
SURFSUP: Learning Fluid Simulation for Novel Surfaces

Arjun Mani*1, Ishaan Preetam Chandratreya*1, Elliot Creager2 3, Carl Vondrick1, Richard Zemel1

1 Columbia University 2 University of Toronto 3 Vector Institute
surfsup.cs.columbia.edu

Time

Input Scene and Initial Conditions Our Predicted Rollout

a)

b)

Figure 1: We introduce SURFSUP, which learns to predict how fluid particles interact with novel, complex 3D surfaces.

Abstract

Modeling the mechanics of fluid in complex scenes is
vital to applications in design, graphics, and robotics.
Learning-based methods provide fast and differentiable
fluid simulators, however most prior work is unable to ac-
curately model how fluids interact with genuinely novel sur-
faces not seen during training. We introduce SURFSUP, a
framework that represents objects implicitly using signed
distance functions (SDFs), rather than an explicit represen-
tation of meshes or particles. This continuous representa-
tion of geometry enables more accurate simulation of fluid-
object interactions over long time periods while simultane-
ously making computation more efficient. Moreover, SURF-
SUP trained on simple shape primitives generalizes con-
siderably out-of-distribution, even to complex real-world
scenes and objects. Finally, we show we can invert our
model to design simple objects to manipulate fluid flow.

*Authors contributed equally.

1. Introduction

Across engineering and science, the simulation of fluid
dynamics has become an invaluable tool, and it will be
a crucial component for building visual systems that are
capable of understanding and interacting with real-world
environments. Recently, a new class of simulators has
emerged that learn the dynamics of physical systems from
data [13, 31, 25]. These simulators offer several advantages
over classical simulators by increasing speed, reducing re-
liance on hand-crafted dynamics models, and providing dif-
ferentiable rollouts for solving inverse problems. Recent
approaches based on graph neural networks (GNNs) have
in particular shown impressive accuracy and generalization
on a wide range of fluids represented as particle or mesh-
based systems [25, 23].

In a wide variety of applications areas, fluid simula-
tion must properly handle interaction with solid structures
to attain practical relevance. Many problems involving

ar
X

iv
:2

30
4.

06
19

7v
1

 [c
s.L

G
]

13
 A

pr
 2

02
3

http://surfsup.cs.columbia.edu

fluid simulation are fundamentally about object design; for
example, designing aerodynamic shapes for cars and air-
planes. In robotics too, an intelligent robot would have to
understand fluid-surface interactions; for example, to carry
a mug of hot coffee to a person without spilling the liquid
from the container.

In both cases, the need to accurately model how flu-
ids interact with novel solid surfaces1— with new shapes,
configurations, orientations, and so on—motivates an chal-
lenging out-of-distribution (OOD) generalization subprob-
lem for fluid simulation.

In this paper, we tackle this problem by introducing
Surface implicit sUbstitution for particles (SURFSUP), a
framework for simulating the interactions of fluids and sur-
faces by representing surfaces using implicit representa-
tions [19]. Current GNN-based approaches represent sur-
faces explicitly, discretizing them into particles and aug-
menting the graph accordingly [25]. Implicit representa-
tions, in particular signed distance functions which repre-
sent surfaces as zero-level sets of functions, offer several
compelling advantages. They can smoothly represent con-
tinuous surfaces, provide rich geometric information (e.g.
whether a point is in the interior/exterior of the object), and
can scale easily to large objects and scenes. Due to these
properties, many state-of-the-art generative models for 3D
shapes learn shapes with signed distance functions. We ar-
gue that these properties are useful not just for statics but
also dynamics: in order to accurately model fluid-surface
interactions for potentially complex surfaces, smooth and
informative representations of local surface geometry are
needed. In turn, we posit that these locally informative
representations will enable fluid simulators to appropriately
model interaction with never-before-seen surfaces.

Concretely, we propose an approach that integrates
signed distance representations of surfaces [22, 19] with
graph neural network models [26, 25]. Our architecture fol-
lows the encode-process-decode paradigm [25], where the
particles in the physical system at time T are encoded into
a graph, followed by several message-passing steps, and fi-
nally a decoder predicts the dynamics (accelerations). We
represent the surface using its signed distance function, and
exploit geometric properties of SDFs to model the distance
and orientation of fluid particles with respect to the surface.

Experiments show that our approach can model fluid-
surface interactions over long rollouts with a high degree of
accuracy and visual realism. SURFSUP can model surfaces
far beyond its training domain; when trained on simple
primitive shapes (e.g. spheres, cones, toruses), we general-
ize zero-shot to complex real-world objects and scenes rep-
resented using neural implicit generative models (Fig. 1).
We compare to a method which represents the surface as
particles inside the graph network simulator, and show that

1For brevity we refer to surfaces of solid objects simply as “surfaces”.

our model achieves better generalization and efficiency, and
can better handle complex surface geometry. Finally, we
demonstrate the potential of SURFSUP to solve inverse
problems across two object design tasks. Overall, our paper
bridges learned physical models for dynamics and 3D im-
plicit representations, and takes a step towards AI models
which can understand and help design the physical world.

2. Related Work

Learning Differentiable Simulators. Using machine
learning for predicting and modeling complex physical sys-
tems is a rapidly growing area of research. Learned physics
simulators have been shown to accurately simulate colliding
rigid objects, deformable objects, fluids, and other complex
systems [13, 3, 12, 31, 25, 21].

Recent progress in learned fluid simulation has been
driven by the Lagrangian viewpoint, which tracks the mo-
tion of fluid particles over time. Graph neural networks
(GNNs) have in particular emerged as effective forward
models for fluid simulation, and have demonstrated more
stability and generalization capability than previous meth-
ods due to useful inductive biases [13, 14, 27, 25]. Sanchez-
Gonzalez et al. [25] introduced a GNN architecture which
can accurately and generalizably model fluid behavior over
long rollouts; most subsequent work builds off their ap-
proach. However, most of these works generally consider
simple surfaces; e.g. only cube-shaped containers for flu-
ids. There has been little work focused on fluid-surface in-
teractions; Mayr et al. [16] introduce an approach specifi-
cally for triangularized meshes. All the above approaches
use particle-based representations of surfaces; we will ar-
gue that implicit representations allow learning of more ac-
curate, generalizable physical dynamics.

Some works have explored the possibility of using
learned fluid simulators for solving inverse problems [27,
12, 2]. Allen et al. [2] showed that graph network simula-
tors can be used to solve design tasks by rolling out fluid
trajectories and using gradient-based optimization. In 3D,
they show that a 2D plane with a learned height field can be
used to split a stream of fluid to fall into several locations on
the ground. SDFs have the advantage of being able to learn
geometry in a more smooth and unconstrained way, which
could help solve inverse problems.
3D Implicit Representations. Implicit representations
have become state-of-the-art for generative models of 3D
objects [17, 22, 6, 29, 30]. These models represent the sur-
face as a function F (x). There are several choices for F .
Park et al. [22] show that signed distance functions F (x)
are particularly effective and informative representations.
Compared to point clouds [1, 28] or voxels [7, 33], mod-
els based on SDF representations can smoothly represent
complex geometry, are compact and efficient, and can be
learned effectively [29, 6]. Follow-up work has also stud-

ied learning “dual” generative models that jointly learn an
uncontrained representation and one composed of primitive
shapes [10, 32].
Implicit Representations for Physical Dynamics. Some
classical particle-based fluid simulators based on the
Smoothed Particle Hydrodynamics (SPH) formalism [20]
have transitioned from particle-based to implicit surface
representations. [11, 9, 4]. In these simulators implicit
surfaces allow for smoother fluid motion with less artifacts
[11]. For general-purpose learned simulators (GNNs), there
is little prior work using implicit rather than particle-based
representations of surfaces.

