
FedRecover: Recovering from Poisoning Attacks in
Federated Learning using Historical Information

Xiaoyu Cao∗ Jinyuan Jia∗ Zaixi Zhang+ Neil Zhenqiang Gong∗
∗Duke University +University of Science and Technology of China
{xiaoyu.cao, jinyuan.jia, neil.gong}@duke.edu zaixi@mail.ustc.edu.cn

Abstract—Federated learning is vulnerable to poisoning at-
tacks in which malicious clients poison the global model via
sending malicious model updates to the server. Existing defenses
focus on preventing a small number of malicious clients from
poisoning the global model via robust federated learning methods
and detecting malicious clients when there are a large number
of them. However, it is still an open challenge how to recover
the global model from poisoning attacks after the malicious
clients are detected. A naive solution is to remove the detected
malicious clients and train a new global model from scratch using
the remaining clients. However, such train-from-scratch recovery
method incurs a large computation and communication cost,
which may be intolerable for resource-constrained clients such
as smartphones and IoT devices.

In this work, we propose FedRecover, a method that can
recover an accurate global model from poisoning attacks with a
small computation and communication cost for the clients. Our
key idea is that the server estimates the clients’ model updates
instead of asking the clients to compute and communicate them
during the recovery process. In particular, the server stores the
historical information, including the global models and clients’
model updates in each round, when training the poisoned global
model before the malicious clients are detected. During the
recovery process, the server estimates a client’s model update
in each round using its stored historical information. Moreover,
we further optimize FedRecover to recover a more accurate
global model using warm-up, periodic correction, abnormality
fixing, and final tuning strategies, in which the server asks
the clients to compute and communicate their exact model
updates. Theoretically, we show that the global model recovered
by FedRecover is close to or the same as that recovered by
train-from-scratch under some assumptions. Empirically, our
evaluation on four datasets, three federated learning methods, as
well as untargeted and targeted poisoning attacks (e.g., backdoor
attacks) shows that FedRecover is both accurate and efficient.

I. INTRODUCTION

Federated learning (FL) [21], [25] is an emerging machine
learning paradigm that enables many clients (e.g., smart-
phones, IoT devices, and edge devices) to collaboratively
learn a shared machine learning model (called global model).
Specifically, training data are decentralized over the clients
in FL, and a server maintains the global model. Roughly
speaking, FL performs the following three steps in each round:
the server broadcasts the current global model to (a subset of)
the clients; each client fine-tunes the global model using its
local training data and reports its model update to the server;
and the server aggregates the clients’ model updates following
some aggregation rule and uses the aggregated model update
to update the global model. Different FL methods essentially
use different aggregation rules. FL has been deployed by tech

giants. For instance, Google uses FL on a virtual keyboard
app called Gboard [2] for next-word prediction; and WeBank
leverages FL for credit risk prediction [3].

However, due to its distributed setting, FL is vulnerable to
poisoning attacks [5], [19], [7], [12]. Specifically, an attacker
may have access to some malicious clients, which could be
fake clients injected into the system by the attacker [12] or
genuine clients compromised by the attacker [5], [19], [7].
The malicious clients poison the global model via sending
carefully crafted malicious model updates to the server. A
malicious client can craft its malicious model update by
poisoning its local training data and/or directly construct-
ing it without following the prescribed FL protocol. In an
untargeted poisoning attack [19], [12], the poisoned global
model indiscriminately misclassifies many test inputs, i.e., the
poisoned global model has a large test error rate. In a targeted
poisoning attack [5], [7], the poisoned global model predicts
an attacker-chosen target label for attacker-chosen target test
inputs but its predictions for other test inputs are unaffected.
For instance, in backdoor attacks (one category of targeted
poisoning attacks) [5], the target test inputs could be any input
embedded with an attacker-chosen trigger.

Existing defenses against poisoning attacks to FL prevent a
small number of malicious clients from poisoning the global
model and/or detect malicious clients. Specifically, some stud-
ies proposed Byzantine-robust [11], [26], [37], [8], [17], [27]
or provably robust [13] FL methods that can prevent a small
number of malicious clients from poisoning the global model,
i.e., they can guarantee the global model learnt with malicious
clients is close to the global model learnt without them [11],
[26], [37] or guarantee a lower bound of testing accuracy under
a bounded number of malicious clients [13]. However, these
FL methods are still vulnerable to poisoning attacks with a
large number of malicious clients [19], [30]. Therefore, some
studies [24], [31], [40] further proposed to detect malicious
clients during or after the training process, which can be used
together with the prevention methods in a defense-in-depth
strategy. For instance, the server may distinguish between
the malicious clients and benign ones via some statistical
differences in their model updates sent to the server. Since
such detection methods require enough model updates to make
confident decisions, the malicious clients often have already
poisoned the global model before being detected. Therefore,
the server needs to recover an accurate global model from the
poisoned one after detecting the malicious clients.

However, efficient model recovery in FL is largely un-
explored. Since the server does not know in which round
the attack happens, the server may not be able to simply
roll back to a clean global model in a prior round. A naive
recovery method (we call it train-from-scratch) is to remove
the detected malicious clients and train a new global model
from scratch using the remaining clients. Train-from-scratch
could recover an accurate global model. However, it introduces
substantial computation and communication cost to the clients
since it requires them to participate in the entire training
process once again. Such computation and communication cost
may be intolerable for resource-constrained clients such as
smartphones and IoT devices.

Our work: In this work, we propose FedRecover, a method
that can recover an accurate global model from a poisoned one
while introducing small computation and communication cost
for the clients. Like train-from-scratch, FedRecover removes
the detected malicious clients, re-initializes a global model,
and trains it iteratively in multiple rounds. However, unlike
train-from-scratch, FedRecover reduces the cost for the clients
by changing the way of obtaining their model updates. Our
intuition is that the historical information, including the global
models and clients’ model updates, which the server collected
when training the poisoned global model before the malicious
clients are detected, still carry valuable information for model
recovery. Based on the intuition, our key idea is that, during the
recovery process, the server estimates the remaining clients’
model updates using such historical information instead of ask-
ing the clients to compute and communicate them. FedRecover
is independent of the detection methods used to detect the
malicious clients and the aggregation rules of FL. In other
words, FedRecover can be used together with any detection
method and FL aggregation rule in a defense-in-depth strategy.

