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Abstract. Graph-based representations are becoming increasingly pop-
ular for representing and analyzing video data, especially in object track-
ing and scene understanding applications. Accordingly, an essential tool
in this approach is to generate statistical inferences for graphical time
series associated with videos. This paper develops a Kalman-smoothing
method for estimating graphs from noisy, cluttered, and incomplete data.
The main challenge here is to find and preserve the registration of nodes
(salient detected objects) across time frames when the data has noise and
clutter due to false and missing nodes. First, we introduce a quotient-
space representation of graphs that incorporates temporal registration of
nodes, and we use that metric structure to impose a dynamical model
on graph evolution. Then, we derive a Kalman smoother, adapted to
the quotient space geometry, to estimate dense, smooth trajectories of
graphs. We demonstrate this framework using simulated data and actual
video graphs extracted from the Multiview Extended Video with Ac-
tivities (MEVA) dataset. This framework successfully estimates graphs
despite the noise, clutter, and missed detections.

Keywords: motion tracking, graph-representations, video graphs, quo-
tient metrics, Kalman smoothing, nonlinear manifolds

1 Introduction

Graph-based representations in videos provide a convenient setting to represent
and analyze higher-level structures of scenes. Graphs help focus us on informa-
tion of interest while discarding irrelevant items for the given task. Graphs are
also helpful in capturing spatiotemporal interactions between nodes (humans,
objects, etc.) in video sequences while reducing the effects of noise, clutter and
(appearance/scene) variability. This representation facilitates the modeling and
testing of statistical variability across multiple observations within and across
observation classes. The promise of graphical representations, especially in per-
forming statistical analysis, is fueling interest in developing novel mathematical
and statistical techniques for handling graph data [22,21,16,6,5,15].
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Fig. 1: An overview of time-series analysis for estimating graphs in video frames.

This paper advances the use of graphical methods for handling video streams
in computer vision and artificial intelligence. It represents the detections at any
time – objects as nodes and their interactions as edges in a graph. As the
objects and interactions change over time, one obtains a time series of graphs
representing an evolving scene. We focus on the problem of analyzing these
dynamical graphs or time-series of graphs, where each time point represents a
graph extracted from a frame (or a small set of consecutive frames). In this
setup, the attributes associated with nodes and edges are typically real-valued
vectors obtained by embedding concepts, and their co-occurrences in some large
Euclidean space (as observed in Visual Genome [26], Action Genome [23], and
ConceptNet [28,37], to name a few). The nodes’ attributes are often descriptive of
the objects and their spatiotemporal locations in the scenes. The edge attributes
are designed to capture pairwise relational properties of objects. The sequence
of graphs as extracted video data forms our observed time series.

Time-series analysis of graphs, especially when dealing with noisy and clut-
tered data, requires novel tools. In the current context, corrupted data results
from limitations in the pre-processing steps. These steps result in random pertur-
bations in edge-node attributes, false detection of spurious concepts, and missed
nodes when concepts go undetected. The goal is to use this data to estimate
the underlying time series of true graphs. We aim to use model-based estima-
tion, equipped with dynamical models and likelihood functions, to help overcome
these data limitations and generate robust inferences. The classical toolsets in
(Euclidean) time-series analysis are filtering, smoothing, prediction, and estima-
tion. Can we directly apply them to the graph data? The answer is no. The main
issue with graphs is that ordering nodes (or objects) in a graph is arbitrary. In
other words, one can randomly re-order the nodes in a graph and still preserve
the scene description, although it may change its mathematical representation.
This motivates a representation space that is naturally a quotient space under
re-ordering of nodes. Consequently, the graph space G is a non-Euclidean space
where the past Euclidean filtering techniques do not apply directly.
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This paper develops a Kalman filtering and smoothing approach adapted to
the non-Euclidean geometry of G to perform Bayesian inference. Fig. 1 provides
an overview of the proposed framework. Using deep learning techniques (detailed
in Supplementary), we obtain noisy graph data yt at each time t. Then we apply
a combination of Kalman estimation and maximum-likelihood estimation of the
system parameters Θ to obtain the scene estimate x̂t. This Bayesian estimate
uses system dynamics and the data likelihood (while registering nodes across
time points) to form optimal estimates.

