
Semi-Leak: Membership Inference Attacks
Against Semi-supervised Learning

Xinlei He1, Hongbin Liu2, Neil Zhenqiang Gong2, and Yang Zhang1

1 CISPA Helmholz Center for Information Security
2 Duke University

Abstract. Semi-supervised learning (SSL) leverages both labeled and
unlabeled data to train machine learning (ML) models. State-of-the-art
SSL methods can achieve comparable performance to supervised learn-
ing by leveraging much fewer labeled data. However, most existing works
focus on improving the performance of SSL. In this work, we take a dif-
ferent angle by studying the training data privacy of SSL. Specifically,
we propose the first data augmentation-based membership inference at-
tacks against ML models trained by SSL. Given a data sample and the
black-box access to a model, the goal of membership inference attack is
to determine whether the data sample belongs to the training dataset
of the model. Our evaluation shows that the proposed attack can con-
sistently outperform existing membership inference attacks and achieves
the best performance against the model trained by SSL. Moreover, we
uncover that the reason for membership leakage in SSL is different from
the commonly believed one in supervised learning, i.e., overfitting (the
gap between training and testing accuracy). We observe that the SSL
model is well generalized to the testing data (with almost 0 overfitting)
but “memorizes” the training data by giving a more confident prediction
regardless of its correctness. We also explore early stopping as a coun-
termeasure to prevent membership inference attacks against SSL. The
results show that early stopping can mitigate the membership inference
attack, but with the cost of model’s utility degradation. 3
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1 Introduction

Machine learning (ML) has made tremendous progress in the past decade. One of
the key reasons for the great success of ML models can be credited to the large-
scale labeled data. However, such labeled datasets are often hard to collect as
they rely on human annotations and expertise in the specific domain. Meanwhile,
unlabeled datasets are easy to obtain. To better leverage the unlabeled data,
semi-supervised learning (SSL) has been proposed. Concretely, SSL uses a small
set of labeled data and a large set of unlabeled data to jointly train the ML model.
In recent years, SSL shows its effectiveness on different tasks by leveraging much

3 Our code is available at https://github.com/xinleihe/Semi-Leak.
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fewer labeled data [25,32,35]. For instance, by only using 250 labeled samples,
FlexMatch [35] can achieve about 95% accuracy on CIFAR10.

Different from supervised learning where every data sample is treated equally
in the training procedure, SSL takes different ways to handle the labeled and
unlabeled data samples during the training. Concretely, the state-of-the-art SSL
methods [25,32,35] leverage weak augmentation to the labeled samples and trains
them in a supervised manner. For each unlabeled sample, it would generate a
weakly-augmented view and a strongly-augmented view (by weak and strong
augmentations), and the goal is to leverage the model’s prediction probability
(referred to as prediction or posteriors) of the weakly-augmented view to guide
the training of the strongly-augmented view of the sample. Instead of directly
using the posteriors as a “soft” label, those SSL methods switch the posteriors
into a “sharpen” [32] or “hard” label [25,35]. Note that the sample is not used
to train the model until the highest probability of the prediction on the weakly-
augmented view exceeds a pre-defined threshold τ . In this way, the model trained
by SSL can gradually learn more accurate predictions.

Despite being powerful, ML models are shown to be vulnerable to various pri-
vacy attacks [7,24,26], represented by membership inference attacks [24,23,18,27].
The goal of membership inference attack is to determine whether a data sample
is used to train a target ML model. Successful membership inference attacks can
raise privacy concerns as they may reveal sensitive information of people. For
instance, if an ML model is trained on the data for people with a certain sensitive
attribute (e.g., diseases), identifying the person in the training dataset directly
reveals this individual’s sensitive attribute. So far, most of the efforts on mem-
bership inference attacks concentrate on models trained by supervised learning.
Also, there are some exploratory researches investigating the privacy risks in self-
supervised learning [16,9]. However, in SSL, the labeled and unlabeled samples
are treated differently during the training. It is important to quantify whether
this unique training paradigm would lead to different privacy risks for labeled
and unlabeled samples. Also, as the different augmented views instead of the
original samples are used to train the model, we are curious whether a more
effective membership inference attack mechanism can be proposed against SSL.
To be best of our knowledge, this is largely unexplored.