The key of FedRecover is that the server estimates the
clients’ model updates itself during the recovery process.
Specifically, the server stores the historical information when
training the poisoned global model before the malicious clients
are detected. During the recovery process, the server uses
the well-known Cauchy mean value theorem to estimate each
client’s model update in each round. However, the Cauchy
mean value theorem requires an integrated Hessian matrix for
each client, whose exact value is challenging to compute. To
address the challenge, we further leverage an L-BFGS based
algorithm to efficiently approximate the integrated Hessian
matrix. FedRecover introduces some storage and computation
cost to the server due to storing the historical information and
estimating the clients’ model updates. However, such cost is
acceptable since the server is powerful.

Since FedRecover estimates the clients’ model updates, the
estimation errors may accumulate over multiple rounds during
the recovery process, which eventually may result in a less ac-
curate recovered global model. We propose multiple strategies
to address the challenge. Specifically, the L-BFGS algorithm
requires the recovered global models in the previous several
rounds to estimate a client’s model update in the current round.

The accurately recovered global models in the first several
rounds of the recovery process will help reduce the estimation
errors in the future rounds. Therefore, we propose the warm-
up strategy, in which the server asks the clients to compute and
communicate their exact model updates in the first Tw rounds
of the recovery process. Moreover, we propose the periodic
correction strategy, in which the server asks the clients to
compute and communicate their exact model updates in every
Tc rounds. When an estimated model update for a client is
large, it has large influence on the recovered global model. To
reduce the impact of potentially incorrectly estimated large
model updates, we propose the abnormality fixing strategy,
in which the server asks a client to compute its exact model
update when at least one coordinate of the estimated model
update is larger than a threshold τ . Furthermore, we propose
final tuning strategy to reduce the estimation error before the
training terminates, in which the server asks the clients to
compute and communicate their exact model updates in the
last Tf rounds. The parameters Tw, Tc, τ , and Tf control the
trade-off between accuracy of the recovered global model and
computation/communication cost for the clients. In particular,
a larger Tw, a smaller Tc, a smaller τ , or a larger Tf may
recover a more accurate global model but also introduces a
larger cost to the clients.

Theoretically, we show that the difference between the
global model recovered by FedRecover and the global model
recovered by train-from-scratch can be bounded under some
assumptions, e.g., the loss function used to learn the global
model is smooth and strongly convex. Empirically, we evaluate
FedRecover extensively using four datasets, three FL methods
(e.g., FedAvg [25], Median [37], and Trimmed-mean [37]),
as well as Trim attack (an untargeted poisoning attack) [19]
and backdoor attack (a targeted poisoning attack) [5]. Our
empirical results show that FedRecover can recover global
models that are as accurate as those recovered by train-from-
scratch while saving lots of computation/communication cost
for the clients. For instance, the backdoor attack with 40
malicious clients can achieve 1.00 attack success rate when the
dataset is MNIST and the FL method is Trimmed-mean. Both
FedRecover and train-from-scratch can recover global models
with 0.07 test error rate and 0.01 attack success rate, but Fe-
dRecover saves the clients’ computation/communication cost
by 88% on average compared to train-from-scratch. Moreover,
FedRecover can efficiently recover as accurate global models
as train-from-scratch even if the detection method incorrectly
detects some malicious clients as benign and/or some benign
clients as malicious.

In summary, our key contributions are as follows:
• We perform the first systematic study on model recovery

from poisoning attacks in FL.
• We propose FedRecover to recover a global model via

estimating clients’ model updates through historical in-
formation and multiple optimization strategies.

• We evaluate FedRecover both theoretically and empiri-
cally. Our results show that FedRecover can recover a
global model both accurately and efficiently.

II. BACKGROUND AND RELATED WORK

A. Background on FL

Suppose the FL system has n clients, each of which
has a local training dataset Di, i = 1, 2, · · · , n. We use
D =

⋃︁n
i=1 Di to denote the joint training dataset, which

is the union of the clients’ local training datasets. The n
clients aim to collaboratively train a shared machine learning
model (called global model) based on the joint training dataset.
To achieve the goal, the n clients jointly minimize a loss
function on their training datasets, i.e., minw L(D;w) =
minw

∑︁n
i=1 L(Di;w), where w represents the global model

parameters and L is the empirical loss function (e.g., cross-
entropy loss). For simplicity, we let Li(w) = L(Di;w) in
the rest of this work. A server provided by a service provider
(e.g., Google, Facebook, Apple) maintains the global model.
The global model is iteratively updated in multiple rounds,
and in the tth round, FL takes the following three steps:

• Step I: The server broadcasts the current global model
wt to the clients. The server may also broadcast the
global model to a subset of the clients. Our method is
also applicable in this scenario. However, for simplicity,
we assume all clients are involved in each round.

• Step II: The ith client computes a model update gi
t =

∂Li(wt)
∂wt

based on the received global model wt and the
client’s local training data Di using gradient descent. The
client may also use stochastic gradient descent with a
mini-batch of its local training dataset if it is large. For
simplicity, we assume gradient descent in the description
of our method, but we adopt stochastic gradient descent
in our experiments. Then, the client reports the model
update gi

t to the server. Note that the clients calculate
their model updates in parallel.

• Step III: The server aggregates the clients’ model updates
according to an aggregation rule A. Then, the server
uses the aggregated model update to update the global
model with a learning rate η, i.e., wt+1 = wt − η ·
A(g1

t , g
2
t , · · · , gn

t).
In train-from-scratch, the server initializes a global model,

and then the server and the remaining clients follow the above
three steps in each round to iteratively update it. Different FL
methods essentially use different aggregation rules [8], [11],
[17], [25], [26], [37] in Step III. Next, we review several
popular aggregation rules.

FedAvg: FedAvg [25], developed by Google Inc., computes
the weighted average of the clients’ model updates as the
aggregated model update. Formally, given the model updates
g1t , g

2
t , · · · , gnt in the tth round, the aggregated model update

is as follows:

A(g1
t , g

2
t , · · · , gn

t) =

n∑︂
i=1

|Di|
|D|
· gi

t, (1)

where | · | represents the size of a dataset.

Median: Median [37] is a coordinate-wise aggregation rule
that aggregates each coordinate of the model update separately.

