Ars Inveniendi Analytica (202X), Paper No. X, XX pp.
DOI [journal inserts paper DOI]
ISSN: 2769-8505

Mean-field limits of Riesz-type singular
flows

Quoc-Hung Nguyen Matthew Sylvia Serfaty
Academy of Mathematics and Rosenzw cig Courant Institute of
Systems Science, Chinese Massachusetts Institute of Mathematical Sciences, New
Academy of Sciences Technology York University

Communicated by Francesco Maggi
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tator structure.

Keywords. mean-field limits, propagation of chaos, Coulomb and Riesz interactions, mod-
ulated energy, renormalized commutator.

© AUTHORNAMEI], AUTHORNAMEZ2, and AUTHORNAME3
©@ @ Licensed under a Creative Commons Attribution License (CC-BY).


https://creativecommons.org/licenses/by/4.0/

2 Q.-H. Nguyen, M. Rosenzweig & S. Serfaty

1. INTRODUCTION

1.1. Main goal and method. In this article, we consider the first-order mean-field dynam-
ics of interacting particle systems of the form

Xi=— Z MVg(x; — x;)
(1.1) lejsN:j;éi iefl,...,N}

xill’=0 = X?,

Here, N € N is the number of particles, x? € R? are the pairwise distinct initial configura-
tions and M is a matrix satisfying

(1.2) VEER?, (ME,E) <0,

where (:,) is the standard Euclidean scalar product. Taking M = [ yields gradient-flow/
dissipative dynamics, while taking M to be an antisymmetric matrix yields Hamiltonian
dynamics. General M allow for possible mixed flows. We assume that the potential g is
repulsive, so that particles never collide and there is a unique global solution to the system
of ODEs (1.1). The model case we have in mind is g a Riesz potential depending on a
parameter 0 < s < d according to the convention

—log|x|, s=0
g(x)—{ 8

(1.3) =
lx|~5, s>0.

We will in fact consider a slightly more general class of potentials with singularity of the
type (1.3), as explained in the next subsection. Based on the value of the parameter s and
its relation to the dimension d, we classify the potential g as sub-Coulombicif 0 < s < d -2,
Coulombicif s = d -2, and super-Coulombiciftd -2 < s < d.

Motivations for studying systems of the form (1.1) are numerous: interacting particles
in physics, particle approximation to PDEs, finding equilibrium states of interaction en-
ergies, biological and sociological models, large neural networks (see for instance the in-
troduction in [Ser20b]). Riesz interactions are particularly interesting for physics and ap-
proximation theory, see for instance [DRAW02, BHS19].

By mean-field limit, we mean proving the convergence as N — oo of the empirical mea-
sure

(1.4) My = — o t
N N = xl

associated to a solution gf\, = (xf eees x]tv) of the system (1.1). If the points x?, which them-
selves depend on N, are such that ”?v converges to some regular measure u°, then a for-
mal derivation leads to the expectation that for ¢ > 0, u}, converges to the solution of the
Cauchy problem with initial data u° for the limiting evolution equation

{6;# = —div(MVg * u)u)

(t,x) e R, x RY
©©) = u®, "

(1.5)
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with * denoting the usual convolution. Proving the convergence of the empirical mea-
sure is closely related to proving propagation of molecular chaos (see [Gol16, HM14, Jab14]
and references therein) which means showing that if flg,(xl, ..., Xn) is the initial probability
density of seeing particles at positions (xy, ..., xy) and if f](\’, converges to some factorized
state (u®)®Y, then the k-point marginals fjf,, .. converge for all time to (uH®*. Our result
implies a convergence of this type as well (see Theorem 1.6 below).

We note that we restrict to the case s < d because for s = d, called the hypersingular case,
the potential g is not integrable near the origin and the convolution g * u no longer makes
sense for a nonnegative measure p. In fact, the expected evolution equation is no longer
of the form (1.5), see for instance [HSST21]. This is the reason for restricting ourselves to
the potential case s < d.

Mean-field limits for systems of particles with regular (typically, Lipschitz) interactions
have been understood for along time [Dob79, Szn91], with a trajectorial approach consist-
ing in comparing the positions of the particles to the characteristics of the limiting PDE.
In contrast, systems with singular interaction are far more challenging and only in recent
years have breakthroughs been made to cover the full potential case s < d. Various ap-
proaches have been put forward to study them. They usually involve finding a good metric
to measure the distance of the empirical measure to its evolving expected limit and show-
ing a Gronwall relation on the time evolution of that metric. The use of the co-Wasserstein
metric has been successful in the sub-Coulombic case s < d — 2, [Hau09, CCH14]. The
modulated-energy approach of [Duel6, Ser20b], itself inspired from [Ser17], has, in con-
trast, been successful in the Coulomb and super-Coulombic case d —2 < s < d (in low
dimension and the dissipative case in [Duel6], and generally in [Ser20b]). There, the met-
ric used, called the modulated energy, is a Coulomb/Riesz-based metric, based on the
interaction itself, and which can be understood as a renormalized negative-order homo-
geneous Sobolev norm. To be more precise, the modulated energy or (squared) “distance”
between % Zi.\il 0y, and p is defined to be

1 Y 1 X

where we excise the diagonal A in order to remove the infinite self-interaction of each
particle. Again, a Gronwall-type inequality can be proved for this modulated energy.

In parallel, work of Jabin and Wang [JW16, JW18] put forward a relative-entropy based
method which can handle moderately singular interactions, and is particularly tailored
for systems with added noise/diffusion. The two approaches (modulated energy and rel-
ative entropy) were recently combined in [BJW19b, BJW19a, BJW20] into a modulated free
energy method capable of treating dissipative singular flows with additive noise. In the
course of that combination, these works also relaxed the assumptions on the interac-
tion (their setting is the torus, which changes the long-range effects though), in partic-
ular allowing even for attractive potentials, such as those of Patlak-Keller-Segel-type. Note
that the one-dimensional case can be handled via a Wasserstein-gradient-flow approach

(1.6) Fn(xp, 1) = /
(RA)2\A
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[CFP12, BO19] using the fact that in (and only in) dimension 1, the Riesz interaction is
convex.

Our present concern is showing that the modulated-energy method functions beyond
the Coulombic or super-Coulombic Riesz case. Proving an exact Gronwall relation on the
modulated energy requires showing that the derivative of the modulated energy along
particle displacement is bounded by the modulated energy itself. This is in essence a
functional inequality, which can be proven independently of any dynamics. Plugging into
(1.6) the solution x%; of (1.1) and the solution u' of (1.5), direct computation (see [Ser20b,
Lemma 2.1]) yields the inequality

2

d 1 N ®
(1.7) _FN(EII\],IJt)S/ (W) -u'(y)-Vex—pd|=Y 6 —p'| ),

dt (RA)2\ A N P
where u’ := MV(g * u). Thus, we need to estimate the right-hand side, which is done by
proving the following functional inequality: for any configuration x, := (x1,...,Xn), any
suitably decaying, bounded probability density u, and any suitably regular vector field
v:RY— IRd,

1 N ®2
(1.8) / (v(x) — v(y) - Vg(x — y)d(— Y by —u) (x,y) < CFn(xy,p) + CN™¢
R4\ A N i3

for some C > 0 and a > 0 depending only on norms of ¢ and v. The precise statement of
the functional inequality (1.8) is given in Theorem 4.1 below.

In the prior works [Duel6, Ser20b] that used the modulated-energy method, the exact
Coulomb nature of g and the fact that the potential h := g * u solves a local equation in
terms of y was used crucially as it allowed to rewrite the left-hand side of (1.8) in terms of
the stress-energy tensor associated to h. Thanks to a dimension extension procedure pop-
ularized by Caffarelli and Silvestre [CS07], the super-Coulombic case d —2 < s < d could
also be handled this way by going through a local operator and a stress-energy tensor. This
approach was rigid in the exact form of the interaction. Later in [BJW19a], a Fourier-based
approach to proving a relation similar to (1.8) was employed and allows, in the case of the
torus, to give more flexibility on the interaction, which still needs to have Riesz-type be-
havior in physical and Fourier space. In fact, the assumptions placed there are similar to
the general assumptions imposed in this article, a point on which we elaborate more in
Section 1.3 below. In [Ser20b], in addition to the stress-tensor structure, a truncation or
smearing procedure with a truncation radius depending on the points and a monotonicity
with respect to the smearing radii were crucially used. This allows for a “renormalization”
of the stress-energy tensor and the energy in order to account for the removal of the diag-
onal in (1.6) and (1.8).

Our main achievement here is to show that the stress-energy tensor structure is not
needed to prove (1.8), nor is a Fourier-based approach. Rather, some underlying commu-
tator structureto the left-hand side of (1.8) can be exploited for all Riesz interactions (with
s < d). We write here of commutator structure because one may view the left-hand side of
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(1.8) as arenormalization of the (dualized) commutator

(1.9) /d(v-V(g*f)—g* (V-(vf))dx,
R
or equivalently
\Y
(1.10) <f,[v, i f> )
(=A) = 12

where
1 N
=— ) Oy — [
f N; x—H

In fact, in the exact Riesz cases, we could also prove (1.8) via off-the-shelf commutator
estimates from the harmonic analysis literature on paraproducts, specifically refinements
by Li [Li19] of the classical fractional Leibnitz rules due to Kato-Ponce [KP88] and Kenig-
Ponce-Vega [KPV93]. Instead, we provide a fairly direct and essentially physical-space
proof based on integration by parts. The Coulomb case s = d — 2 is the most delicate.
In that case-and only to obtain the sharp estimate-we appeal to a deep result of Christ
and Journé [CJ87] (see also [SSS19, Lai20] for extensions) for commutators of Calderon-
Zygmund operators. Following the terminology of Christ and Journé, such expressions are
known as Calderén d -commutators, generalizations of Calderdn’s classic one-dimensional
commutator [Cal80]. With a little work, the structure in the left-hand side of (1.8) allows
for a reduction to estimating such a Calder6n d-commutator. We mention that such com-
mutator expressions often appear in studying fluid problems. See for example [Mar08,
CCC*12, HSSS18].

The truncation or smearing procedure of [Ser20b] is still needed and is done in a slightly
different way depending on whether one is in the sub-Coulombic/Coulombic or the super-
Coulombic case. In the sub-Coulombic/Coulombic case, the nature of the interaction
makes g superharmonic, which makes the smearing monotone in the right way. The way
we handle super-Coulombic interactions is then by noticing that a subharmonic Riesz po-
tential becomes superharmonic when viewed in a larger dimension. We thus appeal again
to a dimension-extension procedure (different from that of [Ser20b], however) to perform
the smearing of the Dirac masses without other modification of the method. This thus
provides a unified treatment of all Riesz interactions. Since the stress-energy tensor struc-
ture is no longer used, we do not need the interaction to be the kernel of a local operator
and to be exactly an inverse power. Consequently, we can relax the assumptions in a way
similar to [BJW19a].

Our approach is, in principle, robust to the inclusion of multiplicative noise of trans-
port type. Treating the case with such noise was done in [Ros20] for the two-dimensional
Coulomb case, with the proof generalizing to higher dimensions. Due to the nonzero qua-
dratic variation of the noise, it involves proving another functional inequality (see Theo-
rem 6.1 below), which is exactly a second-order version of (1.8). In [Ros20], the Coulomb
nature of the interaction was strongly used. But with the commutator-based approach and
the new insights of this article, it is then not too difficult to prove the desired functional
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inequality in all the Riesz cases we are considering. With this second-order functional in-
equality and assuming the existence of suitably regular solutions to the limiting stochas-
tic PDEs (SPDEs) to justify the computations, one can follow the road map of [Ros20] to
bound the expected magnitude of the modulated energy. Such a bound, of course, implies
convergence in law of the empirical measure to the solution of the limiting SPDE.

Added in proof: While our manuscript was under review, a new approach to mean-field
limits of first- and second-order systems with additive noise was introduced by Bresch et
al. [BJS22]. This approach is based on estimates for the BBGKY hierarchy which take ad-
vantage of the diffusion to bound weighted L” norms of the marginals, and has similarities
with the hierarchy approach of Lacker [Lac21]. In particular, the work [BJS22] manages to
prove the mean-field limit for the repulsive Vlasov-Fokker-Planck equation with Coulomb
potential in dimension 2 and improves upon the prior work of Jabin-Wang [JW18].

1.2. Assumptions and statement of main results. We now state the precise assumptions
for the class of interaction potentials we consider. In the statements below and throughout
this article, the notation 1) denotes the indicator function for the condition (-).

