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Abstract. For a polygon P with holes in the plane, we denote by ϱ(P )
the ratio between the geodesic and the Euclidean diameters of P . It is
shown that over all convex polygons with h convex holes, the supremum
of ϱ(P ) is between Ω(h1/3) and O(h1/2). The upper bound improves
to O(1 + min{h3/4∆,h1/2∆1/2}) if every hole has diameter at most ∆ ·
diam2(P ); and to O(1) if every hole is a fat convex polygon. Furthermore,
we show that the function g(h) = supP ϱ(P ) over convex polygons with
h convex holes has the same growth rate as an analogous quantity over
geometric triangulations with h vertices when h → ∞.

1 Introduction

Determining the maximum distortion between two metrics on the same ground
set is a fundamental problem in metric geometry. Here we study the maximum
ratio between the geodesic (i.e., shortest path) diameter and the Euclidean di-
ameter over polygons with holes. A polygon P with h holes (also known as
a polygonal domain) is defined as follows. Let P0 be a simple polygon, and
let P1, . . . , Ph be pairwise disjoint simple polygons in the interior of P0. Then
P = P0 \

(⋃h
i=1 Pi

)
.

The Euclidean distance between two points s, t ∈ P is |st| = ∥s − t∥2, and
the shortest path distance geod(s, t) is the minimum arclength of a polygo-
nal path between s and t contained in P . The triangle inequality implies that
|st| ≤ geod(s, t) for all s, t ∈ P . The geometric dilation (also known as the stretch
factor) between the two distances is sups,t∈P geod(s, t)/|st|. The geometric di-
lation of P can be arbitrarily large, even if P is a (nonconvex) quadrilateral.

The Euclidean diameter of P is diam2(P ) = sups,t∈P |st| and its geodesic di-
ameter is diamg(P ) = sups,t∈P geod(s, t). It is clear that diam2(P ) ≤ diamg(P ).
We are interested in the distortion

ϱ(P ) =
diamg(P )

diam2(P )
. (1)

Note that ϱ(P ) is unbounded, even for simple polygons. Indeed, if P is a zig-zag
polygon with n vertices, contained in a disk of unit diameter, then diam2(P ) ≤ 1
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and diamg(P ) = Ω(n), hence ϱ(P ) ≥ Ω(n). It is not difficult to see that this
bound is the best possible, that is, ϱ(P ) ≤ O(n).

In this paper, we consider convex polygons with convex holes. Specifically,
let C(h) denote the family of polygonal domains P = P0 \

(⋃h
i=1 Pi

)
, where

P0, P1, . . . , Ph are convex polygons; and let

g(h) = sup
P∈C(h)

ϱ(P ). (2)

It is clear that if h = 0, then geod(s, t) = |st| for all s, t ∈ P , which implies
g(0) = 1. Or main result is the following.

Theorem 1. For every h ∈ N, we have Ω(h1/3) ≤ g(h) ≤ O(h1/2).

The lower bound construction is a polygonal domain in which all h holes
have about the same diameter Θ(h−1/3) ·diam2(P ). We prove a matching upper
bound for all polygons P with holes of diameter Θ(h−1/3) ·diam2(P ). In general,
if the diameter of every hole is o(1) · diam2(P ), we can improve upon the bound
g(h) ≤ O(h1/2) in Theorem 1.

Theorem 2. If P ∈ C(h) and the diameter of every hole is at most ∆·diam2(P ),
then ϱ(P ) ≤ O(1 +min{h3/4∆,h1/2∆1/2}). In particular for ∆ = O(h−1/3), we
have ϱ(P ) ≤ O(h1/3).

However, if we further restrict the holes to be fat convex polygons, we can
show that ϱ(P ) = O(1) for all h ∈ N. In fact for every s, t ∈ P , the distortion
geod(s, t)/|st| is also bounded by a constant.

