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Abstract. For a polygon P with holes in the plane, we denote by o(P)
the ratio between the geodesic and the Euclidean diameters of P. It is
shown that over all convex polygons with A convex holes, the supremum
of o(P) is between Q(hl/S) and O(h'/?). The upper bound improves
to O(1 + min{h®* A, h'/? A'/?}) if every hole has diameter at most A -
diams (P); and to O(1) if every hole is a fat convex polygon. Furthermore,
we show that the function g(h) = supp o(P) over convex polygons with
h convex holes has the same growth rate as an analogous quantity over
geometric triangulations with h vertices when h — oo.

1 Introduction

Determining the maximum distortion between two metrics on the same ground
set is a fundamental problem in metric geometry. Here we study the maximum
ratio between the geodesic (i.e., shortest path) diameter and the Euclidean di-
ameter over polygons with holes. A polygon P with h holes (also known as
a polygonal domain) is defined as follows. Let Py be a simple polygon, and

let Py,..., P, be pairwise disjoint simple polygons in the interior of Py. Then
h
P=F\ (Ui:1pi)-
The Euclidean distance between two points s,t € P is [st| = ||s — t||2, and

the shortest path distance geod(s,t) is the minimum arclength of a polygo-
nal path between s and t contained in P. The triangle inequality implies that
|st| < geod(s,t) for all s,t € P. The geometric dilation (also known as the stretch
factor) between the two distances is sup ;. p geod(s,t)/|st|. The geometric di-
lation of P can be arbitrarily large, even if P is a (nonconvex) quadrilateral.

The Buclidean diameter of P is diamy(P) = sup ;¢ p |st| and its geodesic di-
ameter is diamy (P) = sup, ,c p geod(s, t). It is clear that diamy(P) < diam,(P).
We are interested in the distortion

) = G 2

Note that o(P) is unbounded, even for simple polygons. Indeed, if P is a zig-zag
polygon with n vertices, contained in a disk of unit diameter, then diams(P) < 1
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and diamg(P) = £2(n), hence o(P) > £2(n). It is not difficult to see that this
bound is the best possible, that is, o(P) < O(n).
In this paper, we consider convex polygons with convex holes. Specifically,

let C(h) denote the family of polygonal domains P = Py \ (U?Zl Pi), where

Py, Py, ..., P, are convex polygons; and let
g(h) = sup o(P). (2)
PecC(h)

It is clear that if A = 0, then geod(s,t) = |st| for all s,¢t € P, which implies
¢(0) = 1. Or main result is the following.

Theorem 1. For every h € N, we have 2(h*/?) < g(h) < O(h'/?).

The lower bound construction is a polygonal domain in which all A holes
have about the same diameter ©(h~1/3) - diamy(P). We prove a matching upper
bound for all polygons P with holes of diameter @(h~1/3)-diamy(P). In general,
if the diameter of every hole is o(1) - diamy(P), we can improve upon the bound
g(h) < O(h'/?) in Theorem 1.

Theorem 2. If P € C(h) and the diameter of every hole is at most A-diams(P),
then o(P) < O(1 + min{h®>/* A, W12 AY2}). In particular for A = O(h™'/3), we
have o(P) < O(h'/3).

However, if we further restrict the holes to be fat convex polygons, we can
show that o(P) = O(1) for all h € N. In fact for every s,t € P, the distortion
geod(s,t)/|st| is also bounded by a constant.

Informally, a convex body is fat if its width is comparable with its diameter.
The width of a convex body C' is the minimum width of a parallel slab enclos-
ing C. For 0 < A < 1, a convex body C is A-fat if the ratio of its width to
its diameter is at least A, that is, width(C)/diamg(C) > A; and C is fat if the
inequality holds for a constant \. For instance, a disk is 1-fat, a 3 x 4 rectangle

is 2-fat and a line segment is 0-fat. Let F(h) be the family of polygonal domain

P="P\ <U?:1 Pi), where Py, Py, ..., P, are A-fat convex polygons.