For d =2 and 0 < s < d — 2, we assume the following:

(1.11) gx)=g(-x) VYxeR%\{0}
(1.12) lim g(x) = +o0
x—0
(1.13) drp>0suchthat Ag<0 in B(0, ro)1
(1.14) vk=0, |V®gw)l<C T +loglxl|lsp—o| VxeRI\{0}
X
(1.15) 1x1|Vg ()] + |x|*|V®g(x)| < Cg(x) Vx € B(0,79)\{0}
C1 “ C2 d
(1.16) <g) < vée R\ {0}
gjd=s SES [gass
and
1.17) dcg < 1suchthat g(y) <csg(x) Vx,ye B(0,r)\ {0} with |y| = 2|x].

In the cases s = d -2k = 0, for some positive integer k, we also assume that the (R%)®2k+2)

valued kernel

(1.18) k(x—y) = (x—y) @ V¥ Dg(x—y)

1Here, we mean g is superharmonic in B(0, 1) in the sense of distributions, which implies that Ag(x) <0
for almost every x € B(0, rp).
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is associated to a Calderén-Zygmund operator in R 2 For s = 0, we replace the assumption
(1.17) with

(1.19) dcp >0suchthat g(x)—g(y)=cy Vx,ye€ B(0,r9) \1{0} with |y| = 2|x].

If max{d — 2,0} < s<dord=1and s =0, then we expect the local superharmonic-
ity assumption (1.13) to fail. The idea, though, is that g becomes superharmonic when
viewing it as an interaction potential in an extended space of dimension d + m. Indeed,
AlX|™S = =s(d+m—s—2)|X|"2 in R**™ which becomes < 0 if m is large enough. We
will denote points in R4*™ by X = (x, z) with x € R and z € R”. Our assumption for the
case max{d —2,0} < s < d or d =1 and s = 0 is thus that there exists an integer m = 0,
G:R4*™ — R, and constants C, C,, C > 0 depending only on d, s, m, such that

(1.20) G(x,0)=g(x) V(x,0)eR*™
(1.21) G(X)=G(=X) VXeR¥™™\ {0}
(1.22) lim G(X) = +o0

X—0
(1.23) Jro>0suchthat AG<0 in B(0,ry) cR*™

1
(1.24) Vk=0, |[V*GX)I<C WﬂlonglllS:k:O,\d:l VX e R\ {0}
(1.25) IXIIVG(X)| + | XIPIV®2G(X)| < CG(X) VX € B(,ry)\ {0}
G - ) — _od+m

We also add
(1.27) Jcs < 1such that G(Y) <¢,G(X) VX,Y € B(0,r9) \ {0} with |Y| = 2| X]|, s>0
) Jcg >0suchthat G(X)-G(Y)=cy VX,YeB(0,ry) \{0}with |Y]|=2|X|, s=0.

If s=d —1and m = 1, then we also assume that the (R%)®*-valued kernel
(1.28) K(X-Y)=(X-Y)®V®GX-Y), VX#£Y

is associated to a Calder6n-Zygmund operator in R+, We can simultaneously treat the
casesO0< s<d-2andmax{d-2,0} <s<dord=1and s=0bysettingm=0if0 < s<d-2.
If g satisfies the assumptions (1.11) — (1.19) in the case 0 < s < d — 2 or (1.20) — (1.28) in the
case d —2 < s < d, then we call g an admissible potential.

The main result of this article is the following functional inequality for the modulated
energy (cf. [Ser20b, Theorem 1], [BJW19a, Theorem 3.2]).

2Sufficient and necessary conditions for this Calder6n-Zygmund property are explained in [Gral4a, Sec-

tion 5.4]. The reader may check that this condition is satisfied if g is the genuine Coulomb potential and

more generally if g satisfies |[V®*g(¢)| < Ifld% VE e R4\ {0}.
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Theorem 1.1. Letg be an admissible potential. Assume the equation (1.5) admits a solution
pe L°([0, T],2(RY) n L®([R?)), for some T > 0, such that

(1.29) | |V|s_dVMI|L°°([0,T],L°°)lszd—l + Vg % o0, 70,100) Ls=d—2

82
+ (”V g * Ul roo (o0, 71,c00) + IVE * | did+m-s)+2m _2(d+m) )ls>d—2 < oo.
L°([0,T],W  2(d+m) ‘d+m-2-s)

If s = 0, then also assume that f[Rd log(1+|x)du’(x) < oo for all t € [0,T]. Here, |V| =
(—=A)''2, m is the dimension of the extension coordinate space R™ forg, and0< a <1.

Let x,, solve (1.1). Then there exist positive constants C3,C,, depending only on M|,
|10 ;o and the norms of u controlled by (1.29) and on the potential only through the con-
stants in assumptions (1.13)—(1.28), and an exponent 5 > 0, depending only on d, s, such
that

(1.30) Fy(xh, uh) < (PN@}V, 10) + C3N_’B) eCil vrelo,Tl.

In particular, using the notation (1.4), if,u?\, — u° in the weak-* topology for measures and
(1.31) ]\I,EEOFN(E?V’MO) =0,

then

(1.32) py—ut Yrelo, Tl

Remark 1.2. The reader may infer from Section 5 the precise dependence of the constants
Cs, C4 above on the norms of the solution u as well as the size of the exponent 3. We have
omitted this precise dependence from the statement of Theorem 1.1 so as to present the result
in the most accessible terms.

We have not attempted to optimize the regularity/integrability assumptions on the solu-
tion u. But we expect that one can proceed in the direction of the works [Ros22b, Ros22a]
to only require that u belongs to a function space which is critical or borderline with respect
to the scaling of the equation. For more discussion on the existence of (necessarily unique)
solutions satisfying the condition (1.29), we refer the reader to [Ser20b, Subsection 1.3].

Remark 1.3. In the case s = 0, the condition f[Rd log(1 +|x|)du(x) < oo is to ensure that the
convolution g * u is a well-defined function. This assumption is purely qualitative, in the
sense that none of our estimates will depend on it. One may check through a Gronwall argu-
ment that if the initial datum p° satisfies this condition, then u' also satisfies this condition
forallte[0,T].

Remark 1.4. Sufficient conditions for the initial modulated energy F. N(g?\,, u°) to tend van-
ish as N — oo are explained in [Duel6, Remark 1.2(c)]. In particular, convergence of the
energy for (1.1) to the energy of (1.5) together with weak-* convergence of the initial empir-
ical measure to the initial datum u° suffice.

Remark 1.5. The weak-* convergence of uk; to u' is quantitative, as shown in Theorem 2.4.
In fact, one can also express the convergence in terms of a suitably negative-order Sobolev
norm using Theorem 2.4.
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Remark 1.6. As is well-known, Theorem 1.1 implies propagation of chaos for the marginals
of the system (1.1) with initial data E?V randomly chosen according to the law (u°)®N. See
[Ser20b, Remark 3.7] for details.

1.3. Allowable potentials and further extensions. Assumptions (1.20) - (1.28) allow for a
large class of interaction potentials beyond the standard Riesz or log cases. Indeed, the
simplest, nontrivial extension is the Lenard-Jones-type potential

(1.33) g(x) =1xI"°+ @1 (x5 + - + @ () |25,

where0<s<d,0<s,<---<s <s, and ¢y,...,¢p, are smooth, compactly supported
functions—not necessarily nonnegative. It is straightforward to check that assumptions
(1.20) - (1.28) are satisfied.

In the gradient-flow case, we can even consider genuine Lenard-Jones potentials, where
¢1,-..,¢, areidentically equal to real-valued constants a;, ..., a,. Indeed, let y be asmooth,
radial bump function adapted to the region || = 2. Introducing a small parameter x > 0,
we split

(1.34) g = 8good t &had»

where

Ebaa(©) = clé "+ )((K(f)(.z 5j|€|3j—d),
(1.35) ) j=1
8g00a(@) =1 —X(Ké))(z 5j|.§|5j—d).
j=1

Here, the constants c, ¢y,..., ¢, are normalization constants from taking the Fourier trans-
form. If d -2 < s < d, then we set Gpq(X) = gpaa(|X]) and Ggppa(X) = ggooa (1 X|) for
X € R%*™_ Since the second term in the definition of €paa is smooth, its inverse Fourier
transform and its derivatives are rapidly decaying. It is straightforward to check that

1 noo]
(1.36) Ebad (x) = W_C; X

where C > 0is some constant. In particular, there exists 0 < ry <« 1, such that for all | x| < ry,

-C, Vx #0,

1.37 > ——.
(1.37) 8bad (X) T
Furthermore,
n
(1.38) ~AGpaa(X) = s(d+m—s-2)|X|7**=CY |X|™%*-C>0,

j=1
for | X| < ry (possibly choosing ry smaller) and d + m — s —2 > 0. Lastly, it follows from the
radial symmetry of G4 that

(1.39) CLIZI™ S < 1Gpaa(B) < CoIE[4™FS, VE#0.
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Since gg00q4 has compact support and is locally integrable, it belongs to C*°. Moreover,

. . - d-s .
direct computation shows that Vgg,oq € H 2 if 2(s, +1) > 5. Thus, we can rewrite the
system (1.1) as

Xi = L Y (Vgbaalxi — xj) +F(x; — x;))

(1.40) Na<zn
J#i

x;(0) = x?,
where F := Vgg04 is now a smooth added force. The potential gj, satisfies assumptions
(1.20) — (1.28), and the contribution of F can be handled using [Ser20b, Lemma 2.3]. One
may modify the preceding argument to allow for Lenard-Jones potentials with log interac-
tions as well.

Given that Bresch et al. [BJW19b, BJW19a, BJW20] also consider a general class of sin-
gular interaction potentials, including those of Riesz type, let us compare and contrast our
Theorem 1.1 to their main result. Bresch et al. consider only the gradient-flow case of the
system (1.1) in the periodic setting with random initial data. So rather than working with
particle trajectories, they work with the associated Liouville equation. They also allow for
additive noise in the dynamics, but we shall ignore this aspect for the purposes of this dis-
cussion. Through a Gronwall-type argument, they prove a functional inequality for the
modulated free energy. As previously remarked, this quantity combines the relative en-
tropy of earlier work [JW16, JW18] with the modulated energy of [Duel6, Ser20b]. By stan-
dard arguments, their functional inequality then implies propagation of chaos. Instead of
the smearing and extension procedure used in our article, Bresch ef al. introduce a clever
construction of a regularized potential [BJW19a, Lemma 4.1], which tames the singularity
of the Dirac masses. To replace the stress-energy tensor argument from [Ser20b] based
on the Caffarelli-Silvestre extension, they substitute the regularized potential g, into the
right-hand side of inequality (1.7), use some elementary Fourier analysis [BJW19a, Lemma
5.2] to bound the resulting expression, and finally estimate the error from this substitution.
Although it is never mentioned in their work, their Fourier-analytic argument is, in fact, an
elementary commutator estimate, a perspective that we develop in detail in this paper.

As in our work, the potentials they consider are even, singular at the origin, and have
nonnegative Fourier transforms. Given that the torus is compact, they only need to as-
sume that the potential is in LP(T%), for some p > 1. Similar to assumptions (1.14), (1.24)
and (1.15), (1.25), Bresch et al. need pointwise control on the potential and its derivatives
to sufficiently high order. They also need a doubling condition analogous to (1.17), (1.19),
(1.27). A key difference, though, is that no pointwise control on g(¢) is needed, aside from
nonnegativity. Bresch et al. only need some control on the the first derivative of §. Also,
superharmonicity plays no role in their work, in sharp contrast to our work

It is worth mentioning that the relative entropy portion of the functional used by Bresch
et al. is unnecessary and in fact one can use their regularized potential construction with
their elementary commutator estimate in order to treat both the conservative and gradient
flow cases of the particle system (1.1). Moreover, one can work directly with the particle
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dynamics, as opposed to with the Liouville equation. In some sense, one of the new contri-
butions of our paper is the recognition that this is possible, albeit using different methods.
In forthcoming work by the second and third authors [RS21], we will also show that this
is possible when one includes so-called additive noise in the dynamics, distinct from the
multiplicative noise considered in this article (see Section 6.1 for a comparison); and, in
fact, one can obtain bounds on the modulated energy which are global in time.

Compared to the work of Bresch et al., the advantages of our approach are that it is not
limited to the periodic setting; it is pathwise in the sense that no randomization of the
initial data is needed, avoiding the use of modulated free energy in favor of the modulated
energy; and, perhaps most importantly, the rate of convergence is explicit. In [BJW19a],
for instance, an explicit rate is never presented. If one does attempt to optimize the rate in
their work, then one sees that the use of the regularized potential construction [BJW19a,
Lemma 4.1] is a bottleneck, and the rate one does obtain is suboptimal compared to our
work. Additionally, the regularity requirements for the solution u to (1.5) of [BJW19a] are
more severe than our work. The cost of these advantages is the need for stronger pointwise
control on the potential and its Fourier transform, in particular we have to worry about
decay at infinity in physical space and blow-up near the origin in Fourier space.

