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Abstract 
 
Does interdisciplinary collaboration make a difference when it comes to communicating 
engineering concepts to community audiences? This research focuses on the effect of 
communication strategies on community attitudes toward engineering research. Two cohorts of 
four academic researchers each, representing eight different disciplinary backgrounds (aviation 
planning, cancer research, math education, musicology, chemical/biomolecular engineering, 
material science, soil science, and theater) developed research communication outputs for the 
public by creating: 1) an individual video presenting their research through the lens of their 
discipline alone; and 2) a convergent video where they collaboratively discussed their research 
with others in their cohort around a common theme, integrating all of their disciplinary lenses. 
Using a panel of respondents (n = 2,938) procured through Qualtrics, and purposefully recruited 
to create a diverse sample in age and racial/ethnic background, the research team randomly 
assigned respondents to watch one of three video treatments: one individual video, multiple 
individual videos, or a convergent video. Then, respondents answered a series of questions about 
their interest and knowledge of several STEM topics, both before and after watching the 
video(s). This retrospective pre/post questionnaire technique helps to alleviate response-shift bias 
present in self-assessed changes in learning attitudes. Our findings show that collaborative 
presentation videos increased self-reported audience interest in engineering, and perceptions of 
disciplinary relatedness more than the non-collaborative, individual presentations made by the 
same researchers. These results suggest a beneficial role for collaborative communication 
strategies to foster interest in engineering among public audiences, even among people without a 
background in STEM. Further, collaborative communication led to an increased sense of 
relatedness among different disciplines, which may be useful for effective public research 
communication about interdisciplinary engineering projects. 
 
Introduction 

There is a general understanding that engineering solves problems, but it is often hard to 
understand the direct context or implications of what engineers do without substantial 
scaffolding. Meanwhile, STEM is a familiar term within contemporary American educational 
systems, but it does not reflect a monolithic domain unto itself, and it is not always clear how 
engineering relates to science, technology, or math within this framing. While engineering alone 



 

 

is a rich area of exploration, contextualizing it with other disciplines can highlight engineers’ 
contributions in real-world environments and applications. Addressing complex challenges 
facing society today requires collaboration incorporating tools, techniques, and insights from 
across the social, natural, and engineering sciences.  

Education in formal and informal learning settings can provide opportunities to explore 
connections across seemingly distant ideas, thus sparking new creative solutions to complex 
societal challenges. In thinking about what engineering education might look like in community 
contexts, it is particularly important to consider how ideas are presented. In informal learning 
settings, public audiences are especially likely to enter with widely varying knowledge and 
interest in specific topics; and they may have priorities and expectations that are not specific to 
learning, such as having fun or spending time with others. In a virtual format that is even farther 
removed from a synchronous event or a shared physical space, variation in audiences’ entry 
conditions is even more profound, because users themselves have more control over the terms of 
and context for their engagement. By making their research more approachable and 
understandable, engineers can help public audiences gain a more complete understanding of the 
work they do and become engaged in ways that might support greater motivation to keep 
learning or act. Most engagement with science occurs outside formal environments [1], and it is 
for these informal learning environments that researchers need to be prepared, both to share 
knowledge and to learn from others. 

The research presented here comes from a novel multi-disciplinary program developed through a 
partnership between The Ohio State University and the Center of Science and Industry (COSI), 
both located in Columbus, OH. The program brings together researchers from divergent 
disciplinary perspectives to communicate science in informal learning settings and examines the 
effect of collaborative - now convergent - communication about a shared theme on attitudes and 
interest in STEM learning. The program pushes the frontier in science and research 
communication for lifelong learning with a collaborative and transdisciplinary approach that 
enables convergent learning through cognitive dissonance. We test the hypothesis that audiences 
will experience learning benefits from convergent communication; that convergent 
communication by researchers will increase positive learning attitudes among audiences, spark 
greater interest in STEM topics, increase desire to further explore topics, and increase likelihood 
that people might share their learning experience with others. By comparing changes in self-
reported STEM learning attitudes across audiences that were shown convergent or individual 
disciplinary-focused videos, we assess the effectiveness of alternative research communication 
strategies. We find that collaborative presentations that include engineering perspectives are 
more effective in increasing interest in engineering relative to an individual presentation on an 
engineering topic. Respondents who watched transdisciplinary, collaborative presentations (those 
with engineers AND another disciplinary researcher present) reported being more likely to share 
something about the presentation with someone else. In addition, public audiences saw different 



 

 

disciplines as more related after convergent presentations than individual presentations. Both 
findings can be useful for preparing public-facing communications about engineering research.  

In this paper, we do the following: discuss the theoretical background for the research, describe 
the researchers who participated in the research and their presentations, outline our analytical 
strategy, and present our findings. Lastly, we conclude with some comments on how this 
research can inform public engineering education and STEM learning broadly.  
 
Theoretical Background  
 
Research is the process of creating and sharing useful ideas. Dissemination of scientific research 
findings is important for other researchers to build on an existing body of knowledge, for funding 
agencies to determine research priorities, and for public audiences to engage with scientific 
discourse. Many funding agencies require public outreach as part of their grant application 
process. However, scientists are not often taught how to craft compelling narratives or share 
insights gleaned from their research in meaningful ways with the public. Effective 
communication of scientific breakthroughs with the public is as important as the content being 
shared, especially when the public is making decisions around science funding [2]. Furthermore, 
scientists’ success in communication depends in large part on trustworthiness, competence, and 
expertise [3]. By engaging in discussion or teaching science topics with the public, trust in 
scientists and trust in science grows. 
 
Critical thinking and creativity are inherently nonlinear and require divergent thought. Cognitive 
dissonance suggests that these creative leaps are likely to occur when people are presented with 
conflicting, divergent perspectives on a topic, creating a dissonance that people actively try to 
overcome [4], [5]. When a listener/viewer is presented with ideas from different researchers, it is 
too easy to compartmentalize the individual findings, even if the topics are actually related. 
Often, cognitive dissonance pushes researchers to find convergence when communicating ideas 
and this same process may help audiences make similar connections across disparate concepts or 
fields of knowledge.  
 