In this work, we fill the gap by proposing the first data augmentation-based
membership inference attack method against SSL. A key advantage for SSL is
that it only needs a small amount of labeled data and leverages the unlabeled
data itself to guide the training. Concretely, for the labeled data, the model is
trained in a supervised manner. For the unlabeled data, SSL leverage the data
itself as the supervision. In particular, for each unlabeled training sample, a
weakly augmented and a strongly augmented views will be fed into the target
model and the training objective is to minimize the distance of the model’s
prediction on these two views. Our proposed data augmentation-based attack is
based on the intuition that the model’s prediction of these two views should be
more similar if the sample belongs to the model’s training set.
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We conduct our evaluation on three SSL methods (FixMatch, FlexMatch,
and UDA) and three commonly used SSL datasets (SVHN, CIFAR10, and CI-
FAR100). Our empirical results show that our proposed attack can consistently
outperform baseline attacks and reaches the best performance. For instance, for
FixMatch trained on CIFAR10 with 500 labeled samples, our attack achieves
0.780 AUC while the best baseline attack only has 0.722 AUC. This indicates
that our attack can better unleash the membership information in SSL.

Moreover, we find that, unlike supervised learning where the membership
leakage can be credited to the overfitting nature of the model [24,23](i.e., the
model predicts the training data more accurately than the testing data), models
trained by SSL methods are well generalized and have almost no overfitting but
still suffer high membership inference risk. Our analysis reveals that the model
indeed “memorizes” the training data, but such memorization does not present
as a more accurate prediction, but a more confident prediction. We show that
the prediction entropy distribution of members and non-members has a large
gap in models trained by SSL (measured by Jason-Shannon (JS) Distance).

Contributions. (1) We are the first to study the privacy risk of SSL through the
lens of membership inference attacks and we propose a data augmentation-based
attack that is tailored to SSL methods. (2) We conduct extensive experiments on
SVHN, CIFAR10, and CIFAR100 datasets. Our results show that our proposed
attack outperforms baseline attacks that are extended from existing works to
SSL settings. (3) We show that the effectiveness of membership inference at-
tacks against SSL is not credited to the model’s overfitting level but credited
to the model prediction’s distinguishable entropy distributions for members and
non-members (measured by Jason-Shannon Distance). (4) We study an early-
stopping-based defense against our proposed attack. We show that this defense
can decrease the attack AUC of our attack but sacrifice the testing accuracy of
the trained models.

2 Preliminary and Related Work

2.1 Semi-Supervised Learning

Semi-supervised learning (SSL) [13,17,2,25,32,35] aims to train accurate mod-
els via exploiting a large amount of unlabeled data when the labeled data
is scarce. In this paper, we focus on the vision domain since most advanced
SSL methods are designed for it. Generally speaking, state-of-the-art SSL tech-
niques [25,32,35] produce “pseudo labels” for the unlabeled samples when the
model’s predictions are confident enough based on pre-defined threshold strate-
gies. For example, Lee [13] first proposed to produce the class label that has
the highest confidence score output by the classifier for unlabeled samples dur-
ing training. After assigning pseudo labels to unlabeled samples, they can train
classifiers in a supervised fashion with labeled and unlabeled samples. Recently,
FixMatch [25] achieves state-of-the-art classification accuracy via assigning the
strongly augmented unlabeled samples with the pseudo labels produced from
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the corresponding weakly augmented samples when the highest confidence score
exceeds a certain threshold. While UDA [32] was proposed to treat the clas-
sifier’s “sharpen” output confidence scores as the ‘pseudo labels’ rather than
one class label. Similar to FixMatch, UDA trains strongly augmented unlabeled
samples with the pseudo labels produced from the corresponding weakly aug-
mented samples. FlexMatch [35] updates FixMatch by introducing the curricu-
lum learning-based method to flexibly adjust the threshold for different classes
during the training. Existing studies on SSL mainly focus on how to improve the
performance, however, we are the first to show that state-of-the-art SSL methods
are vulnerable to our tailored membership inference attacks, which exploit the
strong/weak data augmentations used by state-of-the-art SSL methods.

