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Abstract

Does interdisciplinary collaboration make a difference when it comes to communicating
engineering concepts to community audiences? This research focuses on the effect of
communication strategies on community attitudes toward engineering research. Two cohorts of
four academic researchers each, representing eight different disciplinary backgrounds (aviation
planning, cancer research, math education, musicology, chemical/biomolecular engineering,
material science, soil science, and theater) developed research communication outputs for the
public by creating: 1) an individual video presenting their research through the lens of their
discipline alone; and 2) a convergent video where they collaboratively discussed their research
with others in their cohort around a common theme, integrating all of their disciplinary lenses.
Using a panel of respondents (n = 2,938) procured through Qualtrics, and purposefully recruited
to create a diverse sample in age and racial/ethnic background, the research team randomly
assigned respondents to watch one of three video treatments: one individual video, multiple
individual videos, or a convergent video. Then, respondents answered a series of questions about
their interest and knowledge of several STEM topics, both before and after watching the
video(s). This retrospective pre/post questionnaire technique helps to alleviate response-shift bias
present in self-assessed changes in learning attitudes. Our findings show that collaborative
presentation videos increased self-reported audience interest in engineering, and perceptions of
disciplinary relatedness more than the non-collaborative, individual presentations made by the
same researchers. These results suggest a beneficial role for collaborative communication
strategies to foster interest in engineering among public audiences, even among people without a
background in STEM. Further, collaborative communication led to an increased sense of
relatedness among different disciplines, which may be useful for effective public research
communication about interdisciplinary engineering projects.

Introduction

There is a general understanding that engineering solves problems, but it is often hard to
understand the direct context or implications of what engineers do without substantial
scaffolding. Meanwhile, STEM is a familiar term within contemporary American educational
systems, but it does not reflect a monolithic domain unto itself, and it is not always clear how
engineering relates to science, technology, or math within this framing. While engineering alone



is a rich area of exploration, contextualizing it with other disciplines can highlight engineers’
contributions in real-world environments and applications. Addressing complex challenges
facing society today requires collaboration incorporating tools, techniques, and insights from
across the social, natural, and engineering sciences.

Education in formal and informal learning settings can provide opportunities to explore
connections across seemingly distant ideas, thus sparking new creative solutions to complex
societal challenges. In thinking about what engineering education might look like in community
contexts, it is particularly important to consider Zow ideas are presented. In informal learning
settings, public audiences are especially likely to enter with widely varying knowledge and
interest in specific topics; and they may have priorities and expectations that are not specific to
learning, such as having fun or spending time with others. In a virtual format that is even farther
removed from a synchronous event or a shared physical space, variation in audiences’ entry
conditions is even more profound, because users themselves have more control over the terms of
and context for their engagement. By making their research more approachable and
understandable, engineers can help public audiences gain a more complete understanding of the
work they do and become engaged in ways that might support greater motivation to keep
learning or act. Most engagement with science occurs outside formal environments [1], and it is
for these informal learning environments that researchers need to be prepared, both to share
knowledge and to learn from others.

The research presented here comes from a novel multi-disciplinary program developed through a
partnership between The Ohio State University and the Center of Science and Industry (COSI),
both located in Columbus, OH. The program brings together researchers from divergent
disciplinary perspectives to communicate science in informal learning settings and examines the
effect of collaborative - now convergent - communication about a shared theme on attitudes and
interest in STEM learning. The program pushes the frontier in science and research
communication for lifelong learning with a collaborative and transdisciplinary approach that
enables convergent learning through cognitive dissonance. We test the hypothesis that audiences
will experience learning benefits from convergent communication; that convergent
communication by researchers will increase positive learning attitudes among audiences, spark
greater interest in STEM topics, increase desire to further explore topics, and increase likelihood
that people might share their learning experience with others. By comparing changes in self-
reported STEM learning attitudes across audiences that were shown convergent or individual
disciplinary-focused videos, we assess the effectiveness of alternative research communication
strategies. We find that collaborative presentations that include engineering perspectives are
more effective in increasing interest in engineering relative to an individual presentation on an
engineering topic. Respondents who watched transdisciplinary, collaborative presentations (those
with engineers AND another disciplinary researcher present) reported being more likely to share
something about the presentation with someone else. In addition, public audiences saw different



disciplines as more related after convergent presentations than individual presentations. Both
findings can be useful for preparing public-facing communications about engineering research.

In this paper, we do the following: discuss the theoretical background for the research, describe
the researchers who participated in the research and their presentations, outline our analytical
strategy, and present our findings. Lastly, we conclude with some comments on how this
research can inform public engineering education and STEM learning broadly.

Theoretical Background

Research is the process of creating and sharing useful ideas. Dissemination of scientific research
findings is important for other researchers to build on an existing body of knowledge, for funding
agencies to determine research priorities, and for public audiences to engage with scientific
discourse. Many funding agencies require public outreach as part of their grant application
process. However, scientists are not often taught how to craft compelling narratives or share
insights gleaned from their research in meaningful ways with the public. Effective
communication of scientific breakthroughs with the public is as important as the content being
shared, especially when the public is making decisions around science funding [2]. Furthermore,
scientists’ success in communication depends in large part on trustworthiness, competence, and
expertise [3]. By engaging in discussion or teaching science topics with the public, trust in
scientists and trust in science grows.

Critical thinking and creativity are inherently nonlinear and require divergent thought. Cognitive
dissonance suggests that these creative leaps are likely to occur when people are presented with
conflicting, divergent perspectives on a topic, creating a dissonance that people actively try to
overcome [4], [5]. When a listener/viewer is presented with ideas from different researchers, it is
too easy to compartmentalize the individual findings, even if the topics are actually related.
Often, cognitive dissonance pushes researchers to find convergence when communicating ideas
and this same process may help audiences make similar connections across disparate concepts or
fields of knowledge.

Research supports the idea that learning occurs in three broad domains: the cognitive domain
(knowledge), the psychomotor domain (physical skills), and the affective domain (attitudes) [6].
The process of finding convergence and making the connections explicit in research
communication trigger different emotional responses in the presenters and the audience. For
presenters, collaborative communication shifts one’s own perception from being a topical expert
to a learner and collaborator; for the audience, the confluence of multiple perspectives can
influence learning in the affective domain by sparking curiosity and shifting away from long held
attitudes of deficit-based education. Traditionally, communication methods between scientists
and the public have focused on a knowledge deficit model rather than a discourse/dialogue-based
approach [7]. When scientists use a dialogue model instead of deficit model to facilitate two-way



engagement, understandings can be jointly developed. We especially need inclusive
communication centered both on equity in access to information and on bringing excluded
voices, experiences, and concerns to scientific dialogue [8], [9].