Research supports the idea that learning occurs in three broad domains: the cognitive domain 
(knowledge), the psychomotor domain (physical skills), and the affective domain (attitudes) [6]. 
The process of finding convergence and making the connections explicit in research 
communication trigger different emotional responses in the presenters and the audience. For 
presenters, collaborative communication shifts one’s own perception from being a topical expert 
to a learner and collaborator; for the audience, the confluence of multiple perspectives can 
influence learning in the affective domain by sparking curiosity and shifting away from long held 
attitudes of deficit-based education. Traditionally, communication methods between scientists 
and the public have focused on a knowledge deficit model rather than a discourse/dialogue-based 
approach [7]. When scientists use a dialogue model instead of deficit model to facilitate two-way 



 

 

engagement, understandings can be jointly developed. We especially need inclusive 
communication centered both on equity in access to information and on bringing excluded 
voices, experiences, and concerns to scientific dialogue [8], [9].  
 
Adults use different frames of references to interact with the world that serve as sets of 
assumptions that help people make meaning of experiences and solve problems. An ideal 
environment for adult learning is one where transformative learning can flourish through 
effective discourse between the learner and the educator, followed by critical reflection by the 
learner to integrate the knowledge into their belief system [10]. In addition to cognitive learning, 
the process of developing convergent communication can influence conation, or the intention to 
act based on knowledge and skill [11], and the ability of a person to apply sustained effort 
toward actionable goals [12], [13]. 
 
Finally, beyond communicating research findings in a way that is more wholly understood by the 
public, developing this skill is useful for researchers wishing to increase their impact and 
productivity within their profession. Jensen et al. [14] conducted a bibliometric analysis and 
found that scientists who were active in wider dissemination activities (industry partnerships or 
outreach presentations) produced more scholarship than those who did not participate in wider 
dissemination activities. In fact, the most active researchers publish in traditional journals and 
then share in at least two of the following ways: communicating via popular media, collaborating 
with industry, or teaching. For these reasons, we set out to determine if researchers generally, 
and engineers specifically, could find ways to more effectively communicate their research 
findings with the public in several different informal learning environments.  

Description of researcher experiences and communications formats 
 
For this study, we recruited Ohio State faculty from a variety of colleges and departments to 
participate in a two-step process to improve their communication with the public. They 1) 
attended interactive training experiences to develop communication strategies for a variety of 
informal learning settings and 2) worked together in a pre-assigned cohort to create a series of 
informal learning experiences based on their areas of expertise and inquiry around a common 
theme. As the informal learning programming transitioned to virtual formats during the COVID-
19 pandemic, the researchers prepared recorded presentations for a broad public audience. The 
typical sequence of activities for any researcher involved in the project was as follows:  
 

1) attend a structured series of 2-hour training experiences (6 hours of total contact time 
for those participating during the COVID-19 pandemic) 
 
2) prepare and deliver an individual presentation on their own research or area of 
expertise in an informal learning setting for adults 
 



 

 

3) participate in semi-structured brainstorming sessions with 3-4 researchers from other 
disciplines (i.e., their cohort), with a goal of identifying areas of synergy and 
convergence across their disciplines 
 
4) collaborate with their cohort to develop a hackathon challenge for high school learners 
that leveraged the entire cohort’s expertise 
 
5) collaborate with their cohort to develop a “convergent” presentation that leveraged all 
of the researchers’ expertise in an informal learning setting for adults 

 
For the cohorts described in this paper (one organized around the theme of Movement and one 
organized around the theme of Elements), the informal learning settings for their individual 
presentations, hackathon challenges, and convergent presentations were virtual. However, 
because these settings had analog counterparts that the project team used prior to the COVID-19 
pandemic, the planning and execution of the five activities listed above were largely the same for 
the researchers. The major changes these cohorts experienced related to accessibility 
considerations, technical differences in how audiences for the experiences interacted with the 
programming, and tips for communicating in synchronous digital spaces. Each cohort consisted 
of four researchers; their areas of expertise, whether they identified as engineers, and their 
individual presentation topics are detailed in Table 1. 
 
The primary difference between individual presentations and convergent presentations was that 
individual presentations were typically delivered serially, but separately. In contrast, convergent 
presentations represented an intentional weaving together of ideas from the researchers’ distinct 
perspectives. Both the individual and convergent presentations described in this paper refer to 
informal learning experiences in the context of salon-style gatherings for adult audiences that 
were held on the Zoom video conferencing platform and were recorded. For the Movement 
cohort, individual presentations were pre-recorded videos developed by each researcher, and 
convergent presentations were held as featured events at virtual iterations of the local Columbus 
Science Pub, a monthly speaker series focused on science topics that generally reflect local 
interests, seasonal themes, and/or recent news items. For the Elements cohort, individual 
presentations were featured as part of a virtual edition of Franklinton Friday, a monthly “open 
house” community celebration that features opportunities to experience visual and performing 
arts, as well as science “microlectures” delivered in a cocktail party atmosphere. As with the 
Movement cohort, the convergent presentation developed by the Elements cohort was given at a 
virtual Columbus Science Pub event.  
 
Table 1: Description of researcher individual presentations 



 

 

Cohort 
theme area 

Researcher 
by area of 
expertise 

Engineering 
discipline? 
(yes/no) 

Individual presentation description 

Movement Aviation 
planner 

yes Transportation impacts the individual, but must be 
designed as a system with nuanced angles of social 
and technical considerations. Urban planning 
interacts with other aspects of society such as with 
the environment, economy, and equity. 

Movement Cancer 
researcher 

yes Cancer biology is not typically studied in terms of 
how they spread (metastasis). Engineering concepts 
such as fluid mechanics and different engineering 
systems can be introduced as a means to study the 
properties of tumors.  

Movement Math 
education 
researcher 

no Math education and conjunctions of how access to 
math education is tied with identity. Social identities 
could be tied to math education in the form of digital 
mathematical storytelling for greater impact on 
students. 

Movement Musicologist no The theory of the purpose of music in evolutionary 
terms has been contested, but recent studies suggest 
that music creates group cohesion and bonding, 
which is critical for survival. 

Elements Chemical/Bio
molecular 
engineer 

yes Polymers are identified by chains of repeated 
chemical units, which have specific properties that 
can be simulated computationally. Copolymers 
(polymers made up of two polymers) interact and can 
be simulated in software to discover interesting 
properties.  