Proposition 1. For every h € N and P € Fy(h), we have o(P) < O(A™1).
The special case when all holes are axis-aligned rectangles is also easy.

Proposition 2. Let P € C(h), h € N, such that all holes are azis-aligned rect-
angles. Then o(P) < O(1).

Triangulations. In this paper, we focus on the diameter distortion o(P) =
diam, (P)/diamy(P) for polygons P € C(h) with h holes. Alternatively, we can
also compare the geodesic and Euclidean diameters in n-vertex triangulations.
In a geometric graph G = (V, E), the vertices are distinct points in the plane,
and the edges are straight-line segment between pairs of vertices. The Fuclidean
diameter of G, diamy(G) = max, yev |uv| is the maximum distance between
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two vertices, and the geodesic diameter diam,(G) = max,, ,ev dist(u,v), where
dist(u, v) is the shortest path distance in G, i.e., the minimum Euclidean length
of a uv-path in G. With this notation, we define o(G) = diam,(G)/diams(G),

A Euclidean triangulation 7' = (V, E) of a point set V' is a planar straight-
line graph where all bounded faces are triangles, and their union is the convex
hull conv (V). Let

f(n)= sup o(G), (3)
GeT(n)

where the supremum is taken over the set 7 (n) all n-vertex triangulations. Recall
that g(n) is the supremum of diameter distortions over polygons with n convex
holes; see (2). We prove that f(n) and g(n) have the same growth rate.

Theorem 3. We have g(n) = O(f(n)).

Alternative problem formulation. The following version of the question studied
here may be more attractive to the escape community [9, 16]. Given n pairwise
disjoint convex obstacles in a convex polygon of unit diameter (e.g., a square),
what is the maximum length of a (shortest) escape route from any given point
in the polygon to its boundary? According to Theorem 1, it is always O(n'/?)
and sometimes 2(n'/3).

Related work. The geodesic distance in polygons with or without holes has been
studied extensively from the algorithmic perspective; see [19] for a comprehen-
sive survey. In a simple polygon P with n vertices, the geodesic distance between
two given points can be computed in O(n) time [17]; trade-offs are also avail-
able between time and workspace [12]. A shortest-path data structure can report
the geodesic distance between any two query points in O(logn) time after O(n)
preprocessing time [11]. In O(n) time, one can also compute the geodesic diam-
eter [13] and radius [1].

For polygons with holes, more involved techniques are needed. Let P be
a polygon with h holes, and a total of n vertices. For any s,t € P, one can
compute geod(s,t) in O(n+ hlogh) time and O(n) space [23], improving earlier
bounds in [14, 15,18, 24]. A shortest-path data structure can report the geodesic
distance between two query points in O(logn) query time using O(n!!) space;
or in O(hlogn) query time with O(n + h®) space |6]. The geodesic radius can be
computed in O(n'!logn) time [3,22], and the geodesic diameter in O(n”"3) or
O(n"(logn + h)) time [2]. One can find an (1 + €)-approximation in O((n/e? +
n?/e)logn) time [2,3]. The geodesic diameter may be attained by a point pair
s,t € P, where both s and ¢ lie in the interior or P; in which case it is known [2]
that there are at least five different geodesic paths between s and t.

The diameter of an n-vertex triangulation with Euclidean weights can be
computed in O(n5/ 3) time [5, 10]. For unweighted graphs in general, the diameter
problem has been intensely studied in the fine-grained complexity community.
For a graph with n vertices and m edges, breadth-first search (BFS) yields a
2-approximation in O(m) time. Under the Strong Exponential Time Hypothesis
(SETH), for any integer k > 2 and € > 0, a (2 — % — g)-approximation requires
mn 1/ (k=1)=o(1) time [7]; see also [20].
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2 Convex Polygons with Convex Holes

In this section, we prove Theorem 1. A lower bound construction is presented in
Lemma 1, and the upper bound is established in Lemma 2 below.

Lower Bound. The lower bound is based on the following construction.