Another line of work combines implicit generative mod-
els with physical simulators [18, 24]. Mezghanni et al. [18]
generate more physically stable SDF shapes by backpropa-
gating gradients through a physical simulation layer. Their
simulation mainly considers Newtonian dynamics. Our
contribution is an effective, generalizable forward model
for complex systems like fluids that represents surfaces ac-
curately and efficiently, and can also be used for solving
inverse problems.

3. Method

3.1. Setup: Particle-Based Fluid Simulation

We address the problem of learning the physical dynam-
ics of fluids interacting with surfaces. Given the state of a
physical system X0 and some initial conditions (e.g. grav-
ity, other external forces), rolling out a fluid simulation over
T steps produces a sequence of states X(1), ..., X(T). In
this paper, we focus on particle-based simulation; the state
of the system at time t is represented by a set of particles
X(t) = (p(t)1 ,p(t)n), where pi is the position of particle i
in 3D space. A rollout over T steps is produced by repeat-
edly applying a forward model S✓ : X(t) ! X(t+1), which
takes in the particle positions at time t (and optionally a
short history t � 1, ...) and produces the next-step particle
positions. While the forward model can be used to directly
predict X(t+1), most methods instead predict intermediate
values Y , typically next-state accelerations for each parti-
cle, which can then be numerically integrated (e.g. Euler in-
tegration) to produce X(t+1); concretely, our task is to learn
the parameters ✓ of this forward model f✓ : X(t) ! Y .

3.2. Graph Networks for Particle-Based Simulation

Graph neural networks lend themselves naturally to
particle-based simulation, since they compute pairwise in-
teractions between nodes and aggregate these interactions.
Graph Network-based Simulators (GNS), a model archi-
tecture introduced by Sanchez-Gonzalez et al. [25], have
in particular shown state-of-the-art performance on simu-
lating fluids over long rollouts. These methods follow an
“encode-process-decode” paradigm. First, the state X(t)

is encoded into a graph, where nodes vi are instantiated
using a set of features (e.g. previous velocities, parti-
cle type, etc.); nodes vi, vj are then connected with an
edge eij if their distance is less than a connectivity ra-
dius ✏. Each node and edge is associated with an em-
bedding. The “processor” stage then passes the encoded
graph through M message-passing steps. Each message-
passing step takes the current graph {(vi, vj , eij)}(m). An
edge module first computes the updated edge embeddings
e(m+1)
ij = fe(v

(m)
i , v(m)

j , e(m)
ij); then the edge embed-

dings are aggregated to compute updated node embeddings
v(m+1)
i = fn(v

(m)
i ,

P
j2N(i) e

(m)
ij), where N(i) are the set

of neighbors of node i. fe and fn are generally MLPs
with 2-3 hidden layers, and the weights are shared across
edges/nodes (although differing across message passing
steps), Finally, the “decoder” step applies an MLP fD to
the final node embeddings to predict the accelerations {yi}.

In our problem, we further assume that there exists some
rigid surface S that interacts with the fluid throughout the
simulation. The GNS approach handles surfaces by dis-
cretizing the surface into particles (i.e. a point cloud) and
adding these particles {si} to the graph (denoting them by
a different particle type, and masking during position up-
dates) [25]. Follow-up work for mesh-based simulation
handles surfaces similarly by representing the surface as an
irregular mesh and adding nodes for mesh vertices [23].

3.3. Modeling Fluid-Surface Interactions with SDFs

We propose to model the interactions of fluids and sur-
faces with signed distance function (SDF) representations
of surfaces. An SDF represents an object as a function

Figure 2: Rigid surfaces can be represented compactly and
implicitly as the level set of a SDF: {x|F (x) = 0}. Eval-
uating F and its derivatives at particle position p provides
useful information for simulating the interaction of that par-
ticle with the surface.

.

F (x) = s, which takes a spatial point x 2 R3 and outputs
its distance s to the closest corresponding point on the sur-
face. The function is “signed”, such that it takes on positive
values for points outside the surface and negative values in
the surface interior. The surface of the object is implicitly
represented as the zero-level set F (x) = 0. Explicit rep-
resentations of the surface can be constructed by applying
meshing algorithms such as Marching Cubes [15].

3.3.1 Locality and Geometric Information for Fluid-

Surface Interactions

A key insight of our method is that fluid-surface interac-
tions are inherently about local rather than global surface
geometry. The interaction of a fluid with a surface depends
on a small local region of the surface, over which the ge-
ometry can have limited variation. This suggests that an
effective representation of local surface geometry, trained
on a variety of object shapes, can generalize OOD to shapes
that may look different globally. By contrast, particles are
not an effective representation of surface geometry; for any
moderately complex surface, discretization leads to artifacts
such as non-smooth fluid motion and even penetration of the
surface boundary (we confirm this empirically).

By contrast, we argue that SDFs are a smooth, richly
informative representation of local surface geometry for
learning generalizable fluid-surface interactions. Our key
insight is shown in Figure 2. Given a solid surface repre-
sented as an SDF F (x), we can use properties of the SDF
to inform the behavior of a fluid particle as it reaches the
surface. The value of the SDF F (x) gives the distance from
the particle at point p to the closest point on the surface p0.
Moreover, the SDF gradient rF (x) provides the unit-norm
displacement vector from the particle to its closest surface
point (p�p0)

||p�p0|| . This can be shown by observing that the SDF
decreases most quickly on the line from p to p0. Thus, the
SDF and its gradient provide the distance and orientation of
the fluid particle w.r.t. to the closest point on the surface;
as the fluid particle approaches the surface, its acceleration
will more closely approach rF (x) and it will rebound from
the surface. Moreover, since the gradient varies smoothly
because of the continuity of F , these features do not suffer
from artifacts.

Higher order derivatives of the SDF can also be used to
gain geometric information. For example, we could march
to the surface by computing p � F (x)rF (x). At the sur-
face, the Hessian r2F (x) is the shape operator; its eigen-
values provide the principal directions of surface curvature
1 and 2, and the mean curvature is H = 1

2Tr(r2F). We
can also estimate the surface curvature via finite differences
by slightly perturbing the gradient vector on each axis and
computing the SDF (Fig. 2). In this paper, we only use
the SDF and its gradient as features without curvature in-

Figure 3: Given fluid particles and the SDF, our method
augments the constructed graph with features from the
SDF. We then apply message-passing and predict dynam-
ics, weighting near-surface errors more highly in our loss.

formation; this can be seen as an effective theory where the
relevant “local region” of the surface is a single closest point
on the surface. As we show, modeling surfaces using SDF
representations helps our fluid simulator generalize beyond
the available training data by modeling fluid-surface inter-
actions for unseen surfaces.