Elements Material 
scientist 

yes Material science plays a large role in sustainability 
and in designing how materials with specific 
properties could be more efficient. The example of 
moving away from incandescent bulbs to LED bulbs 
is a result of material science engineering improving 
sustainability.  



 

 

Elements Soil scientist no Soil stores carbon and this soil organic carbon is 
sensitive to environmental changes such as 
temperature and moisture. Soil can be studied with its 
chemical, physical, and biological properties to 
potentially become a way to store and offset 
atmospheric carbon.  

Elements Theater artist no Story can be explored as a fundamental element of 
theater, and it is often relegated to be spatially 
constrained on a stage. Performances can become 
more engaging and tell a more intimate story when 
the fourth wall is removed and told directly to the 
audience.   

 
 
Convergent presentations for the Elements and Movement cohorts employed various strategies to 
integrate narratives of differing disciplines together. The Movement cohort used a mutual 
interview strategy, where the researchers alternated roles in asking and answering questions, and 
facilitated a conversation that identified common ground across their disciplines. The cohort split 
up into pairs; the aviation planner and cancer researcher interviewed each other, and the math 
education researcher and musicologist interviewed each other. Overall, this style of co-
presenting with carefully curated dialogue made it possible to weave common themes in the 
researchers’ perspectives. This approach was also casual and conversational in nature compared 
to the individual presentations, and allowed for banter between the researchers. The Elements 
cohort presentation took a different approach and presented as a group of four. The theater artist, 
who assumed the role of moderator, asked each researcher to tie their presentation to a particular 
object that was displayed to the audience. This object was the central grounding point of the 
presentation and was continually referred back to by each researcher. Although the content of 
each presenter was generally preserved, using a specific object as a point of convergence allowed 
the presentations to transition smoothly. In highlighting intersections between disciplines, the 
cohort also recognized their emotional journey as researchers with powerful storytelling as a 
means to connect with the audience. 
 
An additional advantage of digital formats was that recordings of the presentations could provide 
a reasonable proxy of the audience experience. The research team minimally edited the videos, 
both the individual presentations and the convergent presentations, for length and then used 
online survey panels assembled via Qualtrics to gather substantially more - and more diverse - 
audience survey data.  
 
Analytical strategy  
 



 

 

Experimental design with Qualtrics survey; post with retro-pre-method 
 
The research team purchased Qualtrics-recruited respondent panels to approximate a generally 
diverse public audience. Panel respondents watched one of three different video treatments 
(Figure 1): 1) individual, which consisted of one video with a single researcher presenting 
(between 5 and 7 minutes); 2) multiple, which consisted of two or three of the individual videos 
(between 10 and 15 minutes); and 3) convergent, which consisted of one video with two or more 
researchers presenting together (between 10 and 20 minutes). Treatments were randomly 
assigned until quotas were achieved. We collected a total of 2,938 responses, split roughly 
evenly between the two cohorts (1,463 Movement and 1,475 Elements). The convergent 
treatment was purposefully oversampled as it is a key component of the research study, and 
because we wanted sufficient power to estimate a medium size effect (755 individual, 870 
multiple, and 1,313 convergent). After watching the videos, respondents answered a series of 
questions about their interest and knowledge of several STEM topics, both before and after 
watching the video(s). This retrospective pre/post questionnaire technique helps to alleviate 
response-shift bias present in self-assessed changes in learning attitudes [15]. Respondents also 
answered other questions, including demographic and STEM identity questions.  
 
Figure 1: Video treatments for Qualtrics panels 

For the purposes of this paper, we grouped our respondents into six categories, based on the 
video treatment they received and the researchers present in those videos (see Table 2). These 
groups consist of respondents who watched: an individual video with an engineer presenting, 
multiple individual videos where all the presenters were engineers, multiple individual videos 
where at least one presenter was an engineer and other(s) were from different disciplines, a 
convergent video where both presenters were engineers, a convergent video where two of the 
presenters were engineers and two were from other disciplines, or video(s) of any treatment type 
where none of the presenters were engineers.  



 

 

 
Table 2: Video treatment groups for analysis 

Individual Videos Convergent Videos 

One Engineer (one video) (n=377) N/A 

Only Engineers (multiple videos) (n=227) Only Engineers (n=370)* 

Engineer + Others (multiple videos) (n=412)# Engineer + Others (n=589)^ 

No Engineer (n=963) 

 
#multiple treatment from Elements cohort where the chemical/biomolecular engineer and/or 
material scientist were present  
*convergent treatment from Movement cohort with aviation planner and cancer researcher  
^convergent treatment from Elements cohort  
 
Qualtrics panel sampling 
 
The first Qualtrics panel, with videos from the Movement cohort, initially used a general U.S. 
sample with no demographic quotas (n = 1,061). However, the respondents did not represent a 
diverse audience — they were older (median age 65 years old) and primarily white, non-
Hispanic (91%). So, we launched a smaller panel for the Movement videos (n= 402) with 
specific demographic quotas to increase the number of respondents sampled under the age of 50 
and who identified as a race/ethnicity other than white, non-Hispanic. This way, we could be 
more confident that our results reflected the experiences of a diverse audience, in terms of age 
and ethnic/racial identity. The Elements panel (n=1,475) was run after the Movement panel so 
we included demographic quotas from the launch to ensure younger and more racially diverse 
respondents were represented. 
 
Demographics of sample 
 
For all respondents (n=2,938), the average age of respondents was 55 years, and the median age 
was 59 years. Nearly eight in ten respondents (77.5%) identified as white-only, and two in three 
respondents (65.9%) identified as female. Nearly half of the respondents (45.8%) reported 
completing a 4-year college degree or higher. Half of respondents (48.1%) reported annual 
household incomes under $50,000, and 18.3% reported annual household incomes over 
$100,000. Responses were received from all 50 states and DC. In the Elements panel 
questionnaire, respondents were asked to identify where they live as urban, suburban, or rural; 
almost half of respondents (47.5%) reported living in a suburban area. Full demographic details 



 

 

of the respondents can be found in Appendix A. We included these demographic variables in our 
analyses to ensure that we captured diverse identities and socioeconomic statuses (See Statistical 
analysis and modeling section below).  
 