Finally, as commented in the previous subsection, our method of proof also works when
multiplicative noise is added to the right-hand side of the N-body problem (1.1). The
expected limiting equation is now a stochastic PDE, so that the modulated energy is now
a stochastic process. By combining It6’s lemma for the modulated energy with pathwise
analysis in the form of first- and second-order commutator estimates, we can perform a
similar Gronwall argument for the expectation of the magnitude of the modulated energy.
In fact, one can bound moments of arbitrarily large degree. We defer a precise statement
of the model under consideration and the new functional inequality until Section 6.

1.4. Organization of article. Before introducing the basic notation of the article, let us
briefly comment on the organization of the remaining body of the article. In Section 2,
we introduce the smearing procedure and establish properties of the modulated energy
following the outline of [Ser20b, Section 3], but for the more general class of potentials
satisfying assumptions (1.20) - (1.27). In Section 3, we present our new commutator es-
timate Theorem 3.1, and in Section 4, we use the smearing procedure from Section 2 to
renormalize our commuator estimate, obtaining Theorem 4.1. Then in Section 5, we use
the analysis of Section 4, specifically Theorem 4.1, together with a delicate optimization of
the floating small parameters in order to close the Gronwall argument for the modulated
energy. This then completes the proof of Theorem 1.1. Lastly, in Section 6, we close the
paper by showing how to extend our modulated-energy approach to variants of the system
(1.1) with multiplicative noise added to the dynamics using second-order commutator es-
timates.

1.5. Notation. We close the introduction by specifying the basic notation used in the body
of the article without further comment.
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Given nonnegative quantities A and B, we write A < B if there exists a constant C > 0,
independent of A and B, such that A< CB. If A< B and B < A, we write A ~ B. To
emphasize the dependence of the constant C on some parameter p, we sometimes write
ASpBorA~,B.

We denote the natural numbers excluding zero by N and including zero by Njy. Similarly,
we denote the positive real numbers by R... Given N € N and points xj n,..., Xy,n in some
set X, we will write x,, to denote the N-tuple (x;,y,...,Xy,n). Given x € R% and r > 0, we
denote the ball and sphere centered at x of radius r by B(x, r) and 0B(x, r), respectively.
Given a function f, we denote the support of f by supp f.

We make frequent use of tensor notation. A® B denotes the usual tensor product be-

e ] j”"j’r .
tween A = (Afll...l.]”) and B = (Bl.,1 l.,” ) with components
m el

Jiejngtg! I Y
(1.41) (A® B), "1 = pAllinpglln
ll"'lmll"'lm/ I1im ll...lm’

We identify 2-tensors as matrices and use the notation : to denote the Frobenius inner
product. Given a function f, V¥ f denotes the (R?)®*-valued field whose components
are given by the partial derivatives 0;,..;, f, forany 1 <iy,..., iy < d.

We denote the space of probability measures on R% by 22(R%). When u is in fact ab-
solutely continuous with respect to Lebesgue measure on R?, we shall abuse notation by
writing u for both the measure and its density function. We denote the Banach space of
complex-valued continuous functions on R? by C(R%) equipped with the uniform norm
| - loo- More generally, we denote the Banach space of k-times continuously differentiable
functions with bounded derivatives up to order k by C¥(R%) equipped with the natural
norm, and we define C* := 72, CF. Functions f which belong to C*¥~1(R%) with V& f
a-Holder continuous are denoted by C*®(R%), which we equip with the usual inhomoge-
neous norm. We use the subscript ¢ to denote the subspace with compact support. Also,
we denote the Schwartz space by . (R%) and the Bessel potential space by WP (R%).

1.6. Acknowledgments. Q.H.N.is supported by the Shanghai Tech University startup fund,
the National Natural Science Foundation of China (12050410257), and NSFC Fund’s staff
support. M.R. is supported by the Simons Foundation through the Simons Collaboration
on Wave Turbulence. S.S. is supported by NSF grant DMS-2000205 and by the Simons
Foundation through the Simons Investigator program.

2. THE MODULATED ENERGY

In this section, we perform a functional-analytic study of the modulated energy Fy for
an arbitrary pairwise distinct configuration x,, € (RN and probability density p € L™
which has a logarithmic-type decay at infinity in the case s = 0. This last assumption is
purely qualitative (our estimates will not depend on it): it serves to ensure that the convo-
lution g * u is well-defined.

We start by considering the case where (1.13) holds, which is satisfied by all the sub-
Coulombic Riesz cases 0 < s < d —2 as well as the log case s =0if d = 2.
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2.1. Smearing. Since (1.13) holds, g is superharmonic in B(0, rp). For any sufficiently in-
tegrable function f, we have

d 1
2.1) —][ diﬁd‘lz—/ Afdy,
dr. GB(x,r)f d|B(0,1)|rd-1 B(x,r) fay

where #%! denotes the (d —1)-dimensional Hausdorff measure on R“. This immediately
implies that g satisfies a mean-value inequality:

(2.2) VB(x,r) < B(0,ro), g(x) 2][ gdy.
0B(x,r)

We note that this inequality holds despite the singularity of g at the origin. Indeed, Ag is
locally integrable if 0 < s < d — 2 by assumption (1.14). If s = d -2, then Ag is locally inte-
grable away from the origin, in which case (2.1) holds. Using an approximation argument,
(2.2) also follows.

Next, for any 0 < 7 < min{
sure on 0B(x,n) and set

1n

519} and x € R, we let 6 ;’” be the uniform probability mea-

(2.3) gn=g* 5(()17).
It follows directly from (2.2) that
(2.4) gn(x)<glx) VxeB(0,r90—n) \ {0}
and from (2.1) and (1.14) that
2
(2.5) 1g(x) —gp(x)| < W Vx| =2n,

where the constant C > 0 depends on ry.
Observe that in view of (2.4) and (1.14), the self-interaction of the smeared point mass
6%) satisfies the relation

(2.6) g(x—ds P )dsP (y) = / g (0 ds (x) < / g(x)d6." (x) = g,(0) < Cn~°.
(R)? R R

If g(x) = |x|™° then a direct computation with a rescaling is that

2.7) / L ge=y) ds\ x)ds? () =n"° / g(x - dsP (0dsP () =g (),
(R%)

(R4)2
where we abuse notation by letting 1 denote any choice of unit vector. Similarly, if g(x) =
—log|x|, then

/ glx—))doy) (x)do3) (y) = ~logn + / gtx—ydo ds (y)
(R4)2 (R4)2

(2.8) =—logn+gi(1).
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2.2. Monotonicity, coerciveness and local interaction control. By definition (1.6) of Fy (X, 1)
and the relation (2.6), we may write

1 Y (@) > 1 & a

(2.9  Fyn(x,,w) = lim x—-yd|=) 6, " - xX,y) - — dé,

N(_N /J) @0 /(Rd)z g( y) lezl X; H ( y) Nz z:zi Rdgal 0

This is a way to express Fy as a renormalized version of the undefined expression

1 N ®2
(2.10) /g(x—y)d(—Zéxi—u) ,
Ni:l

where the renormalization occurs via the smearing of the Dirac masses.

One may then examine the change in the expression in the limit when increasing a; to
fixed smearing radii n;. As first noted in [PS17, LSZ17], the expression is almost decreasing
in the radii, with errors that can be explicitly controlled. In addition, thanks to the Fourier
transform bounds (1.26), once the diagonal has been reinserted in this way we have

1 Y ?
—~Y 60" - u
Ni=1

1 N ®2

M)
~ g(x—y)d(— Oy —u) (x, 1),
Sad ([Rd) /(‘Rd)Z N Z *

i=1

(2.11)

H

thus allowing us to control a true Sobolev distance between % Zﬁ.\i 0 S;” and u.

The next proposition expresses this crucial monotonicity property (cf. [Ser20b, Propo-
sition 3.3]) and shows that the modulated energy is bounded from below and coercive,
and controls the small scale interactions. It covers potentials with singularity up to and
including Coulomb.

Proposition 2.1. Letd =2 and 0 < s < d — 2. Suppose that x, € RYN is pairwise distinct
and p € PR N L®°RY). In the case s = 0, also suppose that fn;ed log(1+|xDdu(x) < oo.
There exists a constant C depending only on the potential g through assumptions (1.13) -
(1.19), such that for every set of truncation parameters0 <ny,...,Nn < o/ 2, we have

N 2

1 |
DA

1
@12 — Y (gl —x)-gy, (- x), +C!
i=1

I<i#j<N
1
|xi—xjl<57T0

. s—d
)2 )

< Fn(xy, 1) + ! i (0)+C§ 2
S EN XN B NZi:lgm Ni:lni

CY -
+<3 Ialzs(n + 11og D Lo + 771 logiD1s-a-2),
i=1

where ry is the constant in (1.13).
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Proof. Adding and subtracting 6 EZ” and regrouping terms, we find that

1 N ‘ ®2
FN(zN,u)z/ g(x—y)d(—zégg’)—u) (x, ) = ZZ B ds,"”
(Rd)Z N

i=1

2 N
-=3 | (ey—x)—gn(y—x))du(y)
Ni=1 R4

1
(2.13) t— Y (g(y—xi)—gm(y—xi))d(éxj+5§Z?)(y).
1<i#j<NJ/R4

From inequalities (2.4) and (2.5), we see that

1 .
@14 = Z /d (8(y—xi) — gy, (¥ —x)) d(Oy, +5§Z.]))(y)
1<i#j<NJ/R

1 C
Wy BT e )
[xi—xjl<ro—n

nf

||[\/]z

Next, using (2.4) and (2.5) again, we find that

9 dx
lg(x) —gp(xX)ldx <2 gx)dx+Cn —
B(0,ro—1) B(0,2n) B(0,70)\B(0,2) ||
(2.15) <C( S+ % logn 1= + (*lognN 1=y z)

Since p is a probability density, we deduce from Holder’s inequality that

(2.16) —Ei (gly—-x)-g (y—X'))du(yP—E%’?z'
. N =3 Jrd l i : - Nig"

C N
- Nllullpo > (n? S+ n?llogniNls=o + (n?llognil)ls:d_z)-
i=1
Inserting (2.14) and (2.16) into (2.13) and using (2.11), the result follows. 0

Since g;(0) < C(n~° + |lognlls=0), the right-hand side of (2.12) is easily optimized by
choosingn; =N —z5 < N7V, Despite not having a sign, Fy is bounded below:

2 2
(2.17) Fn(xp, ) =2-C(+ ”HHLOO)(N_m +(N'ogN) 1o+ (N4 logN)ls=d-z),
which, by triangle inequality, implies that
(2.18) |Fy(xy, )] < En Gy, i)+ 2C(1+ 1l 12)[N775 + (N~ log N) 1=
+ (N4 logN)lszd_z).

2.3. Renormalization in extended space. Similar to before, we define 6 g?) to be the uni-
form probability measure on dB(X,n) c R4*™ and define the mollified potential

(2.19) Gpi=G#*5..
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With the observation that G is superharmonic in B(0, ry) < R*", we have the analogue of
(2.4) and (2.5):

(2.20) Gy(X) <G(X) VX e€B(,ro—n) \ {0}

and, from (2.1) and (1.14),

Cn?

| X|s+2
where C > 0 depends on ry. From (2.20), we obtain the analogue of (2.6):

(2.21) IG(X) - Gy(X)| < V|X|=2n,

(2.22) / o G(x - y)dagn (x)d(sg” () < Gp(0) < C(n™° +11087|1 g=1 ns=0)-
(Ra+m)

We may now repeat all of the analysis of Section 2.2 in the extended space R**". The
modulated energy is still defined by (1.6). The only change is in the mollification proce-
dure which happens in extended space. Analogous to the lower bound of Theorem 2.1,
we have a lower bound for the modulated energy in the super-Coulombic case via this
mollification procedure.

Proposition 2.2. Lerd > 1 and max{d — 2,0} <s<d ord =1 and s = 0. Suppose that x , €
RHYN is a pairwise distinct configuration and p € 2[R N L®°RY). If s = 0, also assume
that fIRd log(1 +|x])du(x) < oo. There exists a constant C depending on s,d and on g only
through assumptions (1.23) — (1.27), such that for everyn; < min{%, %ro}, we have

2
1 _
223) 3 Y. (8xj—xi) =Gy, (xj—x;,0)), +C
I<i#j<N
lx;i—xjl<370

1 1§5(m) .
Nz :

. s—d-m
H 2 (Rder)

1 & C d-s . d 2
< EnGiyob) + 37 2 G0+ 5 3 (Il + trfllogmiD 1co) + ),
1=

i=1
where ry is the constant in (1.23), X; .= (x;,0), and

(2.24) (X) = () S a0y (X).

