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ABSTRACT

Understanding design processes and behaviors are impor-
tant for building more effective design outcomes. During design
tasks, teams exhibit sequences of actions that form strategies.
This paper investigates patterns of design actions to identify suc-
cessful design strategies in paired parameter design tasks. The
paper uses secondary data from a design experiment in which
each pair completes a series of simplified cooperative parame-
ter design tasks to minimize completion time. Analysis of 192
task observations uses principal component analysis to identify
design strategies and regression analysis to evaluate their im-
pacts on performance outcomes. Results show that the design
strategy of short average action time, small average action size,
and low action variation significantly decreases completion time.
Discussion of results suggests smaller and more frequent actions
provide more rapid feedback about each action to improve com-
munication and understanding between pairs, leading to more
efficient design processes. Results show that task order and the
number of variables also significantly contribute to performance
outcomes, which aligns with past literature. Results also show a
negative relationship between lower English ability, experience
level, and team performance outcomes. The discussion suggests
that lower English ability can be a barrier to communication be-
tween pairs, and a lower experience level can decrease the ability
to create effective strategies.
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1 Introduction

In today’s world, engineering design teams deal with com-
plex problems. Design behaviors and strategies shape design out-
comes, making design processes vital to achieving desired out-
comes. During design processes, teams explore, communicate,
and conduct decision-making processes that determine their ac-
tions and strategies. Understanding design behaviors and iden-
tifying strategies that lead to desired outcomes is important for
creating more efficient design processes.

Designers exhibit different actions based on their experience
level and the complexity level of the design tasks [[I]]. Within a
narrowly-scoped design task, micro strategies are defined as se-
quences of actions that designers perform to reach the expected
outcomes in a design process [1]]. Identifying successful de-
sign strategies by grouping observed actions during a design task
would help to inform future studies and industries to enhance
their design processes.

Complex collaborative engineering designs, such as an air-
craft design, consist of multiple interdependent subsystems. Any
changes made in one subsystem would impact the other subsys-
tems, and all subsystems needed to be in harmony for the entire
design to work once integrated. For instance, in the case of an
aircraft, if the wings and fuselage subsystems do not meet each
other’s requirements, the aircraft would not be able to function.
Investigating the designer strategies in complex collaborative en-
gineering design systems can lead to more efficient design pro-
cesses.
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Parameter design tasks are well-defined problems with con-
trolled variables (parameters) [2]. Research using parameter de-
sign tasks can eliminate domain-specific complexities and focus
on specific design parameters and designer behaviors. Using pa-
rameter design tasks as an experimental procedure gives the con-
trol of varying the technical complexity of tasks [3]] and elimi-
nates external complexities [2,[4]. These features of parameter
design experiments provide a more concentrated way to inves-
tigate specific research purposes in design settings. This paper
aims to understand the design process in complex collaborative
design systems with an abstract-level collaborative design prob-
lem, eliminating domain-specific complexities.

This paper fills the literature gap by studying design pro-
cesses in an abstract-level parameter design problem that enables
the identification of design strategies, which can be applied to a
wide range of design problems. Identifying design strategies in
abstract design problems can bring interventions enhancing de-
sign processes that are not specific to any particular design prob-
lem or domain. The paper defines design strategy as a similar
set of actions designers follow that are generalizable over broad
design problems and investigates how groups of designer actions
form strategies to understand better the design process and its ef-
fects on performance outcomes in paired parameter design tasks.

The analysis uses secondary data from a human parameter
design experiment consisting of tasks with different levels of
complexity, yielding a total of 192 tasks. The experiment con-
sisted of 48 participants and 24 pair teams. The analysis first
identifies observable design actions from the experimental log,
runs a principal component analysis to identify design strategies
exhibited during the experiment, and finally performs a regres-
sion model to evaluate the significance of design strategies on
performance. Results show that the design strategy of short av-
erage action time, small average action size, and low action vari-
ation significantly increases the performance outcomes of pairs
in the parameter design experiment. Results also show that the
number of variables, task order, and some demographic factors
significantly impact team performance outcomes in parameter
design tasks.

