update

3 Sample a neighbor ψ̂j ∼ Ni
4 Update the projected rotation ψ∆ with Equation 5 in the main paper)
5 if the magnitude of the update is larger than η then

6 Resize update to be of size η: ψ∆ ← η ψ∆

‖ψ∆‖

7 end

8 Apply update in MRP space ψ̂i ← ψ̂i + γψ∆

9 end

10 return Ψ̂

degrees. All dataset statistics can be found in Table 12. It should be noted that these datasets do
not fully cover the orientation space, and tend to largely cover only variations in yaw. For results on
datasets that represent full coverage of the orientation space, see the Uniformly Sampled Rotations
dataset or the Neural Network Optimization dataset.

Dataset

Mean Absolute Error (◦)

4D PGM 6D PGM 9D PGM Quat MRP (Ours) IRLS-GM IRLS-ℓ1/2 MLP

[2] [3] [4] [5] [6] [7]

Ellis Island 7.5 7.03 6.41 7.44 5.59 3.04 2.71 2.61

NYC Library 9.23 8.32 7.38 8.92 6.03 2.71 2.66 2.63

Piazza del Popolo 16.37 16.1 15.88 15.24 10.03 4.10 3.99 3.73

Madrid Metropolis 13.55 13.23 11.78 13 11.25 5.30 4.88 4.65

Yorkminster 9.13 8.34 7.48 8.56 5.3 2.60 2.45 2.47

Montreal Notre Dame 8.17 7.65 6.24 7.76 4.02 2.63 2.26 2.06

Tower of London 8.02 8.12 8.36 7.44 5.58 3.42 3.41 3.16

Notre Dame 8.71 7.96 7.03 8.55 5.80 2.63 2.26 2.06

Alamo 9.41 11.98 10.98 8.74 6.42 3.64 3.67 3.44

Gendarmenmarkt 66.41 73.7 68.29 46.63 48.82 39.24 39.41 44.94

Union Square 32.46 40.86 40.92 13.44 10.22 6.77 6.77 6.54

Vienna Cathedral 29.18 31.42 32.94 18.67 13.60 8.13 8.07 7.21

Roman Forum 63.23 64.85 60.51 18.11 55.65 2.66 2.69 2.62

Piccadilly 53.35 84.37 106.84 26.29 29.98 5.12 5.19 3.93

Trafalgar 121.93 124.18 125.15 69.65 91.67 - - -

Table 8: Final Mean Absolute Rotation Error Results on 1DSfM [1] dataset. Results on the left before the
double lines are comparisons of local method after 20K iterations. Results on the right after the double lines
are obtained from global methods which require optimizing over global set of relative orientations data at each
step. Results associated sections with dashed line are not available from global methods [7].

D Curriculum for Neural Network Optimization

While the MRP (Ours) was able to learn the orientations of a fixed set of rotation images, training
results shown in Figure 5, we find that a curriculum is required for any relatively supervised method
to generalized to unseen orientation. This curriculum training involves starting with a initial base
rotation. The model is rendered at this base rotation and a random rotation within 30◦ of this base
rotation. This base rotation is initially sampled with θ = 30◦ of a constant anchor orientation, until
the average training angular error of the previous epoch drops below a given threshold, in this case,
5◦. Once the error drops below this threshold, the angular range, θ, from which this base rotation
is sampled is increased by 5◦. This process is repeated, increasing the value of θ by 5◦ each time
the error threshold is reached. We find that MRP (Ours) is able to complete the curriculum in a
reasonable number of iterations, about 100K, achieving a median final pairwise accuracy of 5.19◦
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Dataset

Median Absolute Error (◦)

4D PGM 6D PGM 9D PGM Quat MRP (Ours) IRLS-GM IRLS-ℓ1/2 MLP

[2] [3] [4] [5] [6] [7]