Adults use different frames of references to interact with the world that serve as sets of
assumptions that help people make meaning of experiences and solve problems. An ideal
environment for adult learning is one where transformative learning can flourish through
effective discourse between the learner and the educator, followed by critical reflection by the
learner to integrate the knowledge into their belief system [10]. In addition to cognitive learning,
the process of developing convergent communication can influence conation, or the intention to
act based on knowledge and skill [11], and the ability of a person to apply sustained effort
toward actionable goals [12], [13].

Finally, beyond communicating research findings in a way that is more wholly understood by the
public, developing this skill is useful for researchers wishing to increase their impact and
productivity within their profession. Jensen et al. [14] conducted a bibliometric analysis and
found that scientists who were active in wider dissemination activities (industry partnerships or
outreach presentations) produced more scholarship than those who did not participate in wider
dissemination activities. In fact, the most active researchers publish in traditional journals and
then share in at least two of the following ways: communicating via popular media, collaborating
with industry, or teaching. For these reasons, we set out to determine if researchers generally,
and engineers specifically, could find ways to more effectively communicate their research
findings with the public in several different informal learning environments.

Description of researcher experiences and communications formats

For this study, we recruited Ohio State faculty from a variety of colleges and departments to
participate in a two-step process to improve their communication with the public. They 1)
attended interactive training experiences to develop communication strategies for a variety of
informal learning settings and 2) worked together in a pre-assigned cohort to create a series of
informal learning experiences based on their areas of expertise and inquiry around a common
theme. As the informal learning programming transitioned to virtual formats during the COVID-
19 pandemic, the researchers prepared recorded presentations for a broad public audience. The
typical sequence of activities for any researcher involved in the project was as follows:

1) attend a structured series of 2-hour training experiences (6 hours of total contact time
for those participating during the COVID-19 pandemic)

2) prepare and deliver an individual presentation on their own research or area of
expertise in an informal learning setting for adults



3) participate in semi-structured brainstorming sessions with 3-4 researchers from other
disciplines (i.e., their cohort), with a goal of identifying areas of synergy and
convergence across their disciplines

4) collaborate with their cohort to develop a hackathon challenge for high school learners
that leveraged the entire cohort’s expertise

5) collaborate with their cohort to develop a “convergent” presentation that leveraged all
of the researchers’ expertise in an informal learning setting for adults

For the cohorts described in this paper (one organized around the theme of Movement and one
organized around the theme of Elements), the informal learning settings for their individual
presentations, hackathon challenges, and convergent presentations were virtual. However,
because these settings had analog counterparts that the project team used prior to the COVID-19
pandemic, the planning and execution of the five activities listed above were largely the same for
the researchers. The major changes these cohorts experienced related to accessibility
considerations, technical differences in how audiences for the experiences interacted with the
programming, and tips for communicating in synchronous digital spaces. Each cohort consisted
of four researchers; their areas of expertise, whether they identified as engineers, and their
individual presentation topics are detailed in Table 1.

The primary difference between individual presentations and convergent presentations was that
individual presentations were typically delivered serially, but separately. In contrast, convergent
presentations represented an intentional weaving together of ideas from the researchers’ distinct
perspectives. Both the individual and convergent presentations described in this paper refer to
informal learning experiences in the context of salon-style gatherings for adult audiences that
were held on the Zoom video conferencing platform and were recorded. For the Movement
cohort, individual presentations were pre-recorded videos developed by each researcher, and
convergent presentations were held as featured events at virtual iterations of the local Columbus
Science Pub, a monthly speaker series focused on science topics that generally reflect local
interests, seasonal themes, and/or recent news items. For the Elements cohort, individual
presentations were featured as part of a virtual edition of Franklinton Friday, a monthly “open
house” community celebration that features opportunities to experience visual and performing
arts, as well as science “microlectures” delivered in a cocktail party atmosphere. As with the
Movement cohort, the convergent presentation developed by the Elements cohort was given at a
virtual Columbus Science Pub event.

Table 1: Description of researcher individual presentations



Cohort Researcher Engineering | Individual presentation description

theme area | by area of discipline?
expertise (yes/no)

Movement | Aviation yes Transportation impacts the individual, but must be
planner designed as a system with nuanced angles of social

and technical considerations. Urban planning
interacts with other aspects of society such as with
the environment, economy, and equity.

Movement | Cancer yes Cancer biology is not typically studied in terms of
researcher how they spread (metastasis). Engineering concepts

such as fluid mechanics and different engineering
systems can be introduced as a means to study the
properties of tumors.

Movement | Math no Math education and conjunctions of how access to
education math education is tied with identity. Social identities
researcher could be tied to math education in the form of digital

mathematical storytelling for greater impact on
students.

Movement | Musicologist [no The theory of the purpose of music in evolutionary
terms has been contested, but recent studies suggest
that music creates group cohesion and bonding,
which is critical for survival.

Elements Chemical/Bio |yes Polymers are identified by chains of repeated
molecular chemical units, which have specific properties that
engineer can be simulated computationally. Copolymers

(polymers made up of two polymers) interact and can
be simulated in software to discover interesting
properties.

Elements Material yes Material science plays a large role in sustainability
scientist and in designing how materials with specific

properties could be more efficient. The example of
moving away from incandescent bulbs to LED bulbs
is a result of material science engineering improving
sustainability.




Elements Soil scientist | no Soil stores carbon and this soil organic carbon is
sensitive to environmental changes such as

chemical, physical, and biological properties to
potentially become a way to store and offset
atmospheric carbon.

temperature and moisture. Soil can be studied with its

Elements Theater artist | no Story can be explored as a fundamental element of
theater, and it is often relegated to be spatially
constrained on a stage. Performances can become
more engaging and tell a more intimate story when
the fourth wall is removed and told directly to the
audience.