2 Literature Review
2.1 Design Actions and Micro Strategies

Gero defines design as a goal-oriented, constrained, explo-
ration, decision-making, and learning activity [S]] with sequences
of actions where designers perform micro strategies [[1]. Micro
strategies are self-sustaining actions focusing on the current state
of the design process. Identifying similar actions observed in
the design process and then following and grouping them will
provide specific micro strategies that designers choose. Gero
also notes that the designer’s experience level and the complex-
ity level of the task impact number of different micro strate-

gies found in the design process [1]. From the stated defini-
tion, this paper focuses on the designer’s decision-making and
the strategy-building process by identifying designers’ actions
and grouping similar actions to differentiate some successful and
unsuccessful strategies in paired parameter design tasks.

2.2 Parameter Design Problems

Parameter design tasks present a set of input variables (de-
sign parameters) to designers that influence a set of output vari-
ables [6]. Gero and Yu define parametric design as a dynamic,
rule-based process controlled by variations and parameters, in
which multiple design solutions can be developed in parallel [7]].
Using parameter design tasks to study designer behaviors helps
control external factors’ effects, such as domain knowledge [4].
Using parameter design tasks supports the creation and organiza-
tion of complex digital models [§]]. Parameter tasks can have cou-
pled and uncoupled characteristics. Uncoupled parameter design
tasks include a one-to-one mapping between input and outputs
whereas, where this condition is lacking, the parameter design
tasks would be coupled [6].

One of the first parameter design experiments on human
subjects are conducted by Hirschi and Frey [6]. They used a
computer user interface and assigned participants tasks ranging
from 2-input-2-output parameters to S-input-5-output parame-
ters. Later, Grogan and de Weck performed a human parame-
ter design experiment by following the parameter design prin-
ciples introduced by Hirschi and Frey [3|]. They gave partici-
pants coupled and uncoupled parameter design tasks with vary-
ing technical and social complexity levels. Their results show
that increasing technical complexity negatively impacts perfor-
mance outcomes meaning that as the number of variables (pa-
rameters) increase in a task, the completion times increase with
a power-law relationship. Their other significant conclusion was
that as the team size grows, the completion times of design teams
increase significantly due to increased social complexity.

Alelyani et al. later use secondary data from Grogan and de
Weck [3]] to investigate factors contributing to designers’ behav-
ior for parameter design tasks [4]. To quantify the relationship
among design features, they identified three behavioral charac-
teristics as the number of design actions, performance outcomes,
and experienced error. Yu et al. conducted a human parame-
ter design experiment where participants engaged with simulated
design processes involving seawater reverse osmosis plants [2]].
Their goal was to investigate the relationship between behavior
and performance. Their findings showed that the best strategy
was simulated annealing optimization algorithm for higher per-
formance outcomes, and the worst strategy was pseudo random-
search strategy with lower performance outcomes.

Later Avsar and Grogan adopt the parameter design prob-
lem experiment from Grogan and de Weck [3] to investigate the
effects of Locus of Control (LOC) personality trait on perfor-
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mance outcomes [9] Their findings show statistically significant
relationship between LOC and performance of pairs in parameter
design tasks.

Wohr et al. build on the parameter design framework from
Grogan and de Weck [10]. They conduct a human parameter
design experiment to investigate the effect of the varying time
interval between each integration and verification. Their find-
ings show that varying the frequency of integration and verifi-
cation significantly impacts performance outcomes. They show
shorter time intervals between each integration, and verifica-
tion improves designer performance outcomes by decreasing the
completion times of tasks.

2.3 Teamwork and Design Process

Teamwork has been the subject of extensive study in various
fields because of its wide usage and advantages. Teamwork can
provide greater productivity and competitiveness [[11[], and liter-
ature shows that design teams can achieve higher quality than in-
dividuals in product development [[12]]. Teamwork brings a wider
range of knowledge and expertise [13]], enabling decomposition
and allocation of design decisions and actions among team mem-
bers to apply specialized knowledge [14]. However, interactions
between design actors generate iteration loops and rework that
may outweigh potential benefits [|15].