Lemma 1. For every h € N, there exists a polygonal domain P € C(h) such
that g(P) > 2(h'/3).

Proof. We may assume w.l.0.g. that h = k3 for some integer k& > 3. We construct
a polygon P with h holes, where the outer polygon P is a regular k-gon of unit
diameter, hence diams(P) = diams(FPy) = 1. Let Qo, @1, . .., Q2 be a sequence
of k% + 1 regular k-gons with a common center such that Qo = Py, and for
every i € {1,...,k?}, Q; is inscribed in @Q;_; such that the vertices of Q; are the
midpoints of the edges of Q,;_1; see Fig. 1. Enumerate the k% edges of Q1, ..., Q2

as ei,...,exs. For every j = 1,..., k%, we construct a hole as follows: Let P; be
an (|e|—2¢) x § rectangle with symmetry axis e that contains e with the exception
of the e-neighborhoods of its endpoints. Then P, ..., P.s are pairwise disjoint.

Finally, let P = Py \ ", P;.

Qo

Fig. 1. Left: hexagons Qo, ..., Q3 for k = 6. Right: The 18 holes corresponding to the
edges of Q1,...,Q3.

Assume, w.l.o.g., that e; is an edge of Q; for i € {0,1,...,k*}. As Py = Qo is
a regular k-gon of unit diameter, then |eg| > £2(1/k). Let us compare the edge
lengths in two consecutive k-gons. Since ();11 is inscribed in @;, we have

™ w2
leiv1| = ‘€i|COSE > el (1 — 2]4:2>
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using the Taylor estimate cos # > 1—x2 /2. Consequently, for every i € {0,1,...,k%},

w2 K 1

It remains to show that diam,(P) > 2(k). Let s be the center of Py and ¢ and
arbitrary vertex of Fy. Consider an st-path « in P, and for any two points a,b
along 7, let vy(a,b) denote the subpath of v between a and b. Let ¢; be the first
point where ~ crosses the boundary of Q; for i € {1,...,k*}. By construction,
¢; must be in an e-neighborhood of a vertex of @);. Since the vertices of (); 11 are
at the midpoints of the edges of Q;, then |y(c;,cit1)] = 3 |ei| — 26 > 2(|e;]) >
2(1/k). Summation over i = 0,...,k? — 1 yields |y| > Zial [v(ciyciv1)] >
k2. 2(1/k) > 2(k) = 2(h'/3), as required. O

Upper Bound. Let P € C(h) for some h € N and let s 6_1>D For every hole P;,
let ¢; and r; be points on the boundary of P; such that s@and s_ri are tangent
to P;, and P; lies on the left (resp., right) side of the ray s¢; (resp., ﬁ)

Fig. 2. Left: A polygon P € C(7) with 7 convex holes, a point s € P, and a path
greedy p(s,u) from s to a point ¢ on the outer boundary of P. Right: A boundary arc
pg, where [pg| < |pr| + |rq].

We construct a path from s to some point in the outer boundary of P by
the following recursive algorithm; refer to Fig. 2 (left). For a unit vector u € S!,
we construct path greedyp(s, u) as follows. Start from s along a ray emanating
from s in direction w until reaching the boundary of P at some point p. While
p ¢ 0Py do: Assume that p € 9P; for some 1 < i < h. Extend the path along dP;
to the point ¢; or r; such that the distance from s monotonically increases; and
then continue along the ray z or sr, until reaching the boundary of P again.
When p € 0P, the path greedy p(s,u) terminates at p.

Lemma 2. For every P € C(h), every s € P and every u € S', we have
|greedy p (s, u)| < O(h'/?) - diamy(P), and this bound is the best possible.
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Proof. Let P be a polygonal domain with a convex outer polygon P, and h
convex holes. We may assume w.l.o.g. that diamy(P) = 1. For a point s € P and
a unit vector w, consider the path greedy p(s,u). By construction, the distance
from s monotonically increases along greedy p(s, u), and so the path has no self-
intersections. It it composed of radial segments that lie along rays emanating
from s, and boundary arcs that lie on the boundaries of holes. By monotonicity,
the total length of all radial segments is at most diams (P). Since every boundary
arc ends at a point of tangency ¢; or r;, for some i € {1,...,h}, the path
greedy p(s,u) contains at most two boundary arcs along each hole, thus the
number of boundary arcs is at most 2h. Let A denote the set of all boundary
arcs along greedy p(s,u); then |A| < 2h.