Respondents’ background in STEM 
 
We also asked respondents about their educational and professional backgrounds and 
identification with STEM topics, to provide a baseline for experiences and values respondents 
are ‘bringing with them’ when they watch these presentations. About one-third of respondents 
(34.7%) reported having a strong educational background in science, technology, engineering, 
and/or math. One-quarter of respondents (26.6%) reported having a strong professional 
background in those areas. Respondents were also asked to rate how much a series of statements, 
inspired by the LabX program [16], about leisure time activities related to STEM and informal 
learning describe them (on a 7-point scale from “1 - not me at all” to “7 - very much me”). 
Respondents were most likely to enjoy visiting science museums, zoos, and aquariums (mean = 
5.27). Average scores hovered around the middle of the scale for seeking out arts-focused events 
(mean = 4.09), consuming science- or technology-focused media (mean = 4.34), and liking to 
stay up-to-date on news related to science and technology (mean = 4.31). Respondents were 
similarly likely to find scientific topics dry or boring (mean = 3.57) as they were to seek out 
opportunities to attend science festivals or other science-focused events (mean = 3.46). We also 
included STEM identity and background indicators in the models (See Statistical analysis and 
modeling section below). 
 
Operationalizing learning outcomes 
 
We focus on five, self-reported learning outcome indicators: interest in engineering, 
knowledge of engineering, perceived relatedness of the disciplines represented, likelihood to 
share something about their experience, and likelihood to learn more about something in 
the presentation(s). We used affect response measures to indicate changes in learning attitudes 
and bigger picture cognitive measures to indicate changes in knowledge as a result of the 
presentations. Because the presentations represented several different topics and, at most, a 20-
minute learning experience in a non-formal context (i.e. not a formal class), we did not directly 
measure content-specific learning outcomes.  
 
We measured interest in engineering using retro-pre/post, 7-point Likert-like scale items. This 
means that after respondents watched a randomly assigned presentation treatment, we asked 
them to first think retrospectively about their interest in engineering before they watched the 
presentation and rate their interest on a scale of 1 = very little interest to 7 = a great deal of 
interest. Next, we asked them to think about after the presentation treatment and rate their 
interest in engineering on the same scale. This retro-pre/post technique has been shown to more 



 

 

accurately reflect change in learning attitudes as a result of an experience than a traditional 
pre/post, because it asks respondents to reflect on their learning attitudes with the experience in 
mind.  
 
We measured knowledge of engineering using retro-pre/post, 7-point Likert-like scale items. 
This means that after respondents watched a randomly assigned presentation treatment, we asked 
them to first think about before the presentation treatment and rate their knowledge of 
engineering retrospectively, on a scale of 1 = very little knowledge to 7 = a great deal of 
knowledge. Next, we asked them to think about after the presentation treatment and rate their 
knowledge of engineering on the same scale. 
 
We measured the perceived relatedness of the disciplines in order to detect the presence of 
higher-level, conceptual connections that audiences might pick up from the presentations. To do 
this, we used a 5-point scale with graphic representations of relatedness (see Figure 2). We used 
traditional pre/post technique, asking them about perceived relatedness before their presentation 
treatment and then after their presentation treatment. Perceiving disciplines as more related 
would indicate that audiences probably found similarities between them, potentially making a 
relatively less known discipline more familiar through its similarities with a more well-known 
discipline. 
 
Figure 2: Graphic questionnaire item measuring perceived relatedness of disciplines 

 
 
We measured likelihood to share something about their experience and likelihood to learn 
more about something in the presentation(s) using a post-only, 7-point Likert-like scale of 1 = 



 

 

extremely unlikely to 7 = extremely likely. Higher scores in these measures (i.e. scores greater 
than 4) indicate positive learning attitudes, which would make people more open to more 
learning experiences. 
 
Statistical analysis and modeling 
 
First, we examined descriptive statistics for the learning outcomes, grouped by presentation 
treatment, to detect any general patterns (Appendix B). We then modeled respondent learning 
outcomes using both linear (Ordinary Least Squares) and nonlinear (logit) functions. We used 
linear models that approximate the learning outcomes as continuous, numeric variables. Doing so 
allowed us to estimate the incremental effect of different presentation treatments on outcomes, 
compared to a single, individual engineering presentation treatment. Since the outcome scales are 
subjective and not, strictly speaking, continuous variables, we also used a logit, nonlinear model 
to estimate the likelihood of a large change (>1 on the 5- and 7-point scales) in the interest and 
knowledge of engineering and relatedness of disciplines outcome variables, and the likelihood 
of a high score (>4 on a 7-point scale) occurring for the likelihood to share and likelihood to 
learn more outcome variables. For all of these models, we included demographic and STEM 
identity variables to account for diversity of respondents that influence learning outcomes (see 
Appendix C for a general specification of the models). 
 
In estimating the effect of a specific presentation treatment on learning outcomes, we control for 
a range of demographic characteristics and unobservable factors that are common to each 
treatment experience. Because of a tendency for some respondents to overestimate the change in 
their learning attitudes as a result of their experience, we also had respondents answer retro-
pre/post items about their interest in and knowledge of sports. Since none of the presentation 
treatments included anything about sports, we would not expect any change in knowledge of 
sports. If a respondent did indicate a change, controlling for this effect will reduce potential bias 
in how the respondent reported change in the outcomes of interest, i.e. interest and knowledge of 
engineering.  
 
We also set up the analyses to model measures of learning outcomes after the presentation 
treatments, because not all had a pre- or retro-pre-measurement component. We included pre- / 
retro-pre-scores for outcomes with these components, as a way of controlling for the amount of 
change seen before and after. We also control for correlation between idiosyncratic error and 
control variables in the model and report (heteroskedasticity) robust standard errors. See 
Appendix C, Xcont, and Appendices D and E for more details. 
 
Findings and Discussion 
 



 

 

Consistent with our expectation, the presence of engineers affected respondents’ reported interest 
and knowledge in engineering. After watching the video(s), respondents who saw at least one 
engineer present (in any treatment type) shared statistically significantly higher average ratings 
for interest and knowledge in engineering than did respondents who saw no engineers in the 
presentation. Differences in average reported levels of interest and knowledge are statistically 
significant at the 95% confidence level (Table 3). Because of this clear and unsurprising 
difference, we dropped the “no engineer” treatment from the rest of the analysis. This allowed us 
to focus on the effects of different combinations of presenters and treatment types focused 
specifically on engineers.  
 