Contributions. The main contributions of this paper are three-fold: (i) We
introduce a novel framework for Bayesian estimation/tracking using Kalman fil-
tering and smoothing for time-series of unregistered graphs. A graph-formulation
provides joint inferences on the detected objects (nodes) and their relationships;
(ii) We formulate estimation in the quotient space of graphs modulo the node-
registration group. Incorporating registration inside filtering allows for optimal
matching and tracking of nodes over time and handles the problem of missed and
false nodes in noisy and cluttered data; and (iii) We demonstrate the effective-
ness of the proposed approach through extensive experimental results on both
simulated and real datasets. This is the first paper of its kind that formulates a
time-series estimation on the quotient space of graphs.

2 Related Work

Graph-based representations are commonly used in the modeling and prediction
of human trajectory [3,19,20,25,34,31,44]. In many cases, graphs are used to
model the human-human and human-objects interactions in the context of tra-
jectory and behavior prediction. Another common application of graph-based
representations is Multiple Object Tracking (MOT), where the goal is to match
detected objects across frames [4,27,47,48] and assign a registration for this graph
matching problem. Graphs have also been used for modeling human activity
[2,1] in videos by constructing graphs that exploit semantic and commonsense
knowledge [37]. In such approaches, the graph representations are constrained
by context and physical laws. Some other tasks, e.g., video object segmenta-
tion [29,45], utilize graph representations to extract relevant information from
neighboring frames in a video by employing an attentive mechanism.

Time series prediction over graphs has not been explored to a great ex-
tent in prior literature. The most common use of graphs in time series predic-
tion [7,49,11,36,43] has been for modeling the relationships between the variables
in multivariate time series data such as traffic forecasting [51] and action and
gesture recognition [50,41]. There have been few works that address the predic-
tion of actual graph structures over time using Gaussian process regression [32],
manifolds-based prediction [33], Kalman and other filtering methods applied
to graph or network data [35,10,24]. However, these methods typically assume
graphs with fully registered nodes and do not account for clutter.
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3 Background: Graph Representation & Quotient Metric

This section describes the necessary background for understanding the proposed
approach. Specifically, we lay out the mathematical framework needed for ana-
lyzing unregistered graphs as elements of a quotient space [21,22,16].

Representing Graphs. We represent a graph G of n nodes by two sets of
variables: an adjacency matrix and a node attribute vector. First, we define an
adjacency matrix A ∈ Rn×n×p to capture the edge attributes, where an ele-
ment Aij ∈ Rp represents the interaction between node i and j. We assume
that {Aij} is a symmetric matrix with diagonal elements being zero and has
only kn = n(n − 1)/2 degrees of freedom in Rp. (In case the interactions are
directional, one will need to keep the full matrix A with kn = n2.) Hence, we
can represent A by a long vector of its upper triangular sub-matrix: w ∈ Rkn×p.
Note that there is a one-to-one relationship between the adjacency matrix A and
the vector w. Let ϕ(A) = w denote the mapping of the adjacency matrix into
a vector form; then ϕ−1(w) = A maps the vector back to the adjacency matrix.
Second, we define a node attribute vector v ∈ Rn×m such that each element
vi ∈ Rm denotes the attributes of the i-th node.

Metric Structure.We define a joint edge-node representation X = (w,v) ∈ X ,
with the representation space given by Xn

.
= (Rkn×p×Rn×m). Xn is a Euclidean

space with the standard Euclidean metric. The distance on X is given by: for
any X(1) ≡ (w(1),v(1)), X(2) ≡ (w(2),v(2)), define:

dx(X
(1), X(2)) =

kn∑
k=1

∥w(1)
k −w

(2)
k ∥2 + λ

n∑
i=1

∥v(1)
i − v

(2)
i ∥2, (1)

where λ > 0 is the relative weight of the second term and dx is a weighted com-
bination of the corresponding metrics on both the edge and node attributes.
The set of all graphs with different number of nodes is given by the union
X = ∪∞

n=1Xn.