Informally, a convex body is fat if its width is comparable with its diameter.
The width of a convex body C is the minimum width of a parallel slab enclos-
ing C. For 0 ≤ λ ≤ 1, a convex body C is λ-fat if the ratio of its width to
its diameter is at least λ, that is, width(C)/diam2(C) ≥ λ; and C is fat if the
inequality holds for a constant λ. For instance, a disk is 1-fat, a 3× 4 rectangle
is 3

5 -fat and a line segment is 0-fat. Let Fλ(h) be the family of polygonal domain

P = P0 \
(⋃h

i=1 Pi

)
, where P0, P1, . . . , Ph are λ-fat convex polygons.

Proposition 1. For every h ∈ N and P ∈ Fλ(h), we have ϱ(P ) ≤ O(λ−1).

The special case when all holes are axis-aligned rectangles is also easy.

Proposition 2. Let P ∈ C(h), h ∈ N, such that all holes are axis-aligned rect-
angles. Then ϱ(P ) ≤ O(1).

Triangulations. In this paper, we focus on the diameter distortion ϱ(P ) =
diamg(P )/diam2(P ) for polygons P ∈ C(h) with h holes. Alternatively, we can
also compare the geodesic and Euclidean diameters in n-vertex triangulations.
In a geometric graph G = (V,E), the vertices are distinct points in the plane,
and the edges are straight-line segment between pairs of vertices. The Euclidean
diameter of G, diam2(G) = maxu,v∈V |uv| is the maximum distance between
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two vertices, and the geodesic diameter diamg(G) = maxu,v∈V dist(u, v), where
dist(u, v) is the shortest path distance in G, i.e., the minimum Euclidean length
of a uv-path in G. With this notation, we define ϱ(G) = diamg(G)/diam2(G),

A Euclidean triangulation T = (V,E) of a point set V is a planar straight-
line graph where all bounded faces are triangles, and their union is the convex
hull conv(V ). Let

f(n) = sup
G∈T (n)

ϱ(G), (3)

where the supremum is taken over the set T (n) all n-vertex triangulations. Recall
that g(n) is the supremum of diameter distortions over polygons with n convex
holes; see (2). We prove that f(n) and g(n) have the same growth rate.

Theorem 3. We have g(n) = Θ(f(n)).

Alternative problem formulation. The following version of the question studied
here may be more attractive to the escape community [9, 16]. Given n pairwise
disjoint convex obstacles in a convex polygon of unit diameter (e.g., a square),
what is the maximum length of a (shortest) escape route from any given point
in the polygon to its boundary? According to Theorem 1, it is always O(n1/2)
and sometimes Ω(n1/3).

Related work. The geodesic distance in polygons with or without holes has been
studied extensively from the algorithmic perspective; see [19] for a comprehen-
sive survey. In a simple polygon P with n vertices, the geodesic distance between
two given points can be computed in O(n) time [17]; trade-offs are also avail-
able between time and workspace [12]. A shortest-path data structure can report
the geodesic distance between any two query points in O(log n) time after O(n)
preprocessing time [11]. In O(n) time, one can also compute the geodesic diam-
eter [13] and radius [1].

For polygons with holes, more involved techniques are needed. Let P be
a polygon with h holes, and a total of n vertices. For any s, t ∈ P , one can
compute geod(s, t) in O(n+h log h) time and O(n) space [23], improving earlier
bounds in [14, 15, 18, 24]. A shortest-path data structure can report the geodesic
distance between two query points in O(log n) query time using O(n11) space;
or in O(h log n) query time with O(n+h5) space [6]. The geodesic radius can be
computed in O(n11 log n) time [3, 22], and the geodesic diameter in O(n7.73) or
O(n7(log n+ h)) time [2]. One can find an (1 + ε)-approximation in O((n/ε2 +
n2/ε) log n) time [2, 3]. The geodesic diameter may be attained by a point pair
s, t ∈ P , where both s and t lie in the interior or P ; in which case it is known [2]
that there are at least five different geodesic paths between s and t.

