
REaaS: Enabling Adversarially Robust Downstream
Classifiers via Robust Encoder as a Service

Wenjie Qu1, Jinyuan Jia2, Neil Zhenqiang Gong3
1 Huazhong University of Science and Technology, wen jie qu@outlook.com

2 University of Illinois Urbana-Champaign, jinyuan@illinois.edu
3 Duke University, neil.gong@duke.edu

Abstract—Encoder as a service is an emerging cloud service.
Specifically, a service provider first pre-trains an encoder (i.e., a
general-purpose feature extractor) via either supervised learning
or self-supervised learning and then deploys it as a cloud service
API. A client queries the cloud service API to obtain feature
vectors for its training/testing inputs when training/testing its
classifier (called downstream classifier). A downstream classifier
is vulnerable to adversarial examples, which are testing inputs
with carefully crafted perturbation that the downstream classifier
misclassifies. Therefore, in safety and security critical applications,
a client aims to build a robust downstream classifier and certify
its robustness guarantees against adversarial examples.

What APIs should the cloud service provide, such that a
client can use any certification method to certify the robustness
of its downstream classifier against adversarial examples while
minimizing the number of queries to the APIs? How can a service
provider pre-train an encoder such that clients can build more
certifiably robust downstream classifiers? We aim to answer the
two questions in this work. For the first question, we show that
the cloud service only needs to provide two APIs, which we
carefully design, to enable a client to certify the robustness of
its downstream classifier with a minimal number of queries to
the APIs. For the second question, we show that an encoder
pre-trained using a spectral-norm regularization term enables
clients to build more robust downstream classifiers.

I. INTRODUCTION

In an encoder as a service, a service provider (e.g., OpenAI,
Google, and Amazon) pre-trains a general-purpose feature
extractor (called encoder) and deploys it as a cloud service;
and a client queries the cloud service APIs for the feature
vectors of its training/testing inputs when training/testing a
downstream classifier. For instance, the encoder could be pre-
trained using supervised learning on a large amount of labeled
data or self-supervised learning [1], [2] on a large amount of
unlabeled data. A client could be a smartphone, IoT device,
self-driving car, or edge device in the era of edge computing.
Encoder as a service has been widely deployed by industry, e.g.,
OpenAI’s GPT-3 API [3] and Clarifai’s General Embedding
API [4]. In the Standard Encoder as a Service (SEaaS), the
service provides a single API (called Feature-API) for clients

Wenjie Qu performed this research when he was an intern in Gong’s group.

and the encoder is pre-trained without taking the robustness
of downstream classifiers into consideration. A client sends its
training/testing inputs to the Feature-API, which returns their
feature vectors to the client.

A downstream classifier is vulnerable to adversarial exam-
ples [5], [6]. Suppose a testing input is correctly classified by the
downstream classifier. An attacker adds a small carefully crafted
perturbation to the testing input to induce misclassification.
Such testing input with carefully crafted perturbation is called
an adversarial example. Therefore, in security and safety
critical applications such as user authentication and traffic sign
recognition, a client desires to build a downstream classifier
robust against adversarial examples. Many methods have
been developed for an attacker to craft adversarial examples
and the community keeps developing new, stronger ones.
Therefore, instead of defending against a specific class of
adversarial examples, a client aims to defend against all
bounded adversarial perturbations via building a certifiably
robust downstream classifier. A classifier is certifiably robust if
its predicted label for a testing input is unaffected by arbitrary
perturbation added to the testing input once its size (measured
by ℓ2-norm in this work) is less than a threshold, which is
known as certified radius. A larger certified radius indicates
better certified robustness against adversarial examples.

In general, there are two categories of complementary
methods to build a certifiably robust classifier and derive
its certified radius for a testing input, i.e., base classifier
(BC) based certification [7], [8], [9], [10] and smoothed
classifier (SC) based certification (also known as randomized
smoothing) [11], [12], [13]. BC based certification aims to
directly derive the certified radius of a given classifier (called
base classifier) for a testing input. BC based certification
requires white-box access to the base classifier as it often
requires propagating the perturbation from the input layer to
the output layer of the base classifier layer by layer. SC based
certification first builds a smoothed classifier based on the
base classifier via adding random noise (e.g., Gaussian noise)
to a testing input and then derives the certified radius of the
smoothed classifier for the testing input. To increase the testing
inputs’ certified radii, SC based certification often requires
training the base classifier using training inputs with random
noise. Moreover, to derive the predicted label and certified
radius for a testing input, SC based certification requires the
base classifier to predict the labels of multiple noisy versions
of the testing input.

SEaaS faces three challenges when a client aims to build a
certifiably robust downstream classifier and derive its certified

Network and Distributed System Security (NDSS) Symposium 2023
28 February - 4 March 2023, San Diego, CA, USA
ISBN 1-891562-83-5
https://dx.doi.org/10.14722/ndss.2023.24444
www.ndss-symposium.org

SEaaS REaaS

Feature-API

Feature-API

F2IPerturb-API

[0.1, ⋯, 0.2]

Cloud Server Client Client Cloud Server

Encoder Encoder

�

[0.1, ⋯, 0.2]

Downstream
Classifier

Step 1

Step 2

Step 3

BC/SC

Fig. 1: SEaaS vs. REaaS.

radii for testing inputs. The first challenge is that a client
cannot use BC based certification. In particular, the composition
of the encoder and the client’s downstream classifier is the
base classifier that the client needs to certify in BC based
certification. However, the client does not have white-box
access to the encoder deployed on the cloud server, making
BC based certification not applicable. The second challenge
is that, although a client can use SC based certification by
treating the composition of the encoder and its downstream
classifier as a base classifier, it incurs a large communication
cost for the client and a large computation cost for the cloud
server. Specifically, the client needs to query the Feature-API
once for each noisy training input in each training epoch of
the downstream classifier because SC based certification trains
the base classifier using noisy training inputs. Therefore, the
client requires e queries to the Feature-API per training input,
where e is the number of epochs used to train the downstream
classifier. Moreover, to derive the predicted label and certified
radius for a testing input, SC based certification requires the
base classifier to predict the labels of N noisy testing inputs.
Therefore, the client requires N queries to the Feature-API
per testing input. Note that N is often a large number (e.g.,
10,000) [13]. The large number of queries to the Feature-
API imply 1) large communication cost, which is intolerable
for resource-constrained clients such as smartphone and IoT
devices, and 2) large computation cost for the cloud server.
The third challenge is that SC based certification achieves
suboptimal certified radii. This is because the base classifier
is the composition of the encoder and a client’s downstream
classifier, but a client cannot train/fine-tune the encoder as it
is deployed on the cloud server.

Our work: We propose Robust Encoder as a Service (REaaS)
to address the three challenges of SEaaS. Figure 1 compares
SEaaS with REaaS. Our key idea is to provide another API
called F2IPerturb-API.1 A downstream classifier essentially
takes a feature vector as input and outputs a label. Our
F2IPerturb-API enables a client to treat its downstream classifier
alone as a base classifier and certify the robustness of its
base or smoothed downstream classifier in the feature space.
Specifically, a client performs three steps to derive the certified
radius of a testing input in REaaS. First, the client obtains the
feature vector of the testing input via querying the Feature-API.
Second, the client views its downstream classifier alone as a
base classifier and derives a feature-space certified radius RF

for the testing input using any BC/SC certification method. The
client’s base or smoothed downstream classifier predicts the
same label for the testing input if the ℓ2-norm of the adversarial
perturbation added to the testing input’s feature vector is less

1‘F’ stands for Feature and ‘I’ stands for Input.

than RF . Third, the client sends the testing input and its feature-
space certified radius RF to query the F2IPerturb-API, which
returns the corresponding input-space certified radius R to
the client. Our input-space certified radius R guarantees the
client’s base or smoothed downstream classifier predicts the
same label for the testing input if the ℓ2-norm of the adversarial
perturbation added to the testing input is less than R.

The key challenge of implementing our F2IPerturb-API is
how to find the largest input-space certified radius R for a
given testing input and its feature-space certified radius RF .
To address the challenge, we formulate finding the largest R
as an optimization problem, where the objective function is
to find the maximum R and the constraint is that the feature-
space perturbation is less than RF . However, the optimization
problem is challenging to solve due to the highly non-linear
constraint. To address the challenge, we propose a binary search
based solution. The key component of our solution is to check
whether the constraint is satisfied for a specific R in each
iteration of binary search. Towards this goal, we derive an
upper bound of the feature-space perturbation for a given R
and we treat the constraint satisfied if the upper bound is less
than RF . Our upper bound can be computed efficiently.

F2IPerturb-API addresses the first two challenges of SEaaS.
Specifically, BC based certification is applicable in REaaS.
Moreover, SC based certification requires much less queries to
the APIs in REaaS. Specifically, for any certification method, a
client only requires one query to Feature-API per training input
and two queries (one to Feature-API and one to F2IPerturb-API)
per testing input in our REaaS.

To address the third challenge of SEaaS, we propose a new
method to pre-train a robust encoder, so a client can derive
larger certified radii even though it cannot train/fine-tune the
encoder. Our method can be combined with standard supervised
learning or self-supervised learning to enhance the robustness of
a pre-trained encoder. An encoder is more robust if it produces
more similar feature vectors for an input and its adversarially
perturbed version. Our key idea is to derive an upper bound for
the Euclidean distance between the feature vectors of an input
and its adversarial version, where our upper bound is a product
of a spectral-norm term and the perturbation size. The spectral-
norm term depends on the parameters of the encoder, but it
does not depend on the input nor the adversarial perturbation.
An encoder with a smaller spectral-norm term may produce
more similar feature vectors for an input and its adversarial
version. Thus, we use the spectral-norm term as a regularization
term to regularize the pre-training of an encoder.

We perform a systematic evaluation on multiple datasets
including CIFAR10, SVHN, STL10, and Tiny-ImageNet. Our

2

evaluation results show that REaaS addresses the three chal-
lenges of SEaaS. First, REaaS makes BC based certification ap-
plicable. Second, REaaS incurs orders of magnitude less queries
to the cloud service than SEaaS for SC based certification. For
instance, REaaS reduces the number of queries to the cloud
service APIs respectively by 25× and 5, 000× per training and
testing input when a client trains its downstream classifier for
e = 25 epochs and uses N = 10, 000 for certification. Third,
in the framework of REaaS, our robust pre-training method
achieves larger average certified radius (ACR) for the testing
inputs than existing methods to pre-train encoders for both BC
and SC based certification. For instance, when the encoder is
pre-trained on Tiny-ImageNet and the downstream classifier is
trained on SVHN, the ACRs for MoCo (a standard non-robust
self-supervised learning method) [1], RoCL (an adversarial
training based state-of-the-art robust self-supervised learning
method) [14], and our method are respectively 0.011, 0.014,
and 0.275 when a client uses SC based certification.

In summary, we make the following contributions:

• We propose REaaS, which enables a client to build
a certifiably robust downstream classifier and derive
its certified radii using any certification method with a
minimal number of queries to the cloud service.

• We propose a method to implement F2IPerturb-API.

• We propose a spectral-norm term to regularize the
pre-training of a robust encoder.

• We extensively evaluate REaaS and compare it with
SEaaS on multiple datasets.

II. RELATED WORK

A. Adversarial Examples

We discuss adversarial examples [5], [15] in the context of
encoder as a service. We denote by f a pre-trained encoder
and g a downstream classifier. Given a testing input x, the
encoder outputs a feature vector for it, while the downstream
classifier takes the feature vector as input and outputs a label.
For simplicity, we denote by f(x) the feature vector and g◦f(x)
the predicted label for x, where ◦ represents the composition
of the encoder and downstream classifier. In an adversarial
example, an attacker adds a carefully crafted small perturbation
δ to x such that its predicted label changes, i.e., g ◦f(x+ δ) ̸=
g ◦ f(x). The carefully perturbed input x + δ is called an
adversarial example. Many methods (e.g., [5], [6], [16]) have
been proposed to find an adversarial perturbation δ for a given
input x. In our work, we focus on certified defenses, which
aim to defend against any bounded adversarial perturbations
no matter how they are found. Therefore, we omit the details
on how an attacker can find an adversarial perturbation.