2.2 Membership Inference Attacks

The goal of membership inference attack [24,23,18,21,4,10,22,11,16,9,27,8,15,30,3]
is to determine whether a given data sample is used to train a target model.
Multiple works studied the membership inference attacks against the supervised
learning [24,23,19,15,5,8]. Shokri et al. [24] proposed the first black-box mem-
bership inference attack against machine learning models by leveraging multiple
shadow models and attack models. The attack model takes a sample’s posteri-
ors generated from the target model as the input and predicts whether it is a
member or not. Salem et al. [23] relaxed the assumption from Shokri et al. [24]
and proposed novel model-independent and dataset-independent membership
inference attacks. Nasr et al. [19] studied the white-box membership inference
attacks in both centralized and federated learning settings. Li and Zhang [15] and
Choo et al. [5] concentrated on a more restricted attack scenario (called label-
only attack) where the target model only returns the predicted labels instead
of posteriors when the adversary queries the target model with given samples.
Roughly speaking, their proposed label-only attacks aim to infer a given sam-
ple’s membership status via comparing a pre-defined threshold with the scale of
adversarial perturbation that needs to be added to the given sample to change
the target model’s predicted label. However, these membership inference attacks
are tailored to supervised learning and we show that semi-supervised learning is
more vulnerable to our proposed data augmentation-based membership inference
attack compared with existing membership inference attacks.

3 Conventional Membership Inference Attacks

In membership inference attack, the adversary aims to determine whether a given
data sample x belongs to the target model T ’s training dataset or not given the
adversary’s background knowledge K. A data sample x is called member (or
non-member) if it belongs to (or does not belong to) the training dataset of
the target model T . Formally, we define the membership inference attack as
A : x, T ,K → {0, 1}, where the attack A is essentially a mapping function and
1 (or 0) means the data sample x is a member (or non-member).
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3.1 Threat Model

Given a target model T , we first assume that the adversary only has black-box
access to it, which means that the adversary can only query the target model
with a data sample x and obtain the target model’s prediction on it (denoted as
posteriors). Note that in this paper we consider the black-box attack since it is
the most difficult and practical real-world scenario.

Following previous work [24,9,27], we assume that the adversary has a shadow
dataset Dshadow that has the same distribution as the target model T ’s training
dataset Dtrain

target. The adversary can use the shadow dataset Dshadow to train a
shadow model S, which mimics the behavior of the target model T to better
conduct the attacks. Also, we assume that the shadow model S has the same
architecture as the target model. Such assumption is realistic as: (1) The adver-
sary can leverage the same machine learning service to train the shadow model
and (2) The adversary can perform hyperparameter stealing attacks [20,29] to
obtain the target model’s architecture.

3.2 Methodology

Generally speaking, the membership inference attack pipeline usually consists
of three major components, i.e., shadow training, constructing attack training
dataset, and attack model training or performing the attack.

Shadow Training. Shadow training [24,18,23] aims to train shadow models to
mimic the behavior of the target model based on the adversary’s background
knowledge. Specifically, the adversary first evenly splits the shadow dataset
Dshadow into two disjoint parts, i.e., shadow training data Dtrain

shadow and shadow
testing data Dtest

shadow. The adversary then uses the Dtrain
shadow to train a shadow

model S that mimics the behavior of the target model T .

Constructing Attack Training Dataset. To construct the training dataset
for the attack model, the adversary first uses Dtrain

shadow (contains members) and
Dtest

shadow (contains non-members) to query the shadow model S and obtain the
corresponding posteriors. Following Salem et al. [23], we leverage the descend-
ingly sorted posteriors as the inputting features for the attack model. Finally,
we assign the membership status 1/0 for members/non-members as labels.