Convergent presentations for the Elements and Movement cohorts employed various strategies to
integrate narratives of differing disciplines together. The Movement cohort used a mutual
interview strategy, where the researchers alternated roles in asking and answering questions, and
facilitated a conversation that identified common ground across their disciplines. The cohort split
up into pairs; the aviation planner and cancer researcher interviewed each other, and the math
education researcher and musicologist interviewed each other. Overall, this style of co-
presenting with carefully curated dialogue made it possible to weave common themes in the
researchers’ perspectives. This approach was also casual and conversational in nature compared
to the individual presentations, and allowed for banter between the researchers. The Elements
cohort presentation took a different approach and presented as a group of four. The theater artist,
who assumed the role of moderator, asked each researcher to tie their presentation to a particular
object that was displayed to the audience. This object was the central grounding point of the
presentation and was continually referred back to by each researcher. Although the content of
each presenter was generally preserved, using a specific object as a point of convergence allowed
the presentations to transition smoothly. In highlighting intersections between disciplines, the
cohort also recognized their emotional journey as researchers with powerful storytelling as a
means to connect with the audience.

An additional advantage of digital formats was that recordings of the presentations could provide
a reasonable proxy of the audience experience. The research team minimally edited the videos,
both the individual presentations and the convergent presentations, for length and then used
online survey panels assembled via Qualtrics to gather substantially more - and more diverse -
audience survey data.

Analytical strategy



Experimental design with Qualtrics survey; post with retro-pre-method

The research team purchased Qualtrics-recruited respondent panels to approximate a generally
diverse public audience. Panel respondents watched one of three different video treatments
(Figure 1): 1) individual, which consisted of one video with a single researcher presenting
(between 5 and 7 minutes); 2) multiple, which consisted of two or three of the individual videos
(between 10 and 15 minutes); and 3) convergent, which consisted of one video with two or more
researchers presenting together (between 10 and 20 minutes). Treatments were randomly
assigned until quotas were achieved. We collected a total of 2,938 responses, split roughly
evenly between the two cohorts (1,463 Movement and 1,475 Elements). The convergent
treatment was purposefully oversampled as it is a key component of the research study, and
because we wanted sufficient power to estimate a medium size effect (755 individual, 870
multiple, and 1,313 convergent). After watching the videos, respondents answered a series of
questions about their interest and knowledge of several STEM topics, both before and after
watching the video(s). This retrospective pre/post questionnaire technique helps to alleviate
response-shift bias present in self-assessed changes in learning attitudes [15]. Respondents also
answered other questions, including demographic and STEM identity questions.

Figure 1: Video treatments for Qualtrics panels

Individual presentations: One presenter; Convergent presentations: Multiple
divergent disciplines; no collaboration presenters; divergent disciplines;
collaborative
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For the purposes of this paper, we grouped our respondents into six categories, based on the
video treatment they received and the researchers present in those videos (see Table 2). These
groups consist of respondents who watched: an individual video with an engineer presenting,
multiple individual videos where all the presenters were engineers, multiple individual videos
where at least one presenter was an engineer and other(s) were from different disciplines, a
convergent video where both presenters were engineers, a convergent video where two of the
presenters were engineers and two were from other disciplines, or video(s) of any treatment type
where none of the presenters were engineers.



Table 2: Video treatment groups for analysis

Individual Videos Convergent Videos
One Engineer (one video) (n=377) N/A
Only Engineers (multiple videos) (n=227) Only Engineers (n=370)"

Engineer + Others (multiple videos) (n=412) | Engineer + Others (n=589)"

No Engineer (n=963)

#multiple treatment from Elements cohort where the chemical/biomolecular engineer and/or
material scientist were present

*convergent treatment from Movement cohort with aviation planner and cancer researcher
“convergent treatment from Elements cohort

Qualtrics panel sampling

The first Qualtrics panel, with videos from the Movement cohort, initially used a general U.S.
sample with no demographic quotas (n = 1,061). However, the respondents did not represent a
diverse audience — they were older (median age 65 years old) and primarily white, non-
Hispanic (91%). So, we launched a smaller panel for the Movement videos (n=402) with
specific demographic quotas to increase the number of respondents sampled under the age of 50
and who identified as a race/ethnicity other than white, non-Hispanic. This way, we could be
more confident that our results reflected the experiences of a diverse audience, in terms of age
and ethnic/racial identity. The Elements panel (n=1,475) was run after the Movement panel so
we included demographic quotas from the launch to ensure younger and more racially diverse
respondents were represented.

Demographics of sample

For all respondents (n=2,938), the average age of respondents was 55 years, and the median age
was 59 years. Nearly eight in ten respondents (77.5%) identified as white-only, and two in three
respondents (65.9%) identified as female. Nearly half of the respondents (45.8%) reported
completing a 4-year college degree or higher. Half of respondents (48.1%) reported annual
household incomes under $50,000, and 18.3% reported annual household incomes over
$100,000. Responses were received from all 50 states and DC. In the Elements panel
questionnaire, respondents were asked to identify where they live as urban, suburban, or rural;
almost half of respondents (47.5%) reported living in a suburban area. Full demographic details



of the respondents can be found in Appendix A. We included these demographic variables in our
analyses to ensure that we captured diverse identities and socioeconomic statuses (See Statistical
analysis and modeling section below).

Respondents’ background in STEM

We also asked respondents about their educational and professional backgrounds and
identification with STEM topics, to provide a baseline for experiences and values respondents
are ‘bringing with them’ when they watch these presentations. About one-third of respondents
(34.7%) reported having a strong educational background in science, technology, engineering,
and/or math. One-quarter of respondents (26.6%) reported having a strong professional
background in those areas. Respondents were also asked to rate how much a series of statements,
inspired by the LabX program [16], about leisure time activities related to STEM and informal
learning describe them (on a 7-point scale from “1 - not me at all” to “7 - very much me”).
Respondents were most likely to enjoy visiting science museums, zoos, and aquariums (mean =
5.27). Average scores hovered around the middle of the scale for seeking out arts-focused events
(mean = 4.09), consuming science- or technology-focused media (mean = 4.34), and liking to
stay up-to-date on news related to science and technology (mean = 4.31). Respondents were
similarly likely to find scientific topics dry or boring (mean = 3.57) as they were to seek out
opportunities to attend science festivals or other science-focused events (mean = 3.46). We also
included STEM identity and background indicators in the models (See Statistical analysis and
modeling section below).

Operationalizing learning outcomes

We focus on five, self-reported learning outcome indicators: interest in engineering,
knowledge of engineering, perceived relatedness of the disciplines represented, likelihood to
share something about their experience, and likelihood to learn more about something in
the presentation(s). We used affect response measures to indicate changes in learning attitudes
and bigger picture cognitive measures to indicate changes in knowledge as a result of the
presentations. Because the presentations represented several different topics and, at most, a 20-
minute learning experience in a non-formal context (i.e. not a formal class), we did not directly
measure content-specific learning outcomes.