In particular, for each coordinate, Median calculates the me-
dian value of the corresponding coordinates in the n model
updates and treats it as the corresponding coordinate of the
aggregated model update.

Trimmed-mean: Trimmed-mean [37] is also a coordinate-
wise aggregation rule. For each coordinate, Trimmed-mean
sorts the values of the corresponding coordinates in the n
model updates. Then, it removes the largest and the smallest
k values. Finally, it computes the average of the remaining
values as the corresponding coordinate of the aggregated
model update. k < n

2 is a hyper-parameter for Trimmed-mean.

B. Poisoning Attacks to FL

Federated learning is vulnerable to poisoning attacks [5],
[6], [7], [19], [30], [12], in which malicious clients poison
the global model via sending malicious model updates to the
server in Step II of FL. The malicious clients can construct
their malicious model updates via poisoning their local training
data and/or directly manipulating the model updates without
following the prescribed FL protocol in Step II [5], [6], [7],
[19], [30], [12]. Based on the attacker’s goal, poisoning attacks
can be categorized into untargeted poisoning attacks [19], [30],
[12] and targeted poisoning attacks [5], [6], [7]. In untargeted
poisoning attacks, the poisoned global model has a large test
error rate for a large proportion of test inputs indiscriminately.
In targeted poisoning attacks, the poisoned global model
predicts an attacker-chosen target label for attacker-chosen
target test inputs; and to stay stealthy, the poisoned global
model’s test error rate for other test inputs is unaffected.
For instance, backdoor attacks [5], [6] are popular targeted
poisoning attacks, in which the attacker-chosen test inputs
are any inputs embedded with a trigger. Next, we review
Trim attack (a popular untargeted poisoning attack) [19] and
backdoor attack (a popular targeted poisoning attack) [5].

Trim attack: Fang et al. [19] formulated untargeted poisoning
attacks to FL as a general framework. Roughly speaking, the
framework aims to craft malicious model updates that max-
imize the difference between the aggregated model updates
before and after attack. The framework can be applied to dif-
ferent aggregation rules. The Trim attack is constructed based
on the Trimmed-mean aggregation rule under the framework,
and is also effective for other aggregation rules such as FedAvg
and Median.

Backdoor attack: In the backdoor attack [5], the attacker
poisons the malicious clients’ local training data via augment-
ing them with trigger-embedded duplicates. Specifically, for
each input in a malicious client’s local training dataset, the
attacker makes a copy of it and embeds a trigger into the
copy. Then, the attacker injects the trigger-embedded copy
into the malicious client’s local training dataset and relabels
it as the target label. In every round of FL, each malicious
client computes a model update based on its poisoned local
training data. To amplify the impact of the model updates, the
malicious clients further scale them up by a large factor before
reporting them to the server. We notice that some methods

[15], [33] have been proposed to detect and remove backdoor
in neural networks. However, they are insufficient for FL. For
instance, [33] assumes that a clean training dataset is available,
which usually does not hold for an FL server.

C. Detecting Malicious Clients

Malicious-client detection [24], [31], [40] aims to distin-
guish malicious clients from benign ones, which is essentially
a binary classification problem. Roughly speaking, the key
idea is to leverage some statistical difference between the
features (e.g., model updates [24]) of malicious clients and
those of benign clients. Different detection methods use dif-
ferent features and binary classifiers to perform the detection.
Specifically, for each client, these detection methods first
extract features from its model updates in one or multiple
rounds and then use a classifier to predict whether it is
malicious or not. For instance, Zhang et al. [40] proposed to
detect malicious clients via checking a client’s model-update
consistency. In particular, the server predicts a client’s model
update based on its historical model updates in each round. If
the received model updates are inconsistent with the predicted
ones in multiple rounds, then the server flags the client as
malicious. Zhang et al. also leveraged the Cauchy mean value
theorem and the L-BFGS algorithm to predict a client’s model
update, but they used the same approximate Hessian matrix for
all clients, which we experimentally found to be ineffective for
model recovery, e.g., accuracy of the recovered model may be
nearly random guessing.

Detecting malicious clients is also related to Sybil detection
in distributed systems [18]. Therefore, conventional Sybil de-
tection methods could also be used to detect malicious clients,
where malicious clients are treated as Sybil. In particular,
these Sybil detection methods (e.g., [34], [38], [39], [20], [32])
leverage the clients’ IPs, network behaviors, and social graphs
if available.

D. Machine Unlearning

Machine unlearning aims to make a machine learning model
“forget” some training examples. For instance, a user may
desire a model to forget its data for privacy concerns. Multiple
methods [9], [14], [35] have been proposed for efficient
machine unlearning. For instance, Cao et al. [14] proposed
to transform the learning algorithm used to train a machine
learning model into a summation form. Therefore, only a
small number of summations need to be updated to unlearn a
training example. Bourtoule et al. [9] broke the model training
into an aggregation of multiple constituent models and each
training example only contributes to one constituent model.
Therefore, only one constituent model needs to be retrained
when unlearning a training example. Wu et al. [35] proposed
DeltaGrad that estimates the gradient of the loss function on
the remaining training examples using the gradient on the
training examples to be unlearnt.

Model recovery from poisoning attacks in FL is related
to machine unlearning. In particular, model recovery can
be viewed as unlearning the detected malicious clients, i.e.,

making the global model forget the model updates from the
detected malicious clients. However, existing machine unlearn-
ing methods are insufficient for FL because 1) they require
changing the FL algorithm to train multiple constituent models
and are inefficient when multiple constituent models involve
detected malicious clients and thus require retraining [9],
and/or 2) they require access to the clients’ private local
training data [14], [35].