By cooperation, teams can achieve better productivity and
performance outcomes, but having distributed cognition and
communication among different members makes the process
challenging [16]. As team effectiveness impact outcomes in
design settings and team effectiveness depend on various fac-
tors [[17H19], this paper focuses on how design team processes
affect design outcomes.

2.4 Literature Gap

Literature offers insights into various design behaviors and
strategies utilized by design teams [20-26]. However, applying
the findings to other contexts becomes challenging since each
paper focuses on a specific research question and includes de-
sign tasks specific to a particular field. This paper aims to iden-
tify generalizable strategies that can be applied to various de-
sign problems and situations instead of recommending specific
behaviors or strategies for selected design problems. Accord-
ingly, the paper defines design strategy as a similar set of actions
designers follow that are generalizable over broad design prob-
lems.

Literature shows that parameter design tasks provide a con-
trolled environment to study design processes [3,|6-8]]. Parame-
ter design problems involve abstract design activities and elim-
inate domain-specific complexity, providing complete control
over technical variables. As a result, they offer a suitable envi-
ronment for investigating more broadly applicable design strate-

gies. This paper aims to conduct an initial study toward iden-
tifying design strategies that can be applied to engineering de-
sign tasks across multiple domains. These strategies should be
broadly applicable and not specific to any particular domain.

2.5 Research Objective

The objective of the paper is to fill the literature gap by
studying design strategies in a parameter design problem to iden-
tify generalizable successful and unsuccessful strategies. Iden-
tifying and differentiating some successful and unsuccessful
strategies that design teams use in parameter design tasks can
help future studies and industries to bring interventions to design
teams to direct them through using successful design strategies.

This paper uses secondary data from a human parameter de-
sign experiment originally adopted from Grogan and de Weck’s
parameter design work to explore the effects of personality traits
on team performance outcomes in design tasks [9]. The hu-
man experiment consists of cooperative paired parameter design
tasks. The parameter design problem in the experiment repre-
sents an abstract level collaborative design problem without any
domain-specific knowledge. During the design tasks, each de-
signer in a pair can be thought of as representing a subsystem of
a complex collaborative engineering design product.

This paper investigates the relationship between process
variables and task outcomes, the experiment design process il-
lustrated in Fig.[I] The analysis seeks to identify successful and
unsuccessful design team design strategies by identifying action
types and grouping them by principal component analysis (PCA)
technique to differentiate strategies. For this purpose, the paper
investigates the following hypothesis:

Teams follow different design strategies that affect their per-
formance outcomes in parameter design tasks.

3 Methodology

This paper analyzes secondary data from a parameter design
experiment that originally studied the effect of LOC on design
behavior described in Ref. [9]. Secondary analysis further inves-
tigates how designer behaviors influence outcomes for cooper-
ative pair design tasks irrespective of LOC. The design experi-
ment uses the same parameter design features from the frame-
work of Ref. [3]] with an updated software platfor The fol-
lowing sections review the methodology (design task, protocol,
instruments, and data) of the source experiment.

3.1 Design Task
The underlying parameter design task defines a column
vector of N scalar input variables x = [xl,...7xN]T with x; €

!Available from the authors under an open-source license at https://
github.com/code-1ab-org/collab-web Copyright © 2023 by ASME
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FIGURE 1: The design system consists of the parameter design
task with two designers who iteratively make actions following a
revealed design strategy. Inputs include social and demographic
factors. Outputs measure performance via task efficiency.

[-1,1] and a column vector of N scalar output variables y =
[yi,---,yn]". An N x N system matrix M = [m;;] relates inputs
to outputs as a linear system of equations y = Mx where element
m;; represents the sensitivity of output y; on input x;. Starting
from an initial zero input vector (x; = 0 V i), the task objective
is to choose input variables x to achieve a target output vector y*
with a maximum allowable error |y; —y*| < 0.05 in each output
variable. The task duration measures the time required to meet
all requirements.

