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ABSTRACT

Major innovations in computing have been driven by scaling up
computing infrastructure, while aggressively optimizing operat-
ing costs. The result is a network of worldwide datacenters that
consume a large amount of energy, mostly in an energy-efficient
manner. Since the electric grid powering these datacenters provided
a simple and opaque abstraction of an unlimited and reliable power
supply, the computing industry remained largely oblivious to the
carbon intensity of the electricity it uses. Much like the rest of the
society, it generally treated the carbon intensity of the electricity
as constant, which was mostly true for a fossil fuel-driven grid. As
a result, the cost-driven objective of increasing energy-efficiency
— by doing more work per unit of energy — has generally been
viewed as the most carbon-efficient approach. However, as the elec-
tric grid is increasingly powered by clean energy and is exposing its
time-varying carbon intensity, the most energy-efficient operation
is no longer necessarily the most carbon-efficient operation. There
has been a recent focus on exploiting the flexibility of computing’s
workloads—along temporal, spatial, and resource dimensions—to
reduce carbon emissions, which comes at the cost of either perfor-
mance or energy efficiency. In this paper, we discuss the trade-offs
between energy efficiency and carbon efficiency in exploiting com-
puting’s flexibility and show that blindly optimizing for energy
efficiency is not always the right approach.
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Figure 1: Energy’s carbon intensity (05/15/2022 - 05/31/2022).

1 INTRODUCTION

The demand for computing has experienced rapid growth and is
expected to accelerate even further. However, the increase in com-
puting demand has not resulted in a proportional increase in energy
demand so far [3]. The growth in computing’s energy consumption
has been kept in check by massive gains in algorithmic efficiency,
measured in cycles per unit of work, of its software and energy
efficiency, measured in energy consumption per cycle, of its hard-
ware [13]. However, as the algorithmic and energy efficiency gains
slow down, an increase in computing demand directly increases the
energy demand. A conservative estimate projects that the energy
consumption of datacenters will increase by at least 10% per year till
2030 [11], much higher than an estimated increase of 1.65% per year
in 2010s [24]. As society has begun to recognize the environmental
impact of our activities, reducing the carbon footprint of this ac-
celerating energy demand has attracted significant attention from
academic researchers [21, 31, 33, 35] and industry leaders [9, 28].

The carbon footprint of computing depends on the computing’s
carbon efficiency, denoted as ¢, which is calculated by dividing
the computing’s energy efficiency ng, measured as work done per
unit of energy, by the energy’s carbon intensity c, measured as
the amount of emitted greenhouse gases (GHG) per kWh of en-
ergy. Traditionally, the electric grid has been powered by fossil
fuels such as coal, and oil, which have similar carbon intensities
of 1038 g.COzeq/kWh and 1106 g.COzeq/kWh [2]. Furthermore,
even if energy’s carbon intensity slightly varied across space and
time, it was invisible to electricity consumers due to the simple
and opaque abstraction exposed by the grid. As a result, the carbon
intensity of electricity was viewed as constant, every unit of energy
was the same, and a unit improvement in computing’s energy effi-
ciency meant a proportional improvement in computing’s carbon
efficiency. As the industry aggressively optimized for computing’s
energy efficiency—driven by the need to scale while reducing oper-
ational costs—it was only serendipitous that a cost-driven approach
was also the environmentally conscious choice.
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However, the evolution of the electric grid over the last decade
has diversified the mix of energy sources used for electricity gen-
eration. With a higher penetration of renewable energy in the
electric grid and advancements in traditional power plant technolo-
gies, such as combined heat and power (CHP) plants, the carbon
intensity of electricity now varies widely over time and across lo-
cations [5, 32]. Figure 1 illustrates the carbon intensity of energy
in gCOzeq/kWh for four locations around the globe. Sweden ex-
hibits a very low carbon intensity due to its reliance on hydropower,
while the Netherlands has a higher carbon intensity due to its fossil
fuel-heavy resource mix. Furthermore, Ontario and California ex-
perience diurnal changes in carbon intensity due to the increased
use of solar energy. The growing penetration of renewables in the
electric grid has decreased the carbon intensity worldwide but also
highlighted the importance of considering the timing and location
of energy consumption. Computing workloads offer the flexibil-
ity to choose when and where to execute and consume energy.
However, mechanisms that enable the exploitation of computing’s
flexibility tend to be energy-inefficient. Therefore, in most cases,
achieving carbon efficiency requires sacrificing energy efficiency.