Training Neural Network-based Attack Model. For neural network-based
attacks [24,23] (denoted as ANN ), the adversary aims to train a neural network-
based attack model to distinguish members and non-members given the pos-
teriors generated by the target model T . After constructing the attack train-
ing dataset, the adversary trains an NN-based attack model on the constructed
training dataset. Following previous works [24,23,9,16], we consider a multi-layer
perceptron (MLP) as the neural network architecture for the attack model. Once
the attack model is trained, it can be used by the adversary to predict whether
a given data sample x is a member or non-member.

Metric-based Attacks. Metric-based attacks [33,28,14,27] also require the ad-
versary to train a shadow model S. Unlike NN-based attacks that require training
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an attack model, metric-based attacks design a specific metric and calculate a
threshold over the metrics by querying the shadow model S with Dtrain

shadow and
Dtest

shadow. We adopt four state-of-the-art metric-based attacks following Song and
Mittal. [27]: (1) Prediction correctness (ACorr) which considers a sample as a
member if the label is correctly predicted by the target model; (2) Prediction
confidence (AConf ) which judges a sample as a member if the prediction prob-
ability at the ground truth class is larger than a pre-defined threshold (learned
from the shadow model); (3) prediction entropy (AEnt) which considers a sam-
ple as a member if the entropy of the prediction is smaller than a pre-defined
threshold (learned from the shadow model); and (4) Modified prediction entropy
(AMent) which is similar to (3) but modifies the entropy function and combines
the ground truth label as a new metric.

4 Our Method

The main difference between SSL methods and supervised learning methods is
that SSL methods leverage a large amount of unlabeled samples together with
a small amount of labeled samples to train the model. Recall that state-of-the-
art SSL methods [31,25,35] leverage both weak and strong data augmentations
to the unlabeled samples during the training. The key idea of these SSL meth-
ods is to train the model that maximizes the model’s prediction agreement on
weakly and strongly augmented views that come from the same unlabeled sam-
ple. In other words, for an unlabeled training sample, the trained model may
tend to output more similar posteriors for its weakly and strongly augmented
views. While for labeled training samples, the trained model may output simi-
lar posteriors for different weakly augmented views from the same sample since
those posteriors result in the same predicted label. This observation may also
hold for unlabeled samples since the posteriors of the same training unlabeled
sample tend to produce the same “pseudo label”. Intuitively speaking, the tar-
get model T may output similar (or dissimilar) posteriors for different weakly
and/or strongly augmented views of member (or non-member).

Based on the above intuition, we propose a data augmentation-based mem-
bership inference attack (denoted as ADA) tailored to state-of-the-art SSL meth-
ods. ADA follows the similar pipeline as NN-based attack ANN , i.e., shadow
training and training an NN-based attack model.

However, our attack ADA extracts membership features (i.e. the input for
the attack model) in a different way from the attack ANN . Specifically, given
a data sample x, we first generate K weakly augmented and K strongly aug-
mented views of it, respectively. Then we use the augmented views to query the
shadow model to obtain output posteriors. After that, we calculate three simi-
larity matrices among: (1) K posteriors of weakly augmented views themselves,
(2) K posteriors of strongly augmented views themselves, and (3) K posteriors
of weakly augmented views and K posteriors of strongly augmented views, based
on a predefined similarity metrics (e.g., JS Distance, Cosine Distance, etc.). Then
we obtain three similarity matrices where each of them contains K2 similarity
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Fig. 1: Overview of our data augmentation based attack ADA.

values. We expand each similarity matrix into a vector and sort the values in
each vector in descending order, respectively. Then we concatenate them to-
gether, and finally obtain a vector with 3K2 values. The obtained vectors are
then assigned with the membership status as the labels. Once the attack model
is trained, to determine whether a sample belongs to the target model’s training
dataset, we again generate K weakly and K strongly augmented views of it to
query the target model, generate the attack input to query the attack model,
and obtain its membership prediction. Figure 1 shows the overview of ADA and
the detailed algorithm is shown in Algorithm 1 in the supplemental material.