3.4. Model

Having developed our ideas about SDFs and model-
ing fluid-surface interactions, we now describe our ap-
proach, which we call Surface implicit sUbstitution
for particles (SURFSUP). We learn a forward predictor
f✓ : X(t), F ! Y , which takes as input a set of particle
positions and a surface implicitly parametrized by an SDF
F . We adopt the encode-process-decode paradigm for our
model, but make two key changes. In the encoder step,
for each fluid particle pi we add the value of the SDF
F (pi) and its gradient rF (pi) to the initial node repre-
sentations, such that the new representation is v0(0)i =

[v(0)i , F (pi),rF (pi)]. This is the way that the surface is en-
coded into the model; subsequently no particles represent-
ing the surface are added to the graph. The updated node
embeddings are then passed through the “processor” with
several message-passing steps and then decoded to predict
the accelerations as standard. The other modification we
make is to weight particles close to the surface higher dur-
ing training when predicting dynamics. This has the effect
of teaching the model to prioritize modeling fluid-surface
interactions accurately. Since the model is predicting next-
step accelerations, our loss becomes:

L =
X

F (pi)>↵

||a(t)i �âi
(t)||2+

X

F (pi)↵

�||a(t)i �âi
(t)||2 (1)

In our experiments, we set ↵ based on the “neighborhood
radius” of the classical simulator we train against, and set
� = 5. We found that this weighting helped the model learn

surface interactions more quickly without sacrificing over-
all accuracy on fluid prediction. Note that the SDF allows
loss weighting to be implemented in a very natural way, by
simple thresholding. Our approach is shown in Fig. 3.

3.5. Other Advantages of SDF Representations

We have argued for SDFs from the perspective of achiev-
ing smooth, information-rich representations of local sur-
face geometry. Here we mention other advantages of SDFs,
each of which we demonstrate in our experimental results.
Efficient message passing in the GNN. By modeling sur-
faces implicitly, we reduce the number of unique particles
needed to compose the GNN’s state. This allows us to per-
form more lightweight and computationally efficient simu-
lation, as well as run the model for more message-passing
steps. This advantage becomes especially clear for large
objects/scenes or objects with complex surface geometry.
Shape Design with SDFs. SDFs are a useful paradigm for
shape design and assembly. This is because compositions
of shapes can be generated by union, intersection, and dif-
ference operations; e.g. the union of two SDFs F1 and F2

is min(F1, F2). The construction of shapes using primi-
tives and these operations is known as Constructive Solid
Geometry (CSG), and is implemented in many CAD pack-
ages for object design [8]. Moreover the recent emergence
of neural SDF models as state-of-the-art 3D shape represen-
tations, offers another compelling avenue for shape design
with end-to-end learning. These suggest that good forward
models with SDFs could be leveraged for design problems.

4. Experiments

4.1. Fluid Domains

We evaluate our approach on complex prediction tasks
involving fluids interacting with a variety of surfaces. Our
main contribution here is a 3D fluid dataset consisting of
water interacting with a range of primitive shapes, across
shape parameters, positions, and orientations. For all our
datasets, we use SPlisHSPlasH [5], a 3D-particle-based
fluid simulator based on the SPH technique to generate the
ground-truth. We emphasize that SURFSUP is trained only
on simulations containing these primitive shapes and gen-
eralizes zero-shot to complex objects and scenes; we return
to this point shortly.

PrimShapes Dataset. We train our models primarily
on a 3D water dataset, where the fluid interacts with var-
ious shapes. We initialize a block of fluid directly above
the shape, then let it fall due to gravity. The entire scene
takes place in a 1 ⇥ 1 ⇥ 2 m container. A random rota-
tion is applied to the base shape which sits on the bottom
of the container, and the initial position of the shape is also
randomized. We extract 800 time-steps from the fluid roll-
out (with �t = 0.005); this corresponds to 4000 steps for

Figure 4: Training dataset: Examples showing the initial
state of the simulation for different primitive shapes. Our
training dataset consists only of simulations involving these
five primitive shapes.

the classical simulator, which requires small time-steps for
stability.

We use five “primitive” shapes in our dataset: spheres,
boxes, cylinders, cones, and toruses. These shapes have an-
alytical SDFs; for example the origin-centered sphere with
radius r has SDF F (p) = ||p||2 � r. Several of the other
primitives have exact (if more complex) SDFs. These prim-
itive shapes and their rigid-body transformations cover a
range of geometric features such as curved surfaces, holes,
edges, differently sloped/curved faces, and corners. Our key
insight is that accurate fluid-surface simulation depends on
understanding fluid interactions with local surface geome-
try; these primitives encompass a wide range of local ge-
ometric variation, which allows our model to generalize to
interactions with surfaces of entirely novel global geometry.
In Fig. 4 we show the initial states for several simulations
in our training dataset. We again emphasize this important

point: SURFSUP is trained on simulations containing only
these primitive shapes, and is evaluated on complex shapes
and real-world scenes without further training, for which
it produces accurate, realistic fluid simulations (see Fig. 1,
Fig. 5). Our training set consists of 1000 simulations and
our testing set 100 simulations from the same distribution
of shapes. See Appendix D.1 for further details on the cre-
ation of the dataset.

4.1.1 Generalization Test-Sets

We create a range of qualitative and quantitative evaluation
scenarios to test our model’s generalization ability (see Ap-
pendix D for details on these test sets):

Prim-OOD (60 simulations). The primitives-OOD dataset
contains the same shapes as above, with OOD shape param-
eters from the training shapes (e.g. higher or lower radius r
and height h for the cylinder).
Prim-Unions (40). This test set includes all possible pair-
wise unions of five shapes in our dataset. See Appendix D.2
for details and example shapes in this test set.
Funnels (12). We examine the model’s ability to han-

Chamfer Chamfer Surface Number Inside Mean SDF Inside
Testing Set SURFSUP GNS [25] SURFSUP GNS SURFSUP GNS SURFSUP GNS

Primitives 0.0297 0.0285 4.704 5.451 0 2000 -1.04e-11 -2.48e-05
Primitives-OOD 0.0321 0.0343 10.951 18.445 324 33006 -1.65e-06 -0.0006
Primitives-Unions 0.0380 0.0348 24.553 26.307 10000 63000 -4.46e-05 -0.001
Funnels 0.0362 0.0521 9.990 13.663 2 7204 -2.51e-09 -0.001
Complex-Scenes 0.0638 0.2658 50.521 276.176 40513 257722 -0.0011 -0.026

Table 1: Results
on in-distribution
(Primitives) and OOD
test sets, comparing
SURFSUP to GNS
[25] which repre-
sents the surface as
particles.

dle “differences” of shapes by creating funnels, which are
formed by carving an inverted cone out of a cylinder.
‘Complex’ Scenes (7). As the most challenging test of our
model’s generalization, we examine predicted rollouts on
several real world objects (Details of these objects and their
sources are in Appendix D.3). To do so, we leverage neural
SDF representations of shapes, which can represent com-
plex shapes with high accuracy and fidelity [30, 22]. Instead
of an analytical SDF, we use a trained neural SDF f✓(p) to
generate our SDF features during our forward pass. To test
our model’s ability to generalize to complex objects/scenes,
we train a single SIREN model [30] for 7 fine-grained ob-
jects (including the coral, lion, and room scenes shown in
Fig. 1, Fig. 5). For each surface we create a fluid scene us-
ing the ground-truth simulator, and evaluate our method on
this small Complex-Scenes dataset. To represent the ge-
ometry at an appropriate scale, these objects are scaled 2x
in the fluid scene compared to previous datasets. To test our
model on families of shapes, which gives us the capacity
to solve inverse problems, we train a variational DeepSDF
model [22] for the ShapeNet chair and bowl categories.

4.2. Training Details

For all experiments, we train our model on the
PrimShapes dataset. The training data is pairs X(t), X(t+1)

from the ground-truth simulator. We use a graph network
(GN) architecture with 10 message-passing steps and train
with Adam for 2M steps (see Appendix E.1 for details).