B. Certifying Robustness of a Classifier

Definition of certified radius: A classifier is certifiably robust
against adversarial examples if its predicted label for an input
is unaffected by any perturbation once its size is bounded [7],
[12], [13]. Formally, a classifier h is certifiably robust if we
have the following guarantee for an input x:

h(x+ δ) = h(x),∀ ∥δ∥2 < R, (1)

where R is known as certified radius. Note that certified radius
R may be different for different inputs x, but we omit the
explicit dependency on x in the notation for simplicity.

A certification method against adversarial examples aims
to build a certifiably robust classifier and derive its certified
radius R for any input x. There are two general categories
of certification methods, i.e., base classifier (BC) based
certification [7], [8], [9], [10] and smoothed classifier (SC)
based certification [11], [12], [13]. Both categories of methods
may be adopted in different scenarios depending on certification
needs. On one hand, BC based certification often produces
deterministic guarantees (i.e., the derived certified radius is
absolutely correct), while SC based certification often provides
probabilistic guarantees (i.e., the derived certified radius may
be incorrect with a small error probability). On the other hand,
SC based certification often derives a larger certified radius
than BC based certification due to its probabilistic guarantees.

Base classifier (BC) based certification: BC based certi-
fication aims to directly derive the certified radius R of a
given classifier (called base classifier) for an input x. These
methods often propagate perturbation from the input x to
the output of the base classifier layer by layer in order to
derive the certified radius. Therefore, they require white-box
access to the base classifier. Suppose F is a base classifier
that maps an input x to one of c classes {1, 2, · · · , c}. We use
H(x) to denote the base classifier’s last-layer output vector
for x, where Hl(x) represents the lth entry of H(x) and
l = 1, 2, · · · , c. F (x) denotes the predicted label for x, i.e.,
F (x) = argmaxl=1,2,··· ,c Hl(x). Next, we overview how to
derive the certified radius R using CROWN [9], a state-of-the-
art BC based certification method. CROWN shows that each
entry Hl(x) can be bounded by two linear functions HL

l (x) and
HU

l (x). Suppose the base classifier predicts label y for x when
there is no adversarial perturbation, i.e., F (x) = y. CROWN
finds the largest r such that the lower bound of the yth entry
(i.e., min∥δ∥2<r H

L
y (x + δ)) is larger than the upper bounds

of all other entries (i.e., maxl ̸=y max∥δ∥2<r H
U
l (x + δ)) and

views it as the certified radius R for the input x. The complete
details of CROWN can be found in Appendix B. In the context
of encoder as a service, the composition of the encoder and
downstream classifier (i.e., g ◦ f) is a base classifier F, whose
certified radius a client aims to derive. However, in SEaaS, a
client does not have white-box access to the encoder g since it
is deployed on the cloud server. As a result, a client cannot use
BC based certification to derive the certified radius of g ◦ f .

Smoothed classifier (SC) based certification: SC based
certification first builds a smoothed classifier based on the base
classifier and then derives the certified radius R of the smoothed
classifier. In SEaaS, a client builds a smoothed classifier h based
on the base classifier g ◦ f via adding random Gaussian noise
N (0, σ2I) to an input x, where σ is the standard deviation of
the Gaussian noise. Specifically, given a testing input x, the
client constructs N noisy inputs x+ n1,x+ n2, · · · ,x+ nN ,
where ni (i = 1, 2, · · · , N) is sampled from N (0, σ2I). The
client uses the base classifier g ◦ f to predict the label of
each noisy input. Moreover, the client computes the label
frequency Nl of each label l among the noisy inputs, i.e.,
Nl =

∑︁N
j=1 I(g ◦ f(x + nj) = l), where I is an indicator

function. The smoothed classifier predicts the label with the

3

largest label frequency for the original testing input x. Moreover,
the client can derive the certified radius R of the smoothed
classifier for x based on the label frequencies. Due to the
random sampling, the derived certified radius may be incorrect
with an error probability α, which can be set by the client.
In Appendix C, we take Cohen et al. [13] as an example to
discuss more technical details on SC based certification.

To improve certified radius, the base classifier g ◦f is often
trained using noisy training inputs [13]. In encoder as a service
(both SEaaS and REaaS), a client does not have white-box
access to the encoder g and thus can only train its downstream
classifier f using noisy training inputs. Specifically, for SEaaS,
in each epoch of training the downstream classifier, a client
adds random Gaussian noise from N (0, σ2I) to each training
input, queries the Feature-API to obtain the feature vector of
each noisy training input, and uses the feature vectors to update
the downstream classifier via stochastic gradient descent.

SC based certification faces two challenges in SEaaS. First, a
client needs to query the cloud service many times, leading to a
large communication cost for the client and a large computation
cost for the cloud server. Specifically, for each testing input x,
a client needs to query the Feature-API N times to obtain the
feature vectors of the N noisy inputs in order to compute the
label frequencies. Moreover, the client queries the Feature-API
e times per training input, where e is the number of epochs used
to train the downstream classifier. We note that [17] proposed
to prepend a denoiser to a base classifier instead of training
it with noisy training inputs, which can reduce the number of
queries from e to 1 per training input when applied to SEaaS.
However, it is hard for a client with a small amount of data
to train such a denoiser. Second, the derived certified radius
is suboptimal because a client cannot fine-tune the encoder,
which is not pre-trained to support certified robustness.

C. Pre-training an Encoder

1) Pre-training Non-robust Encoders: We discuss both
standard supervised learning and self-supervised learning
methods to pre-train encoders, which do not take robustness
against adversarial examples into consideration.

Supervised learning: The idea of using supervised learning
to pre-train an encoder is to first train a deep neural network
classifier using labeled training data and then use the layers ex-
cluding the output layer as an encoder. Specifically, supervised
learning defines a loss function l(i) (e.g., cross-entropy loss) for
each labeled training example (xi, yi), where yi is the ground
truth label of xi. Then, supervised learning iteratively trains a
deep neural network classifier by minimizing the sum of the
losses over the labeled training examples. Such paradigm of
training a deep neural network classifier via supervised learning
and using the layers excluding the output layer as an encoder
is also known as transfer learning [18].

Self-supervised learning: Unlike supervised learning, self-
supervised learning [1], [2] aims to pre-train an encoder using
unlabeled data, which has attracted growing attention in the
past several years in the AI community. A basic component
of self-supervised learning is data augmentation. Specifically,
given an image, the data augmentation component applies a
series of (random) data augmentation operations (e.g., random

cropping, color jitter, and flipping) sequentially to produce
an augmented image. Roughly speaking, the main idea of
self-supervised learning is to pre-train an encoder such that
it produces similar feature vectors for two augmented images
produced from the same image, but dissimilar feature vectors for
two augmented images produced from different images. Next,
we take MoCo [1], a state-of-the-art self-supervised learning
algorithm, as an example to elaborate more details.

MoCo uses an auxiliary encoder (called momentum encoder)
that has the same architecture as the encoder and a queue
(denoted as Γ). In particular, the queue is used to cache the
output of the momentum encoder for the augmented images
and is dynamically updated. For simplicity, we respectively
use f and fe to denote the encoder and the momentum
encoder, and use θ and θe to denote their encoder parameters.
Suppose we have a mini-batch of unlabeled images which are
denoted as xi, i = 1, 2, · · · ,m. We apply the data augmentation
component to each image in the mini-batch twice. We use x1

i
and x2

i to denote the two augmented images produced for the
image xi, respectively. Given x1

i , x2
i , and the queue Γ, MoCo

defines a loss function for xi as follows:

ℓ(i) = − log(
exp(Sim(f(x1

i), fe(x
2
i))/τ)∑︁

z∈Γ∪{fe(x2
i)}

exp(Sim(f(x1
i), z)/τ)

), (2)

where τ is a temperature parameter and Sim(·, ·) measures the
similarity of two feature vectors (e.g., cosine similarity). MoCo
uses gradient descent to minimize 1

m ·
∑︁m

i=1 ℓ(i) to update the
parameters θ in the encoder f . The queue Γ is dynamically
updated in each step, where {fe(x2

1), fe(x
2
2), · · · , fe(x2

m)} are
enqueued and the m “oldest” vectors are dequeued.

2) Pre-training Empirically Robust Encoders: Adversarial
training [15], [16] is a standard method to train empirically
robust classifiers in supervised learning. The key idea is to
generate adversarial examples based on training examples
during training, and use the adversarial examples to augment
the training data. The layers excluding the output layer of the
classifier are then used as an encoder. Several studies [19],
[14], [20] generalized adversarial training to pre-train a robust
encoder in self-supervised learning. Roughly speaking, the idea
is to first generate adversarial examples that incur large loss
and then use them to pre-train an encoder. For instance, Kim
et al. [14] proposed Robust Contrastive Learning (RoCL) to
pre-train robust encoders. Specifically, given a training image,
RoCL uses Projected Gradient Descent (PGD) [16] to generate
an adversarial perturbation for an augmented version of the
training image such that the adversarially perturbed augmented
version incurs a large loss. Then, RoCL pre-trains an encoder
such that it outputs similar feature vectors for the adversarially
perturbed augmented version and other augmented versions of
the training image.

The goal of these studies is to pre-train empirically rather
than certifiably robust encoders. As a result, the pre-trained
encoders achieve suboptimal certified radii for a client as shown
by our experimental results. In this work, we propose a new
method, which can be combined with either supervised learning
or self-supervised learning to pre-train a robust encoder that
can achieve larger certified radii against adversarial examples
for a client.

4

III. PROBLEM FORMULATION

Threat model: We consider an attacker can use adversarial
examples to induce misclassification for a client. Specifically,
given a testing input, an attacker can add a carefully crafted
perturbation to it such that the client’s downstream classifier
predicts a different label. To defend against adversarial ex-
amples, the client aims to build a certifiably robust classifier,
which provably predicts the same label for a testing input no
matter what perturbation is added to it once the ℓ2-norm of the
perturbation is less than a threshold (called certified radius).
Note that we do not constrain on what method an attacker can
use to find the perturbation since we aim to defend against all
bounded perturbations.

Problem definition: We aim to design an encoder as a service.
In particular, when designing an encoder as a service, we
essentially aim to answer two key questions: 1) what APIs
should the cloud service provide for a client? and 2) how to
pre-train the encoder?

Design goals: We aim to design an encoder as a service
to achieve three goals, generality, efficiency, and robustness,
which we elaborate in the following:

• Generality. As we discussed in Section II-B, BC and
SC based certification methods are complementary
and may be adopted by different clients due to their
different needs. We say an encoder as a service achieves
the generality goal if a client can use any certification
method to build a certifiably robust classifier and derive
its certified radius for any given testing input. We note
that SEaaS can only support SC based certification.

• Efficiency. We use the number of queries sent to
the cloud service to measure the communication cost
between a client and the cloud server. Moreover, we
use computation time to measure the computation cost
for a client and the cloud server. We aim to design an
encoder as a service to achieve a small communication
cost and computation cost.

• Robustness. A certified radius measures the certified
robustness of a classifier for a testing input. We use the
average certified radius of testing inputs to measure the
certified robustness of a classifier. We aim to design
an encoder as a service that enables a client to build
a downstream classifier with a large average certified
radius in both BC and SC based certification.