Coupled task instances with m;; # 0 V i, j are generated as
follows to achieve certain invariant conditions. First, generate
M as the orthonormal basis of a random N x N matrix with el-
ements sampled from a uniform (0,1) distribution. Next, gener-
ate a candidate y* as the orthonormal basis of a random N x 1
column vector with elements sampled from a uniform (-1,1) dis-
tribution. Compute the task solution as x* = M7 y* and, if any
solution variables are close to the initial design point with x; = 0
(Fi:|xr —x;| <0.2), generate a new target (repeat as necessary).
Resulting tasks preserve distance in input and output spaces irre-
spective of N, i.e. ||x*|| = |[y*|| = 1, to control for distance scales
in larger design problems.

The design tasks are adapted to multi-actor design problems
by assigning control over input variables and visibility over out-
put variables to n individual design actors. A binary control ma-
trix n X N control matrix C = [¢;;] assigns designer i to have con-
trol of input variable j. A binary n x N visibility matrix V = [v;]
assigns designer i to have visibility of output variable j. Each
input and output variable is assigned to only one designer.

Designers interact with design tasks in a graphical, rather

Training Task 5/5 (Pair) o846 ™
Yy X
Y, v

FIGURE 2: Example design task interface for a designer (#1)
with two assigned input parameters (vertical sliders) and two as-
signed output requirements (horizontal sliders) with black bars
marking target region boundaries. The outputs update in re-
sponse to input changes by either designer. A timer counts down
from a maximum duration allowed for each task.

than numerical, format. The browser-based user interface in
Fig. [2] illustrates the user interface from the perspective of one
design actor. Vertical sliders ranging between —1 and 1 repre-
sent controlled input variables and horizontal sliders with target
regions between black bars display output variables and target re-
quirements. Quantitative information is hidden to prevent math-
ematical solutions. Designers are limited to visual feedback on
their own interface and face-to-face communication with team-
mates. Designers modify inputs by dragging the slider thumb up
and down (using the touch-pad or touchscreen) and inputs only
update once released. Designers may also use arrow keys on the
vertical sliders to change the input by 0.1 or 0.01 units.
Designers attempt to finish each task as quickly as possible.
A timer visible in the interface counts down from a maximum
duration allowed for each task. Individual tasks require the de-
signer to meet the target region of all horizontal sliders, changing
the signal icon from a red cross to green check mark. Pair tasks
require both partners to meet the target region of all horizon-
tal sliders at the same time. Completed tasks award points to all
participating designers based on the relative efficiency (one point
per second remaining). Cumulative points earned throughout an
experiment determine rankings for monetary incentives.

3.2 Experiment Protocol

The source experiment follows a between-subjects design
with replication at group and task units to study the effect of
LOC on design processes. The experiment controls group fac-
tors pairing LOC types (I: internal or E: external) in design pairs
as I-1, I-E, or E-E. Each pair works on a sequence of design tasks

Copyright © 2023 by ASME



of varying size to yield multiple observations of process and out-
come variables. The protocol was approved by the Institutional
Review Board at Stevens Institute of Technology (#2019-025).

The study includes two distinct cohorts, each consisting of
four replications of each group factor (I-I, I-E, and E-E) across
six sessions (total: 24 pairs). The cohorts were separated in time
by several months and followed slightly different task sequences
described below; however, both cohorts used the same exper-
iment rooms, computers, instructions, and overall procedures.
Participants were recruited from adult on-campus student pop-
ulations via email and flyers.

All sessions were conducted in university classrooms using
a standard room layout with assigned seats. Paired participants
sit face-to-face with each team at a separate table. Tables are
arranged such that each computer display is only visible to the
seated individual. Pairs may communicate face-to-face but not
share any computer displays. Each session evaluates two pairs in
parallel, both working on equivalent tasks and scheduled based
on mutual availability. The two teams in each session may not
communicate with each other.

Sessions consist of five training tasks and ten experimen-
tal tasks described in Table |} Training tasks introduce the task
objectives and computer interface and take about 20 minutes to
complete. The remaining ten experimental tasks take about 40
minutes to complete. Sessions in Cohort 1 include both indi-
vidual and pair tasks administered in fixed order, of which this
paper only considers the six pair tasks. Sessions in Cohort 2 in-
clude ten pair tasks administered in randomized order subject to
the constraint that tasks with four variables must take place in the
second half of the experiment.