4.3. Metrics and Baseline

Although we train on next-step prediction, we mea-
sure performance on full rollouts. We use mean Cham-
fer distance between the predicted particles P and ground-
truth G to measure overall rollout agreement (averaging
across timesteps). Compared to MSE, Chamfer distance
is permutation-invariant and therefore is a better measure
of similarity between fluid flows [25]. This metric, how-
ever, can be noisy since it averages over long rollouts on
chaotic systems with many particles. Since we focus on
the quality of fluid-surface interactions, we also compute a
“Chamfer surface” metric that focuses on prediction errors
near the surface. For each time-step, we consider the pre-
dicted point cloud only near the surface (where F (p) < ↵

for some threshold ↵) and measure the Chamfer distance of
these particles to G, summing over the particles; we do this
symmetrically for G (see Appendix E.2 for details). The in-
tuition is that discrepancies between P and G near the sur-
face are particularly important for evaluating fluid-surface
interactions.

Since surface penetration is a serious failure mode, we
also measure the number of particles inside the surface
through the rollout (summing over the number of time-
steps). Additionally, we compute the average SDF value
for particles inside the surface, indicating the extent of sur-
face penetration (since SDFs become increasingly negative
deeper into the surface interior).
Baseline. Our main comparison is to the graph network
simulator (GNS) proposed by Sanchez Gonzalez et al. [25].
Their approach proposes to represent surfaces explicitly by
discretizing the surface into particles, which are added to
the graph and participate in the message-passing. To imple-
ment this baseline, we convert all the SDFs in our datasets
to meshes using Marching Cubes [15]. From this mesh we
uniformly sample 2000 surface particles (comparable to the
number of fluid particles in our simulations) and add them
to the graph. In all our experiments we compare our ap-
proach which represents the surface implicitly, to this base-
line with explicit surface particles.

While the baseline method could in principle be ex-
tended to include local surface information (e.g. using
surface normal estimates for each particle as additional
features, or mesh connectivity), we omit such an exten-
sion here. This is because any explicit representation of
large surfaces quickly becomes computationally infeasible,
especially for large objects/scenes or complex geometry.
Whereas the simulation quality of SURFSUP scales with the
complexity of the SDF network, the baseline quality scales
with the number of particles. We show in Sec 5 that SURF-
SUP still outperforms (with lower computational cost and
inference time) a baseline with more particles.

5. Results

SURFSUP can accurately predict fluid behavior over long
rollouts, interacting with a range of complex surfaces (Fig.
5). Across the different shapes in our dataset (e.g. cylinders,
cones, tori) and different position and orientations, we can

Time Time

Input Scene and

Initial Conditions

Input Scene and

Initial ConditionsPredicted Rollout Predicted Rollout

Baseline

Our

Prediction

Ground

Truth

Figure 5: Although SURFSUP is only trained on primitive shapes, our model generalizes to complex and real-world shapes
without any additional training. We visualize our predictions (middle) for two scenes. In comparison, the baseline (top)
often generates unrealistic predictions, such as having water penetrate solid objects. In many cases, the predictions from the
baseline cause the water to disappear because it falls through the floor (top right).

generate accurate and visually realistic predictions of fluid
behavior (see Appendix A for rollouts on primitive shapes
and simpler OOD test sets). Our key result is the following:
we find that SURFSUP can generalize effectively to shapes
that are significantly OOD for the learned model, and even
generalize to complex real-world shapes and scenes. This
demonstrates the ability of our approach to leverage the
rich geometric information provided by the SDF to handle
a wide range of surface geometry; and suggests that our ap-
proach can lead to a robust and generally accurate learned
fluid simulator.

Quantitative Results and Comparison to Baseline. We
evaluate SURFSUP on rollouts from an in-distribution test
set and several OOD test sets, and compare to the GNS
baseline. Results are shown in Table 1. Across all test
sets, our model’s fluid predictions display significantly
lower surface penetration than the baseline (e.g. 324 vs.
33006 particles on average for the primitives+OOD test
set). Moreover, for those few particles which have pene-
trated the surface, the average SDF value for our method
is nearly zero; this implies that any particle that penetrates
the boundary (F (p) < 0) is quickly projected outward to
the region F (p) > 0. This indicates that the SDF pro-
vides a strong signal for fluid motion near the boundary; as
F (p) approaches 0 the particle tends to move away from or

parallel to the surface. Chamfer distance near the surface,
which measures overall accuracy of fluid-surface interac-
tions beyond surface penetration, is consistently lower for
our method than the baseline. This indicates that our model
accurately predicts fluid dynamics near the surface, and that
SURFSUP produces more accurate fluid simulations for in-
teractions with solid objects compared to GNS [25]. Overall
Chamfer distance between the two models is generally com-
parable. This is unsurprising given that small differences in
particle positions along long time-horizons, potentially far
away from the surface, can accumulate error (see Sec. 4.3).

Overall, the quantitative results indicate that SURFSUP
generalizes well to unseen shapes. For example, the fun-
nel is an inverted cone carved out of a cylinder; our model
has seen standard cones and cylinders in isolation, and can
reason successfully about dynamics inside the funnel (see
Fig. 14). In the next section, we discuss our central results
on complex shapes and scenes.

Generalizing to Novel Shapes The key result of our
method is its ability to generalize zero-shot to new, com-
plex shapes and objects unseen during training. We evalu-
ate SURFSUP on several real-world scenes, including chairs
and bowls from Shapenet, and fine-grained objects and
scenes in the real-world (See Fig. 1, Fig. 5, and Fig. 6). Re-
markably SURFSUP trained only with primitive shapes can

Figure 6: SURFSUP predictions on ShapeNet objects.

generalize zero-shot to neural SDF representations of com-
plex shapes and scenes. This is notable for two reasons:
first, our chosen real-world objects differ widely in global
geometry (see the variation in Fig. 5 and Fig. 6). indicating
that our approach can robustly handle real-world variations
in geometry to predict fluid behavior. Moreover, the SDFs
generated by neural SDFs are imperfect compared to analyt-
ical SDFs. Despite these challenges, SURFSUP can predict
fluid behavior with a high degree of accuracy and visual re-
alism, while avoiding unintuitive artifacts (such as surface
penetration) seen in the GNS baseline. Quantitative results
(Table 1, row ‘Complex-Scenes’) show that SURFSUP sig-
nificantly outperforms GNS across all metrics on a set of
real-world objects and scenes; SURFSUP’s advantages are
elucidated by the larger object sizes and more complex ge-
ometry that characterizes these scenes.

Two key generalization capabilities of our method, com-
pared to the particle-based baseline, are the ability to handle
fine geometric structure, and to scale to large and complex
scenes. Fig. 7 compares SURFSUP with GNS on fluid in-
teracting with a coral object. GNS is unable to accurately
model fluid interacting with the fine-grained maze of coral
tentacles. In contrast, our method can accurately capture the
fluid interacting with and filtering through the coral object
(see the website for a video comparison). For generalizing
to complex geometric objects, our implicit representation of
surface geometry provides a better foundation for accurate
fluid prediction.

Another key ability of SURFSUP is its ability to scale ef-
fectively to large, complex scenes. The scaling law of our
method is the capacity of the network needed to represent
the scene. In contrast GNS scales up with the number of
particles, which quickly becomes computationally infeasi-
ble for fluid simulation with large scenes. In Fig. 8 we show

Figure 7: Comparing our method and the GNS baseline on
the coral object. The particle-based baseline cannot capture
the fine structure of the coral.