Ellis Island 3.68 3.25 3.12 4.04 2.96 1.06 0.93 0.88

NYC Library 6.11 5.52 4.85 6.11 4.04 1.37 1.30 1.24

Piazza del Popolo 9.51 9.32 9.32 9.29 6.12 2.17 2.09 1.93

Madrid Metropolis 9.37 9.06 7.86 9.07 6.99 1.78 1.88 1.26

Yorkminster 6.44 5.77 4.56 6.11 3.29 1.59 1.53 1.45

Montreal Notre Dame 3.86 3.56 2.86 3.90 2.30 0.58 0.57 0.51

Tower of London 4.87 5.84 6.36 4.64 3.59 2.52 2.50 2.20

Notre Dame 4.39 3.73 3.09 4.48 2.61 0.78 0.71 0.67

Alamo 4.73 5.77 5.16 4.90 3.48 1.30 1.32 1.16

Gendarmenmarkt 64.08 71.57 62.9 43.91 45.92 7.07 7.12 9.87

Union Square 27.75 34.68 34.84 9.75 6.85 3.66 3.85 3.48

Vienna Cathedral 13.80 13.77 16.73 11.67 6.34 1.92 1.76 2.83

Roman Forum 53.78 62.46 57.71 16.56 41.95 1.58 1.57 1.37

Piccadilly 42.34 79.74 107.32 19.67 15.09 2.02 2.34 1.81

Trafalgar 126.71 129.57 130.45 65.54 89.09 - - -

Table 9: Final Median Absolute Rotation Error Results on 1DSfM [1] dataset. Results on the left before
the double lines are comparisons of local method after 20K iterations. Results on the right after the double lines
are obtained from global methods which require optimizing over global set of relative orientations data at each
step. Results associated sections with dashed line are not available from global methods [7].

Dataset
Mean nAUC

4D PGM [2] 6D PGM [3] 9D PGM [4] Quat MRP (Ours)

Ellis Island 22.56 24.07 25.02 15.05 14.58

NYC Library 28.53 31.12 32.07 18.20 16.84

Piazza del Popolo 37.36 44.18 43.98 25.13 22.21

Madrid Metropolis 35.91 38.49 39.15 24.34 24.48

Yorkminster 36.82 42.37 44.91 18.71 18.43

Montreal Notre Dame 33.97 37.54 40.37 17.69 16.19

Tower of London 39.98 45.99 49.54 18.14 18.85

Notre Dame 38.77 43.04 46.05 20.78 21.10

Alamo 39.87 49.08 50.22 20.47 22.05

Gendarmenmarkt 97.45 101.77 100.11 74.76 71.39

Union Square 77.22 87.01 89.76 34.60 46.20

Vienna Cathedral 72.25 81.07 83.48 38.74 42.94

Roman Forum 103.59 105.73 108.88 52.05 82.30

Piccadilly 115.83 123.41 126.16 62.87 78.31

Trafalgar 126.43 126.49 126.5 108.19 115.90

Table 10: Final Mean Normalized AUC on all 1DSfM [1] datasets after 20K iterations

over three training sessions. This test error is sampled from two random rotations across the SO(3),
differing from the training error, which are sampled based on the curriculum and are always, at most,
30◦ apart. The quaternion optimization method, Quaternion, stalls out at curriculum angle of 90◦,
achieving a final pairwise accuracy of 12.41◦ and the 4D PMG [2] method never gets past the first
level of the curriculum, with a final error of 125.09◦. The full training progression of each method,
over three random initialization each, can be seen in Figure 6

One way this curriculum could be applied to captured data as follows: given a video, a curriculum
could be established based on temporal proximity in the video. Choosing an arbitrary initial frame
of the video as a anchoring frame, a curriculum can be generate by increasing temporal distance to
neighboring frames until the entire video has been used in training.

E 3D Object Rotation Estimation via Relative Supervision from Pascal3D+

Images

E.1 Experimental Setup

Pascal3D+ [9] is a standard benchmark for categorical 6D object pose estimation from real images.
We follow similar experimental settings as in [2, 4] for 3D object pose estimation from single
images. Following [2, 4], we discard occluded or truncated objects and augment with rendered
images from [10]. We report 3D object pose estimation via relative orientation supervision results on
two object categories of Pascal3D+ image dataset: sofa and bicycle. We compare our method MRP
with five baselines: Quaternion, 4D PMG [2], 6D PMG [3], 9D PMG [4] and 10D PMG [11].
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Dataset
Mean Relative Error (◦)

4D PGM [2] 6D PGM [3] 9D PGM [4] Quat MRP (Ours)

Ellis Island 12.21 11.49 10.37 11.87 9.03

NYC Library 14.29 12.94 11.51 13.67 9.30

Piazza del Popolo 21.91 21.24 20.64 20.74 13.49

Madrid Metropolis 20.43 19.84 17.85 19.62 17.09

Yorkminster 13.73 12.64 11.58 12.97 8.35

Montreal Notre Dame 12.5 11.59 9.58 11.93 6.22

Tower of London 12.41 12.24 12.44 11.56 8.71

Notre Dame 14.15 13.1 11.65 13.86 9.66

Alamo 14.23 17.47 15.75 13.17 9.78

Gendarmenmarkt 84.21 89.61 84.77 60.25 62.98

Union Square 44.44 55.4 55.94 19.98 15.52

Vienna Cathedral 41.8 45.62 44.18 26.64 20.32

Roman Forum 79.24 77.18 78.03 25.04 64.25

Piccadilly 74.25 105.15 122.06 38.61 46.21

Trafalgar 126.18 126.42 126.49 81.28 97.53

Table 11: Final Mean Relative Error (◦) on all 1DSfM [1] datasets after 20K iterations