We measured interest in engineering using retro-pre/post, 7-point Likert-like scale items. This
means that after respondents watched a randomly assigned presentation treatment, we asked
them to first think retrospectively about their interest in engineering before they watched the
presentation and rate their interest on a scale of 1 = very little interest to 7 = a great deal of
interest. Next, we asked them to think about after the presentation treatment and rate their
interest in engineering on the same scale. This retro-pre/post technique has been shown to more



accurately reflect change in learning attitudes as a result of an experience than a traditional
pre/post, because it asks respondents to reflect on their learning attitudes with the experience in
mind.

We measured knowledge of engineering using retro-pre/post, 7-point Likert-like scale items.
This means that after respondents watched a randomly assigned presentation treatment, we asked
them to first think about before the presentation treatment and rate their knowledge of
engineering retrospectively, on a scale of 1 = very little knowledge to 7 = a great deal of
knowledge. Next, we asked them to think about affer the presentation treatment and rate their
knowledge of engineering on the same scale.

We measured the perceived relatedness of the disciplines in order to detect the presence of
higher-level, conceptual connections that audiences might pick up from the presentations. To do
this, we used a 5-point scale with graphic representations of relatedness (see Figure 2). We used
traditional pre/post technique, asking them about perceived relatedness before their presentation
treatment and then after their presentation treatment. Perceiving disciplines as more related
would indicate that audiences probably found similarities between them, potentially making a
relatively less known discipline more familiar through its similarities with a more well-known
discipline.

Figure 2: Graphic questionnaire item measuring perceived relatedness of disciplines
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We measured likelihood to share something about their experience and likelihood to learn
more about something in the presentation(s) using a post-only, 7-point Likert-like scale of 1 =



extremely unlikely to 7 = extremely likely. Higher scores in these measures (i.e. scores greater
than 4) indicate positive learning attitudes, which would make people more open to more
learning experiences.

Statistical analysis and modeling

First, we examined descriptive statistics for the learning outcomes, grouped by presentation
treatment, to detect any general patterns (Appendix B). We then modeled respondent learning
outcomes using both linear (Ordinary Least Squares) and nonlinear (logit) functions. We used
linear models that approximate the learning outcomes as continuous, numeric variables. Doing so
allowed us to estimate the incremental effect of different presentation treatments on outcomes,
compared to a single, individual engineering presentation treatment. Since the outcome scales are
subjective and not, strictly speaking, continuous variables, we also used a logit, nonlinear model
to estimate the likelihood of a large change (>1 on the 5- and 7-point scales) in the interest and
knowledge of engineering and relatedness of disciplines outcome variables, and the likelithood
of a high score (>4 on a 7-point scale) occurring for the likelihood to share and likelihood to
learn more outcome variables. For all of these models, we included demographic and STEM
identity variables to account for diversity of respondents that influence learning outcomes (see
Appendix C for a general specification of the models).

In estimating the effect of a specific presentation treatment on learning outcomes, we control for
a range of demographic characteristics and unobservable factors that are common to each
treatment experience. Because of a tendency for some respondents to overestimate the change in
their learning attitudes as a result of their experience, we also had respondents answer retro-
pre/post items about their interest in and knowledge of sports. Since none of the presentation
treatments included anything about sports, we would not expect any change in knowledge of
sports. If a respondent did indicate a change, controlling for this effect will reduce potential bias
in how the respondent reported change in the outcomes of interest, i.e. interest and knowledge of
engineering.

We also set up the analyses to model measures of learning outcomes affer the presentation
treatments, because not all had a pre- or retro-pre-measurement component. We included pre- /
retro-pre-scores for outcomes with these components, as a way of controlling for the amount of
change seen before and after. We also control for correlation between idiosyncratic error and
control variables in the model and report (heteroskedasticity) robust standard errors. See
Appendix C, Xcont, and Appendices D and E for more details.

Findings and Discussion



Consistent with our expectation, the presence of engineers affected respondents’ reported interest
and knowledge in engineering. After watching the video(s), respondents who saw at least one

engineer present (in any treatment type) shared statistically significantly higher average ratings
for interest and knowledge in engineering than did respondents who saw no engineers in the
presentation. Differences in average reported levels of interest and knowledge are statistically
significant at the 95% confidence level (Table 3). Because of this clear and unsurprising
difference, we dropped the “no engineer” treatment from the rest of the analysis. This allowed us
to focus on the effects of different combinations of presenters and treatment types focused

specifically on engineers.

Table 3: Interest and knowledge of engineering by presence of engineers in presentation

Engineers present
(mean)

Engineers not present
(mean)

P-value of 2 sample t-
test

Interest in engineering | 4.513 4.198 .000031
(after presentation)

Knowledge of 3.867 3.598 .000311
engineering (after

presentation)

After dropping the non-engineer presentation data (963 observations), we conducted both linear
and non-linear regression analyses to understand differences in four presentation treatments

compared to the single, individual engineering presentation treatment. The four treatments

include:

multiple individual presentations, only engineers;

multiple individual presentations, engineers and other discipline researchers;
convergent presentation with only engineers; and
convergent presentation with engineers and other discipline researchers.

The linear models show a consistent, positive effect of convergent presentations compared to a
single, individual engineer presentation (see Figure 3 for general results, and Appendix D for
more technical model results). Multiple, individual presentations with the same researchers did

not yield any obvious, positive learning outcomes compared to the single, individual engineer
presentation. Convergent presentations with engineers and other discipline researchers, in

particular, had significant, positive effects on more learning outcomes (all outcomes except the
knowledge of engineering learning) relative to convergent presentations with only engineers.

This suggests that collaboration across multiple disciplines in developing convergent research
communication may influence learning in different and more ways than a collaboration among

just engineers.




Figure 3: Presentation treatment effects, compared to seeing just one individual engineering
presentation. Linear model, scaled estimates, with 95% confidence interval bands.
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A continuous scale does not account for subjective differences across respondents. For example,
a reported change in interest from 3 to 5 on a Likert scale is not necessarily comparable to a
change from 5 to 7 by another individual. We therefore estimate non-linear logit models to
recover the likelihood of increase in interest/knowledge in engineering. The logit models also
suggest a significant, positive benefit of the collaborative, convergent presentations compared to
a single, individual engineering presentation (see Figure 4 for general results, and Appendix E
for more technical model results). While not yielding estimates with the same significance as in
the linear models, the logit models show that respondents who saw the convergent presentation
with engineers and other researchers were significantly more likely to have a higher learning
outcome than those respondents who just saw a single, individual engineering presentation.
Much like the linear models, multiple individual presentation treatments with the same
researchers did not show any obvious learning outcome benefits compared to the single,
individual engineering presentation.