The diameter of an n-vertex triangulation with Euclidean weights can be
computed in Õ(n5/3) time [5, 10]. For unweighted graphs in general, the diameter
problem has been intensely studied in the fine-grained complexity community.
For a graph with n vertices and m edges, breadth-first search (BFS) yields a
2-approximation in O(m) time. Under the Strong Exponential Time Hypothesis
(SETH), for any integer k ≥ 2 and ε > 0, a (2− 1

k − ε)-approximation requires
mn1+1/(k−1)−o(1) time [7]; see also [20].
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2 Convex Polygons with Convex Holes

In this section, we prove Theorem 1. A lower bound construction is presented in
Lemma 1, and the upper bound is established in Lemma 2 below.

Lower Bound. The lower bound is based on the following construction.

Lemma 1. For every h ∈ N, there exists a polygonal domain P ∈ C(h) such
that g(P ) ≥ Ω(h1/3).

Proof. We may assume w.l.o.g. that h = k3 for some integer k ≥ 3. We construct
a polygon P with h holes, where the outer polygon P0 is a regular k-gon of unit
diameter, hence diam2(P ) = diam2(P0) = 1. Let Q0, Q1, . . . , Qk2 be a sequence
of k2 + 1 regular k-gons with a common center such that Q0 = P0, and for
every i ∈ {1, . . . , k2}, Qi is inscribed in Qi−1 such that the vertices of Qi are the
midpoints of the edges of Qi−1; see Fig. 1. Enumerate the k3 edges of Q1, . . . , Qk2

as e1, . . . , ek3 . For every j = 1, . . . , k3, we construct a hole as follows: Let Pj be
an (|e|−2ε)× ε

2 rectangle with symmetry axis e that contains e with the exception
of the ε-neighborhoods of its endpoints. Then P1, . . . , Pk3 are pairwise disjoint.
Finally, let P = P0 \

⋃k3

j=1 Pj .

π/k

π/k

s

s
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Q3
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t

γ
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Fig. 1. Left: hexagons Q0, . . . , Q3 for k = 6. Right: The 18 holes corresponding to the
edges of Q1, . . . , Q3.

Assume, w.l.o.g., that ei is an edge of Qi for i ∈ {0, 1, . . . , k2}. As P0 = Q0 is
a regular k-gon of unit diameter, then |e0| ≥ Ω(1/k). Let us compare the edge
lengths in two consecutive k-gons. Since Qi+1 is inscribed in Qi, we have

|ei+1| = |ei| cos
π

k
≥ |ei|

(
1− π2

2k2

)
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using the Taylor estimate cosx ≥ 1−x2/2. Consequently, for every i ∈ {0, 1, . . . , k2},

|ei| ≥ |e0| ·
(
1− π2

2k2

)k2

≥ |e0| ·Ω(1) ≥ Ω

(
1

k

)
.

It remains to show that diamg(P ) ≥ Ω(k). Let s be the center of P0 and t and
arbitrary vertex of P0. Consider an st-path γ in P , and for any two points a, b
along γ, let γ(a, b) denote the subpath of γ between a and b. Let ci be the first
point where γ crosses the boundary of Qi for i ∈ {1, . . . , k2}. By construction,
ci must be in an ε-neighborhood of a vertex of Qi. Since the vertices of Qi+1 are
at the midpoints of the edges of Qi, then |γ(ci, ci+1)| ≥ 1

2 |ei| − 2ε ≥ Ω(|ei|) ≥
Ω(1/k). Summation over i = 0, . . . , k2 − 1 yields |γ| ≥

∑k2−1
i=0 |γ(ci, ci+1)| ≥

k2 ·Ω(1/k) ≥ Ω(k) = Ω(h1/3), as required. ⊓⊔

Upper Bound. Let P ∈ C(h) for some h ∈ N and let s ∈ P . For every hole Pi,
let ℓi and ri be points on the boundary of Pi such that

−→
sℓi and −→sri are tangent

to Pi, and Pi lies on the left (resp., right) side of the ray
−→
sℓi (resp., −→sri).
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Fig. 2. Left: A polygon P ∈ C(7) with 7 convex holes, a point s ∈ P , and a path
greedyP (s,u) from s to a point t on the outer boundary of P . Right: A boundary arc
p̂q, where |p̂q| ≤ |pr|+ |rq|.

