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I’ve always been fascinated by the
ability of agronomists to quantify the
effects of fertilization or pesticide treat-
ments, with relative ease, from random-
ized research plots. Agronomists
commonly report treatment effects of less
than 5% with surprisingly narrow confi-
dence intervals. What are they doing right,
and what are we hydrologists missing?

I suspect that the difference is in the
nature of the indicators used. For agrono-
mists, the difference in yield between the
treatment plots and control plots is often
the indicator of choice. Mathematically,
the mass yield of corn grain corresponds
to the integration over time of the instanta-
neous productivity of a corn plant or a
small plot during the growing season. The
instantaneous productivity varies between
night and day, as well as between sunny
and cloudy skies, between warm and cold
days, and there is also a treatment effect
because of the applied treatment. If agron-
omists were able to measure the instanta-
neous productivity and compare it from
one plot to the next, they would likely have
a hard time distinguishing the treatment
effect from all the other day-to-day effects.

Instantaneous productivity is much
less indicative of the treatment effect
because of its inherent variability, which is
associated with highly variable driving
factors. In contrast, overall production is a
cumulative indicator, and instantaneous

productivity is it mathematical derivative.
The overall production, i.e., the mathemat-
ical integral of instantaneous productivity
over time, is a more robust indicator of the
treatment effect.

In other words, the different indicators
are fundamentally different. Agronomists
have demonstrated that cumulative indica-
tors, such as crop yield, are robust. In con-
trast, derivative indicators, such as
instantaneous productivity, are not robust
because they are noisier and more sensi-
tive to inherently variable drivers.

By analogy, I suggest that the individ-
ual concentration values measured by
hydrologists, or even the indicators derived
from individual event hydrographs and
chemographs, correspond to the instanta-
neous productivities of crops and are very
noisy derivative indicators. If that is the
case, then overall indicators, such as
cumulative flow volume or cumulative
concentration load, ought to be more
robust and more pertinent for detecting
and quantifying the effects of management
on water quality.

Do we have any evidence for that?
Actually yes, and some of the evidence has
been in existence for quite a while.
Double-mass curves have long been used
to detect drift and malfunction in flow
monitoring instruments. The effect of
treatment can also be detected in the break
of the slope of a double-mass curve.

At North Carolina State University,
we have been using these cumulative indi-
cators for a while, and we have been able
to quantify the effects of stream restoration
on water quality, the impact of afforesta-
tion on water yield, and other effects.
While agronomists only have access to
end-of-season production data, hydrolo-
gists have access to time series data of
cumulative loads and flow volumes. This
creates an opportunity to detect break-
points in the cumulative curves, as well as
seasonal trends and patterns.

New tools, including statistical tools,
are needed to analyze these cumulative
indicators. In addition, the full time series
of flow and concentration must be meas-
ured to calculate them. This means that
robust methods to fill in missing data must
be developed and agreed on. There is still
much work to do in this area. However, we
are convinced that cumulative indicators
hold great value in hydrology, and we
encourage researchers to use them.
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Digital Water and Its 
Impact on Sustainability
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D
igital water is an emerging
research direction that involves
using technology to manage
water use. The digital water

ecosystem is described by the
International Water Association (IWA) as
being composed of many stakeholders,

including the public sector, peer groups,
investors, industry associations, and aca-
demic institutions. In this brief article, we
first describe the relationships among the
aspects of digital water and then explain
how digital water can be used to make
water use more sustainable.

Aspects of digital water
The accompanying diagram adapts

the digital water ecosystem described by
the IWA into an illustration of the three
aspects of digital water. The three aspects
are industry, innovation, and information
technology (IT). Each aspect can be fur-



ther broken down into more specific com-
ponents. Industry includes components
such as water and wastewater treatment
utilities, agriculture, manufacturing, as
well as human components like finance
and training. Innovation involves develop-
ing new methods, ideas, and products. IT
is the use of computers, communication
devices, and infrastructure to process,
store, and exchange data.

The desire to move toward a more sus-
tainable society drives resource-intensive
industries such as agriculture, water utili-
ties, and steelmaking to change their prac-
tices. This creates the need for innovation.
Innovation is led by teams within indus-
tries and by cross-sector collaboration.

Innovation has led to new methods and
technologies to monitor water use, includ-
ing cyber-physical systems such as smart
water grids that use sensors, meters, and
actuators distributed throughout the water
infrastructure. Smart grids enable more
efficient water management and infra-
structure planning. The grids collect data
on water consumption, flow rates,
peak demand times, and pipe pres-
sures in real-time, which
can then be transferred
and analyzed. The transfer
of data is automated using
radio transmissions like
the Global System for
Mobile communications
(GSM) and General
Packet Radio Services
(GPRS). Interpreting large
amounts of data can be tedious,
so robotics and IT are promising tools for
automating repetitive tasks.

Alongside real-time data analysis,
other IT applications for digital water
include cloud-based computing for the
delivery of databases, analytics, and intel-
ligence over the internet; remote sensing,
such as using satellite imaging to detect
and monitor the physical components of an
area; and virtual or augmented reality,
which provides a cost-effective way of
simulating real-world situations to test
alternative scenarios. Digital twins (DT)
also fall into the category of virtual reality.
DTs are digital replicas of a physical sys-
tem that mimic the system’s behavior. DTs

are a safe way to simulate the impact of
abnormal events.

These information technologies can be
used in combination to gather, distribute,
and analyze data from both natural and
artificial water networks. New methods
and technologies bring new uncertainties,
so the impact of new digital water solutions
must be assessed before adoption.

Impact on Sustainability
Managing water resources is impor-

tant for meeting the increasing water

demands for agriculture, industry, and per-
sonal use. Irrigated agriculture uses 70%
of freshwater globally. The three agricul-
tural production categories that use the
most water are cereals (27%), meat (22%),
and dairy products (7%). These water use
values may change, as the global con-
sumption of milk is expected to increase
by 19% by the year 2050. Using technol-
ogy to perform analyses is an efficient way
to optimize water use as well as predict
changes in water use due to climate
change, population growth, and economic
development.

A recent literature review asserted that
digital water offers 77 benefits to sustain-
ability. These benefits are grouped into
three categories: environmental, economic,
and social equity benefits. Environmental
benefits include energy benefits associated
with improved management, planning ben-
efits due to increased knowledge and
development of new algorithms, and water
benefits from better monitoring. Economic
benefits include reduced health and safety
incident costs, reduced labor costs, and
improved revenue forecasting. Social
equity benefits are derived from reduced
plumbing costs and customized products
based on water use.

Similarly, the IWA suggests that digi-
tal water has community, operational,
financial, and resiliency benefits.
Community benefits are reduced water
contamination, increased conservation of
water resources, and increased long-term
affordability through reduced operating

costs. The operational benefit is automa-
tion. Along with reduced operating

costs, another financial benefit is
increased revenue. The resiliency

benefits are derived from
the adaptive nature of dig-
ital water systems. For
example, high-resolution
remote sensing promotes
efficient irrigation of
urban and agricultural
landscapes by determin-
ing location-specific irri-
gation amounts for

optimum plant health.
Optimizing global water use is impor-

tant for sustainable development. The
move toward digital water is the next logi-
cal step for optimizing global water use,
considering the increased demand for
water, global population growth, land use
changes such as urbanization, and the real-
ity of climate change.
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The three aspects of digital water.
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