Figure 8: Comparing SURFSUP and the GNS baseline on
the room scene, highlighting different areas of the scene.
Notice that significant penetration of the surface occurs in
the baseline, while our method’s predictions correctly re-
spect the shape of the objects in the scene.

our prediction on the room scene vs. the baseline and high-
light different regions of the simulation. In the baseline the
fluid consistently penetrates and passes through the surface
of objects, while in SURFSUP the fluid interacts in accurate
and realistic ways with the furniture in the scene.

Increasing Number of Surface Particles for GNS. In our
experiments we use a baseline with 2000 surface parti-
cles; here we study increasing the number of particles for
the GNS baseline on two different scenes. We examine
a scene in the Primitives-Unions test set (the intersection
of a sphere and box, see Fig. 14c), for which the GNS
baseline’s fluid predictions display significant penetration
of the surface. We increase the number of surface parti-
cles for the baseline from 2000 to 5000 (Fig. 9). As the
number of particles increases for the baseline, thus improv-
ing the resolution of the surface, surface penetration de-
creases and GNS’s fluid predictions improve (see left plot
and qualitative results in Fig. 9). However, even at 5000

https://surfsup.cs.columbia.edu/

surface particles, the number of fluid particles penetrating
the surface for the baseline is an order of magnitude higher
than for SURFSUP (12285 vs. 490 particles for ours over
the entire rollout). Moreover, the computational cost of
the baseline, indicated by the maximum number of edges
in the fluid graph during a rollout, increases significantly
with the number of surface particles (more than 2x of our
method at 5000 surface particles). Our method displays
near-zero surface penetration with constant, smaller-sized
graphs. We conduct a similar analysis of the room scene
(Fig. 5), which is situated in and occupies a high volume
of a [�1, 1]3 region. Remarkably, we find that our method
outperforms a baseline even with 10000 surface particles
representing the room scene (measured by overall Chamfer
surface distance, see Appendix B for details). This indi-
cates that while adding particles can improve the accuracy
of GNS, in contrast to SURFSUP there is a fundamental dif-
ficulty in scaling up the baseline to large, complex scenes.

Figure 9: Comparing our method vs. the baseline with
more surface particles. (a) Left shows how surface pen-
etration is affected; even as surface penetration decreases
with the number of surface particles, our model consistently
displays lower surface penetration (red line, 490 particles).
The speech bubble zooms in on 4000-5000 surface particles
for the baseline, where our approach still has an order of
magnitude improvement. The right plot shows how the size
of the graphs increase with the number of surface particles.
We measure the maximum number of edges during the roll-
out, which indicates memory cost. (b) Final timesteps of the
fluid rollouts for our method and the baseline at 2000, 3000,
and 4000 particles. Surface penetration for the baseline ex-
pectedly reduces with more particles; however, our method
displays improved, near-zero penetration with no increase
in computational cost.

Scaling up SURFSUP. As a final test of our method’s
ability to scale up in size and complexity, we set up a natu-
ral scene with complex and fast-varying topography, based
on the Puncak Jaya mountains in Indonesia. This scene was

Figure 10: Predicted fluid rollouts from SURFSUP on dif-
ferent parts of a 40⇥27⇥6m3 mountain scene. Our method
produces realistic fluid rollouts that accurately respect fea-
tures of the scene such as steep mountain slopes, narrow
valleys, and confluences (merging of two streams). This in-
dicates the ability of SURFSUP to scale fluid simulation to
large real-world scenes.

40 ⇥ 27 ⇥ 6 m3 in size (6840 m3 compared to roughly 10
m3 for previous scenes), and contained 68,600 fluid par-
ticles (an order-of-magnitude more than previous scenes).
See Appendix D.5 for setup details; notably we use the
fact that SDFs, unlike particles, can be easily scaled to any
size by applying a scaling transform with factor s). Fig. 10
shows the predictions of SURFSUP; our method general-
izes effectively to this large scene and the resulting rollout
captures complex features such as steep slopes and narrow
valleys between the mountains. Note that GNS would re-
quire O(1M) particles for this scene; by contrast we leave
the network size for the SIREN model unchanged for this
scene compared to previous scenes/objects e.g. in Fig. 5.
This demonstrates the potential of implicit representations
for large-scale, realistic dynamics. Please see the website
for full rollouts of the entire mountain scene and the views
displayed in Fig. 10.
Inverse Design. Finally, we evaluate SURFSUP on its po-
tential to solve object design tasks. We show the ability of
our model to design both parametrized shapes, by optimiz-
ing the shape parameters with gradients, as well as shapes
represented by neural SDF models.
Parametrized Design Tasks. We consider the funnel,
which is an inverted capped cone carved out of a cylinder
(Fig. 14d), for which we have derived an analytical SDF.

https://surfsup.cs.columbia.edu/
https://surfsup.cs.columbia.edu/

This shape is parametrized by the cylinder radius R, height
H , cone height h = H; and the radii r1 and r2 of the bottom
and top circles that “cap” the cone, with r1 > r2.

In our setup, we drop a block of fluid directly onto the
object. We consider two tasks: designing a bowl where the
task is to contain the fluid inside the object, and a funnel
where the task is to concentrate the water onto a location
onto the ground. We optimize r1 (which we call the “cap-
ture radius” that captures fluid into the object) and r2 (the
“filter radius” which decides how much water to filter onto
the ground). For the funnel, the desired solution is large r1
and small r2, and for the bowl we want r2 ! 0. If our
learned model is performing well, the model should be able
to discover these solutions.

We roll out our model for 50 (bowl) and 75 (funnel)
timesteps. Our reward measures the log probability of a
Gaussian centered at the desired location of the fluid par-
ticles. For the bowl task, we use the bottom of the object,
i.e. N ((0., 0., h),⌃), where h is the object height. For the
funnel we use a 2D Gaussian N ((0., 0.),⌃) and measure
the reward on particles that reach the ground during train-
ing. For a given design, we roll out our model and obtain
gradients, which we use to iteratively refine the design.

Qualitative results are shown in Fig. 11. Starting
from a sub-optimal design with low r1 and r2 > 0, our
model successfully converges for the bowl; similarly the
funnel converges from a suboptimal to an optimal solu-
tion. This shows that over long rollouts and hundreds of
message-passing steps with dense fluid-surface interactions,
our model’s gradients are informative and useful for solv-
ing inverse design problems. See Appendix F for details;
we also show that performance is consistent across differ-
ent initializations of r1 and r2.

Latent Space Design. We further examined whether SURF-
SUP could directly optimize in the latent space of a
DeepSDF model, trained on ShapeNet chairs. For this in-
vestigation, as a proof-of-concept we aimed to discover
a novel chair that traps and contains falling water (i.e.
maximizes the “bowl reward” described above). Given a
DeepSDF model f✓(p, z), where z is the latent code, we it-
eratively refine the design by rolling out our simulation for
100 time-steps, computing the task reward, and updating z
via gradient-based optimization. Across multiple trials with
different initializations, our model is able to converge from
an initially sub-optimal chair to a final design that can legit-
imately capture and contain falling water, while retaining
the semantic look and feel of a chair (Fig. 12).

6. Conclusion

In this paper, we have taken a first step towards integrat-
ing implicit 3D representations into the dynamical simula-
tion of physical models. SURFSUP realizes this approach by

Figure 11: Design optimization; top is the funnel task, bot-
tom the bowl task. For each frame, the design is shown near
the top of the container and a timestep from the fluid rollout
is shown below. Initial, intermediate, and final designs are
shown; note that the reward increases through optimization
and final designs approximate a funnel and bowl well.