5 Evaluation

5.1 Experimental Setup

Dataset Configuration. We evaluate the performance of target models and
membership inference attacks on three commonly used SSL datasets, i.e., SVHN,
CIFAR10, and CIFAR100. For each dataset, we first randomly split it into four
equal parts, i.e., Dtrain

target, Dtest
target, Dtrain

shadow, and Dtest
shadow. We leverage Dtrain

target to

train the target model and consider the samples from Dtrain
target as the members of

the target model. Samples in Dtest
target are considered as the non-members of the

target model. Dtrain
shadow is used to build up the shadow model. Both Dtrain

shadow and
Dtest

shadow are used to train the attack model. Note that the Dtrain
target is smaller than

the original training dataset (e.g., for CIFAR10, Dtrain
target contains 15,000 samples

while the original training dataset contains 50,000 samples), which may lead to
lower target model performance.

Metric. We follow previous work [25,32,35,24,9] and adopt testing accuracy as
the evaluation metric for target model performance. Regarding the attack, we
leverage AUC as the evaluation metric [30,15] as we aim to quantify both the
general membership privacy risk for members vs. non-members and the separate
privacy risks for labeled/unlabeled members vs. non-members (unbalanced).

Target Model. For a fair comparison, we apply the same hyperparameters for
FixMatch, UDA, and FlexMatch. Specifically, we apply SGD optimizer. The ini-
tial learning rate is set to 0.03 with a cosine learning rate decay which sets the
learning rate to η cos( πk

2N ), where η is the initial learning rate, k is the current
training step, and N is the total number of training steps. We set N = 100×210.
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We leverage an exponential moving average of model parameters with the mo-
mentum of 0.999. The labeled batch size (i.e., the batch size of the labeled data)
is set to 64 and the ratio of unlabeled batch size to the labeled batch size is set
to 7. Note that the threshold τ is set to 0.8 for UDA and 0.95 for FixMatch
and FlexMatch following the original papers. We apply RandAugment [6] as the
strong augmentation method in our experiments (see Section 8.1 in the supple-
mentary material). Regarding the model architectures, we leverage Wide ResNet
(WRN) [34] with a widen factor of 2 as the target model architecture and we
also investigate different widen factors in our ablation studies (see Section 5.6).

Attack Model. We apply a 3-layer MLP with 64, 32, and 2 hidden neurons for
each layer as the attack model’s architecture. We train the attack model for 100
epochs using Adam optimizer with the learning rate of 0.001 and the batch size
of 256. For our proposed attack, we set the number of augmented views used to
query the target model to 10 and leverage JS Distance as the similarity function.
Note that we also evaluate different numbers of augmented views and different
similarity functions in our ablation studies (see Section 5.5).

5.2 Target Model Performance

We first evaluate the performance of the supervised models and the SSL models
on the original classification tasks using Dtest

target. We use the full Dtrain
target to train

the supervised models, while we use a small portion of labeled samples and
treat the remaining samples as unlabeled ones in Dtrain

target when training the SSL
models. We observe that SSL with more labeled samples can achieve better
performance on the original classification tasks. For instance, on Figure 2b, when
the target model is FixMatch trained on CIFAR10, the classification accuracy is
0.866, 0.896, 0.903, and 0.904 with 500, 1,000, 2,000, and 4,000 labeled samples,
respectively. This is expected as more labeled samples help the target model
to better learn the decision boundary at the early stage. Another observation
is that for a more complicated task, it may require more labeled samples to
achieve comparable performance as the supervised models. We consider SVHN,
CIFAR10, and CIFAR100 have increasing difficulty levels. Take models trained
by UDA as a case study (green bar in Figure 2), on SVHN, with only 500 labeled
samples, the testing accuracy is 0.953, which is even better than the supervised
model (0.951). We suspect the reason is that 500 labeled samples is enough to
learn a relatively accurate decision boundary and the strong data augmentation
used in SSL methods can better help the model to generalize to the unseen data.
On the other hand, on CIFAR10 and CIFAR100, it may require 1,000 and 4,000
labeled samples to catch up with the performance of the supervised model. Such
observation indicates that a larger portion of labeled data is still helpful for a
more complicated task.