Figure 4: Presentation treatment likelihoods (log odds ratios), compared to seeing just one
individual engineering presentation. Logit model, scaled likelihood estimates with 95%
confidence interval bands
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Results from this study suggest that people who have exposure to collaborative research
communication with multiple engineers are more likely to have higher learning outcomes
relative to those who just see a single presentation with an engineer. Seeing the same
combination of researchers present multiple times, but not in collaboration, does not appear to
have as much positive benefit on audiences as the collaborative (convergent) presentations.
Further, convergent presentations with engineers and researchers from other disciplines appear to
have even more learning benefits on audiences, even those specific to engineering (such as
interest). This suggests that collaborative and interdisciplinary research communication may be
the best way to both communicate engineering topics to audiences, as well as get them interested
in learning more and sharing more about their experience.

While we believe the results of our study suggest significant positive effects of convergent
research communication (i.e. research communication that is collaborative and interdisciplinary
around a common theme) on engineering learning attitudes among broadly diverse community
audiences, the results should be extrapolated with caution. Comparisons in the effect of
convergent communication are based on presentations across two different themes (Movement
and Elements), and we do not know the degree to which the theme might have impacted learning
outcomes. However, we do show in Appendix F that there was not a significant difference in
general learning outcomes between audiences who saw Movement themed presentations and
those who saw Elements themed presentations, with the exception of audience perception of
disciplines’ relatedness. We also cannot definitively rule out any individual researcher effects on
learning outcomes. Continuing the study in the future with more researcher cohorts, as well as
with more diverse researchers, would improve our ability to detect the impact that researcher
identity, presentation skill, and other individual researcher characteristics have on audience
learning attitudes. Further, while we made efforts to ensure that our sample of respondents (the



‘audience’) reflected some ethnic/racial, age, and gender diversity, we cannot claim that our
sample was representative of the general population, nor that the sub-samples were large enough
to make claims about the learning outcomes of specific groups of people (e.g., young, minority
males). With that in mind, we still argue that our sampling strategy consisted of enough
socioeconomic, demographic, and heritage diversity to sufficiently control for these differences
while focusing our attention on the added impact of the presentation type on learning outcomes.

Conclusion

Effective research communication is an extremely valuable skill that prospective engineers need
to develop. Strong communication of engineering research results can illuminate pathways
toward engineering among public audiences and support more public interest and investment in
the work of engineers. Increased interest and engagement with problems that require engineering
solutions is a necessary first step to build a robust STEM workforce. In the United States, the
STEM labor force represents 23% of the total labor force, involves workers at all educational
levels, and includes higher proportions of men, Whites, Asians, and foreign-born workers than
the proportions of these groups in the U.S. population [17]. Disparities in demographic and
socioeconomic conditions present significant challenges in building an equitable and
representative pipeline in STEM education. Informal learning platforms and the integration of
STEM with the arts and humanities in communicating research ideas that are relevant and
relatable to the society at large can broaden knowledge and engagement in engineering
education. Engagement with science occurs largely outside formal environments [2] and it is for
these informal learning environments that researchers need to be prepared, both to share
knowledge and to learn from others. Exposure to STEM research through informal learning
environments influences both interest in STEM fields [18] and STEM identities [19]. Our
findings suggest that one way to improve research communication with public audiences is by
having experts from different disciplines intentionally collaborate and converge around a topic.
Collaborative communication skills can shift learning away from deficit models of science
communication [20], and increase equitable public engagement with scientific research for
bidirectional learning, especially when integrating arts and humanities with science and
engineering.

Through response data that reflect diverse audiences’ takeaways from various combinations of
presentation elements, our findings suggest that using a “convergent” style (i.e., presentations
that explicitly combine different disciplinary perspectives through collaboration) holds particular
promise for communicating engineering research. Compared to individual engineering
presentations, convergent presentations that included at least one engineer supported significant
growth in interest in engineering among respondents. As might be expected, this style of
presentation also supported audiences in perceiving connections between presenters’ topics.
Furthermore, convergent presentations that included an engineer and another kind of researcher
showed a significant effect (compared to individual engineering presentations) on respondents'



likelihood to share something about their experience, as well as their desire to learn more about
the topic. Taken together, these outcomes reflect forms of engagement that can make engineering
topics more meaningful and relevant, even to people who do not have an existing inclination to
think about engineering.

Our research team is eager to build on the present study by exploring the boundaries of
convergent presentations, namely by asking researchers and community members to collaborate
around themes that communities themselves identify as important. Though not within the scope
of this study, our team also considers how researchers collaborate and create successful
convergent research communication, and necessary support structures, a vital area for future
study. In this spirit, our ongoing research agenda includes substantial attention to the
professional benefits of transdisciplinary collaboration. Within formal education spaces for
engineers, it may be particularly productive to invest in professional learning opportunities that
can support both better communication by engineers and those researchers who see the benefit of
clearly articulating the content and value of their work. As an immediate takeaway from this
work, we encourage readers to consider that intentional collaboration with other disciplines holds
particular promise for helping engineers highlight the importance of what they do.



References

[1]7J. H. Falk, and L. D. Dierking, “The 95 percent solution: School is not where most
Americans learn most of their science,” American Scientist, vol. 98, no. 6, pp. 486-493, 2010.
doi: 10.1511/2010.87.486.

[2] D. A. Scheufele, “Communicating science in social settings,” Proc. of the Nat. Academy of
Sciences, vol. 110, Supp. 3, 14040-14047, 2013. [Online]. Available:
https://www.pnas.org/content/110/Supplement 3/14040.short

[3] S. T. Fiske and C. Dupree, “Gaining trust as well as respect in communicating to motivated
audiences about science topics,” Proc. of the Nat. Academy of Sciences, vol. 111, Supp. 4,
13593-13597, 2014. [Online]. Available:

https://www.pnas.org/content/111/Supplement 4/13593.short

[4] E. Aronson, “Back to the Future: Retrospective Review of Leon Festinger’s ‘A Theory of
Cognitive Dissonance,”” Am. J. of Psychology, vol. 110, no. 1, pp. 127-137, 1997.
doi:10.2307/1423706.

[5] L. Festinger, A Theory of Cognitive Dissonance, 1% ed. Stanford, CA: Row, Peterson and
Company, 1957.