III. PROBLEM DEFINITION

A. Threat Model

We follow the threat model considered in previous studies
on poisoning attacks to FL [5], [7], [19], [12]. Specifically,
we discuss in detail the attacker’s goals, capabilities, and
background knowledge.
Attacker’s goals: In an untargeted poisoning attack, the
attacker’s goal is to increase the test error rate of the global
model indiscriminately for a large number of test inputs. In a
targeted poisoning attack, the attacker’s goal is to poison the
global model such that it predicts an attacker-chosen target
label for attacker-chosen target test inputs but the predictions
for other test inputs are unaffected. For instance, in a category
of targeted poisoning attacks also known as backdoor attacks,
the target test inputs include any input embedded with an
attacker-chosen trigger, e.g., a feature pattern.
Attacker’s capabilities: We assume the attacker controls
some malicious clients but does not compromise the server.
The malicious clients could be fake clients injected into the
FL system by the attacker or genuine clients in the FL system
compromised by the attacker. The malicious clients can send
arbitrary model updates to the server.
Attacker’s background knowledge: There are two common
settings for the attacker’s background knowledge about the FL
system [19], i.e., partial-knowledge setting and full-knowledge
setting. The partial-knowledge setting assumes the attacker
knows the global model, the loss function, as well as local
training data and model updates on the malicious clients. The
full-knowledge setting further assumes the attacker knows the
local training data and model updates on all clients as well
as the server’s aggregation rule. The poisoning attacks are
often stronger in the full-knowledge setting than in the partial-
knowledge setting. In this work, we consider strong poisoning
attacks in the full-knowledge setting.

B. Design Goals

We aim to design an accurate and efficient model recovery
method for FL. We use train-from-scratch as a baseline to
measure the accuracy and efficiency of a recovery method. Our
method should recover a global model as accurate as the one
recovered by train-from-scratch, while incurring less client-
side computation and communication cost. Specifically, our
design goals are as follows:
Accurate: The global model recovered by our recovery
method should be accurate. In particular, for untargeted poi-
soning attacks, the test error rate of the recovered global model

should be close to that of the global model recovered by
train-from-scratch. For targeted poisoning attacks, we further
require that the attack success rate for the global model
recovered by our method should be as low as that for the
global model recovered by train-from-scratch.

Efficient: Our recovery method should incur small client-side
computation and communication cost. We focus on the client-
side efficiency because clients are usually resource-constrained
devices. Model recovery introduces a unit of communication
and computation cost to a client when it is asked to compute
its exact model update in a round. Therefore, we measure
the efficiency of a recovery method by the number of rounds
in which the clients are asked to compute their exact model
updates. We aim to design an efficient recovery method that
requires the clients to compute their exact model updates only
in a small fraction of rounds. Note that our method incurs an
acceptable computation and storage cost for the server.

Independent of detection methods: Different detection
methods have been proposed to detect malicious clients.
Moreover, new detection methods may be developed in the
future. Therefore, we aim to design a general recovery method
that is compatible with any detection method. Specifically, all
detection methods predict a list of malicious clients and our
recovery method should be able to recover a global model
using this list without any other information about the detec-
tion process. In practice, a detector may miss some malicious
clients (i.e., false negatives) or incorrectly detect some benign
clients as malicious (i.e., false positives). Our recovery method
should still be as accurate as and more efficient than train-
from-scratch when the detector’s false negative rate and false
positive rate are non-zero.

Independent of aggregation rules: Various aggregations
rules have been proposed in FL and the poisoned global
models might be trained using different aggregation rules.
Therefore, we aim to design a general recovery method that
is compatible with any aggregation rule. Our recovery method
should not rely on the FL’s aggregation rule. In particular,
during the recovery process, we use the same aggregation rule
as the one used for training the poisoned global model.

C. Server Requirements

We assume the server has storage capacity to save the
global models and clients’ model updates that the server
collected when training the poisoned global model before the
malicious clients are detected. We also assume the server
has computation power to estimate the clients’ model updates
during recovery. These requirements are reasonable since the
server (e.g., a data center) is often powerful. We will discuss
more details about the cost for the server in Section VI-C.

IV. FEDRECOVER

A. Overview

After the detected malicious clients are removed, Fe-
dRecover initializes a new global model and trains it iteratively
in multiple rounds. In each round, FedRecover simulates the

FL’s three steps we discussed in Section II-A on the server.
Instead of asking the remaining clients to compute and com-
municate the model updates, the server estimates the model
updates using the stored historical information, including the
original global models and the original model updates. The
estimation errors in the clients’ model updates may accumu-
late in multiple rounds, eventually leading to an inaccurate
recovered global model. Therefore, we further propose several
strategies, including warm-up, periodic correction, abnormal-
ity fixing, and final tuning to optimize FedRecover. In these
strategies, the server asks the clients to compute their exact
model updates instead of estimating them in the first several
rounds of the recovery process, periodically in every certain
number of rounds, when the estimated model updates are
abnormal, and in the last few rounds, respectively. Theoret-
ically, we can bound the difference between the global model
recovered by FedRecover and the global model recovered
by train-from-scratch under some assumptions; and we show
that such difference decreases exponentially as FedRecover
increases the computation/communication cost for the clients.

B. Estimating Clients’ Model Updates

Notations: We first define some notations (shown in Table I
in Appendix) that will be useful to describe our method. We
call the global models and the clients’ model updates the
server collected in the original training (i.e., before detecting
malicious clients) original global models and original model
updates. In particular, we use w̄t to denote the original global
model and ḡi

t to denote the original model update reported
by the ith client in the tth round, where i = 1, 2, · · · , n
and t = 1, 2, · · · , T . Moreover, we use ŵt to denote the
recovered global model in the tth round of FedRecover. We
use gi

t to denote the ith client’s exact model update in the
tth round of the recovery process if the client computes it,
i.e., gi

t =
∂Li(ŵt)

∂ŵt
. In train-from-scratch, the server asks each

client to compute and communicate gi
t in Step II of the FL

framework. In FedRecover, the server stores w̄t, ḡi
t, and ŵt,

where i = 1, 2, · · · , n and t = 1, 2, · · · , T ; and the server uses
them to estimate gi

t instead of asking a client to compute it in
Step II of the FL framework. We denote the estimated version
of gi

t as ĝi
t. Next, we discuss how to estimate ĝi

t.

Calculating model updates using the Cauchy mean value
theorem: Based on the integral version of the Cauchy mean
value theorem (Theorem 4.2 on page 341 in [22]),1 we can
calculate the exact model update gi

t as follows:

gi
t = ḡi

t +Hi
t(ŵt − w̄t), (2)

where Hi
t =

∫︁ 1

0
H(w̄t + z(ŵt − w̄t))dz is an integrated

Hessian matrix for the ith client in the tth round. Intuitively,
the gradient g is a function of the model parameters w.
The difference between the function values gi

t − ḡi
t can be

characterized by the difference between the variables ŵt−w̄t

and the integrated gradient of the function g along the line

1We note that this theorem requires gi
t to be continuously differentiable.

between the variables, i.e., Hi
t. Note that the equation above

involves an integrated Hessian matrix, which is challenging
to compute exactly. To address the challenge, we leverage
an efficient L-BFGS algorithm to compute an approximate
Hessian matrix. Next, we discuss how to approximate an
integrated Hessian matrix.