Figure 12: We differentiate through SURFSUP to directly
optimize (in the latent space of a DeepSDF) a chair that
holds water dropped onto it.

incorporating the implicit representation of solid surfaces
(via SDFs) into a graph neural network fluid simulator. As
such, SURFSUP is able to accurately model how fluids inter-
act with surfaces, including highly complex surfaces unseen
in training. We find that promoting this type of OOD gen-
eralization is helpful in both forward and inverse contexts.

Acknowledgements: We would like to thank Huy Ha for his
help with creating visualizations of fluid rollouts. We also ac-
knowledge Jan Bender for helpful feedback on finer points of the
the SPlisHSPlasH simulator, as well as Kelsey Allen, Tobias Pfaff,
and Alvaro Sanchez-Gonzalez for advice on training the graph
network-based simulator. We thank Max Helman for early work
on setup of the SPlisHSPlasH simulator. This research is based on
work partially supported by the NSF STC for Learning the Earth
with Artificial Intelligence and Physics, and the NSF NRI Award
#1925157. AM is supported by the NSF fellowship.

References

[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and
Leonidas J Guibas. Learning representations and gen-
erative models for 3d point clouds. arXiv preprint
arXiv:1707.02392, 2017.

[2] Kelsey R Allen, Tatiana Lopez-Guevara, Kimberly Stachen-
feld, Alvaro Sanchez-Gonzalez, Peter Battaglia, Jessica
Hamrick, and Tobias Pfaff. Physical design using differen-
tiable learned simulators. arXiv preprint arXiv:2202.00728,
2022.

[3] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo
Jimenez Rezende, et al. Interaction networks for learning
about objects, relations and physics. Advances in neural in-
formation processing systems, 29, 2016.

[4] Jan Bender and Dan Koschier. Divergence-free smoothed
particle hydrodynamics. In Proceedings of the 14th ACM
SIGGRAPH / Eurographics Symposium on Computer Ani-
mation, SCA ’15, page 147–155, New York, NY, USA, 2015.
Association for Computing Machinery.

[5] Jan Bender and Dan Koschier. Divergence-free smoothed
particle hydrodynamics. In Proceedings of the 14th ACM
SIGGRAPH / Eurographics Symposium on Computer Ani-
mation, SCA ’15, page 147–155, New York, NY, USA, 2015.
Association for Computing Machinery.

[6] Siddhartha Chaudhuri, Daniel Ritchie, Jiajun Wu, Kai Xu,
and Hao Zhang. Learning generative models of 3d structures.
In Computer Graphics Forum, volume 39, pages 643–666.
Wiley Online Library, 2020.

[7] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin
Chen, and Silvio Savarese. 3d-r2n2: A unified approach
for single and multi-view 3d object reconstruction. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), 2016.

[8] James D Foley, Foley Dan Van, Andries Van Dam, Steven K
Feiner, and John F Hughes. Computer graphics: principles
and practice, volume 12110. Addison-Wesley Professional,
1996.

[9] Christoph Gissler, Andreas Peer, Stefan Band, Jan Bender,
and Matthias Teschner. Interlinked sph pressure solvers for
strong fluid-rigid coupling. ACM Transactions on Graphics
(TOG), 38(1):1–13, 2019.

[10] Zekun Hao, Hadar Averbuch-Elor, Noah Snavely, and Serge
Belongie. Dualsdf: Semantic shape manipulation using a
two-level representation. pages 7631–7641, 2020.

[11] Dan Koschier and Jan Bender. Density maps for improved
sph boundary handling. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation,
pages 1–10, 2017.

[12] Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B Tenenbaum,
and Antonio Torralba. Learning particle dynamics for ma-
nipulating rigid bodies, deformable objects, and fluids. In
ICLR, 2019.

[13] Yunzhu Li, Jiajun Wu, Jun-Yan Zhu, Joshua B Tenenbaum,
Antonio Torralba, and Russ Tedrake. Propagation net-
works for model-based control under partial observation. In
2019 International Conference on Robotics and Automation
(ICRA), pages 1205–1211. IEEE, 2019.

[14] Zhijian Liu, William T Freeman, Joshua B Tenenbaum, and
Jiajun Wu. Physical primitive decomposition. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 3–19, 2018.

[15] William E Lorensen and Harvey E Cline. Marching cubes:
A high resolution 3d surface construction algorithm. ACM
siggraph computer graphics, 21(4):163–169, 1987.

[16] Andreas Mayr, Sebastian Lehner, Arno Mayrhofer,
Christoph Kloss, Sepp Hochreiter, and Johannes Brandstet-
ter. Boundary graph neural networks for 3d simulations.
arXiv preprint arXiv:2106.11299, 2021.

[17] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In Proceed-
ings IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2019.

[18] Mariem Mezghanni, Théo Bodrito, Malika Boulkenafed, and
Maks Ovsjanikov. Physical simulation layer for accurate
3d modeling. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 13514–
13523, 2022.

[19] Mateusz Michalkiewicz, Jhony K Pontes, Dominic Jack,
Mahsa Baktashmotlagh, and Anders Eriksson. Implicit sur-
face representations as layers in neural networks. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 4743–4752, 2019.

[20] J. J. Monaghan. Smoothed particle hydrodynamics. An-
nual Review of Astronomy and Astrophysics, 30:543–574,
Jan. 1992.

[21] Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick
Haber, Li F Fei-Fei, Josh Tenenbaum, and Daniel L Yamins.
Flexible neural representation for physics prediction. Ad-
vances in neural information processing systems, 31, 2018.

[22] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 165–174, 2019.

[23] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez,
and Peter Battaglia. Learning mesh-based simulation with
graph networks. In International Conference on Learning
Representations, 2020.

[24] Edoardo Remelli, Artem Lukoianov, Stephan Richter, Benoit
Guillard, Timur Bagautdinov, Pierre Baque, and Pascal
Fua. Meshsdf: Differentiable iso-surface extraction. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and
H. Lin, editors, Advances in Neural Information Process-
ing Systems, volume 33, pages 22468–22478. Curran Asso-
ciates, Inc., 2020.

[25] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff,
Rex Ying, Jure Leskovec, and Peter Battaglia. Learning to
simulate complex physics with graph networks. In Interna-
tional Conference on Machine Learning, pages 8459–8468.
PMLR, 2020.

[26] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Ha-
genbuchner, and Gabriele Monfardini. The graph neural
network model. IEEE transactions on neural networks,
20(1):61–80, 2008.

[27] C. Schenck and D. Fox. Spnets: Differentiable fluid dynam-
ics for deep neural networks. In Proceedings of the Second
Conference on Robot Learning (CoRL), Zurich, Switzerland,
2018.

[28] Dong Wook Shu, Sung Woo Park, and Junseok Kwon. 3d
point cloud generative adversarial network based on tree
structured graph convolutions. 2019.

[29] Vincent Sitzmann, Eric R. Chan, Richard Tucker, Noah
Snavely, and Gordon Wetzstein. Metasdf: Meta-learning
signed distance functions. In Proc. Neurips, 2020.

[30] Vincent Sitzmann, Julien N.P. Martel, Alexander W.
Bergman, David B. Lindell, and Gordon Wetzstein. Implicit
neural representations with periodic activation functions. In
Proc. NeurIPS, 2020.

[31] Benjamin Ummenhofer, Lukas Prantl, Nils Thuerey, and
Vladlen Koltun. Lagrangian fluid simulation with continu-
ous convolutions. In International Conference on Learning
Representations, 2019.