From a business standpoint, it does not make financial sense to be
purposefully energy-inefficient as it costs money, especially in the
absence of penalties on carbon emissions. However, there is a social
incentive to reduce carbon footprint, and the computing industry
is responding to this problem in two ways. First, assuming a time-
varying carbon intensity, operators are leveraging the performance
flexibility of workloads such as delaying or relocating workloads.
Second, the industry is using various forms of carbon credits and
offsets to reduce its estimated carbon emissions. Initially, carbon
credits and power purchase agreements were used to offset carbon
emissions on an annual basis. However, recently, the industry has
started using more stricter forms of carbon offsets that match the
energy demand of datacenters with renewable energy generation
on the same distribution grid on an hourly basis, known as 24/7
matching [6]. While this is a step in the right direction, it should
not be construed as running the datacenters purely on zero-carbon
energy because datacenters still rely on the electric grid. As the
electric grid still uses carbon-intensive energy sources, no one
can be fully carbon-free until the grid itself is carbon-free. In this
futuristic world, the focus can shift back toward the gains in energy
efficiency that the industry has helped achieve. In the meanwhile,
blindly focusing on energy efficiency leaves many possible carbon-
specific optimizations on the table. Unfortunately, just like the
tension between alternating and direct current in the late nineteenth
century, this debate has become a war of narratives and financial
levers rather than a technical one [1, 8]. As grids worldwide still rely
on carbon-emitting energy generation sources, we need to exploit
all the flexibility of computing workloads such that we maximize
carbon efficiency while optimizing energy efficiency.

Computing workloads, depending on the application, offer flexi-
bility along multiple dimensions. They can be delayed, paused, and
resumed (temporal flexibility). They can be assigned more or fewer
resources (resource scaling). They can be scaled up or down using
Dynamic Voltage and Frequency Scaling (DVFS) (rate shifting). Fi-
nally, they can be executed at a different geographical location
(spatial shifting). These mechanisms for exploiting flexibility could
be energy-inefficient to varying degrees and yield different amounts
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of carbon savings. As energy inefficiency costs money, we need
to analyze the trade-offs between carbon efficiency and energy
efficiency. This can not only guide the industry in estimating the
cost of optimizing for carbon but also help regulators determine
the appropriate incentives and penalties for carbon emissions.

The management of carbon emissions in cloud datacenters is
receiving significant attention due to the growing impact of cli-
mate change [14-17, 25, 26, 31, 32, 35]. While some studies have
focused on embodied carbon, which refers to carbon emissions
from the manufacturing and relocation of infrastructure, we are
concentrating on the operational energy and carbon footprint of
powering and cooling the infrastructure. Although our efficiency
metrics can encapsulate other accounting methods, such as em-
bodied carbon, by spreading the embodied carbon over the actual
lifespan of the infrastructure, we did not use that combination since
it does not comply with the GHG protocol [4] as highlighted by
other researchers [12].

To the best of our knowledge, our work is the first to explicitly
quantify the energy-carbon trade-offs of various flexibility mecha-
nisms. To demonstrate this trade-off, we consider real-world carbon
traces and analytically-modeled applications and simulate the effect
of carbon-saving mechanisms. We use a state-of-the-art energy-
efficient execution as the baseline and demonstrate how carbon
efficiency can be significantly increased by being energy ineffi-
cient, and blindly optimizing for energy efficiency is not always
the right approach. We also highlight the trade-off breadth of dif-
ferent techniques and show that there exists a tipping point where
carbon savings is not yet affected by the energy inefficiency of
such mechanisms. Beyond this point, the carbon footprint of en-
ergy overheads overweighs the reduction in carbon savings from
exploiting flexibility.