Dataset # Nodes # Edges Mean Error Median Error

Ellis Island 227 20K 12.52 2.89

NYC Library 332 21K 14.15 4.22

Piazza del Popolo 338 25K 8.4 1.81

Madrid Metropolis 341 24K 29.31 9.34

Yorkminster 437 28K 11.17 2.68

Montreal Notre Dame 450 52K 7.54 1.67

Tower of London 472 24K 11.6 2.59

Notre Dame 553 104K 14.16 2.7

Alamo 577 97K 9.1 2.78

Gendarmenmarkt 677 48K 33.33 12.3

Union Square 789 25K 9.03 3.61

Vienna Cathedral 836 103K 11.28 2.59

Roman Forum 1084 70K 13.84 2.97

Piccadilly 2152 309K 19.1 4.93

Trafalgar 5058 679K 8.64 3.01

Table 12: Dataset sizes and observation accuracies (◦) for all 1DSfM [1] datasets

We use ResNet18 [12] as the model backbone to predict object rotation from single images. The
model is supervised by the geodesic error between the induced relative orientation between the
predicted absolute orientations for a pair of images, and the relative orientation between the ground
truth absolute orientations for the image pair.

Specifically, MRP is supervised by the geodesic distance on the MRP manifold as described in
Equations 4 and 5 in the main paper. Quaternion is supervised by quaternion geodesic distance
as described in Section 4 in the main paper. While 4D/6D/9D/10D PMG are supervised by the
geodesic error derived from projective manifold gradients as in [2]. We use the same batch size of
20 as in [2, 4], and use Adam [13] with learning rate of 1e-4.

E.2 Result Analysis

Results for sofa showed in Figure 7 and Table 13. Results for bicycle showed in Figure 8 and
Table 14. Pascal3D+ Sofa. For sofa category, as seen in Table 13, we find that after 50K training it-
erations, MRP (Ours) achieves a mean angular pairwise error of 14.09◦ on the test set, outperforms
all other baselines. Quaternion achieves the worst error out of all methods, with final angular pair-
wise error of 26.35◦. Besides achieving the lowest test angular error, we also find that MRP (Ours)
has the fastest convergence speed, as seen in Figure 7.

Pascal3D+ Bicycle. For bicycle category, as seen in Table 14, we find that after 50K training
iterations, MRP (Ours) achieves a mean angular pairwise error of 29.21◦ on the test set, outperforms
all other baselines. Besides achieving the lowest test angular error, we also find that MRP (Ours)
has the fastest convergence speed, as seen in Figure 8.
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Figure 4: Optimization results for all 1DSfM [1] datasets, ordered by number of cameras (N). Median average-
pairwise angular error (◦) is shown with shaded areas representing the first and third quartile over all training
sessions. The max average-pairwise angular error for each algorithm at each iteration is shown as a dashed line.

Algorithm Mean (◦) Min (◦) Max (◦)

4D PMG [2] 34.57 ± 2.21 38.13 31.90
6D PMG [3] 31.58 ± 2.24 35.66 28.42
9D PMG [4] 31.80 ± 1.52 34.87 29.96

10D PMG [11] 32.23 ± 2.10 36.98 29.87
Quaternion 31.92 ± 1.00 33.61 30.61

MRP (Ours) 29.46 ± 0.66 30.74 28.62

Table 14: Final Mean Test Angular Pairwise Error on Pascal3D+ bicycle Images after 80K training iter-
ations, over 8 random seeds.

18



h

0 2K 4K 6K 8K 10K
Iterations

0

20

40

60

80

100

120

M
ea

n 
Pa

irw
ise

 A
ng

ul
ar

 E
rro

r (
)

Uniformly Sampled Rotations

Oracle
4D PMG
Quaternion
MRP (Ours)

Figure 5: Training results for rotations estimated by neural networks given images of the YCB drill [8] rendered
at each of 100 random rotations with various supervisions.Median average-pairwise angular error (◦) is shown
with shaded areas representing the first and third quartile over all training sessions. The max average-pairwise
angular error for each algorithm at each iteration is shown as a dashed line.
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Curriculum Results - Test Set
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Figure 6: Curriculum Angle (left) and Average Pairwise Error (right), sampled over the full orientation space
for three training sessions with each method. Median average-pairwise angular error (◦) is shown with shaded
areas representing the first and third quartile over all training sessions. The max average-pairwise angular error
for each algorithm at each iteration is shown as a dashed line.