To incentivize efficiency, participants earn 1 point per sec-
ond a task is finished ahead of the maximum time and O points
for an incomplete task. At the end of a session, participants are
ranked based on total accumulated score and privately paid in gift
cards ranging from minimum of $8 to maximum of $15 based on
their successive ranks. Aggregated scores are only released at
the end of a session to limit strategic behavior including end-of-
session boundary effects.

3.3 Experiment Instruments

Prior to working on tasks, participants complete a demo-
graphics survey with six items including age (years), gender
(male, female, or other), post-secondary education (years), pro-
fessional work experience (years), native language, and English
proficiency. English proficiency is measured on a scale with
four levels: Fluent/Native, High (TOEFL > 95 or IELTS > 7),
Medium-High (TOEFL 85-94 or IELTS 6.5-7), Medium-Low
(TOEFL 60-84 or IELTS 6), or Low (TOEFL < 60 or IELTS
< 6). Analysis assigns numerical values from 0 to 4 scale to
English language ability (0: Low; 4: Fluent/Native).

During a design task, an automated log records all design
actions (i.e., input slider movements) as time-stamped events.
Post-processing computes the time to complete each task (task
efficiency) as the the timestamp difference of the first and last de-
sign action. Each design task requires the input sliders to move
a total of 1.0 units from the initial state to reach the target so-
lution, regardless of problem size N; however, design strategies
may produce different patterns of size, timing, and sequence of
design actions.

3.4 Experiment Data

A total of 48 subjects (20 women and 28 men) participated
in the experiment. Subjects ranged from 21 to 40 years of age.
All participants either previously completed or were in their last
year of STEM undergraduate studies, and more than half were
currently pursuing a graduate engineering degree. 39 participants
listed one of 19 different languages other than English as their na-
tive language. 21 subjects claimed to be fluent English speakers,
19 reported TOEFL scores above 95 (IELTS > 7.0), 6 between
85-94 (IELTS 6.5-7.0) and 2 between 60-84 (IELTS 6.0) prior to
starting their studies.

The experimental design yields observations from 192 de-
sign tasks (12 x 6 = 72 from Cohort 1 and 12 x 10 = 120 from
Cohort 2) summarized in Table[2]by task size and mean task com-
pletion times. Approximately 17% (32/192) of the tasks were not
solved in the given maximum time limit and were assigned the
maximum completion time in Table|l|as a conservative assump-
tion for subsequent analysis.

4 Analysis and Results

To address the hypothesis that differential design strategies
affect performance outcomes in parameter design tasks, the anal-
ysis first performs principal components analysis (PCA) to re-
duce the dimensionality of input and process features. Finally,
regression analysis investigates whether input and process com-
ponents have a significant effect on task performance.

4.1 Input Factor Dimensionality Reduction

The initial set of input factors for each pair of designers
includes: mean English ability (measured on 0—4 scale), num-
ber of females per pair (0-2), mean age (years), mean post-
secondary education (years), and mean professional work expe-
rience (years). To reduce the dimensionality of the demographic
input factors, PCA identifies orthogonal vectors of input factors.

The analysis uses sklearn (version 0.24.1) function PCA
with RobustScaler and a 90% variance threshold to determine
the number of components. The radar plot in Fig. 3] visualizes the
resulting three input principal components (IPCs). Distinguish-
ing characteristics include:
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TABLE 1: Training and experimental design tasks for Cohort 1 and Cohort 2

Training Tasks (Fixed Order)

Cohort 1 Tasks (Fixed Order)

Cohort 2 Tasks (Random Orderi)

Type Size Repl. Time (s) Type Size Repl. Time(s) | Type Size Repl. Time (s)
Individual 1 1 90 Individual 2 2 120 Pair 2 4 180
Individual 2 1 120 Individual 3 2 240 Pair 3 4 360

Pair 2t 1 270 Pair 2 3 180 Pair 4 2 720

Pair 2 1 270 Pair 3 3 360

Pair 3 1 540

T: uses an identity coupling matrix M to simplify training, #: size 4 tasks cannot appear within first five tasks