Approximating an integrated Hessian matrix using an L-
BFGS algorithm: In optimization, L-BFGS algorithm [28] is
a popular tool to approximate a Hessian matrix or its inverse.
The L-BFGS algorithm needs the differences of the global
models and the model updates in the past rounds to make the
approximation in the current round. Specifically, we define the
global-model difference in the tth round as ∆wt = ŵt − w̄t,
and the model-update difference of the ith client in the tth
round as ∆gi

t = gi
t − ḡi

t. Note that a global-model difference
measures the difference between the recovered global model
and the original global model in a round, while a model-update
difference measures the difference between a client’s exact
model update and original model update in a round. The L-
BFGS algorithm maintains a buffer of the global-model dif-
ferences in the tth round ∆Wt = [∆wb1 ,∆wb2 , · · · ,∆wbs],
where s is the buffer size. Moreover, for each client i, the
L-BFGS algorithm maintains a buffer of the model-update
differences ∆Gi

t = [∆gi
b1
,∆gi

b2
, · · · ,∆gi

bs
]. The L-BFGS

algorithm takes ∆Wt and ∆Gi
t as an input and outputs an

approximate Hessian matrix H̃i
t for the ith client in the tth

round, i.e., H̃i
t = L-BFGS(∆Wt,∆Gi

t).
Note that the size of the Hessian matrix is the square of

the number of global model parameters, and thus the Hessian
matrix may be too large to store in memory when the global
model is deep neural network. Moreover, in practice, the
product of the Hessian matrix and a vector v is usually
desired, which is called Hessian-vector product. For instance,
in FedRecover, we aim to find Hi

tv, where v = ŵt − w̄t.
Therefore, modern implementation of the L-BFGS algorithm
[10] takes the vector v as an additional input and directly ap-
proximates the Hessian-vector product in an efficient way, i.e.,
H̃i

tv = L-BFGS(∆Wt,∆Gi
t,v). We use the algorithm in

[10], whose details can be found in Algorithm 2 in Appendix.
There are other variants and implementations [28], [29] of L-
BFGS. However, they approximate the inverse-Hessian-vector
product instead of the Hessian-vector product, and thus are
not applicable to FedRecover. After obtaining the approximate
Hessian-vector product H̃i

t(ŵt − w̄t), we can compute the
estimated model update as ĝi

t = ḡi
t + H̃i

t(ŵt − w̄t).
Note that in the standard L-BFGS algorithm, the buffer

of the global-model differences (or model-update differences)
in the tth round consist of the global-model differences
(or model-update differences) in the previous s rounds, i.e.,
bj = t−s+j−1. This standard L-BFGS algorithm faces a key
challenge: it requires the exact model update gi

t in each round
in order to calculate the buffer of the model-update differences,
but our goal is to avoid asking the clients to compute their
exact model updates in most rounds. Next, we propose several
optimization strategies to address the challenge.

C. Optimization Strategies

Warm-up: Our first optimization strategy is to warm-up the
L-BFGS algorithm in the first several rounds of the recovery
process. In particular, in the first Tw > s rounds, the server
asks the clients to compute their exact model updates gi

t, and
uses them to update the recovered global model. Based on
the last s warm-up rounds, the server computes the buffer
∆Wt of the global-model differences and the buffer ∆Gi

t of
the model-update differences for each client i. Then, in the
future rounds, the server can use the L-BFGS algorithm with
these buffers to compute the approximate Hessian matrices,
then uses the approximate Hessian matrices to compute the
estimated model updates, and finally uses the estimated model
updates to update the recovered global model. However, the
buffers constructed based on the warm-up rounds may be
outdated for the future rounds, which leads to inaccurate
approximate Hessian matrices, inaccurate estimated model
updates, and eventually inaccurate recovered global model. To
address the challenge, we further propose periodic correction
and abnormality fixing strategies, which we discuss next.
Periodic correction and abnormality fixing: In periodic
correction, the server asks each client to periodically compute
its exact model update in every Tc rounds after warm-up.
In abnormality fixing, the server asks a client to compute
its exact model update in a round if the estimated model
update is abnormally large, i.e., if at least one coordinate of
the estimated model update is larger than τ , which we call
the abnormality threshold. A large estimated model update
has a large influence on the recovered global model, and thus
a large incorrectly estimated model update would negatively
influence the recovered global model substantially. Therefore,
we consider the abnormality fixing strategy to limit the impact
of potentially incorrectly estimated model updates.

Our abnormality fixing strategy may also treat correctly
estimated large model updates as abnormal if the abnor-
mality threshold τ is too small, which increases computa-
tion/communication cost for the clients. Therefore, we select
τ based on the historical information. Specifically, for each
round t, we collect the original model updates ḡi

t of all clients
i who participant in the recovery. We select τt such that at
most α fraction of parameters in the clients’ original model
updates ḡi

t are greater than τt. Then we choose τ as the largest
value among τt, i.e., τ = maxt{τt}. Here, the probability of a
parameter in benign model updates being treated as abnormal
is no greater than α in any round, and we call α the tolerance
rate since we allow at most α fraction of such mistreatment.
Final tuning: We find that if we terminate the training with
a round of estimated model updates, the performance of the
recovered global model could be unstable due to the potential
estimation error. Therefore, we further propose the final tuning
strategy, where the server asks the clients to compute their
exact model updates in the last Tf rounds before the training
ends. As we will show in experiments, only a small number of
rounds (e.g., Tf = 5) are needed to ensure a good performance
of the recovered global model.