We construct a path from s to some point in the outer boundary of P by
the following recursive algorithm; refer to Fig. 2 (left). For a unit vector u ∈ S1,
we construct path greedyP (s,u) as follows. Start from s along a ray emanating
from s in direction u until reaching the boundary of P at some point p. While
p /∈ ∂P0 do: Assume that p ∈ ∂Pi for some 1 ≤ i ≤ h. Extend the path along ∂Pi

to the point ℓi or ri such that the distance from s monotonically increases; and
then continue along the ray

−→
sℓi or −→sri until reaching the boundary of P again.

When p ∈ ∂P0, the path greedyP (s,u) terminates at p.

Lemma 2. For every P ∈ C(h), every s ∈ P and every u ∈ S1, we have
|greedyP (s,u)| ≤ O(h1/2) · diam2(P ), and this bound is the best possible.
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Proof. Let P be a polygonal domain with a convex outer polygon P0 and h
convex holes. We may assume w.l.o.g. that diam2(P ) = 1. For a point s ∈ P and
a unit vector u, consider the path greedyP (s,u). By construction, the distance
from s monotonically increases along greedyP (s,u), and so the path has no self-
intersections. It it composed of radial segments that lie along rays emanating
from s, and boundary arcs that lie on the boundaries of holes. By monotonicity,
the total length of all radial segments is at most diam2(P ). Since every boundary
arc ends at a point of tangency ℓi or ri, for some i ∈ {1, . . . , h}, the path
greedyP (s,u) contains at most two boundary arcs along each hole, thus the
number of boundary arcs is at most 2h. Let A denote the set of all boundary
arcs along greedyP (s,u); then |A| ≤ 2h.

Along each boundary arc p̂q ∈ A, from p to q, the distance from s increases
by ∆pq = |sq| − |sp|. By monotonicity, we have

∑
p̂q∈A ∆pq ≤ diam2(P ). We

now give an upper bound for the length of p̂q. Let p′ be a point in sq such
that |sp| = |sp′|, and let r be the intersection of sq with a line orthogonal to sp
passing through p; see Fig. 2 (right). Note that |sp| < |sr|. Since the distance
from s monotonically increases along the arc p̂q, then q is in the closed halfplane
bounded by pr that does not contain s. Combined with |sp| < |sr|, this implies
that r lies between p′ and q on the line sq, consequently |p′r| < |p′q| = ∆pq and
|rq| < |p′q| = ∆pq. By the triangle inequality and the Pythagorean theorem,
these estimates give an upper bound

|p̂q| ≤ |pr|+ |rq| =
√
|sr|2 − |sp|2 + |rq| ≤

√
(|sp′|+ |p′r|)2 − |sp|2 + |rq|

≤
√
(|sp|+∆pq)2 − |sp|2 +∆pq ≤ O

(√
|sp|∆pq +∆pq

)
≤ O

(√
diam2(P ) ·∆pq +∆pq

)
.

Summation over all boundary arcs, using Jensen’s inequality, yields∑
p̂q∈A

|p̂q| ≤
∑
p̂q∈A

O

(√
diam2(P ) ·∆pq +∆pq

)

≤
√
diam2(P ) ·O

 ∑
p̂q∈A

√
∆pq

+O

 ∑
p̂q∈A

∆pq


≤

√
diam2(P ) ·O

|A| ·
√

1

|A|
∑
p̂q∈A

∆pq

+O(diam2(P ))

≤
√
diam2(P ) ·O

(√
|A| · diam2(P )

)
+O(diam2(P ))

≤ O
(√

|A|
)
· diam2(P ) ≤ O

(√
h
)
· diam2(P ),

as claimed.
We now show that the bound |greedyP (s,u)| ≤ O(h1/2) · diam2(P ) is the

best possible. For every h ∈ N, we construct a polygon P ∈ C(h) and a point s
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such that for every u ∈ S1, we have |greedyP (s,u)| ≥ Ω(h1/2). Without loss of
generality, we may assume diam2(P ) = 1 and h = 3(k2 + 1) for some k ∈ N.