[32] Subeesh Vasu, Nicolas Talabot, Artem Lukoianov, Pierre
Baqué, Jonathan Donier, and Pascal Fua. Hybridsdf: Com-
bining deep implicit shapes and geometric primitives for
3d shape representation and manipulation. In International
Conference on 3D Vision, 2022.

[33] Zhirong Wu, S. Song, A. Khosla, Fisher Yu, Linguang
Zhang, Xiaoou Tang, and J. Xiao. 3d shapenets: A deep
representation for volumetric shapes. In 2015 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 1912–1920, Los Alamitos, CA, USA, jun 2015. IEEE
Computer Society.

A. Further Rollouts and Videos

In Figure 14 we show rollouts on several more examples
in our test sets, including examples in the PrimShapes test
set, the union and funnel test sets, and Shapenet objects. For
each rollout we show the corresponding frames from the
ground-truth simulator, demonstrating that our model has
high fidelity to the ground-truth dynamics. See the website
for full videos of several rollouts in the paper.

B. Increasing Particles for the GNS Baseline

(Room Scene)

In the main paper we analyze a scene in the primi-
tives+unions test set, and show how SURFSUP outperforms
a GNS baseline even with more surface particles. We con-
duct a similar analysis on the room scene in the main pa-
per. The room is situated within a [�1, 1]3 box, and con-
tains many objects that overall occupy a high volume of the
space. As shown in the main paper (Fig. 8), the baseline’s
predictions cause fluid to fall through the surface and pene-
trate the objects in the scene. We investigate increasing the
number of particles for the baseline for room scene (Fig.
13), and measure the overall accuracy of fluid-surface dy-
namics through the ‘Chamfer surface’ distance. Notably,
our method still outperforms the GNS baseline with 10,000
surface particles (we observe similar results with surface
penetration). At this number the inference times and graph
sizes incurred by the baseline are significantly higher than
those of our method. This makes it clear the advantages
of our method; while we can scale effectively to arbitrarily
large scenes, the baseline is fundamentally limited.

Figure 13: Comparing our method vs. the baseline on the
room scene (Chamfer surface distance), as the number of
surface particles increases from 2000 to 10000.

C. Ablation Study and Timing

We performed an ablation study on the SDF features pro-
vided to the model during training (Table 2). We found that

providing only the SDF value and not the gradient (which
conveys the particle’s orientation w.r.t. the surface), de-
graded performance near the surface significantly; for ex-
ample penetration went from 0 to > 30000 particles. Pro-
viding no SDF information at all and only fluid particles
performs very poorly as expected.

Chamfer Cham-Surface Num Inside

SURFSUP 0.0297 4.704 0
Value-only 0.0319 10.782 30433
No SDF 0.0815 45.463 193071

Table 2: Ablating SDF features on the PrimShapes test set.

A brief note on inference times: Inference times can be
highly variable, and we have chosen to report graph sizes in
the main paper as a more reliable measure of computational
cost. To provide a brief and rough comparison, we broadly
find that SURFSUP’s speed for fluid rollouts is compara-
ble to if not slightly faster than the GNS baseline; experi-
ments (benchmarked on a single A6000 GPU) suggest that
we are 37% faster then the baseline on the PrimShapes test
set and 13% faster on the Chairs test set (where SURFSUP
involves evaluating neural SDFs). This can be attributed to
the fewer particles and smaller graph sizes entailed by our
method compared to the baseline. We find both methods 2-
3x faster than the classical simulator (evaluated on a 40-core
CPU).

D. Dataset Details

We provide further details about dataset creation and
visualizations of shapes in our dataset. To sample tra-
jectories for all datasets we use a classical (non-neural)
particle-based fluid simulator. In particular, we use the
SPlisHSPlasH simulator (github.com/SPlisHSPlasH), a 3D
particle-based fluid simulator based on the SPH technique.
We extract 800 time-steps from each simulation (with �t =
0.005); this corresponds to 4000 time-steps of the classical
simulator (�t = 0.001), which requires smaller time-steps
for physical stability. This also allows us to run our sim-
ulations faster than the classical simulator. All rollouts in
training and test are of this length (total of t = 4 seconds).
In all our simulations we simulate water.

D.1. PrimShapes Dataset

The Prim-Shapes Dataset consists of five primitive
shapes. For the training set, we generate 200 simulations
for each shape (total of 1000 simulations), where the sim-
ulation takes place in a 1 ⇥ 1 ⇥ 2 m container. The test
set consists of 100 simulations. We sample each primitive
shape from the following:

https://surfsup.cs.columbia.edu/
https://surfsup.cs.columbia.edu/
https://github.com/InteractiveComputerGraphics/SPlisHSPlasH

(a) Rollout on a torus. (b) Rollout on chair (OOD)

(c) Rollout on a union of primitives (OOD) (d) Rollout on funnels (OOD)

Figure 14: Rollouts for several examples in our test sets. For each rollout, the top row shows our prediction and the bottom row shows
the ground-truth simulation.

• Sphere: The sphere is parametrized by a radius r. We
choose a random radius in the range [0.25, 0.5].

• Box: The box is parametrized by the side lengths
sx, sy, sz . We choose each in the range [0.4, 0.7].

• Cylinder: The cylinder is parametrized by its radius r
and height h. We choose the radius and height in the
ranges [0.15, 0.35] and [0.4, 0.75] respectively.

• Cone: The ‘capped cone’ is parametrized by its height
h, its bottom radius r1, and the top radius r2 (with
r1 > r2). We choose the height and bottom radius
in the ranges [0.4, 0.7] and [0.2, 0.4] respectively; the
top radius is fixed at 0.01 to approximate a true cone.

• Torus: The torus is constructed by revolving a circle
with ‘inner’ radius’ r2 around an axis coplanar with
the circle; the ‘outer radius’ r1 is the distance from this
circle center to the center of the torus. We choose r1

between [0.2, 0.4] and r2 between [r1/4, 3r1/4]; this
ensures there is always a hole in the center of the torus.

After selecting the shape, each shape is rotated randomly
and translated to the bottom of the box and randomly on
the x � y plane. When computing the SDF, these are im-
plemented as inverse transformations on the query point.
For the classical simulator which takes in meshes, we run
Marching Cubes on the SDFs. The block of fluid is initial-
ized directly above the shape, with the height above the ob-
ject randomized. The size of the fluid block is randomized
between [0.4, 0.5]3, each side length chosen independently;
since r = 0.015 is the particle radius, this initializes the
number of particles roughly in the range [1900, 3800] for
each simulation.

D.2. OOD Test Sets

The Prim-OOD test set is constructed by choosing shape
parameters lower or higher than the ranges described above.

Figure 15: (Top) Examples of different initializations in the
PrimShapes Dataset, reproduction of Fig. 4. (Bottom) Ex-
amples of shapes in the Prim-Unions Dataset with the torus
as the base shape.

For the primitives-unions test set, we generate unions for all
possible pairwise permutations of shapes. If (S1, S2) is a
pair of shapes, we choose S2 to be a larger, base shape and
S1 a smaller shape that ‘sits’ on top of S2, intersecting with
S2 near the origin. Since we have 5 shapes, this yields a
total of 20 unique shapes. Once the shape is generated, we
translate it to the bottom of the box and initialize a block of
fluid above the shape. For each unique shape we generate
two simulations with the height and size of the fluid block
over the shape randomly chosen. The SDF for these shapes
is computed as min(S1, S2). Example shapes are shown
in Fig. 15. Finally for the funnels test set, we derive an
analytical SDF for the funnel; we generate 12 simulations
with varying values of r1 and r2.