Algorithm Mean (◦) Min (◦) Max (◦)

4D PMG [2] 17.39 ± 1.14 19.42 16.07
6D PMG [3] 15.20 ± 0.77 16.43 14.44
9D PMG [4] 14.61 ± 0.50 15.66 14.18

10D PMG [11] 19.28 ± 7.58 37.76 15.03
Quaternion 16.52 ± 4.12 26.57 14.38

MRP (Ours) 13.63 ± 0.78 15.08 12.62

Table 13: Final Mean Test Angular Pairwise Error on Pascal3D+ sofa Images after 80K training itera-
tions, over 8 random seeds.
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F 3D Object Rotation Estimation via Relative Supervision from

ModelNet40 Point Clouds

F.1 Experimental Setup

ModelNet40 [14] is a standard benchmark for categorical 6D object pose estimation from 3D point
clouds. We follow similar experimental settings as in [2]. We follow the same train/test data split as
in [2] and report 3D object pose estimation via relative orientation supervision results on the airplane
category of ModelNet40 dataset. We compare our method MRP with four baselines: Quaternion,
4D PMG [2], 6D PMG [3], 9D PMG [4] and 10D PMG [11] . We use PointNet++ [15] as the
model backbone to predict 3D absolute object rotation from single point cloud generated from the
ModelNet40 3D CAD models, as in [2]. The model is supervised by the geodesic error between the
induced relative orientation between the predicted absolute orientations for a pair of point clouds,
and the relative orientation between the ground truth absolute orientations for the point cloud pair.

We sample 1024 points per point cloud as in [2, 4], use a batch size of 14. As for training, we use
Adam [13] with learning rate of 1e-3, and run over 1 trial for each method.

We find that for any of the compared methods to generalize to unseen test point cloud instances, a
curriculum is needed. We train with a curriculum over the rotation space, the curriculum details can
be found in Section D. Specifically we start with base rotation range with θ = 30◦ of a constant
anchor orientation, and θ is increased by 5◦ whenever the previous mean epoch train angular error
drops below the curriculum threshold, 5◦. To speed up the training procedure, we increase this
curriculum threshold to 8◦ once θ gets to 125◦.

F.2 Result Analysis

Results on the airplane object class from ModelNet40 dataset is shown in Figure 9 and Table 15.

As seen in Figure 9 and Table 15, MRP (Ours) is able to go through the curriculum in 250K itera-
tions, reaching final test pairwise angular error of 5.49◦. Quaternion goes through the curriculum
much slower, reaching curriculum angle θ = 90◦ at the end of 250K steps. 4D PMG, 6D PMG,
9D PMG and 10D PMG, on the other hand, is not able to progress beyond the original curriculum
angle of θ = 30◦, reaching final test pairwise angular error around 35◦ after 200K iterations. In
summary, MRP (Ours) achieves faster convergence rate than all baselines, and is able to achieve
final test angular error on the order of 5◦ after progressing through the curriculum.

Figure 7: 3D Object Pose Estimation via Relative Supervision on Pascal3D+ Sofa Images. Mean test
pairwise angular error in degrees of sofa at different iterations of training. Trained over 80K training steps for 8
random seeds per method. Solid lines stand for mean errors, dashed line stand for max errors, and shaded area
represents error standard deviation.
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Figure 8: 3D Object Pose Estimation via Relative Supervision on Pascal3D+ Bicycle Images. Mean test
pairwise angular error (◦) of bicycle at different iterations of training. Trained over 80K training steps for 8
random seeds per method. Solid lines stand for mean errors, dashed line stand for max errors, and shaded area
represents error standard deviation.
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Figure 9: 3D Object Rotation Estimation via Relative Supervision from ModelNet40 Point Clouds - air-
plane. Left: Curriculum angle progression through training iterations. Right: Average test pairwise angular
error (◦), sampled over the full orientation space for 1 training session with each method.