We note that SEaaS does not achieve any of the three
goals. Specifically, SEaaS cannot support BC based certification;
SEaaS incurs a large communication cost between a client and
the cloud server as well as a large computation cost for the
cloud server in SC based certification; and SEaaS achieves
suboptimal average certified radius for SC based certification
because certified robustness is not taken into consideration
when pre-training the encoder.

IV. OUR REAAS

A. Overview

To achieve the generality and efficiency goals, our key idea
is to enable a client to treat its own downstream classifier as a

base classifier and certify the robustness of its base downstream
classifier or smoothed downstream classifier in the feature
space. Towards this goal, other than the Feature-API provided
in SEaaS, our REaaS provides another API (called F2IPerturb-
API). In particular, since a downstream classifier takes a feature
vector as input, we propose a client first derives a feature-
space certified radius RF of its base downstream classifier
or smoothed downstream classifier for a testing input. Then,
the client transforms the feature-space certified radius RF to
the input-space certified radius R by querying the F2IPerturb-
API. To achieve the robustness goal, we further propose a new
method to pre-train a robust encoder, which uses a spectral-
norm term to regularize the pre-training of an encoder. Our
pre-trained encoder aims to produce similar feature vectors for
an input and its adversarially perturbed version.

B. Feature-API and F2IPerturb-API

1) Feature-API: We first introduce the input and output of
Feature-API, and then its implementation.

Input and output for a client: In Feature-API, the input
from a client is an image x and the output returned to the
client is the input’s feature vector v. Formally, Feature-API is
represented as v = Feature-API(x).

Implementation on the server: Given an input x, the cloud
server uses a pre-trained encoder f to compute its feature vector
v. In particular, we have v = f(x).

We note that SEaaS only has this Feature-API.

2) F2IPerturb-API: Like Feature-API, we first introduce the
input and output of F2IPerturb-API, and then its implementation
on the cloud server.

Input and output for a client: F2IPerturb-API transforms a
feature-space certified radius to an input-space certified radius.
The input from a client contains an input image x and a
feature-space certified radius RF for x. In particular, the client’s
downstream classifier predicts the same label for x once the
ℓ2-norm of the perturbation to x’s feature vector v is bounded
by RF . The client can use any BC or SC based method to
derive RF for x by treating its downstream classifier alone as
a base classifier and x’s feature vector v as an “input” to the
base classifier.

The output of F2IPerturb-API is an input-space certified
radius R such that when the ℓ2-norm of the adversarial
perturbation added to the input image x is smaller than R,
the ℓ2-norm of the perturbation introduced to the feature vector
v is smaller than RF . Formally, given an input image x and a
feature-space certified radius RF , F2IPerturb-API is represented
as follows: R = F2IPerturb-API(x, RF).

Implementation on the server: A larger R enables the
client to derive a larger certified radius. The key challenge of
implementing the F2IPerturb-API is how to derive the largest
R for a given input x and RF . To address the challenge, we
formulate the input-space certified radius R as the solution to
the following optimization problem:

R = max
r

r (3)

s.t. max
∥δ∥2<r

∥f(x+ δ)− f(x)∥2 < RF , (4)

5

Algorithm 1: F2IPerturb-API
Input from client: image x and feature-space certified
radius RF

Output for client: image-space certified radius R
ρL, ρU ← 0, large value (e.g., 10)
while ρU − ρL > β do
ρk = ρL+ρU

2
for i = 1, 2, · · · , d do
fL
i , f

U
i ← CROWN(i,x, f)

Li = min∥δ∥2≤ρk
fL
i (x+ δ)− fi(x)

Ui = max∥δ∥2≤ρk
fU
i (x+ δ)− fi(x)

end for
R′

F =
√︂∑︁d

i=1 max(L2
i , U

2
i)

if R′
F < RF then

ρL = ρk
else
ρU = ρk

end if
end while
return ρL

where f is an encoder and δ is an adversarial perturbation.
However, the optimization problem is challenging to solve
because the constraint is highly non-linear when the encoder is
a complex neural network. To address the challenge, we propose
a binary search based method to solve R in the optimization
problem. In particular, we search in the range [ρLk , ρ

U
k] in the

kth round of binary search, where we set ρL1 to be 0 and ρU1
to be a large value (e.g., 10 in our experiments) in the first
round. Moreover, we denote ρk =

ρL
k+ρU

k

2 for simplicity. In the
kth round, we check whether r = ρk satisfies the constraint in
Equation (4). If the constraint is satisfied, then we can search
the range [ρk, ρ

U
k] in the (k + 1)th round, i.e., ρLk+1 = ρk and

ρUk+1 = ρUk . Otherwise, we search the range [ρLk , ρk] in the
(k + 1)th round, i.e., ρLk+1 = ρLk and ρUk+1 = ρk. We stop the
binary search when ρUk − ρLk ≤ β and treat ρLk as R, where β
is a parameter characterizing the binary-search precision.

Our binary search based solution faces a key challenge,
i.e., how to check whether r = ρk satisfies the constraint
in Equation (4). Our key idea to address the challenge is to
derive an upper bound for the left hand side of the constraint
(i.e., max∥δ∥2<ρk

∥f(x+ δ)− f(x)∥2) and decide that the
constraint is satisfied if the upper bound is smaller than RF ,
where the upper bound can be efficiently computed for any ρk.
Suppose the encoder f maps an input x to a d-dimensional
feature vector f(x), where fi(x) represents the ith entry of
f(x). An encoder f is essentially a deep neural network.
Therefore, according to CROWN [9], we have the following
lower bound and upper bound for fi(x+ δ) when ∥δ∥2 < ρk:

min
∥δ∥2<ρk

fL
i (x+ δ) ≤ fi(x+ δ) ≤ max

∥δ∥2<ρk

fU
i (x+ δ), (5)

where fL
i and fU

i are two linear functions and i =
1, 2, · · · , d. In Appendix D, we show that Equation 5 is tight
when f consists of one linear layer. As min∥δ∥2≤ρk

fL
i (x +

δ) ≤ min∥δ∥2<ρk
fL
i (x + δ) and max∥δ∥2<ρk

fU
i (x + δ) ≤

max∥δ∥2≤ρk
fU
i (x+δ), we have the following when ∥δ∥2 < ρk:

min
∥δ∥2≤ρk

fL
i (x+ δ) ≤ fi(x+ δ) ≤ max

∥δ∥2≤ρk

fU
i (x+ δ), (6)

Therefore, we have the following inequalities for ∀ ∥δ∥2 < ρk:

fi(x+ δ)− fi(x) ≥ Li, (7)
fi(x+ δ)− fi(x) ≤ Ui, (8)

where Li = min∥δ∥2≤ρk
fL
i (x + δ) − fi(x) and Ui =

max∥δ∥2≤ρk
fU
i (x + δ) − fi(x). Based on the above two

inequalities, we have the following:

max
∥δ∥2<ρk

(fi(x+ δ)− fi(x))
2 ≤ max(L2

i , U
2
i). (9)

Therefore, we can derive an upper bound for
max∥δ∥2<ρk

∥f(x+ δ)− f(x)∥2 as follows:

max
∥δ∥2<ρk

∥f(x+ δ)− f(x)∥2 (10)

≤

⌜⃓⃓⎷ d∑︂
i=1

max
∥δ∥2<ρk

(fi(x+ δ)− fi(x))2 (11)

≤

⌜⃓⃓⎷ d∑︂
i=1

max(L2
i , U

2
i) (12)

≜R′
F . (13)

If the upper bound R′
F is smaller than RF , then we have r = ρk

satisfies the constraint in Equation (4). We note that r = ρk
may also satisfy the constraint even if the upper bound R′

F is
no smaller than RF . However, such cases do not influence the
correctness of our binary search. Note that min∥δ∥2≤ρk

fL
i (x+

δ) and max∥δ∥2≤ρk
fU
i (x+ δ) have closed-form solutions for

i = 1, 2, · · · , d [9]. Therefore, Li, Ui, and the upper bound R′
F

can be computed efficiently. In other words, we can efficiently
check whether r = ρk satisfies the constraint in Equation (4)
for any ρk. Algorithm 1 shows our F2IPerturb-API, where the
function CROWN obtains the lower bound and upper bound
linear functions for each fi(x).

Our binary search based solution correctly finds a lower
bound of the optimal R of the optimization problem in Equa-
tion (3) because the constraint in Equation (4) is guaranteed to
be satisfied in each round of our binary search.

Image rescaling: We note that, in our above discussion
on the two APIs, a client’s input image size is the same as
the input size of the cloud server’s encoder. When the size
of a client’s input image is different, the cloud server can
rescale it to be the input size of its encoder using the standard
bilinear interpolation. The bilinear interpolation can be viewed
as a linear transformation. In particular, suppose xb and xa

respectively represent the image before and after rescaling.
Then, we have xa = W · xb, where W is the matrix used
to represent the linear transformation. The cloud server can
implement this linear transformation (i.e., rescaling) by adding
a linear layer whose weight matrix is W before the encoder.
Moreover, the cloud server can view the linear layer + the
encoder as a “new” encoder to implement the two APIs.

6

C. Pre-training Robust Encoder

Our REaaS is applicable to any encoder. However, a more
robust encoder enables a client to derive a larger certified radius
for its testing input. Therefore, we further propose a method
to pre-train robust encoders. An encoder f is more robust if
it produces more similar feature vectors for an input and its
adversarially perturbed version, i.e., if f(x+ δ) and f(x) are
more similar. In particular, based on our implementation of
the F2IPerturb-API, if ∥f(x+ δ)− f(x)∥2 is smaller for any
adversarial perturbation δ, then F2IPerturb-API would return
a larger input-space certified radius to a client for a given
feature-space certified radius. Therefore, our key idea is to
reduce ∥f(x+ δ)− f(x)∥2 when pre-training an encoder f .
Next, we derive an upper bound of ∥f(x+ δ)− f(x)∥2, based
on which we design a regularization term to regularize the
pre-training of an encoder.

A neural network (e.g., an encoder) can often be de-
composed into the composition of a series of linear trans-
formations [5]. In particular, we can do so if each layer
of the neural network (e.g., linear layer, convolutional layer,
and batch normalization layer) can be expressed as a linear
transformation. We denote an encoder as the composition of n
linear transformations, i.e., f(·) = Tn ◦ Tn−1 ◦ · · · ◦ T 1(·). [5]
showed that the difference between the outputs of any neural
network f (f is an encoder in our case) for an input and its
adversarially perturbed version can be bounded as follows:

∥f(x+ δ)− f(x)∥2 ≤
n∏︂

j=1

⃦⃦
T j

⃦⃦
s
· ∥δ∥2 , (14)

where x is an input, δ is an adversarial perturbation, and ∥·∥s
represents spectral norm. The product of the spectral norms of
the n linear transformations (i.e.,

∏︁n
j=1

⃦⃦
T j

⃦⃦
s
) is independent

with input x and adversarial perturbation δ. Therefore, our idea
is to add

∏︁n
j=1

⃦⃦
T j

⃦⃦
s

as a regularization term (called spectral-
norm regularization) when pre-training an encoder. Minimizing
such regularization term may enforce the encoder to produce
more similar feature vectors for an input and its adversarially
perturbed version, i.e., ∥f(x+ δ)− f(x)∥2 may be smaller. In
particular, we minimize the following loss function for each
mini-batch of inputs when pre-training an encoder:

1

m
·

m∑︂
i=1

ℓ(i) + λ ·
n∏︂

j=1

⃦⃦
T j

⃦⃦
s
, (15)

where ℓ(i) is a loss for a training input in pre-training, m
is batch size, and λ is a hyper-parameter used to balance the
two terms. For instance, when using supervised learning to
train a classifier, whose layers excluding the output layer are
used as an encoder, the loss ℓ(i) is often the cross-entropy loss;
when using self-supervised learning algorithm MoCo [1] to
pre-train an encoder, ℓ(i) is defined in Equation (2). We adopt
the power method [21] to estimate the spectral norms of the
linear transformations when pre-training an encoder.