D.3. Complex shapes/scenes, SIREN training

We evaluate our model on several complex objects and
scenes in the paper (Fig. 1, Fig. 5). For each of these ob-
jects we train a SIREN model [30], which uses sinusoidal
activations to learn accurate SDFs of fine-grained shapes.
We follow the training details in the original SIREN pa-
per and in the github. During our forward pass the trained
SIREN model is used to generate SDF features. The small
‘Complex-Scenes’ dataset, for which SIRENs were trained,
consists of 7 shapes; two dragon statues and an armadillo
statue (from the Stanford 3D Scanning Repository), two
lion statues, a coral object, (all three obtained freely on-
line, links: coral, lion1, lion2), and the room scene (from
the SIREN github). SIREN rescales each object to within a
[�1, 1]3 box. For each object, we place this object inside a
2⇥ 2⇥ 3 container and initialize a block of fluid above the
object. For the room scene, we initialize fluid directly in-
side the room at several select locations above the furniture
objects.

D.4. Shapenet objects, DeepSDF training

We also evaluated our model on chairs and bowls from
Shapenet. For this purpose we trained a DeepSDF model
[22]. DeepSDF is a variational ‘auto-decoder’ model,
which associates objects in the training set with latent vec-
tors. For the chairs dataset, our training set consisted of
5827 chairs with fine meshes, which were preprocessed into
SDFs for training. The model was trained for 1000 epochs;
see [22] for more details. For our simulations, we initial-
ized a fluid block above the chair; we then use the DeepSDF
model f✓(p, z) (where p is the query point and z the shape
latent code) to generate SDF features for our model.

D.5. Mountain Scene

The mountain scene was obtained from the freely avail-
able mesh here, and captures the Puncak Jaya mountains in
Indonesia. We train a SIREN model on the mountain scene,
which scales the scene to a [�1, 1]3 box. To this SDF we
apply a uniform scaling factor of s = 20, which results in a
scene of dimension 40 ⇥ 27 ⇥ 6 m3. We position 25 fluid
blocks above the scene, each consisting of 2744 fluid parti-
cles, for a total of 68,600 fluid particles in the scene.

E. Experimental Details

E.1. Model Details

Input features. The input to the model is the current par-
ticle positions, as well as the SDF function and transforma-
tion parameters (rotation and translation). We also provide
a short history of T = 4 previous time-steps, which is used
in Sanchez-Gonzalez et al. [25]. In the ‘encoder’ step, we
add several features to the node embeddings vi including the
previous velocities and distances to the container faces (see
[25] for details). Additionally, we compute the SDF and its
gradient on the current particle positions. As noted above,
we can obtain these features from either neural or analytical
SDFs. When computing the SDF, we first apply the inverse
transformation to the query points. The edge features eij
are initialized to contain the distance and displacement be-
tween vi and vj .

Model Architecture. We use a graph network architec-
ture with ten message-passing steps. Please see Sanchez-
Gonzalez et al. [25] for more details, which we leave largely
unchanged.

Training Details. We train all our models for 2M steps,
using Adam with a decaying learning rate schedule from 1e-
4 to 1e-6. Noise is added to the input positions as is standard
to improve stability. Details can be found in [25]. For the
weighting of particles near the surface, we use � = 5. We
use ↵ = 0.09 for the threshold in Eq. (1).

https://github.com/vsitzmann/siren
http://graphics.stanford.edu/data/3Dscanrep/
https://sketchfab.com/3d-models/pocillopora-eydouxi-adf2d17b6355497cbadf6f7929bdd53f
https://sketchfab.com/3d-models/lowe-von-asparn-57a57a99ce1f4e45adee5ae37a91f51b
https://grabcad.com/library/scholars-lion-1
https://sketchfab.com/3d-models/puncak-jaya-indonesia-4d773761e8594d5f869e3e9ee2528586

E.2. Metrics: ‘Chamfer Surface’ Distance

Chamfer distance is computed per-timestep and aver-
aged across time-steps. For the Chamfer Surface metric, at
each time-step we consider P↵0 , the set of particles in P that
have SDF value F (p) < ↵0 in the predicted point cloud. We
then measure the Chamfer distance of these close-to-surface
particles to all of G. Similarly, we compute the Chamfer
distance of G↵0 to all of P . The metric becomes:

CD(P,G) =
X

x2P↵0

min
y2G

||x� y||22 +
X

y2G↵0

min
x2P

||x� y||22

Note that distances are summed across particles, not aver-
aged as in Chamfer distance. The intuition is that if P di-
verges significantly from G near the surface, then the aver-
age distance between any particle in P↵0 and any particle
in G should be higher. By ‘zooming in’ only on particles
near or inside the surface, we can understand errors near
the surface more effectively.

F. Inverse Design: Further Details

Parametrized Design Tasks. For inverse design with
parametrized shapes, we consider the tasks of designing
‘bowls’ and ‘funnels’, optimizing the capture radius r1 and
the filter radius r2 of a parametrized SDF (see main paper
for details). For both tasks, we obtain gradients of the task-
specific objective function with respect to r1 and r2, and
use Adam with a learning rate of 0.01 for optimization. For
both tasks, we run the optimization for 100 steps.

Bowl task. The reward is measured as the log probabil-
ity of a Gaussian centered at the bottom of the object, i.e.
N((0., 0., h),⌃), where h is the height of the object. This
incentivizes the design to collect fluid inside the object. We
use a spherical covariance with � = 0.8. For a given design,
the forward model is rolled out for 50 steps and the reward
is measured on the final particle positions. If the filter ra-
dius r2 reaches 0 during the optimization, it is then fixed at
0 and then only the capture radius r1 is optimized.

Funnel task. The reward is measured as the log probability
of a 2D Gaussian N((0., 0.),⌃) at the bottom of the con-
tainer, centered at the origin. This incentivizes the design
to concentrate fluid onto the ground. We use a spherical co-
variance with � = 0.75. For a given design, the forward
model is rolled out for 75 steps. We measure the reward
on any particle that reaches the bottom of the container, and
subsequently remove this particle from the simulation.

In the results shown in the main paper, we initialize
r1 = 0.07 and r2 = 0.05 for the bowl task, which nei-
ther captures nor contains the fluid; the final solution is
r1 = 0.232 and r2 = 0, which both captures and contains

Figure 16: Different initializations for the bowl task; for
both initializations the optimization converges to a suffi-
ciently high capture radius r1 and zero filter radius r2.

the fluid. Similarly for the funnel, we initialize r1 = 0.10
(smaller than desired) and r2 = 0.09 (larger than desired);
the final solution is r1 = 0.221 and r2 = 0.0714, which
captures and more narrowly filters the water. Fig. 16 shows
that our design optimization is robust to initialization. See
the website for videos of the initial and final designs and the
associated fluid rollouts.

Latent Space Design. We also perform latent space op-
timization with a DeepSDF model trained on ShapeNet
chairs, to discover a chair that can maximize the ‘bowl re-
ward’ described above (with �2 = 0.6). We initialize the
latent code from N (0, 0.012), the prior for the DeepSDF
autodecoder. Empirically we find that the optimization is
robust to initialization. We run the optimization for ⇠
300 steps; in each step we roll out the simulator for 100
timesteps, compute the reward, and backpropagate gradi-
ents to the latent code. We use Adam with a learning rate of
0.001.

https://surfsup.cs.columbia.edu/