Graph Matching and Comparison. A critical issue in comparing graphs is
that the size and ordering of nodes can be arbitrary in given data. Consequently,
matching nodes across graphs becomes an intermediate problem when compar-
ing different video frames. The computation of metric dx requires registration
of nodes between X(1) and X(2), which may not be known beforehand. Further-
more, the two graphs may have a different number of nodes (due to missing or
false nodes), making node matching more difficult. To handle this registration
problem, we introduce the action of the permutation group on X as follows. Let
Pn denote the set of all n × n permutation matrices: each P ∈ Pn is an n × n
matrix with only one 1 in each column and row and all other entries are 0.
The mapping v 7→ Pv permutes the elements of v according to the elements
of P , changing the ordering of nodes in the graph. (Note that the ordering
within the node attributes remains unchanged.) The corresponding adjacency
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Algorithm 1: Kalman Filtering for Graph Time Series Prediction

Input : Observed Graph Sequence: Y = {yt : t = 1, 2, . . . , T}
Output: Estimated Graph Sequence: X̂ = {x̂t : t = 1, 2, . . . , T}

1 for t = 2 to T do
/* Registration Step (Performed only once for a dataset.) */

2 P ∗ = argmin
P∈Pn

dx((y
(e)
t−1,y

(n)
t−1), (P ⋆ y

(e)
t , Py

(n)
t ))

3 (y
(e)
t ,y

(n)
t )

set
= (P ∗ ⋆ y

(e)
t , Py

(n)
t )

4 end
5 Initialize x̂1|1 = y1, K1|1 = I
6 for t = 1 to T do

/* Prediction Step */

7 x̂t+1|t = B(l)x̂t|t

8 Kt+1|t = B(l)Kt|tB
(l)′ +Q(l) Q(l) = C(l)C(l)′

/* Update Step */

9 St = WtE
(l)Kt+1|tE

(l)′W ′
t +WtΛ

(l)W ′
t

10 Gt = Kt+1|tE
(l)′W ′

tS
−1
t

11 x̂t+1|t+1 = x̂t+1|t +Gt(Wtyt+1 −WtE
(l)x̂t+1|t)

12 Kt+1|t+1 = Kt+1|t −GtWtE
(l)Kt+1|t Λ(l) = F (l)F (l)′

13 end

matrix changes according to A 7→ PAPT , and the representation w becomes
ϕ(P (ϕ−1(w)PT ). We will use P ⋆w to denote this transformed w. Together, the
action of Pn on Xn is given by: (P,X) = (P, (w,v)) = (P ⋆ w, Pv) ∈ X . The
graph space is then defined as the quotient space Gn

.
= Xn/Pn. Elements of this

quotient space are the permutation orbits of a graph: [X] = {(P⋆w, Pv|P ∈ Pn}.
The distance between any two graphs of size n is given by:

dg([X
(1)], [X(2)]) = min

P∈Pn

dx((w
(1),v(1)), (P ⋆w(2), Pv(2))) . (2)

The optimization over P ∈ Pn is precisely the graph matching problem that
has received a lot of attention in the literature [13,30,42]. We presently use the
Umeyama approach laid out in [16] for this optimization and graph matching
since it allows us to handle graphs of varying sizes seamlessly. The full graph
space is given by the union: G = ∪∞

n=1Gn.

When comparing graphs of two different sizes, say n1 and n2, we introduce
null nodes to make them size n1+n2 each and then apply the above setup. Null
nodes are used only for matching purposes and are assigned attributes carefully
to reach a desired result (see [16] for details). A matching of a real node in one
graph to a null node in the other graph implies a birth or a removal of a node
from the representation.