D. Certifying Robustness for a Client

In REaaS, a client can treat its own downstream classifier
as a base classifier. We discuss how a client can use our
two APIs to train a base downstream classifier and derive
the certified radius of the base downstream classifier in BC

TABLE I: Comparing the communication and computation
cost per training/testing input in SEaaS and REaaS. e is
the number of epochs used to train a base downstream
classifier. N is the number of noisy inputs per testing input
in SC. Tf (or Tg) and Mf (or Mg) are respectively the
number of layers and the maximum number of neurons
in a layer in an encoder (or a downstream classifier). Kf

(or Kg) is the number of parameters in an encoder (or a
downstream classifier).

(a) Communication cost

Service
#Queries

Per training input Per testing input
BC SC BC SC

SEaaS N/A e N/A N

REaaS 1 2

(b) Computation cost

Service Entity
Computational complexity

Per training input Per testing input
BC SC BC SC

SEaaS
Cloud
server N/A O(e · Kf) N/A O(N · Kf)

Client O(e · Kg) O(N · Kg)

REaaS
Cloud
server O(Kf) O(Kf) O(Kf + T 2

f · M3
f) O(Kf + T 2

f · M3
f)

Client O(e · Kg) O(e · Kg) O(Kg + T 2
g · M3

g) O(N · Kg)

based certification or the smoothed downstream classifier in
SC based certification for a testing input.

BC based certification: When training a base downstream
classifier, a client queries the Feature-API to obtain a feature
vector for each training input. Then, given the feature vectors
and the corresponding training labels, the client can use any
training method (e.g., standard supervised learning) to train a
base downstream classifier. Given a testing input, the client
queries the Feature-API to obtain its feature vector and uses the
base downstream classifier to predict its label. Moreover, the
client can use any BC based certification method to derive a
feature-space certified radius for the testing input by treating its
feature vector as an “input” to the base downstream classifier.
Then, the client queries the F2IPerturb-API to transform the
feature-space certified radius to an input-space certified radius.

SC based certification: Similar to BC based certification, a
client queries the Feature-API to obtain a feature vector for
each training input when training a base downstream classifier.
However, unlike BC based certification, the client adds noise
to the training feature vectors in SC based certification. In
particular, the client adds random noise (e.g., Gaussian noise) to
each feature vector in each mini-batch of training feature vectors
in each training epoch. Note that the client does not need to
query the Feature-API again for the noisy feature vector. Given
a testing input, the client queries the Feature-API to obtain its
feature vector and uses the smoothed downstream classifier to
predict its label and derive its feature-space certified radius.
In particular, the client constructs N noisy feature vectors
by adding random noise to the feature vector and uses it’s
base downstream classifier to predict their labels. Based on
the predicted labels, the client can derive the predicted label
and feature-space certified radius for the original feature vector.
Then, the client queries the F2IPerturb-API to transform the
feature-space certified radius to an input-space certified radius.

7

E. Theoretical Communication and Computation Cost Analysis
Communication cost: The number of queries to the APIs
characterizes the communication cost for a client and the cloud
server. In both BC and SC based certification, a client only
queries the Feature-API once for each training input in REaaS.
Therefore, the number of queries per training input is 1 in
REaaS. In both BC and SC based certification, a client only
queries the Feature-API and F2IPerturb-API once to derive
the predicted label and certified radius for a testing input.
Therefore, the number of queries per testing input is 2 in
REaaS. Note that the client only sends an image x to the cloud
server when querying the Feature-API, while it also sends
the feature-space certified radius Rf to the cloud server when
querying the F2IPerturb-API. However, Rf is a real number
whose communication cost is negligible, compared to that of
the image x. Thus, we consider querying Feature-API and
querying F2IPerturb-API have the same communication cost in
our analysis for simplicity. Table Ia compares the number
of queries per training/testing input in SEaaS and REaaS.
Compared with SEaaS, REaaS makes BC based certification
applicable and incurs a much smaller communication cost in
SC based certification.

Computation cost: Table Ib compares the computational
complexity of REaaS and SEaaS for the cloud server and a
client. In both REaaS and SEaaS, the computation cost for the
cloud server to process a query to the Feature-API is linear to
the number of encoder parameters, i.e., O(Kf), where Kf is
the number of parameters in the encoder. In REaaS, we use
binary search to process a query to the F2IPerturb-API. Given
the initial search range [ρL1 , ρ

U
1] and binary-search precision

β, the number of rounds of binary search is ⌈log2(
ρU
1 −ρL

1

β)⌉.
In practice, we can set ρL1 , ρU1 , and β to be constants, e.g.,
ρL1 = 0, ρU1 = 10, and β = 10−50, and thus ⌈log2(

ρU
1 −ρL

1

β)⌉
can be viewed as a constant. From [9], the computational
complexity is O(T 2

f · M3
f) in each round of binary search,

where Tf and Mf are respectively the number of layers and
the maximum number of neurons in a layer in an encoder. Thus,
the computational complexity for the cloud server to process a
query to the F2IPerturb-API is O(T 2

f ·M3
f).

On the client side, the computational complexity of gradient
descent is O(Kg) for each training input per epoch when
training a base downstream classifier in both BC and SC
based certification, where Kg is the number of parameters
in the base downstream classifier. Therefore, the computational
complexity of training a base downstream classifier is O(e ·Kg)
per training input, where e is the number of training epochs. The
computational complexity for a client to derive the feature-space
certified radius of a testing input is O(T 2

g ·M3
g) in BC based

certification [9], where Tg and Mg are respectively the number
of layers and the maximum number of neurons in a layer in
the base downstream classifier. Moreover, the computational
complexity of using the base downstream classifier to predict
a label for a (noisy) feature vector is O(Kg).

As SEaaS does not support BC based certification, we focus
on comparing the computation cost of SEaaS and REaaS for
SC based certification. First, we observe that the computation
cost per training/testing input is the same for a client in SEaaS
and REaaS. Second, REaaS incurs a smaller computation cost
per training input for the cloud server than SEaaS, because

REaaS incurs much fewer queries than SEaaS. Third, REaaS
often incurs a smaller computation cost per testing input for the
cloud server than SEaaS, because N is often large to achieve
a large certified radius as shown in our experiments.

V. EVALUATION

A. Experimental Setup
Datasets: We use CIFAR10 [22], SVHN [23], STL10 [24],
and Tiny-ImageNet [25] in our experiments. CIFAR10 has
50,000 training and 10,000 testing images from ten classes.
SVHN contains 73,257 training and 26,032 testing images from
ten classes. STL10 contains 5,000 training and 8,000 testing
images from ten classes, as well as 100,000 unlabeled images.
Tiny-ImageNet contains 100,000 training and 10,000 testing
images from 200 classes.

We rescale each image in all datasets to 32 × 32 by the
standard bi-linear interpolation. Therefore, the input image size
in a downstream dataset is the same as the input size of the pre-
trained encoder. However, we will also explicitly explore the
scenarios in which the input image size of a downstream dataset
is different from the input size of the pre-trained encoder.

Pre-training encoders: We use STL-10 and Tiny-ImageNet
as pre-training datasets to pre-train encoders. We adopt these
two datasets because they contain more images than CIFAR10
and SVHN. In particular, we use the unlabeled data of STL10
to pre-train an encoder when STL10 is used as a pre-training
dataset. When Tiny-ImageNet is used as a pre-training dataset,
we use its training dataset to pre-train an encoder. Unless
otherwise mentioned, we adopt MoCo [1] as the pre-training
algorithm in SEaaS, while we adopt MoCo with our spectral-
norm regularization as the pre-training algorithm in REaaS,
since they only need unlabeled data. Moreover, we adopt the
public implementation of MoCo [26] in our experiments. When
calculating the spectral norm of the encoder during pre-training,
we run 10 iterations of power iteration in each mini-batch. The
architecture of the encoder can be found in Table XIII in
Appendix. We pre-train an encoder for 500 epochs with a
learning rate 0.06 and a batch size 512.

Training downstream classifiers: As we have four datasets,
we use the other three datasets as downstream datasets when
a dataset is used as a pre-training dataset. Moreover, when a
dataset is used as a downstream dataset, we adopt its training
dataset as the downstream training dataset and testing dataset as
the downstream testing dataset. We use the downstream training
dataset to train a base downstream classifier. In particular, in
BC based certification, we use standard supervised learning to
train a base downstream classifier on the feature vectors of the
training inputs. We note that some works [27], [28] proposed
new methods to train a base classifier to improve its certified
robustness in BC based certification. These methods are also
applicable in our REaaS, but we do not evaluate them since our
focus is to show the applicability of BC based certification in
REaaS instead of its optimal certified robustness. For SC based
certification, we train a base downstream classifier via adding
Gaussian noise N (0, σ2I) to the training inputs in SEaaS and
the feature vectors of the training inputs in REaaS.

We use a fully connected neural network with two hidden
layers as a base downstream classifier. We respectively adopt

8

ReLU and Softmax as the activation functions in the two hidden
layers and the output layer. The number of neurons in both
hidden layers is 256. We train a base downstream classifier
for 25 epochs using cross-entropy loss, a learning rate of 0.06,
and a batch size of 512.

Certification methods: For BC based certification, we adopt
CROWN [9] to derive the certified radius of a base downstream
classifier for a testing input in REaaS. We adopt the public
implementation of CROWN [29]. For SC based certification,
we adopt Gaussian noise based randomized smoothing [13] to
build a smoothed classifier and derive its certified radius for
a testing input. In SEaaS, a client treats the composition of
the encoder and its downstream classifier as a base classifier,
while a client treats its downstream classifier alone as a base
classifier in REaaS. We use the public code [30] for Gaussian
noise based randomized smoothing. Appendix B and C show
the technical details of CROWN and Gaussian noise based
randomized smoothing, respectively.

Evaluation metrics: Recall that REaaS aims to achieve three
design goals. We can evaluate the generality goal by showing
that REaaS supports both BC and SC based certification. For
the efficiency goal, we use #Queries per training (or testing)
input to measure the communication cost between a client and
the cloud server. Moreover, we use running time per testing
input on the cloud server to measure its computation cost. We
do not consider running time on a client as it is the same in
SEaaS and REaaS. Note that #Queries per training input also
characterizes the computation cost per training input for the
cloud server as it is linear to the number of queries. For the
robustness goal, we use average certified radius (ACR) of the
correctly classified testing examples to measure the certified
robustness of a base or smoothed classifier.

Note that there often exists a trade-off between robustness
and accuracy for a classifier. Therefore, we further consider
accuracy under adversarial perturbation as an evaluation metric.
In particular, we consider the widely adopted certified accuracy
@ a perturbation size, which is the fraction of testing inputs
in a downstream testing dataset whose labels are correctly
predicted and whose certified radii are no smaller than the given
perturbation size. Certified accuracy @ a perturbation size is
the least testing accuracy that a classifier can achieve no matter
what adversarial perturbation is added to each testing input once
its ℓ2-norm is at most the given perturbation size. The certified
accuracy @ a perturbation size decreases as the perturbation
size increases. ACR is the area under the certified accuracy
vs. perturbation size curve (details are shown in Appendix A).
Therefore, ACR can also be viewed as a metric to measure
the robustness-accuracy trade-off of a classifier, where a larger
ACR indicates a better trade-off.

Parameter settings: F2IPerturb-API has the following three
parameters: ρL1 and ρU1 which specify the range of R in the
first round of binary search, and β which characterizes the
binary-search precision. We set ρL1 to be 0 and set ρU1 to be
10. Note that they do not impact experimental results once
ρL1 is set to 0 and ρU1 is set to a large value (e.g., 10). We
set the default value of β as 0.001. We note that β has a
negligible impact on certified accuracy and ACR. In particular,
the absolute difference between the certified accuracy (or ACR)

TABLE II: ACR and #Queries in SEaaS and REaaS.