[6] B. S. Bloom, B. B. Mesia, and D. R. Krathwohl, “Foreword” in Taxonomy of Educational
Objectives (two vols: The Affective Domain & The Cognitive Domain), New Y ork: David
McKay, 1964, pp. 7-8.

[7] B. Trench, “Towards and analytical framework of science communication models,” in
Communicating Science in Social Contexts, D. Cheng, M. Claessens, T. Gascoigne, J. Metcalfe,
B. Schiele, and S. Shi, Eds., Dordrecht: Springer Netherlands, 2008, pp.119-135.

[8] K.N. Canfield et al., “Science communication demands a critical approach that centers
inclusion, equity, and intersectionality,” Frontiers in Communication, vol.5, no. 2, pp.1-8, 2020.
doi: 10.3389/fcomm.2020.00002

[9] A. F. Mertz and A. Mishra, “Science's new frontier,” Science, vol. 371, no. 6533, pp. 967,
2021. doi: 10.1126/science.abh3185.

[10] J. Mezirow, “Transformative learning: Theory to practice,” New directions for adult and
continuing education, vol. 1997, no. 74, pp. 5-12, 1997.

[11] L.G. Militello, F. C. Gentner, S.D. Swindler, and G. 1. Beisner, “Conation: Its historical
roots and implications for future research,” In Int. Symp. on Collaborative Technologies and
Systems, May 2006, pp. 240-247.

[12] R. M. Reitan and D. Wolfson, “Conation: A neglected aspect of neurological functioning,”
Arch. of Clin. Neuropsychology, vol. 15, pp. 443-453, 2000.



[13] R. M. Reitan and D. Wolfson, “The differential effect of conation on intelligence test scores
among brain-damaged and control subjects,” Arc. of Clin. Neuropsychology, vol. 19, pp. 23-35,
2004.

[14] P. Jensen, J. B. Rouquier, P. Kreimer, and Y. Croissant, “Scientists who engage with society
perform better academically,” Science and Public Policy, vol. 35, no. 7, pp.527-541, Aug. 2008,
doi: 10.3152/030234208X329130.

[15]J. Drennan and A. Hyde, "Controlling response shift bias: The use of the retrospective pre-
test design in the evaluation of a master's programme," Assessment & Evaluation in Higher
Education, vol. 33, no. 6, pp. 699-709, 2008. doi: 10.1080/02602930701773026.

[16] National Academies of Science. “Science out of the Box: Exploring pathways to relevance
for the millennial generation.” LabX.org. https://labx.org/audience-research/ (accessed Feb. 4,
2022).

[17] National Science Board, National Science Foundation. “Science and Engineering Indicators
2022: The State of U.S. Science and Engineering. NSB-2022-1.” Alexandria, VA. 2022.
[Online]. Available: https://ncses.nsf.gov/pubs/nsb20221

[18] R. Dou, Z. Hazari, K. Dabney, G. Sonnert, and P. Sadler, “Early informal STEM
experiences and STEM identity: The importance of talking science,” Science Education, vol.
103, no. 3, pp.623-637, 2019.

[19]J. Dorsen, B. Carlson, and L. Goodyear, “Connecting informal STEM experiences to career
choices: Identifying the pathway,” Innovative Technology Experiences for Students and
Teachers (ITEST) Learning Resource Center at Education Development Center. Washington,
DC. Feb. 2006. Accessed: May 13, 2022. [Online]. Available:
https://stelar.edc.org/publications/connecting-informal-stem-experiences-career-choices-
identifying-pathway

[20] M. J. Simis, H. Madden, M. A. Cacciatore, and S. K. Yeo, “The lure of rationality: Why
does the deficit model persist in science communication?”” Public understanding of science, vol.
25, no. 4, pp. 400-414, 2016.



Appendix A: Descriptive statistics of full Qualtrics Sample

Demographics for all respondents

Age (n=2938)

Mean = 55.18 years
Std. Deviation = 17.11

Education Level

Some high school = 2.0%

Zip Codes (n=2928)
urbanrural (n=1475)

(n=2937) High school or equivalent (GED) = 30.9%
Associate’s or technical degree = 20.3%
Bachelor’s degree = 28.1%
Graduate degree = 17.7%
Prefer not to say = 1.0%
Residence Respondents from all 50 states and DC. The five states with the

most respondents are also the five most populous states in the U.S.
(CA =8.6%, FL =8.3%, NY = 7.6%, TX = 6.7%, PA =4.5%).

In the second panel questionnaire (Elements cohort), respondents
were asked to identify where they live as urban, suburban, or rural.
Urban = 28.0%

Suburban = 47.5%

Rural = 24.5%

Income (n=2938)

Less than $30,000 = 26.1%

Between $30,000 and $49,999 = 22.0%
Between $50,000 and $99,999 = 29.5%
Between $100,000 and $149,999 = 12.2%
$150,000 or more = 6.1%

Prefer not to answer = 4.2%

Ethnicity (n=2928)

White = 77.5%

African American or Black =9.2%

Asian = 4%

Latino/a/x or Hispanic = 3.6%

American Indian or Alaskan Native = 0.6%
Hawaiian or Pacific Islander = 0.1%
Multiple races/ethnicities = 5.0%

Gender (n=2938)

Female = 65.9%

Male = 33.6%

Nonbinary = 0.4%

Prefer not to answer = 0.2%




STEM background of total respondents

Strong educational background in science, Yes =34.7%
technology, engineering, and/or math? No =65.3%

(n=2937)

Strong professional background in science, Yes =26.6%
technology, engineering, and/or math? No =73.4%

(n=2938)

I enjoy visiting science museums, zoos, and Mean = 5.27

aquariums in my free time (when it is safe to | Std. Deviation = 1.75
do so) (n=2938)
*7-point scale - 1 =not at all me; 7 = very
much me (same below)

I seek out opportunities to attend science Mean = 3.46
festivals and other science-focused events Std. Deviation = 1.97
(n=2938)

I seek out opportunities to attend arts festivals | Mean = 4.09

and other arts-focused events (n=2938) Std. Deviation = 2.02
I enjoy radio shows/movies/TV Mean = 4.34
programs/podcasts that are science- or Std. Deviation = 1.94

technology-focused (n=2938)

I like to stay up-to-date on news related to Mean = 4.31
science and technology (n=2938) Std. Deviation = 1.91

I generally find scientific topics to be dry or Mean = 3.57
boring (n=2937) Std. Deviation = 2.03