Proof. Following the proof of Theorem 2.1, we write

1 N ®2
M) _ ~
VLo a]
i=1

FN(ENyH):/ G(X-Y)d
(Rd+m)2

N
—%Z / G(X - V)d©BI) (X, Y)
(2.25) N= i3 @armyz
_NZ RM (G(Y = X)) = Gy, (Y — X)) da(Y)

1 .
t 2| (60 = Xi) = Gy (¥ ~ X)d(6x; + 55 )(X).
1<i#jsN/R
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The third line reduces to an integral over R¢, identical to those in (2.16). Analogously to
(2.15), in view of (2.20), (1.24) and (2.21) we have

2 dx
lg(x) — Gy (x,0)|dx <2 gx)+Cn —
B(0,ro—n)cRd B(0,2) B(0,r0)\B(0,21) |
(2.26) <C (nd_s + (ndl lognl)lszo).
The third line in (2.25) is thus bounded below by
cC¥, d-s _ .d
(2.27) - N ;(Tll + ||,U||Loo (nl + (T], |10gni|)ls:0))
as in (2.16). For the fourth line, we use (2.21) and that 6;?; ) is a positive measure on R4+mM
to obtain
1 .
7 Z / (G(Y_Xi)—Gni(Y_Xi))d(5X~+6?{7.]))(Y)
N=1<izjen Jmdem S
- Y / (G(Y - X;) = Gy, (Y - X;))dé (Y)—EIXV: 2
= N2 \<izieN Rd+m 1 ni 1 Xj Ni:177i
[xi—xjl<ro—n
(2.28) > L > (( —xi) =G (X-—X-)) —Ei 2
. = N2 . glxj — Xi AT AD) Ty &

~
Il
—

[xi—xjl<ro—n

Finally, noting that we have by virtue of (1.26) that
2

®2
1Y o 1 Y
(2.29) / G(X-Y)d (— > 50 —ﬂ) X V)=C =Y 6% -p ’
(Rd+m)2 N l:l ! N l:1 i HS*dfm (Rd+M)
we arrive at the inequality in the statement of the proposition. 0

2.4. Control of microscale interactions. As recognized for the first time by the third au-
thor in [Ser20b], an interesting choice of parameters 7; is to take each n; equal to a fixed
fraction of the distance from x; to its nearest neighbor(s). This ensures that the balls
B(x;,n;) are pairwise disjoint, while also keeping the n; large enough that the right-hand
side error in (2.12) and (2.23) is kept small. However, in this paper, we are able to dispense
with the requirement that the balls be disjoint; so, we can choose the n; to all be equal to
some parameter 1) or ¢, to be optimized at the end.

Inequalities (2.12) and (2.23) allow us to control the small-scale interactions. Indeed,
applying them to n; = 3¢ we arrive at the following corollary.
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Corollary 2.3. Let0 < s < d. For any pairwise distinct x, € RN and p e 2R n L*RY)
(with [galog(l +|x)dp(x) < oo if s =0), we have for all0 < € < min{%, 21

S+ 1]loge|l,=
|logel S_O+82
N

1 £
(2.30)0 — Z (g(xi—xj)ls>0+1s=0)<C(FN(£N,M)+C(
1<i#j<N
lx;—xjl<e

+ | el oo (€975 + (€% loge]) 15— + (82Ilog£|)ls=d_z))),

where C depends on s,d and on g only through the assumptions (1.13) —(1.27).

Proof. We use assumption (1.27), which ensures that for |x; — x;| < &, we have

(2.31) glx; — xj) —g3e(x; — xj) = (1 - ¢c5)g(x; — xj)Ls>0 + Cols=0.

2.5. Coerciveness. From Theorem 2.1 or Theorem 2.2, we easily deduce that the modu-
lated energy Fy controls —Z — p in the weak-* topology (cf. [Ser20b, Proposition
3.6]).

Proposition 2.4. Let ¢ € & (R?) be a test function. For anyn >0, any x ~ and u as in Theo-
rem 2.1 or Theorem 2.2, we have

1 N
| ¢d Lo
1/2

+ Cllpll oo M4~ + ¥ lognD 15— + P lognD1s—a_o) + 77|

n~° +1lognlls=o

(2.32) N

< [l coan® + CII(PIlH% Fnxy, W +C

where C depends on s, d, m and the potential g through assumptions (1.13) - (1.27).

Proof. Fix ¢ € #([R%), and let (ﬁ € #(R*™) be an extension of ¢ such that

<
(2.33) = eem) el 17" /Yy’

||(P||C0 oc([Rd+m) ”(p”cOa(Rd)

For instance, take ¢(x, z) := (e/¥Pra ¢)(x). We may now write

(2.34) /(bd 1%5 - </ (ﬁd 1%5(")#7 +/ li _5(77)
’ R4 Ni=l i Rd+m Ni=l Xi RA+m N i=1
m -~ a
”(P” B | X + ”(,b”C’O,a(Rd)T] .
S | NS = marm)

We conclude after applying the estimate (2.12) or (2.23). 0J
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By duality, Theorem 2.4 implies that the modulated energy controls inhomogeneous
Sobolev norms: for y > %,
2
< (jfﬁV(éﬁV)ﬁd
HY

+C(+ ||u||Lm)(Nz;+2s +(N"ogN)1,o+ (N4 logN)ls:d_z).

1 N
2. — -
(2.35) N i:zl(sx’ v

Indeed, Sobolevembedding implies that HY (R%) c C'(R?), from which the preceding bound
follows. Further refinements of such norm control, such as in terms of Besov spaces, are
possible. For more details, we refer to [Ros22b, Proposition 3.10] and [Ros22a, Proposition
3.8].

3. COMMUTATOR ESTIMATES

In this section, we present commutator estimates without renormalization, which is the
most technical component of the paper. This is a purely space-based functional inequal-
ity (cf. [BJW19a, Lemma 5.1]) which dispenses with the stress-energy tensor structure of
[Duel®6, Ser20b].

Proposition 3.1. Let0< s<d. Letg e C®(R%\ {0}) such that g(x) = g(—x) in B(0, ry), and
(3.1) vk=1, Vg <Ix7FS vx#o.

Ifs<d -2, then also assume that

(3.2) BOISIETY  vEo.

Ifs=d -2k, for some k €N, also assume that g is such that the the kernel

(3.3) k(x—p):=(x-y) Vel 2 hg(x—y)  vx#y

is associated to a Calderon-Zygmund operator. Let v be a Lipschitz continuous vector field
fromR% toR?. There exists a constant C > 0, depending only s, d and the potential g through
(3.1) —(3.3), such that for any f, g € & (R%),* we have

V (v(x)-v) -Vg(x—y)f(x)g(y)dxdy‘
(3.4) (RY)?
d-s
<C(||Vv||Loo+IIIVITv||L 2d ls<d—2)||f||H% IIgIIH%-

d-2-s

Consequently, the integral in the left-hand side of (3.4) extends to a bounded bilinear form
B,(-,-) on H% (R%) satisfying the bound (3.4).

Proof. We divide the proof into the super-Coulombic, Coulombic, and sub-Coulombic
cases, beginning with the super-Coulombic. We will not explicitly track the dependence

3The hypothesis (3.1) is only necessary for all k£ up to some integer depending only on d, s, which may
be determined from examination of the proof of the proposition.

41f s=0, then implicit is the requirement that the Fourier transforms of f, g vanish sufficiently rapidly at
the origin so that the H~%/2 norm converges. This may be ensured by assuming a log-weighted L! condition

on f,g.
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of the implicit constants; but the reader should keep in mind that they depend on the pa-
rameters s, d as well as the implicit constants in (3.1), (3.2) as well as the size and smooth-
ness condition constants for the kernel (3.3) and the L2 operator norm of the associated
Calderén-Zygmund operator.

The super-Coulombic case. Define
(3.5) kp(x,) = (wX)—v(y)-Vglx—y)  Vx#y.

By approximation, we may assume that v € C*®. Furthermore, by density in H %, we
may assume without loss of generality that f, g € .%(R%) with Fourier support away from
the origin. Additionally, by dominated convergence, we may assume that g has compact
support. Write

(3.6) f=divVA Tl f=divfi
and similarly for g. Note that f; = ( fli ), 81= (g{ ) are R%-valued vector fields. Then

(3.7) / ky(x, y)f(x)g(y)dxdy:/ ky(x, y)div fi(x)divg, (y)dxdy.
(R4)? (R4)?

We want to integrate by parts to move the derivatives onto the kernel k,. But since k, is
singular along the diagonal x = y, we need to exercise some care.
To this end, we write the preceding right-hand side as

(3.8) lim ky(x, y)div fi(x)divg, (y)dxdy.
e—0* |x—yl=¢
Integrating by parts in y, we find that the preceding integral equals

/ ky(x, ) f(x)g1(3) - DY) g gera1y, ¥)
|[x—-yl=¢€ |x—y|

(3.9
_ / Yy ko (6, ) £ () - g1 (9 dxdy,
|[x—yl=¢€

where #2971 denotes the (2d — 1)-dimensional Hausdorff measure on R??, If s < d -1,
then we can use the crude kernel estimate based on (1.24)

[Vvlgee  [lv]lfee )
|x_y|s’|x_y|s+1

(3.10) lky (x, Y §min(

to directly estimate the boundary term by

(x-=¥)

/ ky(x, ) f(x)g1(y) - ——d. A2 (x, y)
|[x—yl=¢€

d—1-
S IVl ll fllllgrlizeog 5,
|x -yl

(3.11)
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which tends to zero as € — 0. Otherwise, we subtract and add g; (x) to write

/ koGt 1) F0 21 () - 2D g 702071 ()
|x—yl=¢

[x—yl
(x—-y)
[x—yl

d7e%41 (x, ).

(3.12) = / ko (, 1) 0 (810) — g1 (1) - 2 d 7024 (x, y)
[x—yl=¢€

(x-y
+ kv y *
/|x_y|_£ (x, ) f(x)g1(x) Xyl

In the sequel, it will be convenient to sometimes write in coordinates and employ the con-
vention of Einstein summation. Writing z = x — y, so that by Taylor’s theorem,

(3.13) ky(x,y) = —2"0;, v(x) - Vg(2) + O(IV®2 vl 12| 7),
we see that

(x=1y)

o ldyf” ') = OUVwl ol fgrll 1)

(3.14) / ky (x, ¥) f(x)g1(x) -
[x—yl=¢

+/ / (z”allv(x) Vg(z))f(x)(gl(x) —) Jz,”d_l(z)dx.
R7 J8B(0,¢) | z]

Note that the first term in the right-hand side vanishes as € — 0 since s < d and the second
term vanishes by assumption (1.21) and the invariance of the measure under z — —z.
For the non-boundary term, we integrate by parts now in x to obtain

(3.15) —/ Vyky(x, y)div f1(x) - g1(y)dxdy
| x—yl=¢€

=/ ViVyko(x, y): (i(x) ® g1(1)dxdy
[x—yl=ze

+/ ((x_ V) ®Vyky(x,y)) (A ®g1(1)dA* 4 (x, ).
|x—yl=¢€ |x—y|

We subtract and add f; (y) to write

/ ((x_y) ®Vyky(x, y)) (A @ g1(1))dA#* (x, y)
lx-yl=e \ X = I

(3.16) =/ ((x_y) ®Vyku(x,y)):((fl(x)—f1(y))®g1(y))dif2d‘1(x,y)
x—yl=e \ X = Y|

+/ (Ti_ ﬁ ®Vyku(x,y)) (AW @ g1(1))dA* (x, y).
|x—yl=¢€ -
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By Taylor’s theorem,
/ ((x‘y ) o vk, (x, y)) (A - AN © 1) A (x, )
x—yl=e\ X = VI
(3.17) :/ (u@,vykv(x,y)):((x_y)ilailfl(y)®g1(y))d,;£2d_1(x,y)
je-yl=e\1X = Yl

+ OVl w1V fill ol g1 147,

Proceeding similarly as above, we have that

/ ((x—y) ®vyky(x,y)) : ((x—y)ilailfl(J/) ®81(J’))d°7€2d_1(x’y)‘
lx—yl=¢

(3.18) Ix—yl
SIvllwzelIVAigillpe?™.
Using that
(3.19) ViVyky(x,y) = ViVyky (3, X)

by assumption (1.21), we can swap x and y to obtain

/ ViVyky(x, 1) : (fi(x) ® g1(y))dxdy
|x-yl=¢€

/ VVyky (X, 1) (i) — L)) ® (81(x) — g1()))dxdy
(3.20) eyl
+

NI N =

/ VVyky(x, 1)1 (fi(x) ® g1(x))dxdy
x—yl=¢e

1
+—/ ViVyko(x, ) : (i) ® g1(y))dxdy.
2 |x—yl=¢€

Note that the last two terms are equal by symmetry and by Stokes theorem,

/ Vi Vyky(x,y): (fi(y) ® g1(y))dxdy
3.21) xmylze

- / ((x_y ) &V ko) |: (A0 @ §10))dA% (v, ).
x—yl=e\ X = VI

After a little bookkeeping, we realize we have shown that

(3.22) / ky(x, ) f(0) g dxdy = O(IVZ2 vl o |l f g1 ll 11€975)
|[x—yl=¢€

+ OVl w2 IV Fig1 1 11€97%) + OU Voo IVE2 fill oo g1 11 1€979)

1

-3 / VVyky (X, 1) : (i) = (1)) ® (g1(x) — g1())dxdy.
|x—yl=¢e
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The first three terms of the right-hand side vanish as € — 0 since s < d. For the last term,
direct computation reveals

(3.23) ViVyky(x, ) = —(0(x) — v() - Vg (x — ) — (Vu() + V(X)) : Vg (x — ).