2 ILLUSTRATING EFFICIENCY TRADE-OFFS

In this section, we investigate the trade-off between carbon effi-
ciency and energy efficiency of four commonly-used mechanisms
for exploiting computing’s flexibility: temporal shifting, resource
scaling, rate shifting, and spatial shifting. We choose state-of-the-
art energy-efficient execution as the baseline unless stated other-
wise. Therefore, our carbon efficiency gains come from optimizing
specifically for carbon and not from improving computing’s en-
ergy efficiency. Furthermore, the term “carbon efficiency” refers to
computing’s carbon efficiency and not energy’s carbon efficiency,
which is referred to by the reciprocal term of carbon intensity.

We use a 3-year-long carbon intensity trace for Ontario, Canada,
from electricity map [7] spanning January 1, 2020, to December
31, 2022. The trace provides the hourly average intensity values,
measured in gCO2eq/kW h. Unless stated otherwise, we assume that
the job starts at the hour boundary, and aggregate our results across
jobs starting at each hour of the year. We report carbon efficiency
and energy efficiency values, with the results normalized to the most
energy-efficient for energy efficiency and the least carbon-efficient
for carbon efficiency, unless otherwise specified. Furthermore, we
present our analysis across a wide range of empirically-driven
configurations that map to real-world server classes and application
characteristics to ensure our results are broadly applicable and not
tied to a particular application or hardware.
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Figure 2: Carbon and energy efficiency of jobs with different
overheads. Longer deadlines allow a higher use of checkpoint
& restore to operate in low carbon periods.

2.1 Temporal Shifting

The time-varying nature of electricity’s carbon intensity creates
green time periods, where the carbon intensity is significantly lower
than the average carbon intensity for that location, as shown in
Figure 1. The simplest, and most common, strategy to increase com-
puting’s carbon efficiency is to wait for such low carbon periods
to arrive, execute the job during a given period, suspend the job
at the end of this period, and resume its operation during the next
low carbon period. However, this intermittent execution of jobs
leverages checkpoint and restore techniques to save the state be-
tween low carbon periods, incurring energy overhead. The amount
of overhead depends on the frequency of checkpoint and restore
operations and the energy cost of a single checkpoint and restore
operation, which, in turn, depends on the size of the state of the
application [29].

Prior work on temporal shifting to reduce the carbon footprint
has focused on configuring the thresholds for identifying low car-
bon periods, with or without future knowledge of carbon intensity,
and the trade-offs between carbon savings and job completion
times [28, 31, 35], while ignoring the overhead of suspend-resume.
There is also a recent work that explores online algorithms, taking
into account the overhead of suspend and resume methods [21].
However, these studies do not explicitly discuss or quantify the
trade-off between the loss of energy efficiency and gains in carbon
efficiency. We bridge this gap in an empirical study outlined next.
1. Experimental Setup. Our setup presumes multiple jobs with dif-
ferent overhead percentages, aiming to optimize carbon efficiency
using state-of-the-art carbon-aware execution policies.
Applications. We consider an application that constantly performs
computation, such as ML training, and requires a certain memory
size to store the intermediate results. We assume that the job has
performance flexibility and allows the operator to checkpoint &
restore its state. We use three variants of this job represented by
their checkpoint & restore overheads, which we configure as the
time it takes to checkpoint or restore the memory state of the job.
We set the overheads for the three variants as 5 minutes (low), 10
minutes (medium), and 15 (high) minutes, which can be mapped
to real-world applications by assuming ML training over different-
sized models. The job also has temporal flexibility, aka slack, which
we define as a multiple of the job’s uninterrupted execution time. For
example, a slack factor of 1.5X for a 24hrs job without interruption
means that it has 36hrs to finish. In our experiments, we consider a
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Figure 3: As applications with sub-linear scaling characteris-
tics scale, their energy efficiency reduces.

24hrs long job and vary the slack factor from 1x to 3x of the job’s
runtime.

Policy. We use a deadline-aware suspend-resume policy to execute
the job that has been proposed in recent work to reduce the carbon
footprint of jobs with temporal flexibility [35]. This policy assumes
perfect future knowledge of carbon intensity and selects low carbon
slots for executing the job such that it finishes before the deadline.
It does not take into account the energy overhead of checkpoint
& restore when determining the number and selection of slots for
execution. However, we take into account the carbon overhead of
intermittent execution and subtract that from carbon savings when
calculating carbon efficiency gains.