(a) Pre-training dataset is Tiny-ImageNet

Service Certification
method

Downstre-
am dataset ACR

#Queries
Per train-
ing input

Per test-
ing input

SEaaS

BC
CIFAR10

N/ASVHN
STL10

SC
CIFAR10 0.157

25 1× 105SVHN 0.226
STL10 0.134

REaaS

BC
CIFAR10 0.138

1 2

SVHN 0.258
STL10 0.090

SC
CIFAR10 0.171

SVHN 0.275
STL10 0.143

(b) Pre-training dataset is STL10

Service Certification
method

Downstre-
am dataset ACR

#Queries
Per train-
ing input

Per test-
ing input

SEaaS

BC

CIFAR10

NASVHN
Tiny-

ImageNet

SC

CIFAR10 0.155

25 1× 105
SVHN 0.244
Tiny-

ImageNet 0.016

REaaS

BC

CIFAR10 0.139

1 2

SVHN 0.272
Tiny-

ImageNet 0.027

SC

CIFAR10 0.173
SVHN 0.278
Tiny-

ImageNet 0.033

when β = 0.001 and that when β is an arbitrarily small value
(e.g., 10−50) is smaller than 0.001.

Randomized smoothing has the following three parameters:
the number of Gaussian noise N , standard deviation σ of
the Gaussian noise, and error probability α. Following prior
work [13], unless otherwise mentioned, we set N = 100, 000,
σ = 0.5, and α = 0.001. We set the default value of the
hyperparameter λ in our pre-training method as 0.00075. We
normalize pixel values to [0, 1].

B. Experimental Results

We first show that REaaS achieves our three design goals,
but SEaaS does not. Then, we show the impact of relevant
factors on REaaS. In particular, we consider 1) different ways
to pre-train an encoder, 2) image scaling, and 3) different
hyperparameters of certification methods such as N , σ, and α
for randomized smoothing. Note that we fix all other parameters
to their default values when studying the impact of one
parameter on REaaS.

9

TABLE III: Comparing the running time per testing input
for the cloud server in SC for SEaaS and REaaS. The
pre-training dataset is Tiny-ImageNet.

Service Downstream
dataset Running time (s) per testing input

SEaaS
CIFAR10 73.77

SVHN 72.65
STL10 73.48

REaaS
CIFAR10 1.05

SVHN 1.06
STL10 1.04

TABLE IV: Training without noise vs. training with noise
for SC in SEaaS. The pre-training dataset is Tiny-ImageNet.

Downstream
dataset

ACR
Training with noise Training without noise

CIFAR10 0.157 0.106
SVHN 0.226 0.155
STL10 0.134 0.088

TABLE V: Impact of N on ACR for SC in SEaaS. The
pre-training dataset is Tiny-ImageNet.

Downstream
dataset

N
100 1,000 10,000 100,000

CIFAR10 0.091 0.132 0.148 0.157
SVHN 0.130 0.186 0.211 0.226
STL10 0.079 0.111 0.127 0.134

REaaS achieves the generality, efficiency, and robustness
goals: In SC based certification, a client respectively adds
Gaussian noise to images and their feature vectors to train a base
downstream classifier in SEaaS and REaaS. Thus, the certified
robustness of the smoothed classifiers are not comparable even
if we use the same standard deviation σ of Gaussian noise in
SEaaS and REaaS. Therefore, we try multiple values of σ and
report the largest ACR for each service. Moreover, we select σ
values such that the largest ACR is not reached at the smallest
or largest value of σ, to ensure the largest ACR is found for
each service. In particular, we try σ = 0.125, 0.25, 0.5, 0.75, 1
for both SEaaS and REaaS. We note that σ controls a tradeoff
between certified accuracy without attacks (i.e., perturbation
size is 0) and robustness. Specifically, a smaller σ can achieve
a larger certified accuracy without attacks but also make the
curve drop more quickly (i.e., less robust). ACR measures such
trade-off, and thus we adopt the σ that achieves the largest
ACR for each method when comparing the certified accuracy
of SC based certification in SEaaS and REaaS.

Table II compares ACR and #Queries per training/testing
input in SEaaS and REaaS, while Table III compares the running
time per testing input for the server in SC for SEaaS and REaaS.
We have the following observations. First, REaaS supports both
BC and SC. Therefore, REaaS achieves the generality goal.
In contrast, SEaaS only supports SC. Second, REaaS achieves
the efficiency goal as it is much more efficient than SEaaS.
Specifically, #Queries per training/testing input in REaaS is

TABLE VI: Comparing the ACRs in REaaS for different
downstream datasets when the encoders are pre-trained by
different self-supervised learning methods. The pre-training
dataset is Tiny-ImageNet.

(a) CIFAR10

Certification Method Pre-training Method ACR

BC
Non-robust MoCo 0.012

RoCL 0.016
Ours 0.138

SC
Non-robust MoCo 0.020

RoCL 0.024
Ours 0.171

(b) SVHN

Certification Method Pre-training Method ACR

BC
Non-robust MoCo 0.009

RoCL 0.015
Ours 0.258

SC
Non-robust MoCo 0.011

RoCL 0.014
Ours 0.275

(c) STL10

Certification Method Pre-training Method ACR

BC
Non-robust MoCo 0.011

RoCL 0.014
Ours 0.090

SC
Non-robust MoCo 0.015

RoCL 0.020
Ours 0.143

orders of magnitude smaller than that in SEaaS for SC. We
note that a client using SEaaS could choose to train a base
downstream classifier without adding noise to its training inputs
to reduce the #Queries per training input to 1 or use a small N
to reduce the #Queries per testing input. However, the smoothed
classifier achieves (much) smaller ACRs in such cases as shown
in Table IV and V. Base on Table III, REaaS also incurs a
much lower computation cost for the server than SEaaS.

Third, REaaS achieves the robustness goal as it achieves
larger ACRs than SEaaS for SC. The reason is that, in SEaaS,
the base classifier is the composition of an encoder and a
base downstream classifier, but the client can only train the
base downstream classifier with noise. In contrast, a client can
build a smoothed classifier upon a base downstream classifier
alone which can be trained with noise and the encoder is pre-
trained in a robust way in REaaS. Figure 7 in Appendix further
compares the certified accuracy vs. perturbation size of SC in
SEaaS and REaaS. We find that REaaS can achieve a better
trade-off between accuracy without attacks and robustness than
SEaaS. Specifically, REaaS achieves larger certified accuracy
than SEaaS when the perturbation size is small. Moreover, the
gap between the certified accuracy of SEaaS and REaaS is
much larger when the perturbation size is small than that when
the perturbation size is large.

Impact of methods to pre-train encoders: We can use
different methods to pre-train an encoder in REaaS. Table VI
and VII show ACRs in REaaS when different self-supervised
learning methods are used to pre-train encoders. In particular,

10

TABLE VII: Comparing the ACRs in REaaS for different
downstream datasets when the encoders are pre-trained by
different self-supervised learning methods. The pre-training
dataset is STL10.

(a) CIFAR10

Certification Method Pre-training Method ACR

BC
Non-robust MoCo 0.010

RoCL 0.012
Ours 0.139

SC
Non-robust MoCo 0.014

RoCL 0.017
Ours 0.173

(b) SVHN

Certification Method Pre-training Method ACR

BC
Non-robust MoCo 0.006

RoCL 0.009
Ours 0.272

SC
Non-robust MoCo 0.007

RoCL 0.012
Ours 0.278

(c) Tiny-ImageNet

Certification Method Pre-training Method ACR

BC
Non-robust MoCo 0.003

RoCL 0.004
Ours 0.027

SC
Non-robust MoCo 0.003

RoCL 0.004
Ours 0.033

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ce
rti

fie
d

ac
cu

ra
cy

= 0.00025
= 0.0005
= 0.00075
= 0.001

(a) BC

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ce
rti

fie
d

ac
cu

ra
cy

= 0.00025
= 0.0005
= 0.00075
= 0.001

(b) SC

Fig. 2: Impact of λ on certified accuracy vs. perturbation
size for BC and SC in REaaS. The pre-training dataset is
Tiny-ImageNet and the downstream dataset is CIFAR10.

we consider non-robust MoCo [1], RoCL [14], and our robust
pre-training method (i.e., MoCo with our spectral-norm regu-
larization). Table VIII shows ACRs of REaaS when different
supervised learning methods are used to pre-train encoders.
In particular, we consider a standard, non-robust supervised
learning method, adversarial training [16] (we use the default
parameter settings in the authors’ public implementation),
and our robust pre-training method (i.e., standard supervised
learning with our spectral-norm regularization). We only show
results when the pre-training dataset is Tiny-ImageNet for
supervised pre-training methods, as STL10 dataset only has a
small number of labeled training images which are insufficient
to pre-train high-quality encoders using supervised learning.
We try σ = 0.125, 0.25, 0.5, 0.75, 1 and report the largest
ACR for each pre-training method. As the results show, our
robust pre-training method achieves substantially larger ACRs

TABLE VIII: Comparing the ACRs in REaaS for different
downstream datasets when the encoders are pre-trained
by different supervised learning (SL) methods. The pre-
training dataset is Tiny-ImageNet.

(a) CIFAR10

Certification Method Pre-training Method ACR

BC
Non-robust SL 0.019

Adversarial Training 0.035
Ours 0.174

SC
Non-robust SL 0.022

Adversarial Training 0.041
Ours 0.172

(b) SVHN

Certification Method Pre-training Method ACR

BC
Non-robust SL 0.008

Adversarial Training 0.018
Ours 0.268

SC
Non-robust SL 0.011

Adversarial Training 0.021
Ours 0.292

(c) STL10

Certification Method Pre-training Method ACR

BC
Non-robust SL 0.012

Adversarial Training 0.026
Ours 0.100

SC
Non-robust SL 0.018

Adversarial Training 0.034
Ours 0.114

0.00025 0.00050 0.00075 0.001000.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

AC
R

(a) BC

0.00025 0.00050 0.00075 0.001000.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

AC
R

(b) SC

Fig. 3: Impact of λ on ACR for BC and SC in REaaS. The
pre-training dataset is Tiny-ImageNet and the downstream
dataset is CIFAR10.

than existing methods for both supervised learning and self-
supervised learning. Our method is better than RoCL and
adversarial training because they aim to train empirically robust
rather than certifiably robust encoders, and is better than MoCo
and standard supervised learning because the encoders pre-
trained by them are non-robust.

Impact of hyperparameter λ: Figure 2 shows the impact of λ
on certified accuracy in REaaS. We find that λ measures a trade-
off between accuracy without attacks (i.e., perturbation size is
0) and robustness. In particular, when λ is smaller, the accuracy
without attacks is larger, but the certified accuracy decreases
more quickly as the perturbation size increases. Figure 3 shows

11

100 1,000 10,000 100,000
N

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

AC
R

0.125 0.25 0.5 0.750.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

AC
R

0.0001 0.001 0.01 0.10.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

AC
R

Fig. 4: Impact of N , σ, and α on ACR of SC in REaaS. The pre-training dataset is Tiny-ImageNet and the downstream
dataset is CIFAR10.

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ce
rti

fie
d

ac
cu

ra
cy

16x16
32x32
64x64

(a) BC

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ce
rti

fie
d

ac
cu

ra
cy

16x16
32x32
64x64

(b) SC

Fig. 5: Impact of downstream input size on certified
accuracy vs. perturbation size for BC and SC in REaaS. The
pre-training dataset is Tiny-ImageNet and the downstream
dataset is (or created from) CIFAR10. The input size of
the pre-trained encoder is 32x32.

the impact of λ on ACR. Our results show that, for both BC
and SC, ACR first increases as λ increases and then decreases
after λ is larger than a certain value. The reason is that a
larger or smaller λ leads to a worse trade-off between accuracy
without attacks and robustness as shown in Figure 2.