5.3 Membership Inference Attack Performance

We then evaluate the performance of different membership inference attacks on
SSL models. The results are summarized in Figure 3. Note that we leverage
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(a) SVHN (b) CIFAR10 (c) CIFAR100

Fig. 2: Testing accuracy on the original classification tasks. Note that the red
dash line denotes the performance of supervised models.

(a) Attack AUC

(b) Attack AUC (Labeled)

(c) Attack AUC (Unlabeled)

Fig. 3: The AUC of membership inference attacks against models trained by
different SSL methods with 500 labeled samples. The first to third columns
denote the models trained by FixMatch, FlexMatch, and UDA, respectively.

AUC as the attack evaluation metric to better quantify the privacy leakage of
all training data (first row) as well as the separate privacy leakage of labeled
(second row) and unlabeled (third row) training data. We find that for the
baseline attacks (i.e., except our ADA), ANN and AEnt perform the best, while
other attacks like ACorr, AConf , and AMent are less effective. For instance,
on FlexMatch trained on CIFAR10 with 500 labeled samples (the middle one
of Figure 3a), the attack AUC is 0.726 for both ANN and AEnt, while only
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0.497, 0.643, and 0.642 for ACorr, AConf , and AMent. To better investigate the
reason behind this, we further measure the attack AUC for labeled data and
unlabeled data, respectively. We find that AConf and AMent achieve even better
performance on labeled training samples than ANN and AEnt. For instance, for
FlexMatch trained on CIFAR100, the AUC (labeled) for AConf and AMent are
both 0.955, while only 0.944 and 0.941 for ANN and AEnt. This is expected
as the labeled sample has a higher confidence score on its ground-truth label,
which facilitates the attacks that leverage such information. However, this is
not the case for the unlabeled samples. As we can observe that, for FlexMatch
trained on CIFAR100, the AUC (unlabeled) is only 0.370 and 0.341 for AConf

and AMent, but 0.899 and 0.894 for ANN and AEnt. This indicates that, for
the unlabeled samples, the model may give similar correctness predictions on
both unlabeled training samples and testing samples, which makes it harder
to differentiate them. However, the model will give more confident predictions
on unlabeled training samples than on testing samples, which results in better
performance for ANN and AEnt.

On the other hand, we also observe that our proposed data augmentation-
based attackADA achieves consistently better overall performance on all datasets
and SSL methods than those baseline attacks. Moreover, ADA works better in
determining the membership of unlabeled training samples. For instance, on
FixMatch trained on CIFAR10, the unlabeled AUC is 0.780 for ADA while only
0.722 for the best baseline attack (ANN ). This is because ADA unveils the pat-
tern that the predictions of a sample’s weak and strong augmented views should
be closer if the sample is an unlabeled sample used during the training.

5.4 What Determines Membership Inference Attack in SSL

The effectiveness of membership inference attacks has been largely credited to
the intrinsic overfitting phenomenon of the ML model [24,23]. Here overfitting
denotes the model’s training accuracy minus its testing accuracy. Such assump-
tion has been verified on various ML models [24,18,23,9]. However, it is unclear
whether such assumption still holds for SSL. If not, what is the reason for models
trained by SSL to be vulnerable to membership inference attacks?

From Figure 3, we find that AEnt achieves good performance in predicting
the membership status of a sample, which gives us the hint that the members’
and non-members’ predictions may have different entropy distributions. Here we
leverage the JS Distance to quantify the difference between the entropy distri-
bution of members’ and non-members’ predictions (we denote this measure as
JS Distance (Entropy)).

To better quantify the correlation between different factors (e.g., overfitting,
JS Distance (Entropy)) and the attack performance, we measure them under
different training steps of the target models. Note that here we consider the
ADA as it performs the best in membership inference. Figure 4 shows the results
of models trained by different SSL methods on the CIFAR100 with 500 labeled
samples. The results for models trained on different datasets and with different
numbers of labeled samples are shown in ?? in supplementary materials.
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(a) FixMatch (b) FlexMatch (c) UDA

Fig. 4: The overfitting/JS Distance (Entropy) and attack AUC with respect to
different training steps. The target model is trained on CIFAR100 with 500
labeled samples. Note that we consider the attack AUC of ADA, which is the
strongest attack.