We start with the construction in Lemma 1 with k3 rectangular holes in a
regular k-gon P0, where s is the center of P0. We modify the construction in
three steps: (1) Let T be a small equilateral triangle centered at s, and construct
three rectangular holes around the edges of T ; to obtain a total of k3 + 3 holes.
(2) Rotate each hole Pj counterclockwise by a small angle, such that when the
greedy path reaches Pj in an ε-neighborhood of its center, it would always turn
left. (3) For any u ∈ S1, the path greedyP (s,u) exit the triangle T at a small
neighborhood of a corner of T . From each corner of T , greedyP (s,u) continues to
the outer boundary along the same k2 holes. We delete all holes greedyP (s,u)
does not touch for any u ∈ S1, thus we retain h = 3k3 + 3 holes. For every
u ∈ S1, we have |greedyP (s,u)| ≥ Ω(k) according to the analysis in Lemma 1,
hence |greedyP (s,u)| ≥ Ω(h1/2), as required. ⊓⊔

Corollary 1. For every h ∈ N and every polygon P ∈ C(h), we have diamg(P ) ≤
O(h1/2) · diam2(P ).

Proof. Let P ∈ C(h) and s1, s2 ∈ P . By Lemma 2, there exist points t1, t2 ∈
∂P0 such that geod(s1, t1) ≤ O(h1/2) · diam2(P ) and geod(s2, t2) ≤ O(h1/2) ·
diam2(P ). There is a path between t1 and t2 along the perimeter of P0. It is
well known [21, 25] that |∂P0| ≤ π · diam2(P0) for every convex body P0, hence
geod(t1, t2) ≤ O(diam2(P )). The concatenation of these three paths yields a
path in P connecting s1 and s2, of length geod(s1, s2) ≤ O(h1/2) ·diam2(P ). ⊓⊔

3 Improved Upper Bound for Holes of Bounded Diameter

In this section we prove Theorem 2. Similar to the proof of Theorem 1, it is
enough to bound the geodesic distance from an arbitrary point in P to the outer
boundary. We give three such bounds in Lemmas 3, 4 and 7.

Lemma 3. Let P ∈ C(h) such that diam2(Pi) ≤ ∆ ·diam2(P ) for every hole Pi.
If ∆ ≤ O(h−1), then there exists a path of length O(diam2(P )) in P from any
point s ∈ P to the outer boundary ∂P0.

Proof. Let s ∈ P and t ∈ ∂P0. Construct an st-path γ as follows: Start with the
straight line segment st, and whenever st intersects the interior of a hole Pi, then
the segment st ∩ Pi is replaced by an arc along ∂Pi. Since |∂Pi| ≤ π · diam2(Pi)

for every convex hole Pi [21, 25], then |γ| ≤ |st| +
∑h

i=1 |∂Pi| ≤ diam2(P ) +∑h
i=1 O(diam2(Pi)) ≤ O(1 + h∆) · diam2(P ) ≤ O(diam2(P )), as claimed. ⊓⊔

Lemma 4. Let P ∈ C(h) such that diam2(Pi) ≤ ∆ ·diam2(P ) for every hole Pi.
Then there exists a path of length O(1 + h3/4∆) · diam2(P ) in P from any point
s ∈ P to the outer boundary ∂P0.

Proof. Assume without loss of generality that diam2(P ) = 1, and s is the origin.
Let ℓ ∈ N be a parameter to be specified later. For i ∈ {−ℓ,−ℓ + 1, . . . , ℓ}, let
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Hi : y = i ·∆ be a horizontal line, and Vi : x = i ·∆ a vertical line. Since any
two consecutive horizontal (resp., vertical) lines are distance ∆ apart, and the
diameter of each hole is at most ∆, then the interior of each hole intersects at
most one horizontal and at most one vertical line. By the pigeonhole principle,
there are integers a, b, c, d ∈ {1, . . . , ℓ} such that H−a, Hb, V−c, and Vd each
intersects the interior of at most h/ℓ holes; see Fig. 3.