6 A. B. Bal et al.

Algorithm 2: Kalman Smoothing for Handling Missing or Noisy Input

Input : Estimated Graphs Sequence: X̂ = {x̂t : t = 1, 2, . . . , T}
Output: Smoothed Graph Sequence: X̃ = {x̃t : t = 1, 2, . . . , T}

1 for t = T − 1 to 1 do

2 Ht = Kt|tB
(l)K−1

t+1|t
3 x̃t|T = x̂t|t +Ht(x̃t+1|T − x̂t+1|t)

4 K̃t|T = Kt|t +Ht(K̃t+1|T −Kt+1|t)H
′
t

5 end

4 Bayesian Time-Series Analysis of Graphs

Problem Statement: In this work, we aim to model the evolution of graph
structures using a time-series model and then estimate the true time-series from
noisy data using Kalman smoothing [17]. Specifically, our goal is to estimate
X = {xt ∈ X : t = 1, 2, . . . , T}, given a possibly corrupted or noisy observations
Y = {yt : t = 1, 2, . . . , T}. This also involves estimating model parameters
Θ = {B(l), C(l), E(l), F (l) : l = e, n} from the observed data. Here l = e indexes
the edges and l = n indexes the nodes. To this end, we specify two models – one
for capturing dynamics underlying the process generating graphs (S) and the
other for the observations (O). Formally, we define these models as

S :

{
wt+1 = B(e)wt + C(e)u

(e)
t ∈ Rkn×p,

vt+1 = B(n)vt + C(n)u
(n)
t ∈ Rn×m

(3)

O :

{
y
(e)
t+1 = Pt+1 ⋆ (Wt+1E

(e)wt+1) + F (e)ϵ
(e)
t+1 ∈ Rkn×p,

y
(n)
t+1 = Pt+1Wt+1E

(n)vt+1 + F (n)ϵ
(n)
t+1 ∈ Rn×m

(4)

where the superscripts (e) and (n) denote the models for edges and nodes re-
spectively; Pt+1 ∈ Pn is a random permutation matrix; B,C,E, F are unknown

coefficient matrices that are estimated from the data. The quantities u
(e)
t ,u

(n)
t

denote random perturbations in the system dynamics and are modeled with
independent standard normal components. We assume the measurement noise

ϵ
(e)
t , ϵ

(n)
t to be multivariate normal with mean zero and identity covariances.

Also, Wt+1 is a matrix that encodes the dropping of actual nodes or adding
false nodes; Wt+1 is arbitrary but known for use in estimation and tracking. For
brevity, we will use xt = {wt,vt} to denote the underlying graph at time t and

yt = {y(e)
t ,y

(n)
t } as its noisy observation.

Since the dynamical model is a linear system with Gaussian distributions,
the estimates are readily available in close form. The problem of estimating X,
given Y and Θ, can be solved using either the Kalman filter (forward pass)
or smoother (forward and backward pass). The problem of finding Θ, given
Y and X, is relatively straightforward using maximum-likelihood estimation
(MLE). Applying these two solutions iteratively, we apply a well-known EM-
type algorithm for estimating X from Y.
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Algorithm 3: Parameter Estimation for the Kalman Smoother

Input : Observed and Estimated Graph Sequences: {Y, X̂}
Output: Estimated Parameters: Θ = {Ê, Λ̂, B̂, Q̂}

1 Ê(l) = (
∑T

t=1 ytx
′
t)(

∑T
t=1 xtx

′
t)

−1

2 Λ̂(l) = 1
T−1

∑T
t=1(yt − Ê(l)xt)(yt − Ê(l)xt)

′

3 B̂(l) = (
∑T

t=1 xtx
′
t−1)(

∑T
t=1 xt−1x

′
t−1)

−1

4 Q̂(l) = 1
T−1

∑T
t=1(xt − B̂(l)xt−1)(xt − B̂(l)xt−1)