Table 3: Interest and knowledge of engineering by presence of engineers in presentation 

 Engineers present 
(mean) 

Engineers not present 
(mean) 

P-value of 2 sample t-
test 

Interest in engineering 
(after presentation) 

4.513 4.198 .000031 

Knowledge of 
engineering (after 
presentation) 

3.867 3.598 .000311 

 
After dropping the non-engineer presentation data (963 observations), we conducted both linear 
and non-linear regression analyses to understand differences in four presentation treatments 
compared to the single, individual engineering presentation treatment. The four treatments 
include:  
 

● multiple individual presentations, only engineers;  
● multiple individual presentations, engineers and other discipline researchers;  
● convergent presentation with only engineers; and  
● convergent presentation with engineers and other discipline researchers. 

 
The linear models show a consistent, positive effect of convergent presentations compared to a 
single, individual engineer presentation (see Figure 3 for general results, and Appendix D for 
more technical model results). Multiple, individual presentations with the same researchers did 
not yield any obvious, positive learning outcomes compared to the single, individual engineer 
presentation. Convergent presentations with engineers and other discipline researchers, in 
particular, had significant, positive effects on more learning outcomes (all outcomes except the 
knowledge of engineering learning) relative to convergent presentations with only engineers. 
This suggests that collaboration across multiple disciplines in developing convergent research 
communication may influence learning in different and more ways than a collaboration among 
just engineers.  



 

 

 
Figure 3: Presentation treatment effects, compared to seeing just one individual engineering 
presentation. Linear model, scaled estimates, with 95% confidence interval bands. 

 
A continuous scale does not account for subjective differences across respondents. For example, 
a reported change in interest from 3 to 5 on a Likert scale is not necessarily comparable to a 
change from 5 to 7 by another individual. We therefore estimate non-linear logit models to 
recover the likelihood of increase in interest/knowledge in engineering. The logit models also 
suggest a significant, positive benefit of the collaborative, convergent presentations compared to 
a single, individual engineering presentation (see Figure 4 for general results, and Appendix E 
for more technical model results). While not yielding estimates with the same significance as in 
the linear models, the logit models show that respondents who saw the convergent presentation 
with engineers and other researchers were significantly more likely to have a higher learning 
outcome than those respondents who just saw a single, individual engineering presentation. 
Much like the linear models, multiple individual presentation treatments with the same 
researchers did not show any obvious learning outcome benefits compared to the single, 
individual engineering presentation.  
 
Figure 4: Presentation treatment likelihoods (log odds ratios), compared to seeing just one 
individual engineering presentation. Logit model, scaled likelihood estimates with 95% 
confidence interval bands 
 



 

 

 
Results from this study suggest that people who have exposure to collaborative research 
communication with multiple engineers are more likely to have higher learning outcomes 
relative to those who just see a single presentation with an engineer. Seeing the same 
combination of researchers present multiple times, but not in collaboration, does not appear to 
have as much positive benefit on audiences as the collaborative (convergent) presentations. 
Further, convergent presentations with engineers and researchers from other disciplines appear to 
have even more learning benefits on audiences, even those specific to engineering (such as 
interest). This suggests that collaborative and interdisciplinary research communication may be 
the best way to both communicate engineering topics to audiences, as well as get them interested 
in learning more and sharing more about their experience.  
 
While we believe the results of our study suggest significant positive effects of convergent 
research communication (i.e. research communication that is collaborative and interdisciplinary 
around a common theme) on engineering learning attitudes among broadly diverse community 
audiences, the results should be extrapolated with caution. Comparisons in the effect of 
convergent communication are based on presentations across two different themes (Movement 
and Elements), and we do not know the degree to which the theme might have impacted learning 
outcomes. However, we do show in Appendix F that there was not a significant difference in 
general learning outcomes between audiences who saw Movement themed presentations and 
those who saw Elements themed presentations, with the exception of audience perception of 
disciplines’ relatedness. We also cannot definitively rule out any individual researcher effects on 
learning outcomes. Continuing the study in the future with more researcher cohorts, as well as 
with more diverse researchers, would improve our ability to detect the impact that researcher 
identity, presentation skill, and other individual researcher characteristics have on audience 
learning attitudes. Further, while we made efforts to ensure that our sample of respondents (the 



 

 

‘audience’) reflected some ethnic/racial, age, and gender diversity, we cannot claim that our 
sample was representative of the general population, nor that the sub-samples were large enough 
to make claims about the learning outcomes of specific groups of people (e.g., young, minority 
males). With that in mind, we still argue that our sampling strategy consisted of enough 
socioeconomic, demographic, and heritage diversity to sufficiently control for these differences 
while focusing our attention on the added impact of the presentation type on learning outcomes.  
 
Conclusion 

Effective research communication is an extremely valuable skill that prospective engineers need 
to develop. Strong communication of engineering research results can illuminate pathways 
toward engineering among public audiences and support more public interest and investment in 
the work of engineers. Increased interest and engagement with problems that require engineering 
solutions is a necessary first step to build a robust STEM workforce. In the United States, the 
STEM labor force represents 23% of the total labor force, involves workers at all educational 
levels, and includes higher proportions of men, Whites, Asians, and foreign-born workers than 
the proportions of these groups in the U.S. population [17]. Disparities in demographic and 
socioeconomic conditions present significant challenges in building an equitable and 
representative pipeline in STEM education. Informal learning platforms and the integration of 
STEM with the arts and humanities in communicating research ideas that are relevant and 
relatable to the society at large can broaden knowledge and engagement in engineering 
education. Engagement with science occurs largely outside formal environments [2] and it is for 
these informal learning environments that researchers need to be prepared, both to share 
knowledge and to learn from others. Exposure to STEM research through informal learning 
environments influences both interest in STEM fields [18] and STEM identities [19].  Our 
findings suggest that one way to improve research communication with public audiences is by 
having experts from different disciplines intentionally collaborate and converge around a topic. 
Collaborative communication skills can shift learning away from deficit models of science 
communication [20], and increase equitable public engagement with scientific research for 
bidirectional learning, especially when integrating arts and humanities with science and 
engineering. 