Fig. 3. Illustration for ℓ = 5 (assuming that P is a unit square centered at s).

Let B be the axis-aligned rectangle bounded by the lines H−a, Hb, V−c, and
Vd. Due to the spacing of the lines, we have diam2(B) ≤ 2 ·

√
2 · ℓ∆ = O(ℓ∆).

We construct a path from s to ∂P0 as a concatenation of two paths γ =
γ1 ⊕ γ2. Let γ1 be the initial part of greedyP (s,u) from s until reaching the
boundary of B ∩ P0 at some point p. If p ∈ ∂P0, then γ2 = (p) is a trivial one-
point path. Otherwise p lies on a line L ∈ {H−a, Hb, V−c, Vd} that intersects the
interior of at most h/ℓ holes. Let γ2 follow L from p to the boundary of P0 such
that when it encounters a hole Pi, it makes a detour along ∂Pi.

It remains to analyze the length of γ. By Lemma 2, we have |γ1| ≤ O(
√
h) ·

diam2(B) ≤ O(h1/2ℓ∆). The path γ2 has edges along the line L and along the
boundaries of holes whose interior intersect L. The total length of all edges along
L is at most diam2(P ) = 1. It is well known that per(C) ≤ π ·diam2(C) for every
convex body [21, 25], and so the length of each detour is O(diam2(Pi)) ≤ O(∆),
and the total length of O(h/ℓ) detours is O(h∆/ℓ). Consequently,

|γ| ≤ O(h1/2ℓ∆+ h∆/ℓ+ 1). (4)

Finally, we set ℓ = ⌈h1/4⌉ to balance the first two terms in (4), and obtain
|γ| ≤ O(h3/4∆+ 1), as claimed. ⊓⊔

When all holes are line segments, we construct a monotone path from s to
the outer boundary. A polygonal path γ = (p0, p1, . . . , pm) is u-monotone for a
unit vector u ∈ S1 if u · −−−→vi−1vi ≥ 0 for all i ∈ {1, . . . ,m}; and γ is monotone if
it is u-monotone for some u ∈ S1.
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Lemma 5. Let P ∈ C(h) such that every hole is a line segment of length at
most ∆ · diam2(P ). If ∆ ≥ h−1, then there exists a monotone path of length
O(h1/2∆1/2) · diam2(P ) in P from any point s ∈ P to the outer boundary ∂P0.

Proof. We may assume w.l.o.g. that diam2(P ) = 1. Denote the line segments
by aibi, for i = 1, . . . , h, such that x(ai) ≤ b(xi). Let ℓ = ⌈h1/2∆1/2⌉, and note
that ℓ = Θ(h1/2∆1/2) when ∆ ≥ h−1. Partition the right halfplane (i.e., right
of the y-axis) into ℓ wedges with aperture π/ℓ and apex at the origin, denoted
W1, . . . ,Wℓ. For each wedge Wi, let wi ∈ S be the direction vector of its axis of
symmetry.

Partition the h segments as follows: For j = 1, . . . , ℓ, let Hj be the set of
segments aibi such that

−−→
aibi is in Wj . Finally, let Hj∗ be a set with minimal

cardinality, that is, |Hj∗ | ≤ h/ℓ = O(h1/2/∆1/2). Let v = w⊥
j∗ . We construct

a v-monotone path γ from s to the outer boundary ∂P0 as follows. Start in
direction v until reaching a hole aibi at some point p. While p /∈ ∂P0, continue
along aibi to one of the endpoints: to ai if v ·

−−→
aibi ≥ 0, and to bi otherwise; then

continue in direction v. By monotonicity, γ visits every edge at most once.
It remains to analyze the length of γ. We distinguish between two types of

edges: let E1 be the set of edges of γ contained in Hj∗ , and E2 be the set of all
other edges of γ. The total length of edges in E1 is at most the total length of
all segments in Hj∗ , that is,∑

e∈E1

|e| ≤ |Hj∗ | ·∆ ≤ O(h1/2/∆1/2) ·∆ = O(h1/2∆1/2).