′

Focusing on estimating the unknown state variable X using the dataY (and a
current estimate of Θ) we seek the posterior distribution – f(xt+1|y1,y2, . . . ,yt,yt+1).
Given the linear-Gaussian nature of Eqns 3,4, the posterior distribution at each
time is a multivariate normal distribution. To characterize this posterior, one
needs only to evaluate the associated mean x̂t+1|t+1 and covariance K̂t+1|t+1.
Kalman filter provides a recursive formula to compute these quantities at time
t + 1, as a function of estimates at time t and the new data yt+1. We adopt
and apply these expressions for the representation spaces of graphs and obtain
filtering results. Algorithm 1 outlines this recursion. An important distinction
from classical filtering is that not all nodes are visible in the data at all times.
Sometimes some nodes are undetected, while other times, some extraneous nodes
are added. To deal with this issue, we follow two steps. Firstly, we introduce a
known matrix Wt whose rows are a subset of the rows of identity I depending on
the elements that are missing in the observation yt. If no elements are missing
in yt, then Wt is identity. Secondly, we utilize an optimization over Pn, i.e.,
graph matching, which registers the observed graphs at successive times. While
Kalman Filter provides a forward pass through the temporal graph data, the
results can be further improved by performing an additional backward pass. In
this process, one uses the full data (over the full interval) to improve estimates.
Algorithm 2 outlines steps for implementing this smoother.

Parameter Estimation. So far, we have discussed estimation of X given Y
(the extracted graphs) and Θ (the system parameters). However, in the real data,
Θ is unknown and needs to be estimated itself. Given X (or rather its estimate)
and Y, one can estimate Θ using a maximum-likelihood criterion that results
in closed-form expressions. These expressions are given in Algorithm 3. To put
these pieces together, one initializes Θ̂ and iterates between the estimation of X
and Θ using Algorithms (1, 2) and 3. This results in the estimated values of the
graph sequence and the system parameters, as well as the registration of nodes
between successive graphs.
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5 Experimental Evaluation

5.1 Data, Metrics and Baselines

Data. For evaluating the proposed approach, we devise three experimental set-
tings with two kinds of data - synthetic and real-world video data. Since there
are no existing comparable benchmarks, we develop a synthetic dataset for sim-
ulating the problem of predicting the future states of a visual-semantic sequence
such as graphs [26] or spatial-temporal graphs [46]. We consider two scenarios -
without and with observation noise/clutter. The former refers to a setting where
each frame in a long video is devoid of any degradation, such as object detection
failures. All objects are correctly detected at all times, and no new object enters
the scene. The latter refers to a more realistic scenario, where objects may enter
and/or exit the scene, and some may even go undetected in certain frames. We
also demonstrate that our approach can work well with real-world scenarios by
evaluating on a complex activity detection dataset with multiple actors from
surveillance videos. Due to space constraints, we briefly describe the data in
detail below. More details are presented in the supplementary.

Synthetic Data 1 - Data with Registered Nodes: For evaluating in the
ideal observation setting, we generate an ordered sequence of fully connected
graphs with n=10 nodes observed over t=5000 time points. The node attributes
vt denote the position coordinates of objects in the scene (m = 2) while the edge
attributes wt are scalar (p = 1) and signify relationships between connecting
nodes. To simulate a graph time series, we initialize v0 randomly on a unit
circle and w0 using a uniform distribution. We set the model parameters in
the system dynamics (S) to: B(e) = 0.95Ikn

, Q(e) = Ikn
, Λ(e) = 0.01Ikn

, E(e) =
0.001M + Ikn

, M ∈ Rkn×kn whose elements are i.i.d. standard normal, B(n) =
I2n, Q(n) = 100I2n Λ(n) = 10I2n E(n) = 3M + I2n, M ∈ R2n×2n whose
elements are i.i.d, N (0, 0.01). Recall kn = n(n− 1)/2.

Fig. 2: Evolution of ∥wt −wt+1∥ (top) and ∥vt − vt+1∥ (bottom) versus t in a
sample simulation.