Along each boundary arc pg € A, from p to g, the distance from s increases
by A, = [sq| — [sp|. By monotonicity, we have > . , Ap, < diamy(P). We
now give an upper bound for the length of pg. Let p’ be a point in sq such
that |sp| = |sp’|, and let r be the intersection of sq with a line orthogonal to sp
passing through p; see Fig. 2 (right). Note that |sp| < |sr|. Since the distance
from s monotonically increases along the arc pg, then q is in the closed halfplane
bounded by pr that does not contain s. Combined with |sp| < |sr|, this implies
that r lies between p’ and ¢ on the line sq, consequently [p'r| < |p'q| = A, and
Irq| < [p'q] = Apq. By the triangle inequality and the Pythagorean theorem,
these estimates give an upper bound

54l < |pr| + [ral = \/]sr> = [spl? + [rq| < V/(Isp'] + [p'])2 = |sp]* + |rq]
i \/(|5P| + Apg)? — [spl2 + Apg <O (\/ |sp|Apq + qu)

<0 ( diamy (P) - Apg + qu> .

Summation over all boundary arcs, using Jensen’s inequality, yields

ol <) 0< diamg(P)-qu+qu>

pgeA PGEA
< Vdiama(P)- O [ 37 /Ay | +0 [ D Ay

PgeA pGEA

< /diamy(P) - O [ |A] - /ﬁ > Ay | + O(diamy(P))
pgeA

< y/diamg(P) - O (W) + O(diams(P))
<0 (M) - diamy(P) < O (ﬁ) - diamy(P),

as claimed.
We now show that the bound |greedyp(s,u)| < O(h'/?) - diamy(P) is the
best possible. For every h € N, we construct a polygon P € C(h) and a point s
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such that for every w € S', we have |greedy (s, u)| > £2(h*/?). Without loss of
generality, we may assume diamg(P) = 1 and h = 3(k? + 1) for some k € N.
We start with the construction in Lemma 1 with &3 rectangular holes in a
regular k-gon Py, where s is the center of Py. We modify the construction in
three steps: (1) Let T be a small equilateral triangle centered at s, and construct
three rectangular holes around the edges of T'; to obtain a total of k3 4+ 3 holes.
(2) Rotate each hole P; counterclockwise by a small angle, such that when the
greedy path reaches P; in an e-neighborhood of its center, it would always turn
left. (3) For any uw € S', the path greedyp(s,u) exit the triangle T at a small
neighborhood of a corner of T'. From each corner of T, greedy p(s, ) continues to
the outer boundary along the same k2 holes. We delete all holes greedy p(s, u)
does not touch for any w € S!, thus we retain h = 3k + 3 holes. For every
u € S', we have |greedy p(s,u)| > 2(k) according to the analysis in Lemma 1,
hence |greedy p(s, u)| > 2(h'/?), as required. O

Corollary 1. For every h € N and every polygon P € C(h), we have diamy(P) <
O(h'/?) - diamy(P).

Proof. Let P € C(h) and s1,s2 € P. By Lemma 2, there exist points ¢1,ty €
OPy such that geod(si,t1) < O(h'/?) - diamy(P) and geod(sa,ta) < O(RY/?) -
diamsy(P). There is a path between ¢; and to along the perimeter of Py. It is
well known [21, 25| that |0P| < 7 - diamy(Py) for every convex body Py, hence
geod(ty,ta) < O(diamy(P)). The concatenation of these three paths yields a
path in P connecting s; and sy, of length geod(sy, s2) < O(h'/?)-diamy(P). O

3 Improved Upper Bound for Holes of Bounded Diameter

In this section we prove Theorem 2. Similar to the proof of Theorem 1, it is
enough to bound the geodesic distance from an arbitrary point in P to the outer
boundary. We give three such bounds in Lemmas 3, 4 and 7.