Every edge e ∈ E2 makes an angle at least π/(2ℓ) with vector v. Let proj(e)
denote the orthogonal projection of e to a line of direction v. Then |proj(e)| ≥
|e| sin(π/(2ℓ)). By monotonicity, the projections of distinct edges have disjoint
interiors. Consequently,

∑
e∈E2

|proj(e)| ≤ diam2(P ) = 1. This yields∑
e∈E2

|e| ≤
∑
e∈E2

|proj(e)|
sin(π/(2ℓ))

=
1

sin(π/(2ℓ))

∑
e∈E2

|proj(e)|

= O(ℓ) = O(h1/2∆1/2).

Overall, |γ| =
∑

e∈E1
|e|+

∑
e∈E2

|e| = O(h1/2∆1/2), as claimed. ⊓⊔
For extending Lemma 5 to arbitrary convex holes, we need the following

technical lemma. (All omitted proofs are available in the full paper [8].)

Lemma 6. Let P be a convex polygon with a diametral pair a, b ∈ ∂P , where
|ab| = diam2(P ). Suppose that a line L intersects the interior of P , but does
not cross the line segment ab. Let p, q ∈ ∂P such that pq = L ∩ P , and points
a, p, q, and b appear in this counterclockwise order in ∂P ; and let p̂q be the
counterclockwise pq-arc of ∂P . Then |p̂q| ≤ 4π

√
3

9 |pq| < 2.42|pq|.
The final result is as follows.

Lemma 7. Let P ∈ C(h) such that diam2(Pi) ≤ ∆ ·diam2(P ) for every hole Pi.
If ∆ ≥ h−1, then there exists a path of length O(h1/2∆1/2) ·diam2(P ) in P from
any point s ∈ P to the outer boundary ∂P0.
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4 Polygons with Fat or Axis-Aligned Convex Holes

In this section, we show that in a polygonal domain P with fat convex holes, the
distortion geod(s, t)/|st| is bounded by a constant for all s, t ∈ P . Let C be a con-
vex body in the plane. The geometric dilation of C is δ(C) = sups,t∈∂C

geod(s,t)
|st| ,

where geod(s, t) is the shortest st-path along the boundary of C.

Lemma 8. Let C be a λ-fat convex body. Then δ(C) ≤ min{πλ−1, 2(λ−1+1)} =
O(λ−1).

Corollary 2. Let P = P0\
(⋃h

i=1 Pi

)
be a polygonal domain, where P0, P1, . . . , Ph

are λ-fat convex polygons. Then for any s, t ∈ P , we have geod(s, t) ≤ O(λ−1|st|).

Proof. If the line segment st is contained in P , then geod(s, t) = |st|, and the
proof is complete. Otherwise, segment st is the concatenation of line segments
contained in P and line segments piqi ⊂ Pi with pi, qi ∈ ∂Pi, for some indices
i ∈ {1, . . . , h}. By replacing each segment piqi with the shortest path on the
boundary of the hole Pi, we obtain an st-path γ in P . Since each hole is λ-fat,
we replaced each line segment piqi with a path of length O(|piqi|/λ) by Lemma 8.
Overall, we have |γ| ≤ O(|st|/λ), as required. ⊓⊔

Corollary 3. If P = P0\
(⋃h

i=1 Pi

)
be a polygonal domain, where P0, P1, . . . , Ph

are λ-fat convex polygons for some 0 < λ ≤ 1, then diamg(P ) ≤ O(λ−1diam2(P )),
hence ϱ(P ) ≤ O(λ−1).

Proposition 3. Let P ∈ C(h), h ∈ N, such that every hole is an axis-aligned
rectangle. Then from any point s ∈ P , there exists a path of length at most
diam2(P ) in P to the outer boundary ∂P0.