TABLE 2: Summary of mean design completion time by task size

Task Size | Mean Completion Standard Error
Time (s) Completion Time (s)
™) ) .
2 64.3 5.36
3 184.6 13.40
4 454.9 52.87
All 165.7 12.68

1. IPC1: Elder pairs with higher levels of education and work
experience.

2. TPC2: Pairs with lower English ability and work experience.

3. IPC3: Younger pairs with lower education experience.

4.2 Process Factor Dimensionality Reduction
Post-processing of the experimental log computes nine can-
didate process-oriented metrics in five categories:

1. Action size (mean, standard deviation, skew): distance trav-
eled by the input slider for a single action. User interface
buttons permit action sizes of 0.1 and 0.01 and moving the
slider thumb permits arbitrary action sizes.

2. Action time (mean, standard deviation, skew): elapsed time
between successive actions.

3. Input delta (mean): indicator variable for input slider
changes between successive actions. A value of 1.0 indi-
cates a different slider for each successive input and a value
of 0.0 indicates all actions target the same slider.

4. Designer delta (mean): indicator variable for input con-
troller (designer) changes between successive actions. A
value of 1.0 indicates alternating actions among designers
and a value of 0.0 indicates sequential actions from one de-

A: English Ability
(Mean)

E: Work Exp.

(Mean) B: Num. Female

D: Education
(Mean)

C: Age (Mean)

FIGURE 3: Principal components of input (demographic) fea-
tures. IPC1 shows elder pairs with higher education and work ex-
perience. IPC2 shows pairs with lower English ability and work
experience. IPC3 shows younger pairs with lower education.

signer.

5. Designer share (max): indicator variable for the input con-
troller (designer) for each action. A value of 0.5 indicates
equal numbers of actions among both designers and a value
of 1.0 indicates actions by only one designer.

To study interrelationships among process factors, correla-
tion analysis first investigates multicolinearity. Figure ] shows
the resulting correlation matrix, confirming multicolinearity.

Next, a similar PCA technique to the input factors is applied
to reduce the dimensionality of the nine process factors. A 90%
variance threshold again determines the number of components.
The radar plot in Fig.[|visualizes the resulting three process prin-
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F: Action Size 47 0012 0.13 -0.21 0.16 | oo
(Skew)
G: Input Delta | oo
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H: Designer g g g
DeIta(Mean)’OJz 0.16 -0.12 0.37 0.038 0A27

I: Designer

Share(Max)7'0'17 0.077 0.2 -0.3 -0.14 0.15 -0.37 -0.38

A B C D E F G H I

FIGURE 4: Correlation matrix for nine identified design process
features confirming the presence of significant multicolinearity.

TABLE 3: Summary of principal components for observed pro-
cess variables for tasks of variable size

Task Size (N) | Mean PPC1 | Mean PPC2 | Mean PPC3

2 —0.58 0.17 0.03
3 —-0.41 —0.13 —0.05
4 3.47 —0.12 0.08

cipal components (PPCs). Distinguishing characteristics include:

1. PPCI1: High variation in time between actions and large ac-
tion size skew (few actions much larger than average).

2. PPC2: Long average action time, large average action size
and variation, and frequent switching between inputs and
designers.

3. PPC3: Short average action time, small average action size
and variation.

Table 3| shows mean principal component values for each task
size.

4.3 Analysis

The research question investigates the effect of the process
variables (designer behavior) on task completion time while con-
trolling for differences in inputs (demographics) and task struc-
ture. Analysis proposes a linear model with similar transforma-
tions for completion time (InT), task size (N 2y task order (In0),
and input/process variable principal components.

Preliminary analysis constructs an ordinary least square re-
gression model to investigate effects of all demographics factors

A: Action Time
(Mean)

B: Action Time
(Std. Dev.)

I: Designer
Share (Max)

H: Designer C: Action Time
Delta (Mean) (Skew)
G: Input Delta D: Action Size
(Mean) (Mean)

E: Action Size

F: Action Size
(Skew) (Std. Dev.)

FIGURE 5: Principal components of process variables. PPC1
shows high variation in time between actions and large action
skew. PPC2 shows long average action time, large average
size/variation, and frequent switching. PPC3 shows short aver-
age time, and small average size/variation.