We note that, when some malicious clients are not detected
by the malicious-client detection method, they can still per-
form poisoning attacks in the warm-up, periodic correction,
abnormality fixing, and final tuning rounds. However, our
experiments will show that FedRecover can still recover an
accurate global model in such scenarios. This is because the
number of warm-up, periodic correction, abnormality fixing,
and final tuning rounds is small.
Updating the buffers of the L-BFGS algorithm: Recall that
the buffers of the L-BFGS algorithm require the clients’ exact
model updates. Therefore, we only update the buffer ∆Wt

after the the server asks all clients to compute their model
updates, and update the buffer ∆Gi

t after the server asks the
ith client to compute its exact model update. Note that the
clients only compute their exact model updates for warm-
up, periodic correction, abnormality fixing, or final tuning.
In the tth round, ∆Wt contains the global-model differences
in the previous s rounds, in which all clients compute their
exact model updates; and ∆Gi

t contains the model-update
differences of the ith client in the previous s rounds, in which
the ith client computes its exact model updates.

D. Complete Algorithm

Algorithm 1 in Appendix shows our complete algorithm of
FedRecover. Without loss of generality, we assume the first
m clients are malicious. In the first Tw warm-up rounds, the
server follows the three steps of the FL framework discussed
in Section II-A to update the recovered global model. In each
round t after warm-up, the server first updates the buffers of
the L-BFGS algorithm as discussed in Section IV-C if the
server asked the clients to compute the exact model updates
in the previous round t−1. Then, the server uses periodic cor-
rection or the estimated model updates to update the recovered
global model. If at least one coordinate of an estimated model
update is larger than the abnormality threshold τ , the client
is asked to compute the exact model update. Finally, before
the server terminates the training process, it asks the clients
to compute exact model updates for final tuning.

E. Theoretical Analysis

We first analyze the computation and communication cost
for the clients introduced by both train-from-scratch and
FedRecover. Then, we show that the difference between the
global model recovered by FedRecover and the global model
recovered by train-from-scratch can be bounded in each round
under some assumptions. Finally, we show the connection
between such difference and the computation/communication
cost for the clients, i.e., the trade-off between the ac-
curacy of the recovered global model and the computa-
tion/communication cost for the clients in FedRecover. We
note that our theoretical bound analysis is based on some
assumptions, which may not hold for complex models such
as neural networks. Therefore, we empirically evaluate Fe-
dRecover for neural networks in the next section.
Computation and communication cost for the
clients: When a client is asked to compute model update,

we introduce some computation and communication cost
to the client. Moreover, such computation/communication
cost roughly does not depend on which round the client is
asked to compute model update. Therefore, we can view
such cost as an unit of cost. Train-from-scratch asks each
client to compute model update in each round. Therefore,
the average computation/communication cost per client for
train-from-scratch is O(T), where T is the total number of
rounds. In FedRecover, the cost depends on the number of
warm-up rounds Tw, the periodic correction parameter Tc,
the number of rounds in which the abnormality fixing is
triggered, and the number of final tuning rounds Tf . The
number of rounds for abnormality fixing depends on dataset,
FL method, and the threshold τ , which makes it hard to
theoretically analyze the cost for FedRecover. However, when
the abnormality fixing is not used, i.e., τ =∞, we can show
that the average computation/communication cost per client
for FedRecover is O(Tw + Tf + ⌊(T − Tw − Tf)/Tc⌋).
Bounding the difference in the global models recovered by
FedRecover and train-from-scratch: We first describe the
assumptions that our theoretical analysis is based on. Then,
we show our bound for the difference in the global models
recovered by FedRecover and train-from-scratch.

Assumption 1. The loss function is µ-strongly convex and L-
smooth. Formally, for each client i, we have the following two
inequalities for any w and w′:

⟨w −w′,∇Li(w)−∇Li(w
′)⟩ ≥ µ∥w −w′∥2, (3)

⟨w −w′,∇Li(w)−∇Li(w
′)⟩ ≥ 1

L
∥∇Li(w)−∇Li(w

′)∥2,
(4)

where Li is the loss function for client i, ⟨·, ·⟩ represents inner
product of two vectors, and ∥·∥ represents ℓ2 norm of a vector.

Assumption 2. The error of approximating a Hessian-vector
product in the L-BFGS algorithm is bounded. Formally, each
approximated Hessian-vector product satisfies the following:

∀i,∀t, ∥H̃i
t(ŵt − w̄t) + ḡi

t − gi
t∥ ≤M, (5)

where M is a finite positive value.

Theorem 1. Suppose Assumption 1-2 hold, FedAvg is used as
the aggregation rule, the threshold τ = ∞ (i.e., abnormality
fixing is not used), the learning rate η satisfies η ≤ min(1µ ,

1
L),

and all malicious clients are detected. Then, the difference
between the global model recovered by FedRecover and that
recovered by train-from-scratch in each round t > 0 can be
bounded as follows:

∥ŵt −wt∥ ≤ (
√︁
1− ηµ)t∥ŵ0 −w0∥+

1− (
√
1− ηµ)t

1−
√
1− ηµ

ηM,

(6)

where ŵt and wt respectively are the global models recovered
by FedRecover and train-from-scratch in round t.

Proof. Our idea is to recursively bound the difference in each
round. Appendix A shows the detailed proof.

Given Theorem 1, we have limt→∞ ∥ŵt−wt∥ ≤ ηM
1−

√
1−ηµ

.
Moreover, we have the following corollary:

Corollary 1. When the L-BFGS algorithm can exactly com-
pute the integrated Hessian-vector product (i.e., M = 0),
the difference between the global model recovered by Fe-
dRecover and that recovered by train-from-scratch is bounded
as ∥ŵt−wt∥ ≤ (

√
1− ηµ)t∥ŵ0−w0∥. Therefore, the global

model recovered by FedRecover converges to the global model
recovered by train-from-scratch, i.e., we have limt→∞ ŵt =
limt→∞ wt.

Trade-off between the difference bound and the compu-
tation/communication cost: Given Corollary 1, we have the
difference bound as ∥ŵT − wT ∥ ≤ (

√
1− ηµ)T ∥ŵ0 − w0∥

when FedRecover runs for T rounds. The difference bound
decreases exponentially as T increases. Moreover, the com-
putation/communication cost of FedRecover is linear to T
when τ = ∞. Therefore, the difference bound decreases
exponentially as the cost increases. In other words, we observe
an accuracy-cost trade-off for FedRecover, i.e., the global
model recovered by FedRecover is more accurate (i.e., closer
to the train-from-scratch global model) when more cost is
introduced for the clients.