Appendix B: Descriptive statistics of Outcome variables

Before and After interest in engineering

P-values
Paired t-test <2.2e-16%**
Paired Samples t-test (n = 50)* 0.3816
Wilcoxon Rank Sum test (sample n = 50)* 0.1266

Before and after knowledge of engineering

P-values
Paired t-test <2.2e-16%***
Paired Samples t-test (n = 50)* 0.07857
Wilcoxon Rank Sum test (sample n = 50)* 0.08669

Comparison of Pre-poll and Post-poll results for Relatedness of disciplines

P-values
Paired Samples t-test (n = 50)* 0.03443%#**
Wilcoxon Rank Sum test (n = 50)* 0.07751

*random sampling w/ replacement to ensure independent samples. set.seed(2022) for
reproducibility in R

Interest in and Knowledge of engineering by presentation treatment, before and after.
Scale of 1 = very little to 7 = a great deal

Before After Before After
presentation presentation presentation presentation
interest in interest in knowledge of knowledge of
engineering engineering engineering engineering
One Engineer Mean = 3.91 Mean = 4.55 Mean = 3.27 Mean = 3.89
(one video) Std Dev = 1.89 Std Dev = 1.94 Std Dev = 1.87 Std Dev = 2.05




Only Engineers | Mean =3.91 Mean = 4.38 Mean = 3.26 Mean = 3.85
(multiple videos) | Std Dev=1.83 |Std Dev=1.84 |Std Dev=1.84 |Std Dev=1.82
Engineer + Mean = 3.69 Mean = 4.23 Mean = 3.06 Mean = 3.72
Others (multiple [ Std Dev = 1.94 Std Dev = 1.96 Std Dev = 1.83 Std Dev = 1.89
videos)
Only Engineers | Mean = 3.92 Mean = 4.68 Mean = 3.30 Mean =3.91
(convergent) Std Dev = 1.89 Std Dev = 1.85 Std Dev = 1.90 Std Dev = 1.89
Engineer + Mean = 3.99 Mean = 4.63 Mean = 3.19 Mean = 3.93
Others Std Dev = 1.89 Std Dev = 1.87 Std Dev = 1.86 Std Dev = 1.90
(convergent)
No engineers Mean = 3.70 Mean = 4.20 Mean = 3.18 Mean = 3.60
Std Dev = 1.88 Std Dev =1.93 Std Dev = 1.85 Std Dev = 1.89
All Mean = 3.83 Mean = 4.41 Mean = 3.20 Mean = 3.78
Std Dev = 1.89 | Std Dev = 1.92 Std Dev = 1.86 | Std Dev = 1.89

Perceived relatedness of disciplines before (prepoll_score) and after (postpoll_score)

presentation.
Scale of 1 = not related at all to 5 = closely related
prepoll score postpoll_score
One Engineer (one video) Mean =2.41 Mean =3.12
Std Dev = 1.46 Std Dev = 1.43
Only Engineers (multiple Mean =2.12 Mean = 2.75
videos) Std Dev = 1.29 Std Dev = 1.34
Engineer + Others (multiple | Mean = 2.52 Mean = 3.09
videos) Std Dev = 1.36 Std Dev = 1.39
Only Engineers (convergent) |Mean = 1.93 Mean = 3.44
Std Dev = 1.32 Std Dev = 1.35
Engineer + Others Mean = 2.71 Mean = 3.79
(convergent) Std Dev = 1.34 Std Dev = 1.21
No engineers Mean = 2.29 Mean = 2.90
Std Dev = 1.44 Std Dev = 1.47




All

Mean = 2.37
Std Dev = 1.40

Mean = 3.19
Std Dev = 1.42

Likelihood to share and learn more by presentation treatment
Scale of 1 = extremely unlikely to 7 = extremely likely

Likelihood to share

Likelihood to learn more

One Engineer (one video) Mean = 3.89 Mean =4.10
Std Dev = 2.05 Std Dev = 2.08
Only Engineers (multiple Mean = 3.58 Mean = 3.81
videos) Std Dev =2.11 Std Dev =2.10
Engineer + Others (multiple [ Mean = 3.57 Mean = 3.75
videos) Std Dev = 2.08 Std Dev =2.10
Only Engineers (convergent) |Mean = 3.89 Mean = 4.06
Std Dev =2.15 Std Dev =2.15
Engineer + Others Mean = 4.04 Mean =4.15
(convergent) Std Dev = 2.09 Std Dev = 2.08
No engineers Mean = 3.70 Mean = 3.83
Std Dev =2.10 Std Dev =2.10
All Mean = 3.79 Mean = 3.95
Std Dev = 2.10 Std Dev = 2.10




Appendix C: Model specifications

General fitted model form:

Outcome variable =

intercept + [Bcont][Xcont] + [Btreat][Xtreat] + [Bdemo][Xdemo] + [Bid][Xid] + error
Where:

intercept is the intercept estimated by the model

Xcont are control variables, including:

RetroPre is a retrospective and self-reported value of the outcome variable, on a scale of
1 = very little to 7 = a whole lot (only for models 1 - 3 and 6 - 8).

DK sports is the difference in self-reported knowledge of sports retrospectively before (1
= little to 7 = a whole lot, scale), and after (1 = little to 7 = a whole lot, scale) seeing a
presentation. This variable is used to control for respondents who may overestimate their
outcome variable measurement, because none of the presentations talked about sports.

Xtreat is a series of treatment dummy variables, whose reference is a treatment of one engineer
presentation video (when all of the variables = 0). The treatment variables include:

Jjust_engineers is a dummy variable that indicates whether or not a respondent saw more
than one video presentation, and only with engineers giving the presentations (1 = yes; 0
= o).

engineoth is a dummy that indicates whether or not a respondent saw more than one
video presentation, with engineers and another discipline researcher giving the
presentations (1 = yes; 0 = no).

Convergent AND just _engineers is a dummy variable that indicates whether or not a
respondent saw the convergent video presentation, with only engineers giving the
presentation (1 = yes; 0 =no).

Convergent AND engineoth is a dummy variable that indicates whether or not a
respondent saw the convergent video presentation, with engineers and other discipline
researchers giving the presentation (1 = yes; 0 = no).

Xdemo is a series of demographic variables, including:



EduN is a self-reported, ordinal education attainment variable approximated as
continuous on a scale of 1 = Some high school; 2 = High school or equivalent (GED); 3 =
Associate’s or technical degree; 4 = Bachelor’s degree; or 5 = Graduate degree.