Proof. Let B = [0, a]× [0, b] be a minimal axis-parallel bounding box containing
P . We may assume w.l.o.g. that x(s) ≥ a/2, y(s) ≥ b/2, and b ≤ a. We construct
a staircase path γ as follows. Start from s in horizontal direction d1 = (1, 0) until
reaching the boundary ∂P at some point p. While p /∈ ∂P0, make a 90◦ turn
from d1 = (1, 0) to d2 = (0, 1) or vice versa, and continue. We have |γ| ≤ a+b

2 ≤
a ≤ diam2(P ), as claimed. ⊓⊔

5 Polygons with Holes versus Triangulations

The proof of Theorem 3 is the combination of Lemmas 9 and 10 below (the proof
of Lemma 9 is deferred to the full version of this paper [8]).

Lemma 9. For every triangulation T ∈ T (n), there exists a polygonal domain
P ∈ C(h) with h = Θ(n) holes such that ϱ(P ) = Θ(ϱ(T )).
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Every planar straight-line graph G = (V,E) can be augmented to a triangu-
lation T = (V,E′), with E ⊆ E′. A notable triangulation is the Constrained De-
launay Triangulation, for short, CDT(G). Bose and Keil [4] proved that CDT(G)
has bounded stretch for so-called visibility edges: if u, v ∈ V and uv does not
cross any edge of G, then CDT(G) contains a uv-path of length O(|uv|).

Lemma 10. For every polygonal domain P ∈ C(h), there exists a triangulation
T ∈ T (n) with n = Θ(h) vertices such that ϱ(T ) = Θ(ϱ(P )).

Proof. Assume that P = P0 \
⋃h

i=1 Pi. For all j = 1, . . . , h, let ai, bi ∈ ∂Pi

be a diametral pair, that is, |aibi| = diam2(Pi). The line segments {aibi : i =
1, . . . , h}, together with the four vertices of a minimum axis-aligned bounding
box of P , form a planar straight-line graph G with 2h + 4 vertices. Let T =
CDT(G) be the constrained Delaunay triangulation of G.

We claim that ϱ(T ) = Θ(ϱ(P )). We prove this claim in two steps. For an
intermediate step, we define a polygon with h line segment holes: P ′ = P0 \⋃h

i=1{aibi}. For any point pair s, t ∈ P , denote by dist(s, t) and dist′(s, t), resp.,
the shortest distance in P and P ′. Since P ⊆ P ′, we have dist′(s, t) ≤ dist(s, t).
By Lemma 6, dist(s, t) < 2.42 · dist′(s, t) so dist′(s, t) = Θ(dist(s, t)), ∀s, t ∈ P .

Every point s ∈ P lies in one or more triangles in T ; let s′ denote a closest
vertex of a triangle in T that contains s. For s, t ∈ P , let dist′′(s, t) be the
length of the st-path γ composed of the segment ss′, a shortest s′t′-path in the
triangulation T , and the segment t′t.

Since γ does not cross any of the line segments ajbj , we have dist′(s, t) ≤
dist′′(s, t) for any pair of points s, t ∈ P . Conversely, every vertex in the shortest
s′t′-path in P ′ is an endpoint of an obstacle ajbj . Consequently, every edge is
either an obstacle segment ajbj , or a visibility edge between the endpoints of two
distinct obstacles. By the result of Bose and Keil [4], for every such edge pq, T
contains a pq-path τpq of length |τpq| ≤ O(|pq|). The concatenation of these paths
is an s′t′-path τ of length |τ | ≤ O(dist′(s′, t′)). Finally, note that the diameter
of each triangle in T is at most diam2(P

′). Consequently, if s, t ∈ P maximizes
dist(s, t), then dist′′(s, t) = |ss′|+ |γ|+ |t′t| ≤ 2 ·diam2(P )+ |τ | ≤ O(dist′(s′t′)).
Consequently, diamg(T ) = Θ(diamg(P )), which yields ϱ(T ) = Θ(ϱ(P )). ⊓⊔
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