2. Experimental Results. The results in Figure 2a show that a
higher degree of flexibility (higher slack) can lead to greater reduc-
tions in carbon emissions (increased carbon efficiency). However,
flexibility comes at the cost of energy efficiency. As shown in Fig-
ure 2b, larger slacks allow applications to checkpoint & restore
more often, increasing the energy and carbon overhead, which re-
duces energy efficiency. In Figure 2b, the y-axis limit is set between
1 and 0.94 to ensure clear visibility of the lines representing normal-
ized energy efficiency. It is important to note that the magnitude of
carbon savings and the impact on energy efficiency are application-
specific, but their relationship is fundamental and will hold across
application characteristics and carbon intensity profiles.

3. Key Takeaways. Higher temporal flexibility enables applications
to increase their carbon efficiency, but the gains depend on how often
applications incur the energy and carbon overhead of the checkpoint
and restore mechanism to take advantage of low carbon periods.

2.2 Resource Scaling

Resource scaling is the method of adding or removing resources
to a given job to speed up or slow down the speed of execution,
respectively. In the context of carbon-aware computing, resource
scaling can be used as an antidote to the increase in job completion
time under suspend-resume execution [18, 31]. Instead of resuming
the job at 1x during low carbon periods, it can be scaled up to kx
to make up for the time spent in suspend state. However, the effec-
tiveness of scaling depends on the application characteristics, such
as the size of sequential barriers modeled by Amdahl’s law [10]. As
a result, as the allocated resources increase, the speed up increases
sub-linearly, reducing the energy efficiency of execution.

1. Experimental Setup. In this experiment, we demonstrate the
carbon efficiency and energy efficiency trade-off for an application
that leverages resource scaling to reduce its carbon footprint.
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Applications. Since applications’ scalability dictates the energy
overhead, we consider different scalability in terms of the through-
put reduction per additional node. Figure 3 shows the scalability
characteristics for three applications with excellent scaling (5% re-
duction in normalized throughput per additional node), high scaling
(10% reduction per additional node), and moderate scaling (15% re-
duction per additional node) characteristics. This behavior is similar
to many real-world distributed applications as shown in [27]. We
assume that the energy consumption of each additional node is the
same. As a result, as shown in Figure 3b, the energy efficiency of
the computing decreases due to reduced normalized throughput
after scaling.

Policy. Souza et al. [31] propose a carbon-aware scaling policy
called Wait&Scale, which selects an application-specific scale factor
based on its scalability characteristics. It assumes perfect knowl-
edge of future carbon intensity. Similar to a carbon-aware suspend-
resume policy, it generates a schedule that suspends the job during
high carbon periods and resumes it at the application-specific scale
factor during the low carbon periods. In this scenario, the scale
factor is set to 1, which means that the job completion time is the
same as the completion time for an uninterrupted execution. As a
result, jobs do not gain carbon savings from temporal flexibility.
2. Experimental Results. Figure 4 shows the normalized carbon
efficiency and energy efficiency of the three scalable applications
with scalability characteristics shown in Figure 3. The results indi-
cate that maximizing energy efficiency does not necessarily result
in maximum carbon efficiency. Rather, the increase in carbon ef-
ficiency depends on the flexibility that comes with a decrease in
energy efficiency. Furthermore, the results in Figure 4 demonstrate
that the application’s scalability plays a significant role in carbon
efficiency gains and energy efficiency losses. For instance, the job
with excellent scaling (Figure 4a) was able to increase its carbon
efficiency by 68% at an energy efficiency loss of 15%. Conversely,
the moderately scalable job showed only a 34% increase in carbon
efficiency but paid more than a 25% loss in energy efficiency.

It is also worth noting that, in all three cases, Figure 4 illustrates
that increasing the scaling factor does not always improve carbon
efficiency. Beyond a certain scaling factor, the gain in throughput
during high carbon periods does not overcome the carbon cost due
to low energy efficiency at high scales. Hence, the reciprocal be-
havior that loss of energy efficiency does not always lead to carbon
efficiency should also be considered while scaling applications.

3. Key Takeaways. Carbon-aware application of scaling policies can
yield significant gains in carbon efficiency. However, the high energy
overhead of scaling means that applications must be highly judicious
in choosing their scale factor as gains become marginal at high scales.