Fig. 2 shows the L2 norm between successive edge weights ∥wt − wt+1∥
(top) and the node attributes ∥vt − vt+1∥ (bottom). The large values indicate

a significant changes in graphs over times. Similarly, Fig. 3 shows ∥wt − y
e)
t ∥

(top) and ∥vt − y
n)
t ∥ (bottom) over time. Once again, large values indicate a

large level of noise in the observations. All baselines are trained with the first
4500 graphs and evaluated on the last 500 graphs.
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Fig. 3: Evolution of ∥wt − y
e)
t ∥ (top) and ∥vt − y

n)
t ∥ (bottom) in a sample run.

Synthetic Data 2 - Data with Missed and False Nodes: For creating
second synthetic data with missing or false nodes, we start as above with graphs
with n=10 that are fully connected for t up to 5000. Then we randomly select
some time points and randomly remove 2−3 of the nodes in the graphs at each
of the selected instants. This modification simulates missed detections and/or
the exit and entry of objects as time progresses. To aid the registration process
and simulate feature embeddings for objects in a video clip, we define the node
attributes here to be the position coordinates concatenated with a simulated
feature vector that is distinct for each node.

Real-world Video Data. For evaluation with real-world video data, we
use a subset of the Multiview Extended Video with Activities (MEVA) [12]
dataset, a large-scale human activity detection benchmark. It consists of over
9300 hours of scripted scenarios and spontaneous background activities from
indoor and outdoor viewpoints. For our experiments, we use a scene from an
indoor bus station where the actors are continuously moving in and out of the
camera field of view while performing different activities. The bus station scene is
5 minutes long (9000 frames). Each frame is represented by a graph, where each
node is a person detection, and their node embeddings represent visual features.
Specifically, we apply a pretrained object detector (DeTR [8]) on each frame and
characterize the interactions and activities in the scene as an undirected graph.
Each node vi ∈ V denotes a unique detection, where the node embeddings are
the features vector extracted from the last layer of the transformer decoder.
The edges are constructed using relative distances between detections after the
homography transformation matrix transforms the input to a top view.
Metrics. We use the L2 norm of the difference between the predicted and actual
system node and edge vectors to evaluate the quality of the predicted graphs.
This metric is used in defining the components of dx in Eqn. 1 and is a natural
choice of quantifying estimation performance.
Baselines. For a fair comparison with prior work on time series prediction, we
devise three types of models: (i) multi-epoch training models, (ii) online training
models, and (iii) static or reactive prediction models. For multi-epoch training
models, we use the following baselines as SOTA techniques: 1-step feed-forward
network (FFN) [14], recurrent neural networks [39,18], gated recurrent units
(GRU) [9], transformers [40], seq2seq [38] with RNNs and GRUs. For online
training models, we train an RNN and LSTM model in online fashion, i.e.,
one graph at a time for 1-step prediction trained for 1 epoch continually. For
static predictors, we predict either (i) the previous observation, (ii) the first
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Fig. 4: For each t, we show xt (blue), yt (coral), and x̂t (green). The thickness
of the edges are proportional to the edge values.

observation, or (iii) the median of three successive graphs (current, previous,
and the next). (For median filtering, we perform node registration using the
well-known Hungarian algorithm.) Hyperparameters were chosen using a grid
search and optimized using the Adam optimizer.

5.2 Evaluation on Synthetic Data 1

We apply Algorithm (1,2) and 3 to the simulated data and obtain estimates X̂
from the given data Y. Figure 4 shows an illustrative example of the estima-
tion results. It shows five timeframes of system dynamics (blue) and its noisy
observations (coral). The observed graphs are slightly distorted versions of the
original ones with respect to both edge weights and node positions. Next, we
run several iterations of Kalman smoother, and the estimated graph sequence is
shown in green color.

Fig. 5: Plots of ∥xt − x̂t∥ versus t for the edges (top) and nodes (bottom) for
Synthetic Dataset 1.