(IPC1, IPC2, and IPC3), all process variables (PPC1, PPC2, and
PPC3), task order, task size on completion times. Summary re-
sults finds IPC2 (p-value=0.048), PPC3 (p-value=6.41-10"?),
task order (p-value=1.72-107°) and task size (p-value=3.58 -
10727) as statistically significant variables affecting task com-
pletion times of pairs. Model results show other variables do not
have a statistically significant effect on completion times (IPC1
p-value=0.366, IPC3 p-value=0.329, PPC1 p-value=0.353, and
PPC2 p-value=0.154). Subsequent analysis eliminates ineffec-
tive factors and only considers statistically significant factors.

Equation (T]) presents the resulting linear model with princi-
pal component factors as drivers of task completion time.

In(T) = By + BiN* 4 B, In(0) + B3IPC2 + B4PPC3 (1)

Analysis of the Eq. [[] model runs both ordinary least squares
regression and mixed effects models finding that ordinary least
squares regression yields substantially similar results to a mixed
effects model with easier interpretation. Table [4| shows ordi-
nary least squares regression model results using statsmodels
(version 0.12.2) function ols. Visualization of model residu-
als via a quartile-quartile plot verifies normality assumptions.
Results indicate expression of PPC3 behaviors significantly de-
crease task completion time (p-value=3.19 - 10~), presence of
IPC2 demographics significantly increase completion times (p-
value=0.046) and both task size (p-value=5.72-10730) and task
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TABLE 4: Regression of the effect of process variables on time

Factor Coefficient  Std. Err. t-stat. p-value
Intercept  3.8276 0.171 22379 8.87-107>
In(0) —0.3830 0.085  —4.482 1.29-107°
N? 0.1821 0.013  13.678 5.72-107%
IPC2 0.0870 0.043 2.008 0.046
PPC3 —-0.2919 0.047  —6219 3.19-107°

order (p-value=1.29 - 107>) are statistically significant factors for
task completion times.

4.4 Summary of Analysis Results

Post-processing of event logs produces five types of process
variables during the paired parameter design experiment: 1) ac-
tion size as the distance traveled by the input slider, 2) action
time as the elapsed time between successive actions, 3) input
delta as the indicator variable for input slider changes between
successive actions, 4) designer delta as the indicator variable for
input controller (designer) changes between successive actions,
and 5) designer share as the indicator variable for input controller
(designer) changes between successive actions. PCA combines
co-observed process variables into three types of design strate-
gies identified as PPC1: High variation in time between actions
and large action size skew (few actions much larger than aver-
age), PPC2: Long average action time, large average action size
and variation, frequent switching between inputs and designers,
and PPC3: Short average action time, small average action size
and variation. Analysis of the effects of these design strategies
on performance outcomes of pairs in the parameter design exper-
iment finds that only the PPC3 factor is significant.

5 Discussion

The hypothesis investigates the effects of design strategies
on team performance outcomes in paired parameter design tasks.
Results show that variation in performance outcomes can be
traced to differential designer actions. Analysis indicates that the
PPC3 strategy, which describes consistent small and fast actions,
has a statistically significant effect on task completion times.
Teams exhibiting the PPC3 strategy have significantly lower
completion times than teams following other strategies, leading
them to more successful outcomes. In contrast, the PPC2 strat-
egy, with relatively large and slow actions and frequent switching
between inputs and designers, and the PPC1 strategy, with high
variation in action time, have no significant effect on task com-
pletion time.

The results indicate that faster and more consistent design

actions significantly reduce task completion times in this experi-
ment. This finding can be attributed to the cooperative nature of
the tasks. In cooperative tasks, each action of one designer af-
fects the outcomes of their pair. Accordingly, pairs not only need
to understand specific actions that will lead them to success but
also the actions required for their partner to succeed, requiring
high levels of communication and understanding. Small and fast
actions indicate more frequent communication between design-
ers and faster feedback to understand how one’s action impacts
the other’s outcome. Accordingly, small and frequent actions
would help inform better next steps, leading to more consistent
actions and more successful strategies. Contrary, having larger-
sized actions with longer action times (an anti-PPC3 strategy)
would lead to unexpected errors, less understanding of the impact
of specific actions, and less frequent communication between the
designers.