Impact of image rescaling: To study the impact of image
rescaling, we create downstream datasets with different input
image sizes via resizing images in CIFAR10. Table IX shows
the results on ACR and Figure 5 shows the results on certified
accuracy. We find that, when the size of the images in a
downstream dataset is larger (or smaller) than the input size
of the encoder, the downstream input-space ACR is larger (or
smaller) for both BC and SC. The reason is that down-scaling
(or up-scaling) the downstream input images to be the same
size as the input size of the encoder reduces (or enlarges) the
perturbation in the downstream image space.

Impact of N , σ, and α for SC: Figure 4 and 8 (in Appendix)
shows the impact of N , σ, and α on ACR and certified accuracy
of SC in REaaS. We have the following observations. First,
both ACR and certified accuracy increase as N or α increases.
The reason is that the estimated certified radii are larger when
N or α is larger. Second, we find that σ achieves a trade-
off between accuracy without attacks (i.e., perturbation size
is 0) and robustness. In particular, a smaller σ can achieve a
larger accuracy without attacks, but the curve drops faster as
the perturbation size increases. Third, ACR first increases and
then decreases as σ increases. The reason is that a smoothed

TABLE IX: Impact of image rescaling on ACR in REaaS.
The pre-training dataset is Tiny-ImageNet and the down-
stream dataset is (or created from) CIFAR10. The input
size of the encoder is 32x32.

Certification Method Size of Images in
Downstream Dataset ACR

BC
16x16 0.082
32x32 0.138
64x64 0.303

SC
16x16 0.068
32x32 0.153
64x64 0.305

classifier is less accurate without attacks when σ is larger and
is less robust when σ is smaller.

REaaS vs. white-box access to the encoder: In REaaS, a
client has black-box access to the encoder. We compare REaaS
with the scenario where a client has white-box access to the
encoder, e.g., the cloud server shares its encoder with a client.
Specifically, with white-box access to the encoder, a client
can use either BC or SC by treating the composition of the
encoder and its downstream classifier as a base classifier. For
BC, the client can use CROWN [29] to derive the certified
radius of its base classifier for a testing input. For SC, the
client can train/fine-tune the base classifier (both the encoder
and downstream classifier) using training inputs with noise.
The white-box scenario represents the upper-bound robustness
a client can achieve. Therefore, comparing with the robustness
in the white-box scenario enables us to understand how close
our REaaS with the two APIs is to such upper bound. Table X
compares the ACRs of REaaS and such white-box scenario.
We find that REaaS can achieve comparable ACRs with the
white-box scenario.

VI. DISCUSSION

Extension to ℓp-norm adversarial perturbations: We focus
on certified robustness against ℓ2-norm adversarial perturbation
in this work. The certified robustness can be extended to other
ℓp-norms, e.g., via leveraging the relationship between ℓ2-norm
and other ℓp-norms. For instance, suppose the certified radius
is R for an image in ℓ2-norm; the certified radius in ℓ1-norm
and ℓ∞-norm can respectively be computed as R and R√

dim
,

12

TABLE X: Comparing the ACRs of REaaS and the white-
box scenario for different downstream datasets. The pre-
training dataset is Tiny-ImageNet.

(a) CIFAR10

Certification Method Service ACR

BC
White-box 0.157

REaaS 0.138

SC
White-box 0.188

REaaS 0.171

(b) SVHN

Certification Method Service ACR

BC
White-box 0.286

REaaS 0.258

SC
White-box 0.302

REaaS 0.275

(c) STL10

Certification Method Service ACR

BC
White-box 0.102

REaaS 0.090

SC
White-box 0.151

REaaS 0.143

where dim is the product of the number of pixels and the
number of channels in the image. Figure 6 shows the certified
accuracy of SC in REaaS for ℓ1-norm and ℓ∞-norm adversarial
perturbations, where the ℓ1-norm and ℓ∞-norm certified radii
are obtained from ℓ2-norm certified radius with N = 100, 000,
σ = 0.5, and α = 0.001.

Extending REaaS to natural language processing (NLP)
domain: An attacker can make a text classifier predict an
incorrect label for a text by substituting a small number of
words as their synonyms [31], [32], [33]. Our REaaS can
also be applied to enable adversarially robust downstream
text classifiers against those attacks by slightly adapting our
F2IPerturb-API (please refer to Appendix E for details). Given a
text and a feature-space certified radius, our adapted F2IPerturb-
API returns an input-space certified radius, which is the
maximum number of words that can be substituted such that
the downstream classifier’s predicted label for the text is
unchanged. Table XI shows our experimental results (please
refer to Appendix E for details of the experimental setup). Our
results show that our REaaS is also applicable to NLP domain.

Encoder stealing: Our REaaS introduces a new F2IPerturb-
API. A natural question is whether the new F2IPerturb-API
makes the encoder more vulnerable to stealing attacks. We
argue that the answer is probably no. The reason is that our
new API returns a certified radius for a query image, which
can also be obtained by an attacker via calling the existing
Feature-API many times. However, an attacker may obtain
such certified radius with less queries using our new API.
We explore whether certified radii can be exploited to assist
encoder stealing. In particular, we extend StolenEncoder [34],
which uses Feature-API to steal encoder, to steal encoders using

TABLE XI: ACR and #Queries of REaaS in NLP domain,
where BC is used. The pre-training dataset is SST-2 [44]
and the downstream dataset is IMDB [45].

ACR
#Queries

Per training input Per testing input
2.517 1 2

TABLE XII: Comparing StolenEncoder and its extended
version using our F2IPerturb-API. The pre-training dataset
is Tiny-ImageNet and the downstream dataset is CIFAR10.

StolenEncoder Extended StolenEncoder
γ 0 10−4 10−3 10−2 10−1

Stolen Accuracy (%) 62.3 62.6 63.4 61.5 59.4

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ce
rti

fie
d

ac
cu

ra
cy

(a) ℓ1-norm

0.000 0.005 0.010 0.015 0.020 0.025
Perturbation size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ce
rti

fie
d

ac
cu

ra
cy

(b) ℓ∞-norm

Fig. 6: Certified accuracy vs. perturbation size of SC in
REaaS under ℓ1-norm and ℓ∞-norm adversarial perturba-
tions. The pre-training dataset is Tiny-ImageNet and the
downstream dataset is CIFAR10.

both Feature-API and F2IPerturb-API (see Appendix F for the
details of StolenEncoder and its extended version as well as the
experimental setup). Table XII shows our experimental results,
where γ is a hyperparameter. Note that the total number of
queries to the APIs made by the extended StolenEncoder is
twice of StolenEncoder in our comparison. Our results show that
the downstream classifiers built upon stolen encoders obtained
by StolenEncoder and its extended version achieve comparable
accuracy, which implies that certified radii may not be able to
assist encoder stealing.

Privacy-preserving encoder as a service: In both SEaaS and
REaaS, a client sends his/her raw images to the cloud server.
Therefore, an untrusted service provider may compromise the
privacy of the client, especially when the downstream datasets
contain sensitive images such as facial and medical images.
We believe it is an interesting future work to develop privacy-
preserving encoder as a service. For instance, we can leverage
(local) differential privacy [35], [36], [37], secure hardware [38],
and cryptography [39], [40] based methods.

Other attacks to pre-trained encoders: In this work, we focus
on adversarial examples [5], [6]. Some recent studies [41],
[42], [43] show that pre-trained encoders are also vulnerable
to poisoning and backdoor attacks, which are orthogonal to
our work. We believe it is an interesting future work to extend
our framework to defend against those attacks.

13

VII. CONCLUSION AND FUTURE WORK

In this work, we show that, via providing two APIs, a cloud
server 1) makes it possible for a client to certify robustness of
its downstream classifier against adversarial perturbations using
any certification method and 2) makes it orders of magnitude
more communication efficient and more computation efficient to
certify robustness using smoothed classifier based certification.
Moreover, when the cloud server pre-trains the encoder via
considering our spectral-norm regularization term, it achieves
better certified robustness for the clients’ downstream classifiers.
Interesting future work includes extending REaaS to poisoning
and backdoor attacks as well as designing both robust and
privacy-preserving encoder as a service.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for the constructive
comments. This work was supported by NSF under grant No.
2131859, 2112562, and 1937786, as well as ARO under grant
No. W911NF2110182.

REFERENCES

[1] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast
for unsupervised visual representation learning,” in CVPR, 2020.

[2] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in ICML, 2020.

[3] GPT-3 API, https://openai.com/blog/customized-gpt-3/.
[4] “General Image Embedding Model,” https://www.clarifai.com/models/

general-image-embedding.
[5] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,

and R. Fergus, “Intriguing properties of neural networks,” in ICLR, 2014.
[6] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural

networks,” in IEEE S & P, 2017.
[7] E. Wong and J. Z. Kolter, “Provable defenses against adversarial

examples via the convex outer adversarial polytope,” in ICML, 2018.
[8] A. Raghunathan, J. Steinhardt, and P. Liang, “Certified defenses against

adversarial examples,” in ICLR, 2018.
[9] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel, “Efficient

neural network robustness certification with general activation functions,”
in NeurIPS, 2018.

[10] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Formal security
analysis of neural networks using symbolic intervals,” in USENIX
Security, 2018.

[11] X. Cao and N. Z. Gong, “Mitigating evasion attacks to deep neural
networks via region-based classification,” in ACSAC, 2017.

[12] M. Lecuyer, V. Atlidakis, R. Geambasu, D. Hsu, and S. Jana, “Certified
robustness to adversarial examples with differential privacy,” in IEEE S
& P, 2019.

[13] J. M. Cohen, E. Rosenfeld, and J. Z. Kolter, “Certified adversarial
robustness via randomized smoothing,” ICML, 2019.

[14] M. Kim, J. Tack, and S. J. Hwang, “Adversarial self-supervised
contrastive learning,” in NeurIPS, 2020.

[15] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in ICLR, 2015.

[16] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” in ICLR, 2018.

[17] H. Salman, M. Sun, G. Yang, A. Kapoor, and J. Z. Kolter, “Denoised
smoothing: A provable defense for pretrained classifiers,” NeurIPS, 2020.

[18] S. J. Pan and Q. Yang, “A survey on transfer learning,” TKDE, 2009.
[19] T. Chen, S. Liu, S. Chang, Y. Cheng, L. Amini, and Z. Wang,

“Adversarial robustness: From self-supervised pre-training to fine-tuning,”
in CVPR, 2020.

[20] Z. Jiang, T. Chen, T. Chen, and Z. Wang, “Robust pre-training by
adversarial contrastive learning.” in NeurIPS, 2020.

[21] R. Mises and H. Pollaczek-Geiringer, “Praktische verfahren der gle-
ichungsauflösung.” ZAMM-Journal of Applied Mathematics and Mechan-
ics, 1929.

[22] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” Tech Report, 2009.

[23] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,”
in NeurIPS Workshop on Deep Learning and Unsupervised Feature
Learning, 2011.

[24] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks in
unsupervised feature learning,” in AISTATS, 2011.

[25] “Tiny-ImageNet,” https://www.kaggle.com/c/tiny-imagenet/overview.
[26] “MoCo,” https://github.com/facebookresearch/moco.
[27] M. Balunovic and M. Vechev, “Adversarial training and provable

defenses: Bridging the gap,” in ICLR, 2019.
[28] H. Zhang, H. Chen, C. Xiao, S. Gowal, R. Stanforth, B. Li, D. Boning,

and C.-J. Hsieh, “Towards stable and efficient training of verifiably
robust neural networks,” ICLR, 2020.