Lemma 3. Let P € C(h) such that diamy(P;) < A-diamy(P) for every hole P;.
If A < O(h™1), then there exists a path of length O(diams(P)) in P from any
point s € P to the outer boundary OF,.

Proof. Let s € P and t € 0P,y. Construct an st-path « as follows: Start with the
straight line segment st, and whenever st intersects the interior of a hole P;, then
the segment st N P; is replaced by an arc along OP;. Since |0F;| < 7 - diamg (F;)
for every convex hole P; [21,25], then |y| < |st| + 2?21 |0F;| < diama(P) +
S O(diamy(Py)) < O(1 + hA) - diamy(P) < O(diamy(P)), as claimed. O
Lemma 4. Let P € C(h) such that diamg(P;) < A-diamy(P) for every hole P;.

Then there exists a path of length O(1 + h3/*A) - diamy(P) in P from any point
s € P to the outer boundary OP,.

Proof. Assume without loss of generality that diamg(P) = 1, and s is the origin.
Let £ € N be a parameter to be specified later. For ¢ € {—¢,—¢+1,...,¢}, let
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H; : y =i-A be a horizontal line, and V; : © = ¢ - A a vertical line. Since any
two consecutive horizontal (resp., vertical) lines are distance A apart, and the
diameter of each hole is at most A, then the interior of each hole intersects at
most one horizontal and at most one vertical line. By the pigeonhole principle,
there are integers a,b,c,d € {1,...,¢} such that H_,, Hp, V_., and V; each
intersects the interior of at most h/¢ holes; see Fig. 3.

Fig. 3. Illustration for £ = 5 (assuming that P is a unit square centered at s).

Let B be the axis-aligned rectangle bounded by the lines H_,, Hy, V_., and
V4. Due to the spacing of the lines, we have diamy(B) < 2-+v/2- LA = O({A).

We construct a path from s to 0P, as a concatenation of two paths v =
Y1 @ 2. Let 1 be the initial part of greedyp(s,u) from s until reaching the
boundary of B N Py at some point p. If p € 9P, then 5 = (p) is a trivial one-
point path. Otherwise p lies on a line L € {H_,, Hp, V_., V;} that intersects the
interior of at most h/¢ holes. Let o follow L from p to the boundary of Py such
that when it encounters a hole P;, it makes a detour along 0P;.

It remains to analyze the length of 7. By Lemma 2, we have |v;| < O(V/h) -
diamy(B) < O(h'/2¢A). The path v, has edges along the line L and along the
boundaries of holes whose interior intersect L. The total length of all edges along
L is at most diams(P) = 1. It is well known that per(C) < m-diamy(C') for every
convex body [21, 25], and so the length of each detour is O(diams(P;)) < O(A),
and the total length of O(h/¢) detours is O(hA/f¢). Consequently,

Iyl < O(hY20A + hAJE+1). (4)

Finally, we set £ = [h'/*] to balance the first two terms in (4), and obtain
Iv| < O(h*/*A +1), as claimed. O

When all holes are line segments, we construct a monotone path from s to
the outer boundary. A polygonal path v = (pg, p1,...,pm) is u-monotone for a
unit vector w € S* if w-v;_yv; > 0 for all i € {1,...,m}; and v is monotone if
it is u-monotone for some u € S*.
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Lemma 5. Let P € C(h) such that every hole is a line segment of length at
most A - diamg(P). If A > h™!, then there exists a monotone path of length
O(h'/2AY/2) . diamy(P) in P from any point s € P to the outer boundary OP,.