Therefore, using the triangle inequality and mean-value theorem, we find from assump-
tion (3.1) that
IVl e

(3.24) |vayky(x,J/)| < m

This bound together with Cauchy-Schwarz implies that

/ IVxVyky e, MIAG) = A(IIg1(x) — g1 () Idxdy
B25 .

|fi(x) = (12 ) ( / lg1(x) — g1(»I?
<Vl oo MURA AV dxd dxd
SVl (/(Rd)z PRV xdy SV Pz xdy

1/2

Provided that d — 2 < s < d, the preceding right-hand side is equivalent to (for instance,
see [DNPV12, Proposition 3.4])

(3.26) 190l fill s N ssa SIVOIL=IfIL sca gl soa,

where the ultimate inequality follows from the definition of fj, g;. In conclusion,

(3.27) lim

e—0

<||Vv - —d.
S IILwIIfIIH%IIgIIH¥

/ ky(x,) f(x)g(y)dxdy
|[x—yl=¢€

The Coulombic case. We can modify the preceding argument to also work in the Coulom-
bic case s = d — 2. To see this, we observe from above that

(3.28) / ky(x, ) f(x)g(y)dxdy
(R4)2

) (x=y); - ' _
=lim ( / |x yy|1 Oy, ko (X, 1) [ (NgE A (x, y)
|x—yl=¢ -

[ T, kw0 - A g A oy
lx—yl=¢ B

+ / O0x; 0y, ku(X, y) fli1 (x)g{2 (y)dxd y).
|x—yl=¢€

The second boundary term vanishes as € — 0 by (3.17) and (3.18). We rewrite the first
boundary term as

(3.29) / flil(y)gfz(y)(/ (ﬁaybky(y+z,y))difd‘1(z))dy.
Rd aB0,e) \ 12l
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It is straightforward to check that as € — 0, this expression tends to
. . Zi . .
- / ffl(y)giz(y)(sd / laigv“*(y)zl3ai2i4g(sz))difd‘l(z))dy
(3.30) Rd aB(0,1) 12l
: . . Z'
- / gk y) (ed‘l / =L (0;,v(y) - Vg(ez)d AT (z))dy.
R oBO,1) 12l

Using Cauchy-Schwarz and assumption (3.1), we can bound this term directly (up to a
constant) by

(3.3 IVl fill 281l 2 SUVUllell fll -1 g g1

For the non-boundary term, we write out V.,V k,(x, y) to obtain

—/ (0;,Vg(x—y)-05,v(y) +0;,Vg(x — y) - 0;, v(x)) fl (x)gf2 (y)dxdy

(3.32) lxmylze -

—/ (w(x) = v(y) - Vi i,g(x—¥) f{' ()82 ())dxdy.
|x—yl=¢€

Observe from assumption (3.2) that the kernel V®2g(x— y) defines a (R%)®2_valued Fourier
multiplier with L*° symbol, and therefore by Cauchy-Schwarz,

(3.33) sup

>0

/ (0, Vg(x—y)-0;,v(y) +0;,Vg(x = ) 0;, v(x)) £ () g2 () dxdly
|x—yl=¢e

S IVl fill 2l gl 2 S IVl fll -1 gl g1

For the remaining term, we use Taylor’s theorem to write

1
((x)—v(y) Vo i,g(x—y) = (/ Vu(y+tx—y)- (x—y)dt) -V0i,i,8(x—y)
0

1
(3.34) = (/ Vu(y+ t(x—y))dt)kili2 (x—-1y),
0

where the (R%)®?-valued kernel k;, ;, is defined by

(3.35) kijin(x=y):=(x-y)®V0; ;,g(x—Y).

i1i2

By assumption (3.3), k;,;, is a standard Calderén-Zygmund kernel which is associated to
a Calder6n-Zygmund operator (see [Gral4a, Theorem 5.4.1]). Consequently, the second

term in (3.32) is a Calderén d-commutator, which by the Christ-Journé theorem [C]87], is
<

~

(3.36) IVUioll fill ;2 llg1ll 2 S UVl Lol fll -1 gl g1

The sub-Coulombic case. Let us now show that the above integration-by-parts argument
works for the case 0 < s < d — 2. First, suppose that d —4 < s < d —2. An examination of the
above argument shows that

(3.37) /d zk,,(x,y)f(x)g(y)dxdyzlin(l) ViVyky(x,y): filx) ® g1(y)dxdy.
(R4) -

|x—yl=¢€
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Substituting in identity (3.23) yields

e—0

(3.38) lim(— / (v(x) — v() - Vi g (x — Y f (0 g2 () dxdy
|[x—yl=¢€

—/ (05, 0(3) - VO, g(x — ) + 01, v(x) - Vs g(x — 1)) [ () gP (1) dxdy|.
|x—yl=¢€

For the first term, we can repeat the proof above for the super-Coulombic (d—4 < s < d—-2)
and Coulombic (s = d —4) cases with g replaced by 9;,;,g, and writing f; as the divergence
of a 2-tensor,

(3.39) fir=divva Tt =i div £,

and similarly for g;. For the second term in (3.38), we can pass to the limit ¢ — 0 (note that
V®2g is locally integrable), so that by Fubini-Tonelli, we now consider

(3.40) /d(vailg * (1) -0,v( P (y)dy+/d6,-1 v(x) f1 (%) - (VO,,g * gi2) (N dx.
R R

Since f1, g1 satisfy the same bounds, we can use the x — y swapping symmetry of the ker-

nel to only consider the first term in the preceding expression. Writing I = |V| e V] %“,
the Cauchy-Schwarz inequality implies

(3.41)

/d(Vdilg* lil)(x) -6i2v(x)gf2 (x)dx
R

SIVIEZ HVos, g * {2 IVIZ 105, vg D)2
By Plancherel and assumption (3.2), it then follows that

d-s_ .
(3.42) V127 (Vo g+ A SIFI s,
and by duality,
s—d ; s—d .
vz 05, v 2 < sup / V]2 " h(x)0;, v(x) g2 (x)dx
he.# R4):|[h|| p<2 |/ RY
d=s_ s—d s—d i
< sup HVIZ 71V 2 T ho, )20V 2 gl
he RY):|| hl| 2 <2
d=s_ s—d
(3.43) SUgl,sa  sup  IVIZTHIVIZ T RO, v e

he S R4):||hll 2 <2

By fractional Leibnitz rule (for instance, see [Gral4b, Theorem 7.6.1])
d=s_, s=d 14 s=d 14 d=s_,
(3.44)  NVI'Z (VI Z T ho, 2 SThlizp IVUliLa + 1IVEZ Rl IV Z 7"Vl Le

for any 1 < p1,q1, p2, G2 < co with p71 + g7 = 271, We choose p; =2 and p, = 2%. So by
Hardy-Littlewood-Sobolev and the L” boundedness of Riesz transforms, the right-hand

side is <

d-s
(3.45) 1l (190 + VI Z 02 ).
Ld-2-s
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After a little bookkeeping, we arrive at the estimate

(3.46)

/d(vailg* lil)(x) -6,-21/(x)g{2 (x)dx
R

d-s
< . ) (w +NVIT )
SN oIl (190l 4 1VIZ 01 sy

For the general case 0 < s < d — 2, we let k e Nbe such that d -2(k+1) < s<d -2k, and
proceed by induction on k, using the argument just given above for the induction step.
The existence of the form extension B, follows by the usual density argument. UJ

4. RENORMALIZATION OF THE COMMUTATOR ESTIMATE

In order to apply Theorem 3.1 to f, g which fail to be in H %, such as the Dirac mass, we
now have to deal with the nondiagonal renormalization which is carried out through the
smearing procedure. The main result of this section is the following proposition, which
we view as a renormalized commutator estimate and which is the workhorse of this article.

Theorem 4.1 stated below should be compared to [Ser20b, Proposition 1.1], which, as
previously discussed, treated the exact Coulomb/super-Coulombic Riesz case, as well as
the log case in dimension 1. That result only required that the vector field v be in W', In
contrast, Theorem 4.1 requires in the super-Coulombic case the stronger assumption that

v e C1% for any positive a € (0,1], and belong to the Bessel potential space
dd+m-s)+2m _2(d+m) . . . . . .
W 2wa+marm-2-s. The reason for this difference is precisely the combination of the

commutator estimate with the extension/smearing procedure used in the present article.
Namely, we want to apply Theorem 3.1 by using the smearing procedure to renormal-
ize. But this forces us to work in the extended space R?*" when we apply Theorem 3.1
and then to find a way to control the right-hand side of the proposition in terms of the
modulated energy and norms of v and p, which live in R?. Consequently, we choose an
extension 7 : R4 — R4*™ of y and apply Theorem 3.1 with #. It is easy to construct
an extension satisfying || 7l 100 < | v]lyy1,00 Simply by multiplying v by a bump function in
the new variable. But such an extension does not satisfy the auxiliary Sobolev condition,
which is present (unless s = d — 1) since we always choose m so that d+ m—s—2 = 0. Find-
ing an extension which satisfies both conditions essentially amounts to showing that the
trace operator

d+m-s _2(d+m) dd+m—-s)+2m _2(d+m) d)

(4.1) Tr:WIYRRIT™M AW ™2 drmas (R — WHORH AW 2@drm drm—2-s (R
is surjective with a bounded right inverse. If one could show such a result, which we do

not know how to do, then one could drop the C1* assumption.

Proposition 4.1. Letd>1,0<s<d. Letxy € RN be pairwise distinct, and p € 2 R%) N
L®[®RY). If s =0, assume that f[Rd log(1 +|x)du(x) <oco andifs=d -1, assume that
I |V|5‘dV,u||Loo < 00. Let v be a continuous vector field on R% such that

d=s
IVVl o+ IIVIT vl 20 1gegn<oo, O<s<d-—2
(42) Ld-2-s

I V”CLa + U”Wd(d+m—s)+2m dem <00, d—-2<s<d

2(d+m) ‘d+m—2-s
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for some 0 < a < 1 and where m is the dimension of the extension space. There exists a
constant C depending only d, s,a, m and on the potential g through assumptions (1.13) -
(1.28), such that

(4.3)

1 N ®2
/ (v(x) - v(y))-Vg(x—y)d(—Zth,- —,u) (x,¥)
RH2\A N3

(IIVVIILoo+||IV| VII o ls<d—2+(||V||CLa+||V|| ddim-s)+2m _2d+m) )ls>d—2)
=S

2(d+m) Pd+m—2-s
in{d—
(FN(xN,u)+C(1+IlullLoo)( i s£21(547) + (N"Mog N) =g + (N~ 7T log N) 14—y z)

min{d+1,s+

+ Ot 360 (19141l oo geqoa + NIVE IVl oL g 1))

Proof. We need to introduce an extension of k, to R%*. By the surjectivity of the trace
theorem for Besov and fractional Sobolev spaces (see [Tril0, Section 2.7.2]),° there exists a
vector field 7 on R%*™ whose (m+1)-th through (m+d)-th components vanish identically,
7(x,0) = (v(x),0), and

” U”Cl aRd+my S ” U”Cl a(Rd)»

(4.4) DI SNl awemsszm e
W 2 d+m-2-s (R RA+ m) w 2(d+m) rd+m—2— S(Rd)
With this notation, we define
(4.5) K,y(X,Y)=VGX-Y) - (0(X)-17(Y)) VX # Y e R4+,
We note that from assumption (1.24) that
(4.6) IKy(X, V)< CIIVDll oo (1 X = Y™ 1550 + 15=0)
and
(4.7) IVxKy (X, V)< CIVDl ol X - Y7L

For simplicity of notation, we again let X; denote (x;,0).

Adding and subtracting the smeared point mass 63?3 , for some 7 to be chosen momen-
tarily, we obtain the decomposition

2
1 X °
(4.8) / ky(x, y)d| — Z Ox,—p| (x,y) =Term; + Term; + Terms,
®RH2\A N o

SThis is where the C1¢ assumption is used, even though our estimates in the proof will only depend on
the Lipschitz seminorm of the extended vector field 7. It is possible to relax C''* to the Besov space Bg,O "
but this is still stronger than W1,
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where
1 N ®2

(4.9) Term := / KoX, V)d| =Y 6V -] X, v),

(Rd+n1)2 N i=1 t
(4.10) Termy = —= i Ky (X, V)da(X)d(6x, —8)(Y),

szl (Rd+m)2 J Xf

1
411)  Terms:i=— / Ko(X, Y)d(Gx, +85) (0 d©Ex, -89 ().