[29] “CROWN,” https://github.com/huanzhang12/CROWN-IBP.
[30] “Randomized Smoothing,” https://github.com/locuslab/smoothing.
[31] M. Alzantot, Y. Sharma, A. Elgohary, B.-J. Ho, M. Srivastava, and K.-W.

Chang, “Generating natural language adversarial examples,” in EMNLP,
2018.

[32] S. Ren, Y. Deng, K. He, and W. Che, “Generating natural language
adversarial examples through probability weighted word saliency,” in
ACL, 2019.

[33] P.-S. Huang, R. Stanforth, J. Welbl, C. Dyer, D. Yogatama, S. Gowal,
K. Dvijotham, and P. Kohli, “Achieving verified robustness to symbol
substitutions via interval bound propagation,” EMNLP-IJCNLP, 2019.

[34] Y. Liu, J. Jia, H. Liu, and N. Z. Gong, “Stolenencoder: Stealing pre-
trained encoders in self-supervised learning,” in CCS, 2022.

[35] J. C. Duchi, M. I. Jordan, and M. J. Wainwright, “Local privacy and
statistical minimax rates,” in FOCS, 2013.

[36] Ú. Erlingsson, V. Pihur, and A. Korolova, “Rappor: Randomized
aggregatable privacy-preserving ordinal response,” in CCS, 2014.

[37] T. Wang, J. Blocki, N. Li, and S. Jha, “Locally differentially private
protocols for frequency estimation,” in USENIX Security, 2017.

[38] V. Costan and S. Devadas, “Intel sgx explained.” IACR Cryptol. ePrint
Arch., 2016.

[39] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine learning
classification over encrypted data.” in NDSS, 2015.

[40] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy,” in ICML, 2016.

[41] J. Jia, Y. Liu, and N. Z. Gong, “Badencoder: Backdoor attacks to
pre-trained encoders in self-supervised learning,” in IEEE S&P, 2022.

[42] N. Carlini and A. Terzis, “Poisoning and backdooring contrastive
learning,” in ICLR, 2021.

[43] H. Liu, J. Jia, and N. Z. Gong, “Poisonedencoder: Poisoning the
unlabeled pre-training data in contrastive learning,” in USENIX Security,
2022.

[44] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and
C. Potts, “Recursive deep models for semantic compositionality over a
sentiment treebank,” in EMNLP, 2013.

[45] A. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
“Learning word vectors for sentiment analysis,” in ACL, 2011.

[46] C. J. Clopper and E. S. Pearson, “The use of confidence or fiducial
limits illustrated in the case of the binomial,” Biometrika, 1934.

[47] K. Xu, Z. Shi, H. Zhang, Y. Wang, K.-W. Chang, M. Huang, B. Kailkhura,
X. Lin, and C.-J. Hsieh, “Automatic perturbation analysis for scalable
certified robustness and beyond,” in NeurIPS, 2020.

[48] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng,
and C. Potts, “Recursive deep models for semantic compositionality
over a sentiment treebank,” in EMMLP, 2013.

[49] R. Jia, A. Raghunathan, K. Göksel, and P. Liang, “Certified robustness to
adversarial word substitutions,” arXiv preprint arXiv:1909.00986, 2019.

14

https://openai.com/blog/customized-gpt-3/
https://www.clarifai.com/models/general-image-embedding
https://www.clarifai.com/models/general-image-embedding
https://www.kaggle.com/c/tiny-imagenet/overview
https://github.com/facebookresearch/moco
https://github.com/huanzhang12/CROWN-IBP
https://github.com/locuslab/smoothing

TABLE XIII: Architecture of the neural network for the
encoder.

Layer Type Layer Parameters

Input 32 × 32

Convolution 16 × 3 × 3, strides=(1, 1), padding=1
Activation ReLU

Convolution 16 × 4 × 4, strides=(2, 2), padding=1
Activation ReLU

Convolution 32 × 3 × 3, strides=(1, 1), padding=1
Activation ReLU

Convolution 32 × 4 × 4, strides=(2, 2), padding=1
Activation ReLU

Fully Connected 256

Output

APPENDIX A
ACR IS THE AREA UNDER THE CERTIFIED ACCURACY VS.

PERTURBATION SIZE CURVE

Suppose the largest certified radius of a testing input is
Rmax and the certified radius of the testing inputs follows
a probability distribution in the interval [0, Rmax], whose
probability density function is p(R). The certified accuracy
(CA) at a perturbation size R can be formally defined as
follows:

CA(R) =

∫︂ Rmax

R

p(r)dr. (16)

By definition, the area under the certified accuracy vs. pertur-
bation size curve is calculated as follows:

Area =

∫︂ Rmax

0

CA(R)dR (17)

= CA(R) ·R|Rmax
0 −

∫︂ Rmax

0

R · dCA(R) (18)

= 0 +

∫︂ Rmax

0

R · p(R) · dR (19)

= ACR, (20)

where ACR is the average certified radius of the testing inputs.

APPENDIX B
TECHNICAL DETAILS OF CROWN [9]

Suppose F is a base classifier that maps an input x to
one of c classes {1, 2, · · · , c}. For instance, the composition
of the encoder and downstream classifier g ◦ f is the base
classifier F in SEaaS, and a client can treat the downstream
classifier g as the base classifier F in REaaS. We use
H(x) to denote the base classifier’s last-layer output vector
for x, where Hl(x) represents the lth entry of H(x) and
l = 1, 2, · · · , c. F (x) denotes the predicted label for x, i.e.,
F (x) = argmaxl=1,2,··· ,c Hl(x). Suppose the base classifier
predicts label y for x when there is no adversarial perturbation,
i.e., F (x) = y. A base classifier based certification method
derives a certified radius R such that F (x + δ) = y for all
∥δ∥2 < R, where δ is adversarial perturbation. Next, we discuss
how to derive the certified radius R for CROWN [9], a state-
of-the-art base classifier based certification method.

The key idea of CROWN is to bound each entry of the
output vector, i.e., Hl(x). In particular, when the output of
the activation function (e.g., ReLU) can be bounded by two
linear functions, CROWN shows that each entry Hl(x) can be
bounded by two linear functions HL

l (x) and HU
l (x). Formally,

we have HL
l (x) ≤ Hl(x) ≤ HU

l (x), where l ∈ {1, 2, · · · , c}.
Suppose an adversarial perturbation δ that satisfies ∥δ∥2 < r
is added to x. Then, we have the following:

min
∥δ∥2<r

HL
l (x+ δ) ≤ Hl(x+ δ) ≤ max

∥δ∥2<r
HU

l (x+ δ), (21)

where l = 1, 2, · · · , c. The base classifier F still predicts label
y for x + δ when the lower bound of the yth entry (i.e.,
min∥δ∥2<r H

L
y (x+ δ)) is larger than the upper bounds of all

other entries (i.e., maxl ̸=y max∥δ∥2<r H
U
l (x+ δ)). Therefore,

CROWN derives the certified radius R as follows:

R = max
r

r s.t. min
∥δ∥2<r

HL
y (x+ δ) > max

l ̸=y
max

∥δ∥2<r
HU

l (x+ δ).

Note that CROWN shows that min∥δ∥2<r H
L
l (x + δ) and

max∥δ∥2<r H
U
l (x + δ) have closed-form solutions for l =

1, 2, · · · , c.

APPENDIX C
TECHNICAL DETAILS OF SC BASED CERTIFICATION [13]

Given a base classifier F (e.g., g ◦ f in SEaaS and g in
REaaS), randomized smoothing builds a smoothed classifier
h via adding random Gaussian noise to the testing input of
the base classifier. The smoothed classifier h provably predicts
the same label for the testing input when the ℓ2-norm of the
perturbation add to the testing input is less than a threshold
(i.e., certified radius). Next, we respectively discuss how to
build a smoothed classifier, how to derive the certified radius
for a testing input, as well as how to train the base classifier
to improve the certified radius.

Building a smoothed classifier: For simplicity, we use
N (0, σ2I) to denote a zero-mean isotropic Gaussian noise,
where σ is the standard deviation and I is an identity matrix.
Given an input x, a base classifier F , and a zero-mean
Gaussian noise N (0, σ2I), we define the label probability
pl, l ∈ {1, 2, · · · , c}, as follows:

pl = Pr(F (x+N (0, σ2I)) = l). (22)

Roughly speaking, pl is the probability that the base classifier
F predicts label l when taking x +N (0, σ2I) as input. The
smoothed classifier h predicts the label with the largest label
probability for the input x:

h(x) = argmax
l∈{1,2,··· ,c}

pl. (23)

In practice, it is usually computationally intractable to compute
the exact label probabilities due to the complexity of the base
classifier. In response, we sample N noise n1,n2, · · · ,nN

from N (0, σ2I). For each l ∈ {1, 2, · · · , c}, we denote Nl =∑︁N
j=1 I(F (x + nj) = l) (called label frequency), where I is

an indicator function. The label (denoted as y) with the largest
label frequency is predicted as the label of x.

Computing certified radius for an input: Cohen et al. [13]
proved that the smoothed classifier predicts the label y for the
input x when the ℓ2-norm of the adversarial perturbation is less

15

than σ
2 · (Φ

−1(py)− Φ−1(pu)), where py is a lower bound of
py and pu is an upper bound of maxl ̸=y pl. In other words, we
have h(x+δ) = y when ∥δ∥2 < R = σ

2 ·(Φ
−1(py)−Φ−1(pu)),

where R is the certified radius.

To compute the certified radius, we need to estimate a lower
bound of py and an upper bound of maxl ̸=y pl. Cohen et al.
proposed to estimate such lower or upper bounds using the
standard one-sided Clopper-Pearson method [46] based on label
frequencies. In particular, Ny follows a binomial distribution
with parameters N and py. Based on the Clopper-Pearson
method, we have the following lower bound for py:

py = Beta(α;Ny, N −Ny + 1), (24)

where 1−α is the confidence level and Beta(α; ς, ϑ) is the αth
quantile of the Beta distribution with shape parameters ς and ϑ.
Intuitively, with probability at least 1−α over the randomness
of the sampling of Gaussian noise, we have py ≥ py. Given
the lower bound py and the fact that the summation of label
probabilities is 1 (i.e.,

∑︁c
l=1 pl = 1), we can derive 1− py as

an upper bound for maxl ̸=y pl, i.e., maxl ̸=y pl ≤ 1−py . Given
the lower bound of py and the upper bound of maxl ̸=y pl, we
have the certified radius R = σ · Φ−1(py). In other words,
with probability at least 1 − α over the randomness of the
sampling of Gaussian noise, we have g(x + δ) = y when
∥δ∥2 < Φ−1(py).

Training a base classifier with Gaussian noise: The certified
radius for an input depends on whether the base classifier F
can correctly classify the input with Gaussian noise. However,
when the base classifier F is trained using the normal training
examples, it is very likely that the base classifier cannot
correctly predict the label for an input with Gaussian noise due
to the difference between training and testing data distributions.
Therefore, Cohen et al. [13] proposed to add Gaussian noise
to the training inputs when training the base classifier. In
particular, for each mini-batch of training examples, we add
random Gaussian noise to each training input and then use them
to update the base classifier. Such Gaussian noise based training
method can significantly improve the certified radius [13].