In Figure 4, we observe that during the whole training procedure, the models
trained by SSL have nearly 0 overfitting, which means that the models can
always generalize well to the unseen data. However, we find that the attack
AUC keeps increasing during the training. This indicates that the success of
membership inference attacks is not necessarily related to the high overfitting
level, which is overlooked by previous research. On the other hand, we observe
that the JS Distance (Entropy) does increase during the training, which means
that although the model does not predict more accurately to the member samples
(mainly unlabeled samples) than the non-member samples, the model indeed
makes a more confident prediction on member samples (i.e., with lower entropy
of prediction). Our observation reveals that the models trained by SSL indeed
“memorize” the training data. However, such memorization does not reflect in
the overfitting, i.e., the gap between training and testing accuracy. Instead, it
reflects in the more confident prediction of the members than the non-members.

5.5 Ablation Study (Attack Model)

Number of Views. We first investigate how the attack performance would
be affected by different numbers of views generated by the weak and strong
augmentations to query the target model. To this end, for the SSL methods
trained on different datasets with only 500 labeled samples, we range the number
of views from 1 to 100 and the attack performance is shown in Figure 5. Note
that we also show the results with 1,000, 2,000, and 4,000 labeled samples in
Section 8.4 in the supplementary material. A clear trend is that more views lead
to better attack performance. For instance, for FixMatch trained on CIFAR10
with 500 labeled samples (Figure 5b), the attack AUC is 0.780 with 10 augmented
views, while 0.806 for 100 augmented views. However, we find that the attack
performance increases rapidly when the number of augmented views increases
from 1 to 10, but plateaus from 10 to 100. Moreover, more views lead to more
queries to the target model and higher computational cost. We consider 10 as a
suitable number of views since it achieves comparable performance to 100 while
spending less query budget.
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(a) SVHN (b) CIFAR10 (c) CIFAR100

Fig. 5: The attack AUC of ADA with different numbers of augmented views to
query the target model. The target model is trained with 500 labeled samples.

(a) FixMatch (b) FlexMatch (c) UDA

Fig. 6: The attack AUC of ADA with different similarity functions. The target
model is trained with 500 labeled samples.

Similarity Function. Note that in our attack ADA, we can apply different
similarity functions to measure the distance between the posteriors generated
from different augmented views. Here we evaluate 4 distance metrics, i.e., Cosine
Distance, Correlation Distance, Euclidean Distance, and JS Distance. The result
for FixMatch, FlexMatch, and UDA trained on three different datasets with 500
labeled samples are summarized in Figure 6. Note that we also show the results
with 1,000, 2,000, and 4,000 labeled samples in Section 8.5 in the supplementary
material. We find that JS Distance consistently outperforms the other three
distance metrics and achieves the best performance. For instance, FixMatch
trained on CIFAR10, the attack AUC is 0.679, 0.682, 0.749, and 0.780 for Cosine
Distance, Correlation Distance, Euclidean Distance, and JS Distance. We suspect
the reason is that JS Distance is designed to calculate the difference between two
probabilities’ distributions, which may better fit our scenario as the prediction
posteriors are probability as well.

Moreover, we also find that the magnitude of data augmentation and the
shadow model architecture only have limited impact on the attack performance
(see Section 8.6 in the supplementary material for more details).

5.6 Ablation Study (Target Model)

We also investigate whether the target model’s capacity and the unlabeled ratio

(i.e., batchsize(unlabeled)
batchsize(labeled) during each training step) would affect the performance.

Note that here we select FixMatch trained on CIFAR100 with 500 labeled data
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Table 1: The target model performance and attack performance (ADA) when the
target model has different capacities. The target model is trained by FixMatch
on CIFAR100 with 500 labeled samples. (⋆) denotes the default setting.