Algorithm Mean Test Angular Pairwise Error (◦)

4D PMG [2] 35.35
6D PMG [3] 34.12
9D PMG [4] 35.80

10D PMG [11] 35.26
Quaternion 12.86

MRP (Ours) 5.49

Table 15: Final Mean Test Angular Pairwise Error on ModelNet40 airplane Point Clouds after at most
250K training iterations.
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G Absolute Orientation Supervision

G.1 Experimental Setup

In this paper, we are assuming that only relative orientation supervision is available; however, in
this section we explore how different orientation representations perform if absolute orientation
supervision is available, and specifically how Modified Rodriguez Parameters (MRP) [16] used in
this paper compare. To explore this, we perform an experiment on rotation estimation from 2D
images of rendered YCB drill supervised with absolute orientation instead of relative supervision.
We follow the same experimental setup as in Section 6.2 in the main paper, utilizing ResNet18 [12]
as the model backbone to predict absolute 3D object orientations from sets of 2D rendered object
images, rendered at 100 random rotations each. The neural network model is supervised by the
geodesic error between the predicted absolute orientation and the ground truth absolute orientation.
We compare the performance of different rotation parameterizations on this task. Specifically, we
compare the Modified Rodriguez Parameters (MRP) [16] (Oracle-MRP) with Quaternions (Oracle-
Quaternion). Each method is trained for 10K steps, over 8 different rendered image sets. We report
the mean global pairwise angular error over the whole set of 100 images over the training process in
Table 16.

G.2 Result Analysis

We report results on three metrics: 1) mean global train absolute angular error; 2) median global train
absolute angular error; 3) percentage of runs that converge with final pairwise angular error < 2◦

after 10K steps, which is referred to as 2◦ Acc. Specifically, global relative angular error is calculated
as the all-pair relative angular error for all pairs within the image set of 100. As see in Table 16,
Oracle-MRP achieves comparable but larger mean and median pairwise angular error compared to
Oracle-Quaternion, while both methods achieves the same 2◦ Acc of 87.5%. In summary, through
this simple experiment, we find that MRP is able to achieve comparable but slightly worse train
error for absolute orientation supervision compared to quaternions. Thus in the case of direct pose
supervision, MRP may not be the best choice of rotation representation; using an open manifold
such as in MRP is beneficial only in the case of relative pose supervision.

Mean Median
Algorithm Error (◦) Error (◦) 2◦ Acc (%)

Oracle-Quaternion 1.58 1.56 87.5
Oracle-MRP 1.81 1.86 87.5

Table 16: Absolute Orientation Supervision for Image Based Rotation Estimation from Rendered YCB
Drill Images using MRP vs Quaternions Parametrization. Final mean, median angular train error (◦) and
convergence (< 2◦) percentage for image based rotation estimation from rendered YCB drill images with
absolute orientation supervision, after 10K training steps over 8 sets of 100 rendered images.

H Object Orientation Prediction Qualitative Visual Results

We further show some qualitative visual illustrations of the object orientation prediction of trained
model at convergence, trained using our iterative MRP averaging method via relative orientation su-
pervision below. Examples from orientation estimation on the rendered YCB drill data as described
in Section 6.2 in the main paper is shown in Figure 10. Examples from orientation estimation on
unseen Pascal3D+ sofa and bicycle categories, as described in Section E.1, are shown in Figure 11.
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Figure 10: Qualitative Visual Examples for Object Orientation Estimation of MRP (Ours) on Rendered
YCB Drill Images. We show qualitative visual examples of predicted object 3D orientation from orientation
prediction model trained via iterative MRP averaging with relative orientation supervision, the model is eval-
uated after training for 10K steps from neural net optimization experiment described Section 6.2 of the main
paper. The predicted orientation is shown as coordinate frame (x, y, z). On the bottom of each example, we
show in text of the ground truth relative orientation angular difference (◦) between the pair of images, and
their predicted relative orientation angular difference (◦) induced from the absolute object orientation predicted
for each image. And finally we show the difference between the predicted relative angular difference and the
ground truth relative angular difference as angular error (◦).

Figure 11: Qualitative Visual Examples for Object Orientation Estimation of MRP (Ours) on Unseen
Pascal3D+ Images. We show qualitative visual examples of predicted object 3D orientation from orientation
prediction model trained via iterative MRP averaging with relative orientation supervision on Sofa (left) and
Bicycle (right) images. The model is evaluated after training for 50K steps from 3D object rotation estimation on
Pascal3D+ experiment as described Section E. The predicted orientation is shown as coordinate frame (x, y, z).
On the bottom of each example, we show in text of the ground truth relative orientation angular difference (◦)
between the pair of images, and their predicted relative orientation angular difference (◦) induced from the
absolute object orientation predicted for each image. And finally we show the difference between the predicted
relative angular difference and the ground truth relative angular difference as angular error (◦).
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