2.3 Rate Shifting

Dynamic Voltage and Frequency Scaling (DVFS) has been widely
used for energy optimization for servers in datacenters by leverag-
ing the non-linear relationship between power consumption and
application throughput [19, 23, 34, 37]. DVFS can also be used for
optimizing carbon efficiency where the application runs faster us-
ing a higher frequency during low carbon periods and saves energy
by lowering the CPU frequency and its execution speed during high
carbon periods, possibly at a lower energy-efficiency. DVFS can
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Figure 4: Normalized carbon and energy efficiency for different
scalability profiles when running in Ontario, Canada.

especially be helpful for uninterruptible applications that cannot
be suspended, as it makes progress at all times without suspension.

The energy savings in using DVFS come from the non-linear rela-
tionship between a processor’s power demand (P) and its frequency
(f) and voltage (V) governed by the following equation,

P= chZ + Pstatic- (1)

Here, C and Pstatic are processor architecture-specific constants.
As shown in this equation, power demand has a dynamic and a
static range. The dynamic range is dictated by the linear relation
with its frequency; reducing the operating frequency by 50% will
reduce the dynamic range by 50%. However, higher savings in
the dynamic range come from the non-linear relationship with the
operating voltage of the processor; decreasing the operating voltage
to half reduces the dynamic power consumption of the processor
by a factor of 4. It is worth mentioning that a decrease in the
power consumption of a processor does not lead to a proportional
decrease in its performance. The decrease in performance, denoted
by S, depends on the CPU-boundedness of applications and can be
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modeled using Amdahl’s law [10] by the following equation:

1

5= io+ (-io)/p" @
where io is the fraction of time an application spends accessing
Input/Output (IO) peripherals at the maximum operating frequency
(Fmax), which is one of the major reasons affecting the applica-
tion’s slowdown due to their sequential nature. f,, is the normal-
ized frequency w.r.t. the highest frequency f,, = f,/Fmax, where
fn € [Fin, Fmax].

Considering only the dynamic range, by assuming Pg;qsic to
be 0 and C to be 1, a 50% decrease in operating frequency for an
application with 50% IO yields only a 34% reduction in the applica-
tion’s performance, making it more efficient. While the reduction
of frequency alone yields 50% savings in power, more savings will
be achieved if the operating voltage is decreased as well. However,
many modern processors do not allow direct and separate control
of the processor’s operating voltage. Instead, changing the oper-
ating frequency alters the operating voltage to a pre-determined
voltage level. As a result, applications may not have a full range of
parameters available to them to optimize energy efficiency using
DVFS. Furthermore, depending on the practical values for Ps;qyic
and C, energy efficiency gains may be further limited.

1. Experimental Setup. We next evaluate the impact of DVFS
for different application characteristics under different operation
frequencies to highlight the tension between carbon and energy
efficiency.

Server Configurations. Figure 5 shows our modeled server, mod-
eled after a local server in our lab, that has an Intel-Xeon Processor
E5-2620 v4 with DVFS enabled. The server dynamic power range
was controlled through the frequency range of (0.9 to 2.1GHz, 0.1
MHEz step), voltage range of 0.8 to 1.2V. The CPU’s transistor gate’s
capacitance (3 x 1072), while the static power of the server is 30W,
which is approximately 25% of its operational power. In practice,
frequency levels and voltage values are tied together. Thus, we split
the voltage range into the same number of steps as frequency and
establish a direct relationship between frequency and voltage levels.
Applications. We model three different applications that map to
real-world: “CPU-bound” application such as matrix multiplication
in ML training (0% time spent on input/output), “IO-bound”appli-
cation of text processing, e.g., Hadoop (70% time spent on I/O),
and “balanced” application such as in-memory data processing, e.g.,
Spark, (40% time spent on I/O). In all of these examples, I/O time is
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configured when the processor is running at the highest frequency.
The application-specific energy efficiency profile is created based
on its I/O%, under different frequencies, by equations 1 and 2.
Policy. There is no prior work on leveraging DVEFS to optimize for
carbon efficiency. Therefore, we devise a simple strategy to explore
the carbon and energy efficiency trade-off. Our policy uses the
application-specific profile to operate at a high frequency, often
less energy efficient, during low carbon periods and operate at a
low frequency, e.g., highest energy efficient frequency, during high
carbon periods. The complex decision space necessitated evaluating
the policy against all frequency permutations. In this case, the policy
is given all permutations of F, F» € [900, ..., 2100], and we also use
the mean carbon intensity p., during the expected execution period,
as the threshold. In this case, at a time slot i, the application runs at
frequency F; if the carbon intensity ¢; is less than or equal to the
threshold y (¢; < p), and it runs at frequency F otherwise.