V. EVALUATION

A. Experimental Setup

1) Datasets: We consider multiple datasets for different
learning tasks in our evaluation. Specifically, we use two image
classification datasets (MNIST and Fashion-MNIST), a pur-
chase style prediction dataset (Purchase), and a human activity
recognition dataset (HAR). Unless otherwise mentioned, we
show experimental results on MNIST for simplicity.

MNIST: MNIST [23] is a 10-class digit image classification
dataset, which contains 60,000 training images and 10,000 test
images. Both the height and the width of an image are 28. We
adopt the Convolutional Neural Network (CNN) in [19] as
the global model architecture. In particular, the CNN consists
of two convolutional layers, each of which is followed by a
pooling layer, and two fully-connected layers. We assume 100
clients and use the method in [19] to distribute the training
images to them, where the method has a parameter called
degree of non-iid that ranges between 0.1 and 1. The clients’
local training data are non-iid when the degree of non-iid is
larger than 0.1 and are more non-iid when the degree of non-
iid is larger. By default, we set the degree of non-iid to 0.5
when distributing the training images to the clients, but we
will explore its impact on FedRecover.

Fashion-MNIST: Fashion-MNIST [36] is another 10-class
image classification dataset. Unlike MNIST that contains digit
images, Fashion-MNIST contains 70,000 fashion images. The
dataset is split into 60,000 training images and 10,000 test
images, where the size of each image is 28 × 28. We adopt

the same CNN as MNIST. Moreover, we also assume 100
clients and we set the default degree of non-iid to 0.5 when
distributing the training images to them.

Purchase: Purchase is a retail dataset released by [1]. The
task is to predict the purchase style that a customer belongs to.
The dataset contains 197,324 purchase records in total, where
each record has 600 binary features and belongs to one of
the 100 unbalanced classes. The dataset is split into 180,000
training records and 17,324 test records. Following [30], we
adopt a fully connected neural network with one hidden layer
as the global model architecture, where the number of neurons
in the hidden layer is 1,024 and the activation function is Tanh.
We also assume there are 100 clients in total. Following [30],
we evenly distribute the training records to them.

Human activity recognition (HAR): HAR [4] is a 6-class
human activity recognition dataset. The dataset is collected
from the smartphones of 30 real-world users. Each data sample
consists of 561 features representing the signals collected from
multiple sensors of a user’s smartphone, and belongs to one of
the 6 possible activities (e.g., walking, sitting, and standing).
We consider each user in the dataset as a client. Furthermore,
following [11], we use 75% of each client’s data as local
training data and the rest 25% as test data. We adopt a fully
connected neural network with two hidden layers as the global
model architecture, where each hidden layer consists of 256
neurons and uses ReLU as the activation function.

2) FL Settings: Recall that the original FL training has
three steps in each round. We consider clients use stochastic
gradient descent to compute model updates. Considering the
different characteristics in the datasets, we adopt the following
parameter settings for the original FL training: for MNIST and
Fashion-MNIST, we train for 2,000 rounds with learning rate
3× 10−4 and batch size 32; for Purchase, we train for 1,000
rounds with learning rate 1× 10−4 and batch size 2,000; and
for HAR, we train for 1,000 rounds with learning rate 3×10−4

and batch size 32. We use MXNet [16] in our implementation.
When one uses Pytorch or Tensorflow, a learning rate should
be scaled up by batch size since MXNet uses the sum of the
mini-batch gradient while others use mean. We consider three
aggregation rules: FedAvg [25], Median [37], and Trimmed-
mean [37]. We do not consider Krum [8] because it is neither
accurate nor robust [19], [5], and we do not consider FLTrust
[11] as it requires an additional clean dataset for the server.
We set the trim parameter k = n×20% in Trimmed-mean for
all datasets. In particular, k is respectively 20, 20, 20, and 6
for MNIST, Fashion-MNIST, Purchase, and HAR datasets.

3) Attack Settings: By default, we randomly sample 20%
of the clients as malicious ones. Specifically, the number of
malicious clients is 20, 20, 20, and 6 for MNIST, Fashion-
MNIST, Purchase, and HAR datasets, respectively. Moreover,
we assume an attacker performs full-knowledge attacks. We
consider Trim attack (an untargeted poisoning attack) [19] and
backdoor attack (a targeted poisoning attack) [5]. We adopt
the default parameter setting for the Trim attack in [19]. We
design the trigger in the backdoor attack by following [11]. In

0

20

40

60

80

100
Fe

dA
vg

Before recovery Train-from-scratch Historical-information-only FedRecover

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

M
ed

ia
n

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

TER-Trim TER-BD ASR-BD ACP-Trim ACP-BD
0

20

40

60

80

100

Tr
im

m
ed

-m
ea

n

MNIST
TER-Trim TER-BD ASR-BD ACP-Trim ACP-BD

0

20

40

60

80

100

Fashion-MNIST
TER-Trim TER-BD ASR-BD ACP-Trim ACP-BD

0

20

40

60

80

100

Purchase
TER-Trim TER-BD ASR-BD ACP-Trim ACP-BD

0

20

40

60

80

100

HAR

Fig. 1: The test error rate (TER), attack success rate (ASR), and average cost-saving percentage (ACP) of train-from-scratch,
historical-information-only, and FedRecover for the four datasets, three FL methods, and two attacks. “-Trim” and “-BD”
represent the results for recovery from Trim attack and backdoor attack, respectively. Smaller TER and ASR imply better
accuracy and larger ACP implies better efficiency.

particular, for MNIST and Fashion-MNIST, we adopt the same
white pixels located at the bottom right corner as the trigger.
For Purchase and HAR, we set every 20th feature value to 0
as the trigger. We select 0 as the target label for all datasets. In
the backdoor attack, each malicious client scales its malicious
model update. We set the scaling factor to 10 for MNIST and
5 for Fashion-MNIST and HAR since the backdoor attack
achieves high attack success rates with these settings. We
notice that the attack success rates for Purchase are similar
when the scaling factor varies from 1 to 100. Therefore, we
set the scaling factor to 1 for Purchase to be more stealthy. The
malicious clients perform the Trim attack or backdoor attack
in every round of the original FL training. Moreover, when
some malicious clients are not detected, they perform attacks
in every warm-up, periodic correction, abnormality fixing, and
final tuning round during the recovery process.