IncomeN 1is a self-reported ordinal household income variable approximated as
continuous on a scale of 1 = less than $30,000; 2 = between $30,000 and $49,999; 3 =
between $50,000 and $99,999; 4 = between $100,000 and $149,999; or 5 = $150,000 or
more.

ETH White is an on/off variable distinguishing whether a respondent identified as White,
non-hispanic only (1) or whether they identified as an additional race/ethnicity (0).

Gender is a self-reported, categorical variable with the values of ‘Male’, ‘Female’, or
‘Nonbinary.’

Age is a continuous variable, calculated using self-reported year of birth data.
Xid is a series of STEM identity variables, including:

edSTEM is a binomial variable indicating whether a respondent has a strong educational
background in science, technology, engineering, and/or math (1) or not (0).

profSTEM is a binomial variable indicating whether a respondent has a strong
professional background in science, technology, engineering, and/or math (1) or not (0).

STEMid.museums is a self-reported variable measuring how much someone enjoy|s]
visiting science museums, zoos, and aquariums in [their] free time on a scale of 1 = not at
all [] to 7 = very much [].

STEMid.scifest is a self-reported variable measuring how much someone seek[s] out
opportunities to attend science festivals and other science-focused events, on a scale of 1
=not at all [] to 7 = very much [].

STEMid.artsfest is a self-reported variable measuring how much someone seek[s] out
opportunities to attend arts festivals and other arts-focused events, on a scale of 1 = not at
all [] to 7 = very much [].

STEMid.media is a self-reported variable measuring how much someone enjoy[s] radio
shows/movies/TV programs/podcasts that are science- or technology-focused on a scale
of I =notatall [] to 7 = very much [].



STEMid.news is a self-reported variable measuring how much someone like[s] to stay up-
to-date on news related to science and technology on a scale of 1 =notatall []to 7 =
very much [].

STEMid.boring is a self-reported variable measuring how much someone generally
find[s] scientific topics to be dry or boring on a scale of 1 =not at all [] to 7 = very much

(-



Appendix D: Linear models approximating outcomes as continuous scales

Effects (and standard errors) of different presentation treatments compared to seeing one
individual engineering presentation.

Interest in | Knowledge | Relatedness | Likelihood | Likelihood

Engineering of of topics to share to learn
(after Engineering (after something | more about
video/s) (after video/s) about the | something in
video/s) video the video
] ] ] | | 1
Model number 1 2 3 4 5
[ I I | | 1
(Intercept) 4.56 *** 3.98 *** 3.03 *** 4.03 *** 4.19 ***
(0.10) (0.10) 0.12) (0.14) (0.13)
multiple individual presentations, only -0.08 0.08 -0.24 * -0.03 0.02
engineers
(0.08) (0.09) 0.12) (0.14) (0.13)
multiple individual presentations, -0.13 0.02 -0.02 -0.02 -0.03
engineers and other discipline
researchers
(0.08) (0.07) (0.10) (0.11) (0.10)
convergent presentation with only 0.23 ** -0.06 0.73 *** 0.17 0.12
engineers (Movement cohort video)
(0.08) (0.09) 0.11) (0.14) (0.13)
convergent presentation with 0.18 ** 0.10 0.61 *** 0.28 ** 0.20 *
engineers and other discipline
researchers (Elements cohort video)
(0.07) (0.06) (0.09) (0.10) (0.10)
[ I I | | |
N 1846 1848 1646 1851 1851
R2 0.71 0.73 0.24 0.50 0.52

[ 1
All continuous predictors are mean-centered and scaled by 1 standard deviation. Standard errors are

heteroskedasticity robust. *** p<0.001; ** p <0.01; * p <0.05. All variance inflation factor (VIF) scores are
below 4. Demographics of respondents (Xdemo), STEM identity (Xid), and control variables (Xcont) not shown
to save space.



Appendix E: Logit models (outcomes as ‘yes’ or ‘no’ variables)

Log odds ratio likelihoods (and standard errors) of different presentation treatments compared to
seeing one individual engineering presentation.

Interestin | Knowledge | Relatedness High High
Engineering of of topics Likelihood | Likelihood
increased | Engineering | increased to share to learn
more than 1 increased more than 1 | Rating was more
point more than 1 point >4 Rating was
point >4
I | | | | 1

Model # 6 7 8 9 10
multiple individual presentations, only -0.24 0.28 -0.58 * 0.10 0.28
engineers

(0.28) (0.28) (0.25) (0.23) (0.23)
multiple individual presentations, -0.26 0.04 -0.31 0.15 0.22
engineers and other discipline
researchers

(0.23) (0.23) (0.22) (0.20) (0.19)
convergent presentation with only 0.59 * -0.22 1.10 *** 0.23 0.14
engineers (Movement cohort video)

(0.28) (0.27) (0.25) (0.23) (0.23)
convergent presentation with 0.56 ** 0.29 0.89 **x* 0.40 * 0.15
engineers and other discipline
researchers (Elements cohort video)

(0.21) (0.20) (0.20) (0.18) (0.18)

[ I I | | 1

N 1846 1848 1646 1851 1851
AIC 1424.27 1384.93 1571.65 1728.56 1706.43
BIC 1540.20 1500.89 1685.18 1839.03 1816.90
Pseudo R2 0.28 0.35 0.40 0.48 0.51

All continuous predictors are mean-centered and scaled by 1 standard deviation. Standard errors are
heteroskedasticity robust. *** p<0.001; ** p<0.01; * p <0.05. All variance inflation factor (VIF) scores
below 4. Demographics of respondents (Xdemo), STEM identity (Xid), control variables (Xcont), and intercept
not shown to save space.



Appendix F: Differences in outcome variables by cohort

something in the video

Outcome variable Elements Movement degrees of t score p-value
cohort cohort mean freedom
mean
Interest in Engineering (after 4.41 4.41 2929.70 -0.04 0.97
video/s)
Knowledge of Engineering (after 3.80 3.76 2930.00 0.63 0.53
video/s)
Relatedness of disciplines (after 343 2.94 2740.00 9.09 0.00%**
video/s)
Likelihood to share something 3.80 3.78 2936.00 0.25 0.80
about the video
Likelihood to learn more about 3.95 3.94 2936.00 0.04 0.97

Welch two sample t-test used, with alternative hypothesis: true difference in means is not equal to 0 (2-sided test),
unequal variances. *** p <0.001; **p <0.01; *p<0.05