Through response data that reflect diverse audiences’ takeaways from various combinations of 
presentation elements, our findings suggest that using a “convergent” style (i.e., presentations 
that explicitly combine different disciplinary perspectives through collaboration) holds particular 
promise for communicating engineering research. Compared to individual engineering 
presentations, convergent presentations that included at least one engineer supported significant 
growth in interest in engineering among respondents. As might be expected, this style of 
presentation also supported audiences in perceiving connections between presenters’ topics. 
Furthermore, convergent presentations that included an engineer and another kind of researcher 
showed a significant effect (compared to individual engineering presentations) on respondents' 



 

 

likelihood to share something about their experience, as well as their desire to learn more about 
the topic. Taken together, these outcomes reflect forms of engagement that can make engineering 
topics more meaningful and relevant, even to people who do not have an existing inclination to 
think about engineering.  

Our research team is eager to build on the present study by exploring the boundaries of 
convergent presentations, namely by asking researchers and community members to collaborate 
around themes that communities themselves identify as important. Though not within the scope 
of this study, our team also considers how researchers collaborate and create successful 
convergent research communication, and necessary support structures, a vital area for future 
study. In this spirit, our ongoing research agenda includes substantial attention to the 
professional benefits of transdisciplinary collaboration. Within formal education spaces for 
engineers, it may be particularly productive to invest in professional learning opportunities that 
can support both better communication by engineers and those researchers who see the benefit of 
clearly articulating the content and value of their work. As an immediate takeaway from this 
work, we encourage readers to consider that intentional collaboration with other disciplines holds 
particular promise for helping engineers highlight the importance of what they do.  
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Appendix A: Descriptive statistics of full Qualtrics Sample 
 
Demographics for all respondents 

Age (n=2938) Mean = 55.18 years 
Std. Deviation = 17.11 

Education Level 
(n=2937) 

Some high school = 2.0% 
High school or equivalent (GED) = 30.9% 
Associate’s or technical degree = 20.3% 
Bachelor’s degree = 28.1% 
Graduate degree = 17.7% 
Prefer not to say = 1.0% 

Residence 
Zip Codes (n= 2928) 
urbanrural (n=1475) 

Respondents from all 50 states and DC. The five states with the 
most respondents are also the five most populous states in the U.S. 
(CA = 8.6%, FL = 8.3%, NY = 7.6%, TX = 6.7%, PA = 4.5%). 
 
In the second panel questionnaire (Elements cohort), respondents 
were asked to identify where they live as urban, suburban, or rural. 
Urban = 28.0% 
Suburban = 47.5% 
Rural = 24.5% 

Income (n=2938) Less than $30,000 = 26.1% 
Between $30,000 and $49,999 = 22.0%  
Between $50,000 and $99,999 = 29.5% 
Between $100,000 and $149,999 = 12.2% 
$150,000 or more = 6.1% 
Prefer not to answer = 4.2% 

Ethnicity (n=2928) White = 77.5% 
African American or Black = 9.2%  
Asian = 4% 
Latino/a/x or Hispanic = 3.6% 
American Indian or Alaskan Native = 0.6% 
Hawaiian or Pacific Islander = 0.1% 
Multiple races/ethnicities = 5.0% 

Gender (n=2938) Female = 65.9% 
Male = 33.6% 
Nonbinary = 0.4% 
Prefer not to answer = 0.2%  

 
 



 

 

 
STEM background of total respondents 

Strong educational background in science, 
technology, engineering, and/or math? 
(n=2937) 

Yes = 34.7% 
No = 65.3% 

Strong professional background in science, 
technology, engineering, and/or math? 
(n=2938)  

Yes = 26.6% 
No = 73.4% 

I enjoy visiting science museums, zoos, and 
aquariums in my free time (when it is safe to 
do so) (n=2938) 

Mean = 5.27 
Std. Deviation = 1.75 
 
*7-point scale - 1 = not at all me; 7 = very 
much me (same below) 

I seek out opportunities to attend science 
festivals and other science-focused events 
(n=2938) 

Mean = 3.46  
Std. Deviation = 1.97  

I seek out opportunities to attend arts festivals 
and other arts-focused events (n=2938) 

Mean = 4.09 
Std. Deviation = 2.02 

I enjoy radio shows/movies/TV 
programs/podcasts that are science- or 
technology-focused (n=2938) 

Mean = 4.34 
Std. Deviation = 1.94 

I like to stay up-to-date on news related to 
science and technology (n=2938) 

Mean = 4.31 
Std. Deviation = 1.91 

I generally find scientific topics to be dry or 
boring (n=2937) 

Mean = 3.57 
Std. Deviation = 2.03  

 
 
 
  



 

 

Appendix B: Descriptive statistics of Outcome variables 
 
Before and After interest in engineering 

 P-values 

Paired t-test  < 2.2e-16*** 

Paired Samples t-test (n = 50)* 0.3816 

Wilcoxon Rank Sum test (sample n = 50)* 0.1266 

 
 
 
Before and after knowledge of engineering 

 P-values 

Paired t-test  < 2.2e-16*** 

Paired Samples t-test (n = 50)* 0.07857 

Wilcoxon Rank Sum test (sample n = 50)* 0.08669 

 
 
Comparison of Pre-poll and Post-poll results for Relatedness of disciplines 

 P-values 

Paired Samples t-test (n = 50)* 0.03443*** 

Wilcoxon Rank Sum test (n = 50)* 0.07751 

 
 
*random sampling w/ replacement to ensure independent samples. set.seed(2022) for 
reproducibility in R  
 
Interest in and Knowledge of engineering by presentation treatment, before and after.  
Scale of 1 = very little to 7 = a great deal 

 Before 
presentation 
interest in 
engineering 

After 
presentation 
interest in 
engineering 

Before 
presentation 
knowledge of 
engineering 

After 
presentation 
knowledge of 
engineering 

One Engineer 
(one video) 

Mean = 3.91 
Std Dev = 1.89  

Mean = 4.55 
Std Dev = 1.94 

Mean = 3.27 
Std Dev = 1.87 

Mean = 3.89 
Std Dev = 2.05 



 

 

Only Engineers 
(multiple videos) 

Mean = 3.91 
Std Dev = 1.83 

Mean = 4.38 
Std Dev = 1.84 

Mean = 3.26 
Std Dev = 1.84 

Mean = 3.85 
Std Dev = 1.82 

Engineer + 
Others (multiple 
videos) 