1<i, j<NJ RI*M)2\A ’ !

As before, [i:= ubpa, - We proceed to estimate each of the Term; individually.

Estimate for Term;. This term is exactly of the form that can be handled by Theorem 3.1
with

1 N . s—d-m
(4.12) f=g==Y 60 -peH T ®R"™.
N5 ™
We deduce from that proposition that
- d+m-s _ 1 N m _ 2
(4.13) |Term, | < C(”VV”LOo +IVIE 27 DIl _2w@em ls<d+m—2) ~ 26)(- —H
Ld+m-2-s N i=1 i Hs—dz—m

Applying either Theorem 2.1 or Theorem 2.2, we can then bound

~ d+m—s _
(@14) [Termy| < C(IVi= + 11171 s Vocarmo2)

2(d
Ld+m-2—s

Gp(0)

x (FN@N, W + + C(nd‘s + 0 [lognh)1s=o + (] 10g77|)ls:d—2) Il oo + an) :

Estimate for Term,. Suppose first that 0 < s < d — 1. We break Term, into a sum over the
index i of terms

(4.15)/ / Ko(X, V)d (83, -8 ) (1 dax)
|X—X;|<2n JRA+m !

+/ / Ko(X, Y)d (85, - 80| (V) d (X0,
IX—X;|=2n JRA+m '

For the first type of integral, we use that 6;?3 is a probability measure to rewrite

(4.16) / K, (X, Y)d(axi—ag’g?)m:/
Rd+m l

RA+m

(Ko(X, X)) = Ky(X, V) dBY) (V),
and unpacking the definition (4.5) of K,,, we have

4.17) Ky(X, Xi) -Ky(X,Y)
= (@) - 0(X) - VG(X - X)) + (0(X) - (V) - (VG(X - X;) - VG(X - Y)).
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Using (1.24), the mean-value theorem, and triangle inequality

(4.18)/ Ky (X, X;) — Ky (X, Y)1d8P (V)
Rd+m t

scn||Vz7||Loo(|X—Xi|‘S‘1+/ (X - Y[ Has? (v)
Rd+m t
for all | X — X;| < 2n. Integrating the left-hand side with respect dfi(X) and using Fubini-

Tonelli, we find that the first term in (4.15) is controlled by
(4.19) ClV ol = 1V pll oo,
where we also use that |-|757! is (up to a constant) the convolution kernel of the Fourier
multiplier |V|**1~4 in R4,

For the second type of contributions we use the mean-value inequality and (4.7) to
bound

/ / Ko(X, 1)d (55, - 5| (Y)dﬂ(X)|
|X—X;|=2n J Rd+m '

anIIVﬁIILoo/ X - X;| 7 da(x)
|X-X;|=2n
(4.20) < CnIV DIl VI ) oo

Now if d — 1 < s < d, we integrate by parts in X to write

/ Ko(X, V)d(6x, -6 ) (V) dax)

(RA+m)2 t

(4.21) - —/ Ko(X, Y)-d(8x, - 630 ) (V) dVu(x)
(Rd+m)2 t

—/ div 7(x,0)(G(x — x;,0) — Gp (x — x;,0)) d pu(x),
R4

where Viu(X) = Vu(x)d Rrd x (0 (X) and we have defined the vector-valued kernel
(4.22) RU(X, Y)=@0X)-0(Y)GX-Y).

Proceeding as in the case 0 < s < d—1 with p replaced by V, the first term in the preceding
right-hand side is bounded by

(4.23) COlIV oIl oo NIV V| oo

Using that

(4.24) / |G(x - x1,0) — Gy (x — x;,0)| dx < Cp?~*
[x—x;1<2n

by assumption (1.24) and also using the bound (2.21), we see from Hoélder’s inequality that
the second term is bounded by

(4.25) CIV Dl ool el oo ?~%.
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After a little bookkeeping, we conclude that

(4.26) [Term,| < CI[V D]~ (n|||V|5“‘du||Lools<d_1
+(m01v1 4 val +77d_s||/i||L°°)ls>d—1)-

Estimate for Terms. We first remove the self-interaction by observing that

N
Z/d KX, V)d@x, +07)(X)d(Ox, ~03)(Y)
(RETM)Z\A

i=1

(4.27) N
=—Z/ Ko(X, 1)dED)*2(X, V),

i=1 (Rd+m)2 t

so that
1 X ()
Termgz——ZZ/ Ky (X, Y)d(5)?l.)®2(X, Y)
(4 28) N i=1 (Rd+m)2
’ 1
r— ¥ / Ku(X, V)d(@x, +03)(X)d@x; -6 ) ().
N*1<izj<nd ®army ’ !

For the first sum, we use assumption (1.25) with the estimates (4.6) and (2.6) to bound it

as

N

5 / Ko(X, V)d(G)*(X, Y)
i=1 (Rd+m)2 !

1
N2

<

IVl oo (G (0) 1550 + 15=0)

ISI1le

(4.29) < — IVl oo (7 Lss0 + Ls=0)-

N

Next, we split the second sum over 1 < i # j < N into a sum over “close pairs" for which

|x; — xj| < € and a sum over “far pairs" for which |x; — x;| = ¢, where € > 27 is a parameter,

to be chosen later. For the sum over close pairs, we again use assumption (1.25) with the
bound (4.6) to obtain

N2 Ky(X,Y . X o e
N2 1<iZj<N /(Rder)Z v )d(5Xz+5Xi)( )d(5X] 5Xj)( )
lxj—xjl<e
CIIVD| oo
(4.30) s”—zuL > ((g(xi—xj)+/Gn(Xi—Y)dé(;g?(Y))lbo-le:O)_
N 1<i#j<N j

|xl-—xj|<£
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Using (2.20), we then obtain (provided € < %)

= ) )
Ko(X, VA x. +6")(X)dSx, -6 ) (Y
N2 1<i#j<N [Rd+M)2 U( ) (Xl Xl)( ) (X] X])( )
lxj—xjl<e
VDIl oo
<C 2L Z (g(xi_xj)ls>0+ls:())
N 1<i#j<N

\xi—Xj|<£

—S
e +]logells—g
gells 4 g2

< C||Vﬁ||Loo(FN(a_cN,u)+c( S

(4.31) + [l el oo €45+ (e loge)15=0 + (52|1085|)1s:d—2))),

where the ultimate inequality follows from application of Theorem 2.3. For the sum over
far pairs, we first note that by symmetry under swapping i < j,

)y / Ky (X, V)d(8x, + 83N (X)d B x, — 85 ) (Y)
1<i,j<N J (RA+m)2 ! J

|xi—x]‘\2£

(4.32)
. / (Ko (X3, X)) Ko (X, V)6 () d8 P ().
1<i,j<N J (Rd+m)2 i J

Ixi—x]-\ae
Since € > 27, using the mean-value inequality and (4.7), we find
1
4.33 —
(4.33) e KZ

iZjsSN
Ixi—xj\ze

CnllVol o

<
gs+1

Ky(X, Y)d(@x, +86)(X)d@Ex, — ) (V)
(RA+m)2 ! : J

Putting together the estimates (4.29), (4.31), and (4.33), we obtain

S+l 1. S41 1.-
n |lognl s_0+5 [logel $=0 2
N N

(4.34) |Terms| < C||V 5| 0 (FN(IN, ) + c(

+ el oo (6775 + (€9 11ogeD Lo + (6% logeN) =4 -2) +ne_s_1)).

Conclusion. Combining the estimates (4.14), (4.26), (4.34) obtained above, we have shown
that

1 N ®2
/ ky(x, y)d(— Ox; — ,u) (x,)
®RH2A N i3

d+m-s _
< C{IVOlL +1VIET 21 _siae ls<d+m_z)(FN(a_cN,m +C(

d+m-2-s

(4.35)

=S+ |logn|1,-
n~° +|lognl =0 2
N

+ |l oo (5 + (ndllognl)lszo + (772|10877|)1s:d—2)))
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+ CIV Dl oo | @NIVIE pll 1o0) Lge g1 + @IV OVl oo + 0 Sl 100) L g2

1~ +logn|1s=o N €%+ |logel|ls= L2
N N

+ |l oo (€975 + (%) log e) 1 g—g + (€2 l0g €)1 s—g_2) +ne 7L

We may now optimize over 1 and ¢ by taking

n=¢e"?ande=N"1, s=0
(4.36) n= eBande=N" <S+2>1(S+11, 0<s<d-2
1
nzed“ande:N_d(sHl, d-2<s<d.

Using (4.4) to control the norms of 7 in terms of norms of v, we then find

®2
1 N
(4.37) / ko, A[ = 65, —p| X <C(IIVUI|Loo+II|V| vII 2 Lsca-ot
®)2\A NS
+ (Il Vlcra + V|l d(d+(rs+fr)l;—2m di(rdrz+zz)s)ls>d_2)(FN(£N, )
min{d-s,2}
+ C(L+ o) [N AT + (N~ log N) Loz + (N 7T 1og N) =g
min{d+1,s+
+ Ot 360 (19141 el oo g + NIVE IVl oL o 1))
Thus, the proof of the proposition is complete. 0

5. GRONWALL ARGUMENT

We now have all the ingredients for our Gronwall argument on the modulated energy.
Set u := MVg * u. Applying the bound of Theorem 4.1 pointwise in time with v = u’ to the
right-hand side of inequality (1.7) and then integrating with respect to time, we find that
forO<t<T,

(5.1) |FN(£§V,M)|<|FN@?V,M°)|+C/ (nw oo + 1VIZ w | 20 Lecas
0

+ (|| u’® ||C1,a + uT|| d(d+(r;lz s);rzm d2(d+r2n) )ls>d_2)(FN(£}V,ur)
+m—-2-s

n{d—
+CA+ |’ ||Loo)( er(N HogN) 1o+ (N~ W@ Tlog N) 15— z)

min{d+1,s+

+ Ot 36 (1914 oo g + NIV e Lo 1))dr.

If 0 < s < d -2, then by Sobolev embedding, assumption (1.16), and Hélder’s inequality,
(5.2) vz T u || 2d_ +||Vu oo ST+ NIp" 2.
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If 0 < s<d-1, then it also follows from Holder’s inequality that
(5.3) VI oo ST+ 11l oo

Applying the Gronwall-Bellman lemma, we conclude thatforall0< < T,

t
(5.4) |FN(£1[V,IJt)|<AN(t)eXp( / (IIVu oo + 111V 2" Tu || 2 Lsca-
0

2(d+m) ‘d+m-2-s

+ (|| uT”Cl,a + | uT”Wd(der—s)Jer 2(d+m) )ls>d_2)d‘[),

where the time-dependent prefactor Ay is defined by
(5.5)

‘ -,
An(D) = c/ ((1+Ilu 1) (N FRET + (N log N) oo + (N THT log N g )
0

min{d+1,s+3

+ CN s 3000 (VI ool gy + NIV OV ol g 1))dr+|FN(xN,u I}

Thus, the proof of our bound for the evolution of the modulated energy and therefore of
Theorem 1.1 is complete.

6. MULTIPLICATIVE NOISE

6.1. Overview. In this last section, we show how our method of proof can in principle be
extended to treat the mean-field limit of first-order systems, such as (1.1), with multiplica-
tive noise added to the dynamics:

1
Xi=— ) MVg(x;—x;)+ Z o1 (x;) 0 W

(6.1) N <N j#i k=1 iefl,...,N}.
xilIZO = X?,

Here, the o are C*® vector fields on R, the W, are independent real Brownian motions,
and o denotes that product should be interpreted in the Stratonovich sense.® The corre-
spond mean-field equation is no longer deterministic, but instead gains a stochastic term:

o0
0, =—div(MVeg * ) — Y div(o ) o W,
62) 1 g * 1 k; ) © Wi 1) € R, xR

p(0) =
The model example of a system of the form (6.1) is the stochastic point vortex model of
Flandoli, Gubinelli, and Priola [FGP11], for which g is the 2D Coulomb potential. The
limiting SPDE is now the 2D incompressible Euler vorticity equation with an additional
stochastic transport term, the well-posedness of which has been studied by Brzezniak,
Flandoli, and Maurelli [BFM16]. We emphasize that the noise in (6.1) is very different than

5When the o is not present, the product should be interpreted in the It6 sense throughout this paper.
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the so-called additive noise model,

1

(6.3) i Y MVglx—x)+V20W,,

N 1< jEN:ji

where now ¢ > 0 is a constant and the W ; are independent Brownian motions in RY. In-
deed, in equation (6.3), the noise is independent for each particle, whereas in equation
(6.1), the spatially dependent noise acting on each particle is the same. This difference
clearly manifests itself at the limiting level. As has been rigorously shown by numerous
authors [Osa87b, Osa87a, FHM14, LY16, JW18, LLY19, BJW19b, BJW19a, BJW20], the em-
pirical measure of the system (6.3) converges in law to the solution of the deterministic
diffusive/viscous equation

(6.4) Ot = —div(MVg * w)u) + o ApL.