2. Experimental Results. We model the energy efficiency behavior
of our applications by computing the normalized energy consump-
tion at the highest frequency with respect to other frequencies.
Figure 5 shows that across application classes, I/O-bound applica-
tions observe the most gains since an I/O-heavy application does
not utilize the CPU to its full extent and is not affected by the
slower processing speed of the CPU at lower frequencies, while a
CPU-bound application barely sees any gains as its throughput is
highly affected by the processing speed. The efficiency gains from
DVFS were further in prior work [20].

Figure 6 shows the carbon and energy efficiency, of the three

applications denoted as CPU-bound (0% IO), IO-Bound (70% IO), and
balanced (40% IO). The results clearly indicate that energy-efficient
configurations do not always yield the highest carbon efficiencies.
For example, Figure 6a shows that the highest carbon efficiency is
achieved by running fast (~1.7GHz) when energy’s carbon intensity
is low while running slow (~1GHz) otherwise, contrarily, always
running at (~1.3GHz) yields highest energy efficiency. Figure 6c
shows another example where energy and carbon efficiency are
more correlated as the energy and carbon efficiency increase from
lowering the frequency. We point out that other configurations
resulted in similar conclusions, but we had to leave them out due
to space constraints.
3. Key Takeaways. Using DVEFS in a carbon-aware manner can
greatly improve carbon efficiency. Adjusting the operating frequency
can result in high-efficiency gains that might bridge the gap between
energy and carbon-efficient computing.

2.4 Spatial Shifting

Migrating services across the network in order to optimize cost or
latency has been widely discussed [22, 30, 32, 36]. Similarly, migra-
tions can be utilized to increase carbon efficiency by transferring
jobs to a region where the carbon intensity of energy is lower. For
example, a task can be migrated across the globe by following the
availability of carbon-free solar energy. However, flexibly trans-
ferring jobs between locations decreases energy efficiency as it
involves energy overheads from checkpointing, transferring, and
restoring execution state as well as application data. For instance,
for migrating a data processing application (e.g., ML training), the
application state must be checkpointed at the source, moved across
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Figure 6: Carbon and energy efficiency of different tasks.

the network, and restarted at the destination. Also, the data must
be moved or cloned in both locations which incurs extra energy
consumption. The process of checkpointing and restoring depends
on the application size as explained in section 2.1, while the mi-
gration depends on the state and data size, and cloning also comes
with energy and financial cost overheads. A full analysis of spatial
shifting trade-offs is left to future work.

3 CONCLUSION

For a long-time, energy efficiency has been a key objective for
cost-effective and sustainable computing. The necessity to decrease
computing’s operating costs and the environmental impact of com-
puting made energy efficiency a first-class citizen in computing.
However, the wide adoption of clean energy in electrical grids, along
with increasing public awareness about energy sources, and the
enabled visibility of the time-varying carbon intensity, has resulted
in a shift where the most energy-efficient operations may no longer
be considered the most sustainable or socially acceptable choice.
For these reasons, carbon efficiency (the amount of work per unit
of carbon) appeared as a “true” sustainability metric. The key idea
in increasing carbon efficiency is to exploit computing’s workloads
flexibility by adjusting execution time (Temporal Shifting), speed
(Scaling and Rate Shifting), and location (Spatial Shifting) accord-
ing to the grid’s carbon intensity. In this paper, we highlighted
an inevitable tension between carbon and energy efficiency. We
explored the core mechanisms used in carbon-efficient computing
along with policies from the state-of-the-art in a wide range of
scenarios. The paper demonstrated qualitatively and quantitatively
that “striving for maximum energy efficiency is not always the most
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sustainable (carbon-efficient) approach”. The gains and overheads
of combining multiple carbon-aware flexibility mechanisms is left
for future work.
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