Mean = 3.69 
Std Dev = 1.94 

Mean = 4.23 
Std Dev = 1.96 

Mean = 3.06 
Std Dev = 1.83 

Mean = 3.72 
Std Dev = 1.89 

Only Engineers 
(convergent) 

Mean = 3.92 
Std Dev = 1.89 

Mean = 4.68 
Std Dev = 1.85 

Mean = 3.30 
Std Dev = 1.90 

Mean = 3.91 
Std Dev = 1.89 

Engineer + 
Others 
(convergent) 

Mean = 3.99 
Std Dev = 1.89 

Mean = 4.63 
Std Dev = 1.87 

Mean = 3.19 
Std Dev = 1.86 

Mean = 3.93 
Std Dev = 1.90 

No engineers Mean = 3.70 
Std Dev = 1.88 

Mean = 4.20 
Std Dev = 1.93 

Mean = 3.18 
Std Dev = 1.85 

Mean = 3.60 
Std Dev = 1.89 

All  Mean = 3.83 
Std Dev = 1.89 

Mean = 4.41 
Std Dev = 1.92 

Mean = 3.20 
Std Dev = 1.86 

Mean = 3.78 
Std Dev = 1.89 

 
 
Perceived relatedness of disciplines before (prepoll_score) and after (postpoll_score) 
presentation.  
Scale of 1 = not related at all to 5 = closely related 

 prepoll_score postpoll_score 

One Engineer (one video) Mean = 2.41 
Std Dev =  1.46 

Mean = 3.12 
Std Dev =  1.43 

Only Engineers (multiple 
videos) 

Mean = 2.12 
Std Dev =  1.29 

Mean = 2.75 
Std Dev = 1.34   

Engineer + Others (multiple 
videos) 

Mean = 2.52 
Std Dev =  1.36 

Mean = 3.09 
Std Dev =  1.39 

Only Engineers (convergent) Mean = 1.93 
Std Dev =  1.32 

Mean = 3.44 
Std Dev =  1.35 

Engineer + Others 
(convergent) 

Mean = 2.71 
Std Dev =  1.34 

Mean = 3.79 
Std Dev =  1.21 

No engineers Mean = 2.29 
Std Dev =  1.44 

Mean = 2.90 
Std Dev =  1.47 



 

 

All  Mean = 2.37 
Std Dev = 1.40 

Mean = 3.19 
Std Dev = 1.42 

 
 
Likelihood to share and learn more by presentation treatment 
Scale of 1 = extremely unlikely to 7 = extremely likely 

 Likelihood to share Likelihood to learn more 

One Engineer (one video) Mean = 3.89 
Std Dev = 2.05 

Mean = 4.10 
Std Dev = 2.08 

Only Engineers (multiple 
videos) 

Mean = 3.58 
Std Dev = 2.11 

Mean = 3.81 
Std Dev = 2.10 

Engineer + Others (multiple 
videos) 

Mean = 3.57 
Std Dev = 2.08 

Mean = 3.75 
Std Dev = 2.10 

Only Engineers (convergent) Mean = 3.89 
Std Dev = 2.15 

Mean = 4.06 
Std Dev = 2.15 

Engineer + Others 
(convergent) 

Mean = 4.04 
Std Dev = 2.09 

Mean = 4.15 
Std Dev = 2.08 

No engineers Mean = 3.70 
Std Dev = 2.10 

Mean = 3.83 
Std Dev = 2.10 

All  Mean = 3.79 
Std Dev = 2.10 

Mean = 3.95 
Std Dev = 2.10 

 
 
 
  



 

 

Appendix C: Model specifications 

General fitted model form: 

Outcome variable =  

intercept + [Bcont][Xcont] + [Btreat][Xtreat] + [Bdemo][Xdemo] + [Bid][Xid] + error 

Where: 

intercept is the intercept estimated by the model 

Xcont are control variables, including: 

RetroPre is a retrospective and self-reported value of the outcome variable, on a scale of 
1 = very little to 7 = a whole lot (only for models 1 - 3 and 6 - 8). 

DK_sports is the difference in self-reported knowledge of sports retrospectively before (1 
= little to 7 = a whole lot, scale), and after (1 = little to 7 = a whole lot, scale) seeing a 
presentation. This variable is used to control for respondents who may overestimate their 
outcome variable measurement, because none of the presentations talked about sports. 

Xtreat is a series of treatment dummy variables, whose reference is a treatment of one engineer 
presentation video (when all of the variables = 0). The treatment variables include: 

just_engineers is a dummy variable that indicates whether or not a respondent saw more 
than one video presentation, and only with engineers giving the presentations (1 = yes; 0 
= no). 

engineoth is a dummy that indicates whether or not a respondent saw more than one 
video presentation, with engineers and another discipline researcher giving the 
presentations (1 = yes; 0 = no). 

Convergent AND just_engineers is a dummy variable that indicates whether or not a 
respondent saw the convergent video presentation, with only engineers giving the 
presentation (1 = yes; 0 = no).  

Convergent AND engineoth is a dummy variable that indicates whether or not a 
respondent saw the convergent video presentation, with engineers and other discipline 
researchers giving the presentation (1 = yes; 0 = no).  

Xdemo is a series of demographic variables, including: 



 

 

EduN is a self-reported, ordinal education attainment variable approximated as 
continuous on a scale of 1 = Some high school; 2 = High school or equivalent (GED); 3 = 
Associate’s or technical degree; 4 = Bachelor’s degree; or 5 = Graduate degree.  

IncomeN is a self-reported ordinal household income variable approximated as 
continuous on a scale of 1 = less than $30,000; 2 = between $30,000 and $49,999; 3 = 
between $50,000 and $99,999; 4 = between $100,000 and $149,999; or 5 = $150,000 or 
more.  

ETH_White is an on/off variable distinguishing whether a respondent identified as White, 
non-hispanic only (1) or whether they identified as an additional race/ethnicity (0).  

Gender is a self-reported, categorical variable with the values of ‘Male’, ‘Female’, or 
‘Nonbinary.’  

Age is a continuous variable, calculated using self-reported year of birth data.  

Xid is a series of STEM identity variables, including: 

edSTEM is a binomial variable indicating whether a respondent has a strong educational 
background in science, technology, engineering, and/or math (1) or not (0). 

profSTEM is a binomial variable indicating whether a respondent has a strong 
professional background in science, technology, engineering, and/or math (1) or not (0). 