To visualize estimation error over the full interval, we present error plots in
Figure 5. Here, the y-axis represent ∥wt − ŵt∥ and ∥vt − v̂t∥ for (a) Edges and
(b) Nodes respectively while the x-axis represents time t. For comparison, we
observe that the Kalman smoother (red) estimation performs slightly better than
that obtained from Kalman filter (only forward pass) (blue) and much better
than the median filter (black).

Finally, we compute the performance summary over multiple simulated time
series and compare our method with alternative ideas described earlier (under
Baselines). These results are presented in Table 1. As the table shows, the estima-
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Approach
Synthetic Dataset 1 Synthetic Dataset 2
Prediction Errors Prediction Errors

Nodes Edges Nodes Edges

Multi-Epoch Training

1-Step FFN 0.623 ± 0.0555 1.107 ± 0.084 0.198 ± 0.014 0.766 ± 0.090
RNN 0.303 ± 0.0239 0.496 ± 0.061 0.165 ± 0.019 0.472 ± 0.067
GRU 0.402 ± 0.0264 0.575 ± 0.062 0.164 ± 0.010 0.493 ± 0.076

Seq2Seq-RNN 0.470 ± 0.0274 0.747 ± 0.069 0.199 ± 0.025 0.771 ± 0.091
Seq2Seq-GRU 0.521 ± 0.0343 0.690 ± 0.074 0.165 ± 0.015 0.518 ± 0.064
Transformer 0.769 ± 0.0145 1.003 ± 0.015 0.284 ± 0.016 1.032 ± 0.030

Online Training

RNN 0.465 ± 0.089 0.932 ± 0.103 0.215 ± 0.031 0.876 ± 0.082
GRU 0.460 ± 0.065 0.877 ± 0.097 0.225 ± 0.033 0.847 ± 0.090

Kalman Filter 0.009 ± 0.003 0.091 ± 0.007 0.008 ± 0.004 0.084 ± 0.026
Kalman Smoother 0.008 ± 0.002 0.091 ± 0.007 0.006 ± 0.003 0.085 ± 0.020

Static Prediction

Median Filter 0.146 ± 0.009 0.153 ± 0.025 0.123 ± 0.002 0.156 ± 0.032
Previous observation 0.998 ± 0.000 0.713 ± 0.015 0.999 ± 0.000 0.712 ± 0.022
First observation 0.998 ± 0.000 1.017 ± 0.056 0.999 ± 0.000 1.038 ± 0.056

Table 1: Quantitative evaluation on Synthetic Datasets 1 and 2. Table reports
mean and std. deviation of the L2 errors, for edge and node estimates.

tion errors are substantially lower for the Kalman inference relative to baselines
using multi-epoch training, online training, or simply using a static prediction.

5.3 Evaluation on Synthetic Data 2

In this experiment, we consider graph data with missing and spurious nodes in-
serted randomly at an arbitrary time. Consequently, one needs a graph matching
step to match and track nodes across times. Every observed graph yt is registered
to the one before it, as stated in Algorithm 1. We use the Umeyama algorithm
involving both edge and node attributes described in [16] for this purpose. The
simulated graph time series after registration is shown in Figure 6 at five consec-
utive time points. At t=239, xt has 10 nodes whereas yt has 7 connected nodes
and 3 more that are not connected to the rest of the graph. The latter three are
null nodes which were added to y239 to facilitate the registration process and
have degree 0. The graphs at t=239 represent a situation where three objects
went undetected. The null nodes are assigned the position coordinates of the
corresponding nodes they were matched to in the previous time point.

Figure 6 shows the estimated graphs in green. The null nodes that appear iso-
lated in y239 are connected in x̂239 by weighted edges estimated by the Kalman
smoother. The error plots in Fig 7 show high accuracy for the Kalman smoother.
The spikes here correspond to errors at time points with missed or false nodes.
In spite of these spikes, the Kalman smoother (red) performs better than the
Kalman filter (only forward pass) (blue) and the median filter (black). This result
emphasizes that the graph Kalman filter-smoother framework can detect-track
objects even when missing in some frames. Table 1 presents a more comprehen-
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Fig. 6: Illustration of handling missed object detection. (Same color scheme as
earlier.)