As mentioned in the introduction, the second author [Ros20] was the first to study the
convergence in law of the empirical measure for (6.1) to the solution (if one exists) of the
SPDE (6.2).” By developing a stochastic extension of the modulated-energy approach of
[Ser20b] and introducing the commutator perspective adopted in this paper, he proved a
quantitative estimate for the convergence in the 2D Coulomb case corresponding to the
aforementioned stochastic point vortex model. The proof can be extended to dimensions
d = 3, but, importantly, it very strongly depends on the Coulomb nature of the interaction.
At the time of the present article, this is the only such result for singular interactions of
which we are aware (see [CF16] for the case of regular interactions).

The idea of [Ros20] is to consider the modulated energy FN(EIIV,,ut) as before, noting
that it is now a real-valued stochastic process which is almost surely finite. A formal appli-
cation of [t6’s lemma (in Stratonovich form) to Fyy (Eztv’ u?) yields the stochastic differential
inequality

d 1 N ®2
(6.5) —Fn(xh,ph) < / (ut(x)—uf(y))-Vg(x—y)d(ﬁZcﬁx;—uf) (x,)
i=1

dt (Rd)z\A
o | N ®2 .
+y / Vegx—y) - (or)—oxM)d| =D 6 —pu'| (x,y)0 W,
=17/ ®RH2\A Nz &

“An earlier work of Coghi and Maurelli [CM20] considered this problem but with an N-dependent
asymptotically vanishing truncation of the potential in (6.1) to distances much larger than the typical in-
terparticle distance N~1/4,



Mean-field limits of Riesz-type singular flows 35

where again u’ := MVg * u’. Converting from Stratonovich to Itd, the second line becomes

(o]

1 =
(6.6) Z/ Vg(x—y)-(ak(x)—ak(y))d(—Z5x_t—/f) (x, ) Wi
=1/ @H2a NiZ 7

o0

1 N ®2
+=) / Vg(x—y)-(0k-Vor(x)—ok-Vor(d| = > 6. —pu'| (x,))
2 o1/ miy\a Nz 7

[e.°]

_ 2
+= Z/ V®2g(x—y):(ak(x)—ak(y))®2d(—Z6x;;—,ut) (x, ).
2 o1/ m)na N

The first term in (6.6), which is now an It6 integral, should have zero expectation, there-
fore we can ignore it. The second term has the same commutator structure as in the func-
tional inequality (1.8) with v = ch’zl o -Vog. Consequently, we can treat this expression
as a renormalized commutator using Theorem 4.1. The third term is more complicated.
It appears similar to the first two terms, except now there are two derivatives on g and
two symmetrized expressions o (x) —o(y) which, in principle, should cancel out the sin-
gularities induced by the derivatives. However, Theorem 4.1 does not cover such expres-
sions. Accordingly, the goal of this section is to prove its second-order analogue, which
is Theorem 6.2 stated below. Again, the idea will be to prove a second-order version of
the commutator estimate of Theorem 3.1 using integration by parts and then to obtain a
renormalization of this estimate using the smearing procedure.

The preceding computation to arrive at (6.5) and (6.6) is completely formal. We cannot
directly invoke It0’s lemma because the potential g is singular. Also, we have not specified
whether there is a solution to the system (6.1) or in what sense the equation (6.2) holds.
The N-body problem is relatively straightforward to make sense of. Using a truncation of
the potential near the origin and a stopping time argument in the spirit of [FGP11, Section
3], one can show there is a unique strong solution. In particular, with probability one, the
particles never collide. The SPDE (6.2) is more difficult to make sense of. In fact, we are
unaware of any well-posedness results for this equation aside from the 2D Euler case in
[BEM16], a gap in the literature which should be filled. Accordingly, we will not attempt
to rigorously justify equation (6.5) in this article. Instead, we will only show in this section
how to use our methods to estimate the last term in (6.6) pathwise in the noise. Since the
sub-Coulombic case is strictly easier than the Coulomb case, we expect that the results of
[BFM16] can be generalized to this case without issue. When combined with the results of
the present paper and the reasoning in [Ros20], all computations should be justifiable in
the sub-Coulombic case in a straightforward manner.

The assumptions (1.11) — (1.19) in the case 0 < s < d —2 and (1.20) - (1.28) in the case
d -2 < s < d carry over. But we also need to supplement (1.18) and (1.28), respectively,
with the assumptions that the (R%)®“+2%)_yalued kernel

6.7) k(x—y) = (x—)®2 @ VeC2hg(x— )
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and the (R%)®%-valued kernel
(6.8) KX-Y):=(X-Y)**9V*GX-Y)
are associated to Calder6n-Zygmund operators on R% and R4+,

6.2. Second-order commutator estimate. Following the strategy of Section 3, we prove a
second-order version of the commutator estimate Theorem 3.1. With more work, one can
extend the method of proof to arbitrary k-th order, but having no need for such generality,
we will not do so in this work.

Proposition 6.1. Let0< s<d. Letg e C®(R%\ {0}) such thatg(x) = g(—x) in B(0, o), and
(6.9) V=1, Vg <|x7F°  vx#o.

Ifs<d -2, then also assume that

(6.10) BOISIETY vE#o.

Ifs=d -2k, for some k € N, also assume that the (R?)®“+25) _yalued kernel

(6.11) k(x,y) = (x— ) *2 @ VeE2Pg(x - y)

is associated to a Calderon-Zygmund operator. Let v be a Lipschitz continuous vector field
on R%. There exists a constant C > 0, depending only on s,d, and the potential g through
(3.1) —(3.3), such that for any f, g € & (R%),® we have

(6.12) ‘ / ) (V(x)—v(y))®2:V®2g(x—y)f(x)g(y)dxdy‘
(R4)?

d—s 2
<ClIVvle+ IV Z v 1 _) - —d.
(V0 + WVIZ 0l _2g Licaa) IS ssa G oo

Consequently, the integral in the left-hand side of (6.12) extends to a bounded bilinear form
B,(-,-) on H% (R%) satisfying the bound (6.12).

Proof. We follow the outline of the proof of Theorem 3.1. Since the arguments are very
similar, we only sketch the proof, focusing on what is different. Again, we will not explicitly
track the dependence of the implicit constants.

The super-Coulombic case. Recycling the kernel notation k,, define
(6.13) ko(x,9) = (0(x) = v(1)®2:V®g(x—y) Vx#Y.
Note that by assumption (1.24) and the mean-value theorem, we have the kernel estimate

IVul2e V12
lx=yIs " lx—yls+2 )

(6.14) lky (x, )| < Cmin(

By approximation, we assume that v € C*; f, g € % (R%) with Fourier support away from
the origin; and g has compact support. Writing

(6.15) f=divVAT f=divf

81f s =0, theniitis again implicit that the Fourier transforms of f, g vanish sufficiently rapidly at the origin
so that the H~%/2 norm converges.



Mean-field limits of Riesz-type singular flows 37

and similarly for g, we find

(6.16) / ky(x, ) f(x)g(y)dxdy = lim ky(x, y)div fi(x)divg, (y)dxdy.

(Rd)2 e=0" J|x—ylz¢
Integrating by parts and using assumption (6.9) to estimate the boundary terms as in the
proof of Theorem 3.1, we find that

(6.17) / ky(x, V) f() g dxdy = OUVE* VI3l fg1 1l 16979
|x—yl=¢€

+ OV 20 IV £i811 1Y) + OUIVIZ1 0 IVZ2 fill ol g1 1 167 75)

1

-3 / ViVyky (X, 1) (i) = fi(1)) @ (g1(x) — g1())dxdy.
|[x—yl=¢€

The first three terms of the right-hand side vanish as € — 0 since s < d. For the last term,
direct computation reveals

ViVyky(x,y) = =Vg(x - ) : (0(x) — v(y)®?
(6.18) —2V®g(x—y): (Vv(x) + V() ® (v(x) — v(y))
—2V®2g(x—y): (Vu(x) ® Vu(y)).
So using the triangle inequality and mean-value theorem, we find that

IVl

(6.19) [VaVyko (x, )] S T

which implies by Cauchy-Schwarz that

/ IVxVyky e, MIAG) = AIIg1(x) — g1 () Idxdy
|x-yl=¢€

/2 1/2
1) = ()2 )1 (/ 1g1(0) — g1 ()2
<V 200( / S IV dxd dxd
6200 SUVUILlfl, sallgl oo

In conclusion,

(6.21) lim

e—0

< 2 - S—da «
/x_y|25 ky(x,y)f(x)g(J/)dxdy ~ ”vy“Loo“f”H¥ “g”HTd

The Coulombic case. To modify the proof of Theorem 3.1 in the Coulombic case s = d -2,
we first note that if |x — y| = €, then writing x = y + z,

(x=p" zh
TJ;/IOinku(x, )= aniz ky(y+2,¥)
S, .
= _m((zlsaig V)®2:V®20,,8(2) +2(0;,v(y) ® (20, (1)) :V®2g(z))
6.22) +O0(IV1122006"),

W20
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as € — 0, where to obtain the error bound we use assumption (6.9). So by Cauchy-Schwarz

and assumption (6.9),
z _
/ i eg(): = @V,ky(y+2,1)d7# N (2)dy| S IVl fill 2llgill 2
Rd aB(0,¢) 12l

(6.23) SAIVUIE el fll -1 g1l 1.

This takes care of the first boundary term in the identity (3.28). The second boundary term
vanishes as € — 0 by modifying (3.17), (3.18) to account for the new definition of k,,.
For the non-boundary term in (3.28), we see, using the identity (6.18), that it is equal to

—/ V®20i1,~2g(x— »:(vlx) - U(J/))®2 1i1 (x)gi.z ()dxdy
|x—yl=¢€

—2/ V®20,,g(x—¥):0;, v(x) ® (v(x) — v(y))fli1 (x)g{2 (ydxdy
|x—yl=¢€

(6.24)
- 2/ V®0;,g(x—y): (v(x) - v(y) ® 05, v(Y) ;' () 8,2 (y)dxdy
|x—yl=¢€
—2/| | V®2g(x - ) : (0;v(x) ®6,~2v(y))f1i1 (x)g{2 (y)dxdy.
X=y|=€
By Taylor’s theorem,
05, v(x) ® (V(x) — v(y)) : V*20;,8(x - y)
1
=0, v(x)® (/ Vu(y+tx—y))- (x—y)dt) :V®2652g(x—y)
0
1 .
(6.25) =0;v(x)® / 0i, V(y+t(x— y))dt) : kg (x—1y),
0

where for fixed i, i3, the (R?)®%-valued kernel kg (x — ) is defined by
(6.26) KB(x—y)i=(x=))PV®0,g(x—y),  VYx#y.

By assumption (6.11), kg is associated to a Calder6n-Zygmund operator. Hence, the ex-
pression

1 .
(6.27) (/ 0, v(y+t(x—y)dt -ki.z(x—y)
0
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is the kernel of an (R%)®?-valued Calderén d-commutator, which by the Christ-Journé the-
orem [CJ87] is bounded on L?(R%). So by Cauchy-Schwarz,

/ V®20,,g(x— ) : 05, v(x) ® (v(x) — v f] (0 g2 () d xdy
|x—yl=e

SIVUlel0s v® fM 2l g 2
SIVUIel fill 2l gl 2
(6.28) SVl fll g1 l1gH g1

By symmetry under swapping the i; < iy, this takes care of the second and third lines of
(6.24). For the fourth line, similarly using Taylor’s theorem yields

(v(x) = v(1)**: V®20;, ,8(x — ¥)

®2

1
:(/ Vv(y+t(x—y))-(x—y)dt) :V®20; 1,g(x—y)
0

1 1 o

(6.29) = (/ 0, v(y+t(x— y))dt) ® (/ 0i, v(y+tx—ydet| ki (x-y),
0 0

where the (R%)®2-valued kernel kﬁ Z‘ is defined by

(6.30) KER(x—y)i= (x— ) ®2B0V%%0; g(x—y)  Vx#y.