STEMid.museums is a self-reported variable measuring how much someone enjoy[s] 
visiting science museums, zoos, and aquariums in [their] free time on a scale of 1 = not at 
all [] to 7 = very much []. 

STEMid.scifest is a self-reported variable measuring how much someone seek[s] out 
opportunities to attend science festivals and other science-focused events, on a scale of 1 
= not at all [] to 7 = very much []. 

STEMid.artsfest is a self-reported variable measuring how much someone seek[s] out 
opportunities to attend arts festivals and other arts-focused events, on a scale of 1 = not at 
all [] to 7 = very much []. 

STEMid.media is a self-reported variable measuring how much someone enjoy[s] radio 
shows/movies/TV programs/podcasts that are science- or technology-focused on a scale 
of 1 = not at all [] to 7 = very much []. 



 

 

STEMid.news is a self-reported variable measuring how much someone like[s] to stay up-
to-date on news related to science and technology on a scale of 1 = not at all [] to 7 = 
very much []. 

STEMid.boring is a self-reported variable measuring how much someone generally 
find[s] scientific topics to be dry or boring on a scale of 1 = not at all [] to 7 = very much 
[]. 

 

  



 

 

Appendix D: Linear models approximating outcomes as continuous scales 

Effects (and standard errors) of different presentation treatments compared to seeing one 
individual engineering presentation.  

 Interest in 
Engineering 

(after 
video/s) 

Knowledge 
of 

Engineering 
(after 

video/s) 

Relatedness 
of topics 

(after 
video/s) 

Likelihood 
to share 

something 
about the 

video 

Likelihood 
to learn 

more about 
something in 

the video 

Model number 1 2 3 4 5 

(Intercept) 4.56 *** 3.98 *** 3.03 *** 4.03 *** 4.19 *** 

 (0.10)    (0.10)    (0.12)    (0.14)    (0.13)    

multiple individual presentations, only 
engineers 

-0.08 0.08 -0.24 *   -0.03 0.02 

 (0.08)    (0.09)    (0.12)    (0.14)    (0.13)    

multiple individual presentations, 
engineers and other discipline 
researchers 

-0.13 0.02 -0.02 -0.02 -0.03 

 (0.08)    (0.07)    (0.10)    (0.11)    (0.10)    

convergent presentation with only 
engineers (Movement cohort video) 

0.23 **  -0.06 0.73 *** 0.17 0.12 

 (0.08)    (0.09)    (0.11)    (0.14)    (0.13)    

convergent presentation with 
engineers and other discipline 
researchers (Elements cohort video) 

0.18 **  0.10 0.61 *** 0.28 **  0.20 *   

 (0.07)    (0.06)    (0.09)    (0.10)    (0.10)    

N 1846 1848 1646 1851 1851 

R2 0.71 0.73 0.24 0.50 0.52 

All continuous predictors are mean-centered and scaled by 1 standard deviation. Standard errors are 
heteroskedasticity robust.  *** p < 0.001;  ** p < 0.01;  * p < 0.05. All variance inflation factor (VIF) scores are 
below 4. Demographics of respondents (Xdemo), STEM identity (Xid), and control variables (Xcont) not shown 
to save space.  

 
 
  



 

 

Appendix E: Logit models (outcomes as ‘yes’ or ‘no’ variables) 

Log odds ratio likelihoods (and standard errors) of different presentation treatments compared to 
seeing one individual engineering presentation.  
 

 Interest in 
Engineering 

increased 
more than 1 

point 

Knowledge 
of 

Engineering 
increased 

more than 1 
point  

Relatedness 
of topics 
increased 

more than 1 
point 

High 
Likelihood 

to share 
Rating was 

>4 

High 
Likelihood 

to learn 
more 

Rating was 
>4  

Model # 6 7 8 9 10 

      

multiple individual presentations, only 
engineers 

-0.24 0.28 -0.58 *   0.10 0.28 

 (0.28)    (0.28)    (0.25)    (0.23)    (0.23)    

multiple individual presentations, 
engineers and other discipline 
researchers 

-0.26 0.04 -0.31 0.15 0.22 

 (0.23)    (0.23)    (0.22)    (0.20)    (0.19)    

convergent presentation with only 
engineers (Movement cohort video) 

0.59 *   -0.22 1.10 *** 0.23 0.14 

 (0.28)    (0.27)    (0.25)    (0.23)    (0.23)    

convergent presentation with 
engineers and other discipline 
researchers (Elements cohort video) 

0.56 **  0.29 0.89 *** 0.40 *   0.15 

 (0.21)    (0.20)    (0.20)    (0.18)    (0.18)    

N 1846 1848 1646 1851 1851 

AIC 1424.27 1384.93 1571.65 1728.56 1706.43 

BIC 1540.20 1500.89 1685.18 1839.03 1816.90 

Pseudo R2 0.28 0.35 0.40 0.48 0.51 

All continuous predictors are mean-centered and scaled by 1 standard deviation. Standard errors are 
heteroskedasticity robust.  *** p < 0.001;  ** p < 0.01;  * p < 0.05. All variance inflation factor (VIF) scores 
below 4. Demographics of respondents (Xdemo), STEM identity (Xid), control variables (Xcont), and intercept 
not shown to save space.  

 
  



 

 

Appendix F: Differences in outcome variables by cohort 

Outcome variable Elements 
cohort 
mean 

Movement 
cohort mean 

degrees of 
freedom 

t score p-value 

Interest in Engineering (after 
video/s) 

4.41 4.41 2929.70 -0.04 0.97 

Knowledge of Engineering (after 
video/s) 

3.80 3.76 2930.00 0.63 0.53 

Relatedness of disciplines (after 
video/s) 

3.43 2.94 2740.00 9.09 0.00*** 

Likelihood to share something 
about the video 

3.80 3.78 2936.00 0.25 0.80 

Likelihood to learn more about 
something in the video 

3.95 3.94 2936.00 0.04 0.97 

Welch two sample t-test used, with alternative hypothesis: true difference in means is not equal to 0 (2-sided test), 
unequal variances. *** p < 0.001;  ** p < 0.01;  * p < 0.05 

 