Fig. 7: Plots of the error ∥xt − x̂t∥ versus t for edges (top) and nodes (bottom)
for Synthetic Dataset 2.

sive study of estimation error for a number of alternative methods. Once again,
we see a clear superiority of Kalman smoother over other methods.

5.4 Real-world Evaluation

Next, we apply this framework to tracking human subjects in a bus station scene
introduced earlier. To focus on evaluation, we consider three short segments of
the full video sequence. Fig 8 shows 4 frames from an event where a subject
enters the bus station and eventually exits it. To compare estimation errors for

Fig. 8: Top: Four frames (one-second spacing) showing a subject entering. Middle:
xt, yt, x̂t overlaid. Bottom: these graphs alone.



Kalman Smoothing of Video Graphs 13

different methods, we have manually generated the ground truth X. It represents
each manually detected subjects in each frame of the sequence. This manual
annotation results in bounding boxes of true subjects using the Davinci Resolve
video editor. This software allows for manually annotating some keyframes and
linearly interpolating the bounding boxes (in positions and aspect ratios) to fill
in between. We treat the resulting sequence as the ground truth X.

To aid the registration of the observed series {yt}, we combine several types
of node attributes: (a) top-view node position coordinates obtained from homog-
raphy transformation of the input camera view, (b) eight principal components
of the 256 length node embeddings explaining 85.3% of the variation, and (c) four
coordinates of the bounding box of the detected object, resulting in a m = 14-
length attribute vector for each node. The edge weights in this setup come from
Euclidean distances between the nodes.

With this setup, we apply Algorithms (1,2) and 3 to get estimates of the

underlying system graphs X̂ as well as the model parameters Θ̂. Note that results
are sensitive to initialization of the system parameters. For each video clip, we
measure the estimation error using three items: (a)∥xt − x̂t∥, (b) the average
count of noisy or spurious detections (present in only yt) and (c) the average
count of missed detections (present in only xt). The L2 norm estimation errors in
Fig 9 indicate consistently high prediction accuracy for Kalman smoother. The

Fig. 9: Plots of the error ∥xt − x̂t∥ for edges and nodes in three video clips from
real-world observations (MEVA dataset).

average count of false and missed detections in Table 2 shows that the Kalman
filter-smoother framework performs better at eliminating noise and retrieving
missed detections. Fig 10 highlights some key features of the results obtained.
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Video Clips
Rate of False Detections Rate of Missed Detections
KS KF MF KS KF MF

clip 1 (t = 0 to 500) 0.762 0.721 4.118 2.427 2.387 5.914
clip 2 (t = 0 to 1000) 0.956 0.997 4.498 3.024 3.065 6.738

clip 3 (t = 782 to 1200) 0.885 0.909 4.690 3.556 3.580 7.599

Table 2: Average count of nodes present in x̂t but not in xt (left) and average
count of nodes present in xt but not in x̂t (right) for 3 video clips using Kalman
smoother (KS), Kalman filter (KF) and median filter (MF)

Fig. 10: Examples of successful (top) and failed (bottom) node placements given
incorrect data: node 2 (top left), node 9 (top right), node 8 (bottom left) and
node 17 (bottom right).

6 Discussion

This paper develops a Kalman smoother approach, adapted to the quotient space
geometry of graph representations, to track objects of interest in video data.
Specifically, it incorporates a node-registration step at each time to maintain
tracks despite having noise and clutter in the scene. Utilizing the dynamics of
system evolution, along with a likelihood model, this Bayesian framework helps
overcome the issues raised by missed and false detections in the pre-processing
step. This framework understandably outperforms several learning-based and
some basic online ideas. To the best of our knowledge, this is the first paper to
formulate and apply classical filtering techniques to quotient spaces of graphs.
While this approach can handle a small number of missed or false detections, it
fails when this number grows large. The system dynamics, or temporal smooth-
ing, of estimated states, can’t make up for this large data corruption. One needs
additional information to help track such objects.
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