By assumption (6.11), kﬁ‘ ;:4 is associated to a Calderén-Zygmund operator. Hence, the ex-

pression (6.29) is the kernel of a Calderén d-commutator, and we can apply the Christ-

Journé theorem [C]87] like before to conclude that the modulus of the fourth line of (6.24)

is bounded by

(6.31) INUIE ool fll -1 I gl g1

The sub-Coulombic case. Finally, in the sub-Coulombic case 0 < s < d — 2, the induction
argument proceeds exactly as in the proof of Theorem 3.1. Instead of identity (3.38), we
now have

/ ky(x,y) f(x)g(y)dxdy
(R9)2

)% 0 g2 (y)dxdy

e—0

=lim ( —/ V®20;, 1,g(x— ) : (v(x) - v(y)
|x—yl=¢€
(6.32) —2/ V®20;,g(x—y):0;, v(x) ® (v(x) — v(1)) fl (x)gfz(y)dxdy
|[x—yl=€
—2/ Ve20,,g(x— ) : (v(x) - v(y)) (22>6,-2v(y)f1i1 (x)g{z(y)dxdy
|x—yl=¢€

—/I | Vo2g(x—3): (04 v(x) ® 5, v(Y) + 05, v(y) ® 0, (X)) f (g2 (M dxdy|.
x—yl=¢€
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Fix iy, i». For the first term, we can repeat repeat the proof above for the super-Coulombic
(d —4 < s<d-2)and Coulombic (s = d —4) cases with g replaced by 9;,;,8.
The second and third terms are symmetric, so it suffices to consider the second term.
Writing
V®20,g(x - ) :0; v(x) ® (0(x) — V(1) =8,0;,,8(x — )0, v/ () (V(x) - V()
(6.33) =V0j,,gx— ) (v(x) - v(1))d;, v (%)

and therefore

liil(l) - V®20,,g(x—¥): 0, v(x) ® (v(x) — v() [ (g2 (y)dxdy
(6.34) e
=lim V0, ,8(x— ) (v(x) — v(1))8;, v (x) £ ()8 2 () dxdy,
Y x-yl=e

we see that we can apply Theorem 3.1 to this expression with g replaced by 0,;,g, f re-
placed by 9;, v/! fi! and g replaced by g;*. Thus, its modulus is bounded by

(6.35) IV 0l oo 105 07 M2 g2 2 S IV OIZll 1l -1 gl ot

Finally, for the fourth term, V®2g is locally integrable, so we can use dominated conver-
gence to pass to the limit ¢ — 0. By symmetry under swapping x < y, it suffices to consider
the expression

(6.36) /( i, VO2g(x—y): (0;v(0) ® 35 v() £ (0 gl (y)dxdy.
Writing I = |V|Z~1|V|7**! and using Cauchy-Schwarz, the modulus of the preceding ex-
pression is bounded by
d-s : s—d .

(6.37) IVIZ 7 (V®2g % 0 vg2 Nl 2 11VIZ 7105 v M) 2.
By Plancherel’s theorem and assumption (6.10),

d—s : s—d .
(6.38) 1VI'Z ~1(V®%g % 01, vg )2 SNIVIZ T1(04, D)l 2.
Using (3.43) and (3.45), we conclude that

‘/ “V@Zg(x—y):(ailv(x)®6i2v(y)) 1(0gl(y)dxdy
(6.39) &9

d—s 2
<( Vol + IV T v ) ] 4
< (IVli + NI 0 JUFI I e

d-2-s
Just as before, the general case d —2(k + 1) < s < d — 2k follows by induction on k, and
the existence of the form extension B, by density of % in H 5 0J

6.3. Renormalization of second-order commutator estimate. We now use the smearing
procedure to obtain a renormalization of Theorem 6.1, which is the second-order ana-
logue of Theorem 4.1.
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Proposition 6.2. Letd>1,0<s<d. Letxy € RN be pairwise distinct, and p € 2 R%) N
L®[®RY). If s =0, assume that f[Rd log(1 +|x])du(x) <oco and if s = d -1, assume that
I |V|5‘dV,u||Loo < 00. Let be v a continuous vector field on R% such that

IIVUIILoo+|||V| UII _2d licgp<oo, 0ss<d-2
(6.40) -

I U”CLa +vll  adsm-sizm 2asm <00, d—-2<s<d,
w 2(d+m) Pd+m-2-s

for some 0 < @ < 1 and where m is the dimension of the extension space. There exists a
constant C depending only d, s, ®, m and on the potential g through assumptions (1.13) -
(1.28), such that

(6.41)

1 N ®2
/ (v(x) - v(y))®2-V®2g(x—y)d(—Z5x,~—u) (x,y)‘
(R)2\A N3

2
< C(IIVUIILoo + |||V| vII _2d licgo+ (II Vlcra + V| d(d+mfs)+2m 2(d+m) )1s>d—2)
-s

2(d+m) ‘d+m-2-s

min{d-s,2}

(FN(xN,u)+C(1+||u||Loo)( “mmids e + (N log N) 4

+ (N~ @D logN)ls:d_g))

min{d+1,s

nfd s 0aD) 1-d —-d
+(N it A0 )2 0 (11911l oL scgr + VIOVl oL o)

(d—s) min{d+1,5+3} min{d+1,5+3}

+”U”Cla“leU”LOO(“[J”LOON min{d,s+2}(s+1) + [\ min{d,s+2}( s+1)(||u||LoologN+1) s= d—l))-

Proof. We follow the outline of the proof of Theorem 4.1, focusing on what is different
in the second-order setting. Let U be the same extension of the vector field v as before.
Recycling the kernel notation K, we define

(6.42) Ky(X,Y):=VZGX - Y): (5(X) - 0(Y)®*  VX#YeRM™,
We note that from assumption (1.24) that

(6.43) Ky (X, V)1 < CIV I (IX = Y™ 1550 + 15=0)

and

(6.44) IVxK, (X, V)| < CIVI|Eel X — V|57

We again let X; denote (x;,0).
Adding and subtracting the smeared point mass 62?_), we obtain the decomposition

2
1N ®
(6.45) / ky(x, y)d| — Z Ox,—p| (x,¥) =Term, + Term;, + Terms,
(R)Z\A N3

where Term;, ..., Terms are defined as before. We proceed to estimate each of the Term;
individually.
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Estimate for Term;. We apply Theorem 6.1 with

1 Y . s=d-m
(6.46) f:gzﬁz(sg’gj—ﬁeﬂ T (R4
i=1

followed by Theorem 2.1 or Theorem 2.2 to obtain

d+m-s

2
(647) [Termy| < C(IVOlz +I1V127 01 _suaem Licarm-2)
+m-2-s

Gy (0)

x (FN(J_CN, M) + +Cllpll oo (nd‘s + (M lognh =0 + (772|10g77|)15:d—2) + an)-

Estimate for Term,. Suppose first that 0 < s < d — 1. We break Term, into a sum over the
index i of terms

(6.48) / / Ko (X, Xi) — Ky (X, Y)) AP (V) dU(X).
Rd+m Rd+m i

Unpacking the definition (6.42) of K,,, we have

(6.49)
Ky (X, X1) — Ky (X, Y) = (V?G(X - X;) - VE*G(X - V) : (5(X) — (V) ® (#(X) — D(X,)))
+VOGX - Y): (0(X) - 5(Y)) & (5(Y) — 5(X;)))
+V#G(X - X)) (0(Y) - 0(X7) ® (5(X) — D(X)))).

By considering the cases | X — X;| < 21 and | X — X;| > 27, it follows from using (1.24), the
mean-value theorem, and triangle inequality that

(6.50) Ky (X, X)) — Ky (X, V)| < CnlV il (1X = X751+ 1Y = X757
forall Y € supp(6 (}?i)). So, we find that
(6.51) ITermy|15<q-1 < ClIV 2 VIS4 pll oo,

Now if d — 1 < s < d, we integrate by parts in X to write
(6.52) / Ko(X, V)d(6x, - 67 ) (V) da(x)
(Rd+m)2 !
=—/ Ro(X, Y)-d(8x, - 650 | (V) dV(xX)
(Rd+m)2 !

- 2/ div 5(X)VG(X = V) (5(X) - 5(Y))d(8x, - 8 | () dfi(x),
(Rd+m)2 !
where we have defined the vector-valued kernel
(6.53) K,(X,Y)=VGX-Y) - (0(X) - 0(Y))%2.

Proceeding as in the case 0 < s < d — 1, the first term in the right-hand side of (6.52) is
bounded by

(6.54) ClIV 12 IV~ 9V oo
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For the second term, we observe that
/ (0(X) - ﬁ(Y))'VG(X—Y)d(5x,-—5(;?.))(Y)
Rd+m i
= /d (P(X) - (X)) - VG(X - X;) = (0(X) - 9(Y))- VG(X — Y))d5(;(7i)(Y)
R +m

=(WX)-0v(X;)- (VG(X - Xi) = VGy(X - Xi))

(6.55) —/ (X)) — 5(Y))-VG(X - Y)d6 P ().

Rd+m i

If | X — X;| < 2n, then it follows from the second line using the mean-value theorem and
assumption (1.24) that

(6.56)

/ (50X) - 5(Y))-VG(X - Y)d (6, —62??)(1/)'
Rd+m i

< CIIVﬁIILm(IX—XiI_S+/

Rd+m

X -YIdo P (V).

If | X — X;| > 27, then it follows from the third line using the mean-value theorem, assump-
tion (1.24), and repeating the proof of (2.21) with G replaced by VG that

(6.57)

/ (B(X) - 5(Y)) - VG(X - Y)d (B x, - 69 (Y)
Rd+m i

< CIVDl o (N1 X = X; 1™ 2+ X - X317°7Y),

where we also use that the reverse triangle inequality and that § g?l) is a probability measure.
Combining (6.56) and (6.57), we obtain

(6.58) ‘/ div 5(X)VG(X - Y)- (5(X) - 5(V))d (0, —63}7?)(1/)61;1()()‘
(RA+m)2 !

< CIIVD| |l div ﬁIILw(/

|X—Xl-|_sd,a(X)+/
|X-X;l<2n |

—Xijl<2n JRETM

"‘/ (772|X—Xi|_s_2+77|X—Xi|_s_1)dﬂ(X)).
IX-X;|>2
Evidently,

(6.59) / 1X - X1 dpx) = / |x = xS dp(x) < O Sl pl oo
[X-X;l<2n |x—x;|<2n

Similarly, if |[ X — X;| <2pand Y € supp(ég?i)), then | X — Y| < 37. So by direct majorization
and Fubini-Tonelli,

/ / X - Y[™ds P (V)dfX) < / / X = Y[ da(X)ds§) (V)
|X—X;|<2n JRA+™ ! Ri+m J | X-Y|<3n !

(6.60) < CnS|| | poo.
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Lastly, if s > d — 1, then by dilation invariance of Lebesgue measure,

(6.61) / (MP1X = X172 + 01X = X1~ N dpX) < Cn? oo
X~ X;>2n

If s =d -1, then we make the modification

/ lx = x; " dp(x) = (/ Ix—xil'ddu(x)+/ Ix—xil'ddu(x))
|x—x;|>2n 1=|x—-x;|>2n |x—x;1>1

(6.62) < Cllplzellognl+1,

where we use that u is a probability density. Thus, we shown that

(6.63) V div 5(X)VG(X = V) (5(X) - 5(Y))d (5, —53’}?)(1/)@()0‘
(Rd+m)2 !

< IVl div17||Loo(||u||Loond‘S+n(||u||Loo|logn| + 1)ls:d_1).

Putting together the estimates (6.54) and (6.63) with (6.51), we conclude that

(6.64) |Term,| < C(nnwuimn|V|~‘“‘du||pols<d_1 + VO VISVl oo 1 g5 g1

+ VD] div17||Loo(||u||Loond‘s +1( 12| logn| + 1)13=d_1)).

Estimate for Terms. This step proceeds as for Terms in the proof of Theorem 4.1, except
now using the kernel bounds (6.43) and (6.44). Ultimately, we obtain
41 1= 41 1=
n_"+llognlle=o &7 +llogells=o
N N

(6.65) [Terms| < C||V |2 (FN(IN, 1) + c(

+ |l oo (6977 + (€% log ) Ls=o + (£%|10g €)1 s—a—2) +ne_s_1)).

Conclusion. Combining the estimates (4.14), (4.26), (4.34) obtained above, we have shown
that

1 N ®2
/ ky(x, y)d(— Oy, — u) (x,y)
®RH2\A N o

~ d+m=s _
< C(nwnpo IV B

(6.66)

1=+ logn|1s=¢
N

2
Ldi(,‘f%’z”ls ls<d+m_2) (FN(EN’ 'u) +
d-s d 2 2
+C||,U||L°°(77 + (M“llognD1ls=0+ (n |10877|)1s:d—2)+C77 )
+c((nnwnioo|||V|S“‘du||m)ls<d_1+(nnwnioo|||V|S‘dvu||po)ls>d_1

+ VO ol div Dl oo

Iallison™ + 1l logn + 1)ls:d_1))
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e %+ |logells=

+CIVD|%
Vo7 N

+ &%+ ||l oo (€975 + (€| log e 15— + (€%[l0geN 14— g_2)

+ne 5.

We may now optimize over 1) and € exactly as in (4.36). Using the extension bounds (4.4)
and noting that div #(x, 0) = div v(x), since ¥ vanishes in the (m + 1)-th through (m + d)-th
components, we arrive at the stated inequality. U
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