Proof. We may assume w.l.o.g. that diams(P) = 1. Denote the line segments
by a;b;, for i = 1,...,h, such that x(a;) < b(z;). Let £ = [h'/2AY?], and note
that £ = O(h'/2A'Y2) when A > h~'. Partition the right halfplane (i.e., right
of the y-axis) into ¢ wedges with aperture 7/¢ and apex at the origin, denoted
W1, ..., Wy. For each wedge W;, let w; € S be the direction vector of its axis of
symmetry.

Partition the h segments as follows: For j = 1,...,¢, let H; be the set of
segments a;b; such that ai_bz is in Wj. Finally, let H;« be a set with minimal
cardinality, that is, |H;«| < h/l = O(h'/?/AY/?). Let v = wi.. We construct
a v-monotone path ~ from s to the outer boundary 0P, as follows. Start in
direction v until reaching a hole a;b; at some point p. While p ¢ 0P, continue

along a;b; to one of the endpoints: to a; if v-a;b; > 0, and to b; otherwise; then
continue in direction v. By monotonicity, v visits every edge at most once.

It remains to analyze the length of v. We distinguish between two types of
edges: let E; be the set of edges of v contained in H;«, and E5 be the set of all
other edges of 7. The total length of edges in F; is at most the total length of
all segments in H -, that is,

Z le] < |Hj«|-A< O(hl/Z/A1/2) A= O(h1/2A1/2).
ecEq

Every edge e € E5 makes an angle at least 7/(2¢) with vector v. Let proj(e)
denote the orthogonal projection of e to a line of direction v. Then |proj(e)| >
le| sin(7/(2¢)). By monotonicity, the projections of distinct edges have disjoint
interiors. Consequently, > .. |proj(e)| < diama(P) = 1. This yields

proj(e)l _ 1 -
2 1< . Siman ~ s 2 i)

ecEg ecEq ecEq
=0(0) = O(h'/2A12),
Overall, [v[ =" cp, lel + D cep, lel = O(h'/2 A1/?), as claimed. O

For extending Lemma 5 to arbitrary convex holes, we need the following
technical lemma. (All omitted proofs are available in the full paper [§].)

Lemma 6. Let P be a convex polygon with a diametral pair a,b € OP, where
|ab] = diamg(P). Suppose that a line L intersects the interior of P, but does
not cross the line segment ab. Let p,q € OP such that pg = LN P, and points
a, p, q, and b appear in this counterclockwise order in OP; and let pq be the
counterclockwise pg-arc of OP. Then |pg| < % |pg| < 2.42|pq|.

The final result is as follows.

Lemma 7. Let P € C(h) such that diamy(P;) < A-diams(P) for every hole P;.
If A > h™', then there exists a path of length O(h'/2A'/2) . diamy(P) in P from
any point s € P to the outer boundary OF,.
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4 Polygons with Fat or Axis-Aligned Convex Holes

In this section, we show that in a polygonal domain P with fat convex holes, the

distortion geod(s, t)/|st| is bounded by a constant for all s,¢ € P. Let C be a con-

geod(s,t)
[st[

vex body in the plane. The geometric dilation of C is §(C) = sup, ;o0
where geod(s,t) is the shortest st-path along the boundary of C.

Lemma 8. Let C be a A-fat convex body. Then §(C) < min{zA~ 2(A"1+1)} =
O\ 1).

Corollary 2. Let P = Po\(U?:1 Pi> be a polygonal domain, where Py, Py, ..., Py,
are \-fat convex polygons. Then for any s,t € P, we have geod(s,t) < O(A\7t|st]).

Proof. If the line segment st is contained in P, then geod(s,t) = |st|, and the
proof is complete. Otherwise, segment st is the concatenation of line segments
contained in P and line segments p;q; C P; with p;,q; € OP;, for some indices
i € {1,...,h}. By replacing each segment p;q; with the shortest path on the
boundary of the hole P;, we obtain an st-path v in P. Since each hole is \-fat,
we replaced each line segment p;q; with a path of length O(|p;¢;|/)\) by Lemma 8.
Overall, we have |y| < O(|st|/)), as required. O

Corollary 3. If P = P\ (U?:l Pi> be a polygonal domain, where Py, Py, ..., Py

are A-fat convex polygons for some 0 < X < 1, then diam,(P) < O(A~ diams(P)),
hence o(P) < O(A™1).