Architecture Test ACC Attack AUC Attack AUC (Labeled) Attack AUC (Unlabeled)

WRN28-1 0.217 0.726 0.954 0.718
WRN28-2 (⋆) 0.276 0.874 0.896 0.873
WRN28-4 0.299 0.917 0.910 0.917
WRN28-8 0.305 0.927 0.918 0.927

Table 2: The target model performance and attack performance (ADA) when the
target model leverages different unlabeled ratios during each training step. The
target model is trained by FixMatch on CIFAR100 with 500 labeled samples.
(⋆) denotes the default setting.

Ratio Test Acc Attack AUC Attack AUC (Labeled) Attack AUC (Unlabeled)

1 0.210 0.578 0.965 0.565
2 0.263 0.646 0.942 0.636
4 0.273 0.785 0.946 0.779
7 (⋆) 0.276 0.874 0.896 0.873
8 0.269 0.886 0.924 0.884
16 0.247 0.909 0.913 0.909

as a case study, since the target model’s capacity and the unlabeled ratio are
general to different SSL methods, and CIFAR100 with 500 labeled data is the
most challenging setting to train the target model (see Figure 2). We consider an
adaptive adversary [12] who is aware of the training details of the target model
and can train the shadow model in the same way.

Model Capacity. The target model architecture we leverage in our paper is
WRN28-2. To better quantify the impact of model capacity on the target and
attack performance, we vary the width of WRN28 from 1 to 8 and the results
are shown in Table 1. We can observe that a larger model capacity, in general,
leads to a better target model’s performance on the original classification task,
but also increases the membership risk (especially for unlabeled samples). For
instance, when the model capacity increase from WRN28-1 to WRN-28-8, the
target testing accuracy increases from 0.217 to 0.305, while the attack AUC
increases from 0.726 to 0.927. One reason is that, with larger model capacity,
the model can “memorize” more different views of data samples, which not only
facilitate target tasks, but also raise the membership risk.

Ratio of Unlabeled Samples in Each Training Step. We then investigate
whether the unlabeled ratio (URatio) during each training step affects the attack
performance. Concretely, we vary the unlabeled ratio from 1 to 16 while training
the target model and Table 2 summarizes the results. We have two findings.
First, the best target model performance reaches with the default setting (7).
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Second, the membership inference risk, in particular for the unlabeled data,
keeps increasing when the ratio increases. On the other hand, the membership
inference risk for labeled data slightly decreases (but still in a high level) while
increasing the ratio. Therefore, a better choice may be leveraging a relatively
small unlabeled ratio to achieve good target performance while reducing the
membership risk for unlabeled samples.

6 Discussion on Defenses

We observe that the attack performance increases sharply at the late training
steps (see Figure 4), which indicates that early stopping may be a good strategy
to mitigate membership inference attacks. We take CIFAR100 with 4,000 labeled
samples as a case study and show the target/attack model performance with
respect to different training steps in Figure 7 (in the supplementary material).
We find that there is a trade-off between model utility and membership inference
performance, i.e., it may reduce both the attack performance and the target
model’s utility. We note that previous work [16,27] also observe such a trade-
off. Besides early stopping, we also evaluate three other defenses, i.e., top-k
posteriors [24], model stacking [23], and DP-SGD [1]. Our case study (see Section
8.7 in the supplementary material) shows that early stopping achieves the best
trade-off between model utility and membership inference performance.

7 Conclusion

In this paper, we perform the first training data privacy quantification against
models trained by SSL through the lens of membership inference attack. Em-
pirical evaluation shows that our proposed data augmentation-based attacks
consistently outperform the baseline attacks, in particular for unlabeled training
data. Moreover, we have an interesting finding that the reason leading to mem-
bership leakage in SSL is different from the commonly believed overfitting nature
of ML models trained in supervised manners. The models trained by SSL are
well generalized to the testing data (i.e., with almost 0 overfitting level). How-
ever, our attack can still successfully break the membership privacy. The reason
is that the models trained by SSL “memorize” the training data by giving more
confident predictions on them, regardless of the ground truth labels. We also
find that early stopping can serve as a countermeasure against the attacks, but
there is a trade-off between membership privacy and model utility.
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