APPENDIX D
ON THE TIGHTNESS OF EQUATION 5

We show that the upper and lower bounds in (5) are tight
when the encoder consists of one linear layer. Suppose f(x) =
Wx + b, where W and b are the weight matrix and bias
vector of the linear encoder f . For simplicity, we respectively
use W[i, :] and b[i] to denote the ith row of W and ith
element of b. Based on Theorem 3.2 in CROWN [9], we have
fU
i (x) = W[i, :]x + b[i] and fL

i (x) = W[i, :]x + b[i] when
f(x) = Wx+b (we omit the details for simplicity). Next, we
prove the right-hand side of Equation 5 is tight. To reach the
goal, our idea is to show there exists δ′ satisfying ∥δ′∥2 = ρk
such that fi(x+ δ′) > max∥δ∥2<ρk

fU
i (x+ δ). We first derive

an upper bound of max∥δ∥2<ρk
fU
i (x+ δ).

max
∥δ∥2<ρk

fU
i (x+ δ) (25)

= max
∥δ∥2<ρk

(W[i, :]x+W[i, :]δ + b[i]) (26)

=W[i, :]x+ b[i] + max
∥δ∥2<ρk

W[i, :]δ (27)

≤W[i, :]x+ b[i] + max
∥δ∥2<ρk

∥W[i, :]∥2 ∥δ∥2 (28)

<W[i, :]x+ b[i] + ∥W[i, :]∥2 ρk (29)

We have Equation 28 from 27 based on Cauchy-Schwartz
inequality. Our derived upper bound is the same as the
one obtained from the closed-form solution of fU

i based on
Corollary 3.3 in [9]. We let δ′ = ρkW[i,:]T

∥W[i,:]∥2
, where T represents

the transpose operation. We can verify that ∥δ′∥ = ρk. Then,
we have:

fi(x+ δ′) (30)

=W[i, :]x+ b[i] +W[i, :]
ρkW[i, :]T

∥W[i, :]∥2
(31)

=W[i, :]x+ b[i] + ∥W[i, :]∥2 ρk. (32)

Combining the above equations with Equation 25 and 29,
we know that there exist δ′ satisfying ∥δ′∥2 = ρk such that
fi(x + δ′) > max∥δ∥2<ρk

fU
i (x + δ). Thus, we prove the

tightness of the right-hand side of Equation 5. Similarly, we
can prove the tightness of the left-hand side of Equation 5.

APPENDIX E
APPLYING REAAS TO NLP DOMAIN

Our REaaS provides two APIs: Feature-API and F2IPerturb-
API. The Feature-API can be directly applied to the NLP
domain. In particular, given a text as input, the Feature-API
returns the feature vector produced by a text encoder for it.
Next, we discuss how to adapt our F2IPerturb-API to the NLP
domain.

Adapting our F2IPerturb-API to NLP domain: Given a
text input and a feature-space certified radius, we can adapt
our F2IPerturb-API to provide the input-space certified radius
for the input text. In particular, we consider an attacker can
replace a small number of words in a text with their synonyms
such that the downstream classifier of a client makes incorrect
prediction for it. For simplicity, given a text input x, we use
x[i] to denote the ith word in x. Moreover, we use δ to denote
an adversarial text perturbation whose length is the same as x,
where δ[i] is an empty string if we don’t perturb x[i]; we use
x⊕ δ to denote the perturbed text obtained by replacing x[i]
as δ[i] if δ[i] is not an empty string; we use ∥δ∥0 to denote
the number of words in δ that are not empty string.

The input-space certified radius returned by our adapted
F2IPerturb-API is the maximum number of words that can be
replaced by their synonyms such that the predicted label by
the downstream classifier is unchanged. Formally, given a text
input x and a feature-space certified radius RF , our adapted
F2IPerturb-API aims to solve the following optimization
problem:

R = max
r

r (33)

s.t. max
∥δ∥0<r

∥f(x⊕ δ)− f(x)∥2 < RF . (34)

Similar to the image domain, we can use binary search to solve
the above optimization problem. The key difference with the
image domain is how to estimate the lower or upper bounds of
fi(x⊕ δ). We note that Xu et al. [47] extend CROWN [9] for
general perturbations, which can be applied to derive lower and

16

Algorithm 2: F2IPerturb-API (NLP)
Input from client: text x and feature-space certified
radius RF

Output for client: text-space certified radius R
ρL, ρU ← 0, 10
while ρU − ρL > 1 do

ρk = ⌈ρ
L+ρU

2 ⌉
for i = 1, 2, · · · , d do
fL
i , f

U
i ← EXTENDEDCROWN(i,x, f)

Li = min∥δ∥0≤ρk
fL
i (x+ δ)− fi(x)

Ui = max∥δ∥0≤ρk
fU
i (x+ δ)− fi(x)

end for
R′

F =
√︂∑︁d

i=1 max(L2
i , U

2
i)

if R′
F < RF then

ρL = ρk
else
ρU = ρk

end if
end while
return ρL

upper bounds (denoted as fL
i (x⊕δ) and fU

i (x⊕δ)) of fi(x⊕δ).
Moreover, they also provide a computation-efficient method
to compute min∥δ∥0<r f

L
i (x ⊕ δ) and max∥δ∥0<r f

U
i (x ⊕ δ)

(please see Theorem 2 in [47] for details). Given those bounds,
our adapted F2IPerturb-API can be used to obtain the certified
radius. Algorithm 2 shows our complete algorithm. The function
EXTENDEDCROWN uses the extended CROWN [47] to obtain
lower or upper bounds.

Experimental setup: We use SST-2 dataset [48] as the pre-
training dataset and train a text encoder using supervised
learning. Following [47], we use LSTM as the encoder
architecture. Moreover, we use public implementation from [47]
in our experiments. We consider the same word substitutions as
previous work [33], [49] when deriving the input-space certified
radius for our F2IPerturb-API. We use IMDB dataset [45] as
the downstream dataset, which is a benchmark dataset used
for sentiment analysis in the NLP domain. We train a logistic
regression classifier as the downstream classifier. Moreover,
we use CROWN [9] as BC based certification to derive the
certified radius of the downstream classifier.

APPENDIX F
EXTENDING STOLENENCODER [34] TO STEAL ENCODERS

WITH OUR NEW F2IPERTURB-API

We first introduce StolenEncoder [34] and then discuss how
to extend it to steal encoders with our F2IPerturb-API.

StolenEncoder: Suppose an attacker has an unlabeled surrogate
dataset D. Given black-box access to an encoder (i.e., an
attacker can query the Feature-API in our terminology), the
attacker can use StolenEncoder to steal a target encoder f .
Suppose fs is the stolen encoder. StolenEncoder aims to solve
the following optimization problem:

min
fs
L(D) = 1

|D|
∑︂
x∈D

[d(f(x), fs(x)) + κd(f(x), fs(A(x)))],

(35)

where κ is a hyperparameter, d is a distance metric (e.g., ℓ2-
distance), and A is the data augmentation component (e.g.,
RandomHorizontalFlip, ColorJitter, and RandomGrayScale).
The total number of queries to the Feature-API is |D| as a
single query is made for each input in D. StolenEncoder uses
standard stochastic gradient descent (SGD) to solve the above
optimization problem.
Extending StolenEncoder with our new F2IPerturb-
API: An attacker can also query F2IPerturb-API in our REaaS.
We extend StolenEncoder to leverage our F2IPerturb-API to
steal the target encoder f . In particular, given an input image x
and a feature-space certified radius RF for x, our F2IPerturb-
API returns an input-space certified radius R. Therefore, we
know the following based on the output of F2IPerturb-API:

∥f(x)− f(x+ δ)∥2 < RF for ∀δ, ∥δ∥2 < R. (36)

We can train the stolen encoder fs such that it also satisfies
Equation 36. Suppose we have a surrogate dataset D. Given
an input x ∈ D, we first randomly sample a radius from
[Rmin

F , Rmax
F] and view it as the feature-space certified radius

Rx
F . Then, we query F2IPerturb-API to obtain the input-

space certified radius Rx. To make the stolen encoder fs
satisfy Equation 36 for x, we randomly sample an input-space
perturbation δx that satisfies ∥δx∥2 = Rx. Then, we define the
following loss:

L′(D) = 1

|D|
∑︂
x∈D

d(fs(x), fs(x+ δx))· (37)

I(d(fs(x), fs(x+ δx)) > Rx
F),

where I is an indicator function whose output is 1 if the
condition is satisfied and 0 otherwise. Intuitively, the loss term
in L′(D) for an input x is 0 if d(fs(x), fs(x+δx)) ≤ Rx

F and is
non-zero otherwise. Combining with the loss of StolenEncoder,
our final optimization problem is as follows:

min
fs
L1(D) = L(D) + γL′(D), (38)

where γ is a hyperparameter and L is defined in Equation 35.
The total number of queries is 2|D| as we respectively make
one query to the Feature-API and F2IPerturb-API for each input
in D. Similarly, we use stochastic gradient descent to solve the
optimization problem. Note that our extended StolenEncoder
reduces to StolenEncoder when γ = 0.

Experimental setup: We use Tiny-ImageNet as the pre-training
dataset and use CIFAR10 as the downstream task. Moreover,
we randomly sample 10,000 images from STL10 dataset as
the surrogate dataset D. We adopt the same κ, d, and A as
StolenEncoder. We set Rmin

F and Rmax
F to be 0.01 and 0.5,

respectively. As we use the same surrogate dataset, we give
advantages to the extended StolenEncoder since its total number
of queries is twice of StolenEncoder. Following [34], we use
Stolen Accuracy as evaluation metrics. In particular, given a
stolen encoder and a downstream task, Stolen Accuracy is the
classification accuracy of the downstream classifier built upon
the stolen encoder for the downstream task.

17

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ce
rti

fie
d

ac
cu

ra
cy

SEaaS
REaaS

(a) CIFAR10

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ce
rti

fie
d

ac
cu

ra
cy

SEaaS
REaaS

(b) SVHN

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ce
rti

fie
d

ac
cu

ra
cy

SEaaS
REaaS

(c) STL10

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ce
rti

fie
d

ac
cu

ra
cy

SEaaS
REaaS

(d) CIFAR10

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ce
rti

fie
d

ac
cu

ra
cy

SEaaS
REaaS

(e) SVHN

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ce
rti

fie
d

ac
cu

ra
cy

SEaaS
REaaS

(f) Tiny-ImageNet

Fig. 7: Comparing certified accuracy vs. perturbation size of SC in SEaaS and REaaS for different downstream datasets,
where the pre-training dataset is Tiny-ImageNet (first row) and STL10 (second row).

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ce
rti

fie
d

ac
cu

ra
cy

N = 100
N = 1, 000
N = 10, 000
N = 100, 000

(a) N

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ce
rti

fie
d

ac
cu

ra
cy

= 0.125
= 0.25
= 0.5
= 0.75

(b) σ

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ce
rti

fie
d

ac
cu

ra
cy

= 0.0001
= 0.001
= 0.01
= 0.1

(c) α

Fig. 8: Impact of N , σ, and α on certified accuracy of SC in REaaS. The pre-training dataset is Tiny-ImageNet and the
downstream dataset is CIFAR10.

18

	Introduction
	Related Work
	Adversarial Examples
	Certifying Robustness of a Classifier
	Pre-training an Encoder
	Pre-training Non-robust Encoders
	Pre-training Empirically Robust Encoders

	Problem Formulation
	Our REaaS
	Overview
	Feature-API and F2IPerturb-API
	Feature-API
	F2IPerturb-API

	Pre-training Robust Encoder
	Certifying Robustness for a Client
	Theoretical Communication and Computation Cost Analysis

	Evaluation
	Experimental Setup
	Experimental Results

	Discussion
	Conclusion and Future Work
	References
	Appendix A: ACR is the Area under the Certified Accuracy vs. Perturbation Size Curve
	Appendix B: Technical Details of CROWN zhang2018crown
	Appendix C: Technical Details of SC based Certification cohen2019certified
	Appendix D: On the Tightness of Equation 5
	Appendix E: Applying REaaS to NLP domain
	Appendix F: Extending StolenEncoder liu2022stolenencoder to Steal Encoders with our new F2IPerturb-API