Proposition 3. Let P € C(h), h € N, such that every hole is an axis-aligned
rectangle. Then from any point s € P, there exists a path of length at most
diamg(P) in P to the outer boundary OP,.

Proof. Let B = [0,a] x [0,b] be a minimal axis-parallel bounding box containing
P. We may assume w.l.o.g. that z(s) > a/2, y(s) > b/2, and b < a. We construct
a staircase path 7 as follows. Start from s in horizontal direction dy = (1,0) until
reaching the boundary OP at some point p. While p ¢ 0P, make a 90° turn
from dy = (1,0) to da = (0, 1) or vice versa, and continue. We have |y| < %£2 <

a < diamy(P), as claimed. m|

5 Polygons with Holes versus Triangulations

The proof of Theorem 3 is the combination of Lemmas 9 and 10 below (the proof
of Lemma 9 is deferred to the full version of this paper [8]).

Lemma 9. For every triangulation T € T (n), there exists a polygonal domain
P € C(h) with h = ©(n) holes such that o(P) = O(o(T)).
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Every planar straight-line graph G = (V, E) can be augmented to a triangu-
lation T' = (V, E'), with E C E’. A notable triangulation is the Constrained De-
launay Triangulation, for short, CDT(G). Bose and Keil [4] proved that CDT(G)
has bounded stretch for so-called wvisibility edges: if u,v € V and uv does not
cross any edge of G, then CDT(G) contains a uv-path of length O(|uv|).

Lemma 10. For every polygonal domain P € C(h), there exists a triangulation
T € T(n) with n = ©(h) vertices such that o(T) = O(o(P)).

Proof. Assume that P = Py \ UZ}.L:1 P;. For all j = 1,...,h, let a;,b; € OPF;
be a diametral pair, that is, |a;b;| = diamg(F;). The line segments {a;b; : i =
1,...,h}, together with the four vertices of a minimum axis-aligned bounding
box of P, form a planar straight-line graph G with 2h + 4 vertices. Let T =
CDT(G) be the constrained Delaunay triangulation of G.

We claim that o(T) = ©(p(P)). We prove this claim in two steps. For an
intermediate step, we define a polygon with h line segment holes: P/ = Py \
U?Zl{aibi}. For any point pair s,t € P, denote by dist(s, t) and dist/(s, t), resp.,
the shortest distance in P and P’. Since P C P’, we have dist'(s,t) < dist(s,t).
By Lemma 6, dist(s,t) < 2.42 - dist’(s, t) so dist'(s,t) = O(dist(s, t)), Vs,t € P.

Every point s € P lies in one or more triangles in T; let s’ denote a closest
vertex of a triangle in T that contains s. For s, € P, let dist”(s,t) be the
length of the st-path v composed of the segment ss’, a shortest s't’-path in the
triangulation T, and the segment t't.

Since v does not cross any of the line segments a;b;, we have dist’(s,t) <
dist” (s, t) for any pair of points s,t € P. Conversely, every vertex in the shortest
s't’-path in P’ is an endpoint of an obstacle a;b;. Consequently, every edge is
either an obstacle segment a;b;, or a visibility edge between the endpoints of two
distinct obstacles. By the result of Bose and Keil [4], for every such edge pg, T
contains a pg-path 7,4 of length |7,4| < O(|pg|). The concatenation of these paths
is an s't’-path 7 of length |r| < O(dist’(s/,')). Finally, note that the diameter
of each triangle in T is at most diams(P’). Consequently, if s,¢ € P maximizes
dist(s, t), then dist” (s, t) = |ss| + |y| + [t't] < 2-diama(P) + |7] < O(dist’(s't")).
Consequently, diam,(T) = ©(diam,(P)), which yields o(T) = O(o(P)). O
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