The analysis also shows that task order and the number of
variables in a task significantly affect the completion times of
pairs aligning with the findings in the literature [3]]. Results sug-
gest that the designer pairs’ completion times decrease as the
task order increases. The learning effect can explain this find-
ing. Later in a task sequence, designers leverage their experi-
ence and understanding of tasks, leading to better performance
outcomes. The analysis also shows a significant and exponen-
tial relationship between the number of variables in a task and
designer completion times. This paper supports the findings of
Grogan and de Weck, suggesting that an increase in the number
of variables in a task increases the technical complexity level of
a task leading to lower performance outcomes [3|.

Results also show that participants with less working ex-
perience and lower English ability showed lower performance
outcomes. In general, it is expected to observe better perfor-
mance outcomes from more experienced designers. Even though
this was a parameter design experiment with no specific domain
knowledge requirement, more experienced designers might be
able to understand the tasks faster to build more effective strate-
gies due to their higher experience level. Moreover, designers’
English ability might create a communication barrier between a
pair, resulting in lower performance outcomes. The paper also
needs to note that although the negative effects of lower English
ability and lower experience level were observed in the exper-
iment, no statistically significant result indicates older partici-
pants with higher education and work experience showed higher
performance outcomes.

5.1 Limitations

Results from this paper are subject to several limitations.
First, it uses secondary data from an experiment on the effect
of the LOC personality trait on team performance outcomes in
parameter design tasks [9]]. No experimental control was exerted
over the identified input or process principal components.
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The experiment uses a highly simplified parameter design
task representative of cooperative design only at an abstract level.
Although using a parameter design framework helps understand
the design process, it also greatly simplifies the design tasks by
neglecting factors such as domain knowledge and creativity. The
parameter design task should be considered a component of de-
sign, for example, searching over a tradespace of alternatives
rather than a holistic representation of end-to-end design.

Constraints on session duration limited the number of pair
tasks to keep the total experiment time less than one hour and
retain participant attention. Additionally, experimental resources
only allowed for twelve sessions, limiting the amount of data
collected. Finally, experimental tasks consider interactions be-
tween two participants at a time, take place over a short time
period (minutes), have a small number of design variables with-
out any domain-specific design context, and incentivize behavior
using a financial reward tied to relative ranking in a design ses-
sion. These limitations indicate results of this experiment might
show variations with a larger team size or with the application of
domain-specific design tasks.

6 Conclusion

Identifying successful design strategies for design teams
is important for creating more efficient design processes and
achieving more successful design outcomes. This paper analyzes
secondary data from a pair parameter design task experiment to
find specific groups of actions that build a strategy leading design
teams to have higher performance outcomes. Results show that
principal component analysis can help identify specific design
strategies on a design task by combining observed action groups
during design processes.

The paper also illustrates that design strategies with more
frequent and smaller actions in pair parameter design tasks lead
to more successful outcomes. The discussion explains that this
strategy might be successful because it leads to more frequent
communication and understanding of the actions of a pair. Find-
ings also align with literature that there is a negative relation-
ship between number of variables in a task and performance out-
comes whereas a positive relationship between task order and
performance outcomes in parameter design tasks [3]. Results of
this paper also show that demographic factors of English ability
and experience level are important in the performance of design
teams. The discussion explains that these factors might impact
designers’ communication levels. Also, more experienced de-
signers might be able to develop better strategies even if the tasks
are not domain specific.

Summary conclusions provide evidence that designer teams
exhibit diverse design strategies, affecting performance out-
comes in paired parameter design tasks. The paper suggests that
more frequent and faster designer actions can allow faster feed-

back, communication, and understanding between pairs, leading
to better performance outcomes in a parameter design problem.
Future studies can bring interventions before the parameter de-
sign tasks to help designers exhibit preferred design strategies.
Future studies should also investigate how successful design
strategies for design teams would show variations in domain-
specific tasks.
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