4) Recovery Settings: We adopt the same settings as the
original FL training when recovering the global models, in-
cluding the total number of rounds, the learning rate, the batch
size, and the aggregation rule. FedRecover has the following
parameters: the number of warm-up rounds Tw, the correction
period Tc, the abnormality threshold τ , and the number of
final tuning rounds Tf . By default, we set Tw = 20, Tc = 10,
the tolerance rate α = 1 × 10−6 to select the threshold τ ,
and Tf = 5. We use the L-BFGS algorithm with buffer size
2 (i.e., s = 2) and adopt the public implementation in [35]
for it. Unless otherwise mentioned, we assume all malicious
clients are detected. However, we will explore the effect of
the false negative rate (FNR) and the false positive rate (FPR)
in malicious clients detection on model recovery.

5) Compared Methods: We compare FedRecover with two
baseline methods:
Train-from-scratch: Train-from-scratch removes the de-
tected malicious clients and then follows the standard FL

to retrain a global model from scratch using the remaining
clients. By default, we assume a client updates its local model
using one mini-batch in a global round. However, we will also
explore the impact of the number of local mini-batches.

Historical-information-only: Another baseline is to recover
a global model using only the historical information the server
has stored. Specifically, the server first initializes a recovered
global model. Then, it uses the remaining clients’ original
model updates that it has stored to update the recovered global
model in each round of the recovery process.

The two baseline methods represent two extreme cases
of model recovery, i.e., train-from-scratch involves the re-
maining clients in each round of the recovery process while
historical-information-only does not involve the clients at all.
In other words, train-from-scratch introduces the largest com-
putation/communication cost to the clients while historical-
information-only introduces no cost to the clients at all.

6) Evaluation Metrics: We adopt test error rate (TER),
attack success rate (ASR), and average cost-saving percentage
(ACP) as evaluation metrics. We define them as follows:

Test error rate (TER): Given a test dataset and a (recovered
or original) global model, TER is the fraction of the test inputs
that are incorrectly predicted by the global model.

Attack success rate (ASR): For backdoor attack, we also
use ASR to evaluate a global model. Given a test dataset,
we first exclude test inputs whose ground truth labels are
the target label. Then, ASR is defined as the fraction of the
remaining inputs that are predicted to have the target label
when embedded with the backdoor trigger. We say a recovery
method is more accurate if the recovered global model has a
smaller TER (and ASR for backdoor attack).

Average cost-saving percentage (ACP): We use ACP to
measure the computation/communication cost saving of a

10 20 30 40 50
m

0

20

40

60

80

100
TE

R

Before recovery
Train-from-scratch
Historical-information-only
FedRecover

10 20 30 40 50
m

0

20

40

60

80

100

AC
P

Historical-information-only
FedRecover

Fig. 2: Effect of the number of malicious clients m on recovery
from Trim attack. The aggregation rule is Trimmed-mean.
Figure 12 in Appendix shows the results for FedAvg and
Median.

0.1 0.3 0.5 0.7 0.9
Degree of Non-iid

0

20

40

60

80

100

TE
R

Before recovery
Train-from-scratch
Historical-information-only
FedRecover

0.1 0.3 0.5 0.7 0.9
Degree of Non-iid

0

20

40

60

80

100

AC
P

Historical-information-only
FedRecover

Fig. 3: Effect of degree of non-iid on recovery from Trim
attack. The aggregation rule is Trimmed-mean. Figure 14 in
Appendix shows the results for FedAvg and Median.

recovery method, compared to train-from-scratch. Specifically,
the total number of rounds in the recovery process is T , i.e.,
each client computes its exact model updates in T rounds in
train-from-scratch. For a given client, we denote by Tr the
number of rounds that the client is asked to compute and
communicate its exact model updates in a recovery method.
Then, we define the cost-saving percentage (CP) for the client
as (T − Tr)/T × 100%. Our ACP is defined as the average
cost-saving percentage for the clients. A recovery method is
more efficient if its ACP is larger.

B. Experimental Results

FedRecover is accurate and efficient: Figure 1 shows
the TER, ASR, and ACP of train-from-scratch, historical-
information-only, and FedRecover for the four datasets,
three aggregation rules, and two attacks. We observe that
FedRecover is both accurate and efficient at recovering
the global models from the poisoned ones. In partic-
ular, FedRecover can achieve similar TERs and ASRs
with train-from-scratch. Moreover, FedRecover can achieve
large ACPs, i.e., FedRecover can significantly reduce the
computation/communication cost for the clients. Historical-
information-only does not introduce cost to the clients (i.e.,
ACPs are 100) but its recovered global models have large
TERs (nearly random guessing).
Effect of the number of malicious clients: Figure 2 shows
the effect of the number of malicious clients on recovering
from Trim attack. Results for recovering from backdoor at-
tacks are shown in Figure 13 in Appendix. We observe that
FedRecover can recover as accurate global models as train-
from-scratch when different numbers of clients are malicious,

10 100 1000
Tw

0

25

50

75

100

%

TER
ACP

(a) Trim attack

10 100 1000
Tw

0

25

50

75

100

%

TER
ASR
ACP

(b) Backdoor attack

Fig. 4: Effect of the number of warm-up rounds Tw on Fe-
dRecover for recovery from (a) Trim attack and (b) backdoor
attack. The aggregation rule is Trimmed-mean. Figure 16 in
Appendix shows the results for FedAvg and Median.

1 10 100
Tc

0

25

50

75

100

%

TER
ACP

(a) Trim attack

1 10 100
Tc

0

25

50

75

100

%

TER
ASR
ACP

(b) Backdoor attack

Fig. 5: Effect of the correction period Tc on FedRecover for
recovery from (a) Trim attack and (b) backdoor attack. The
aggregation rule is Trimmed-mean. Figure 17 in Appendix
shows the results for FedAvg and Median.

i.e., the TERs (and ASRs) of FedRecover are close to those
of train-from-scratch. Moreover, FedRecover can save most
of the cost for the clients, compared to train-from-scratch. For
instance, FedRecover saves 88% of cost on average for the
clients when the aggregation rule is Trimmed-mean and the
number of malicious clients is 40.

Effect of the degree of non-iid: Figure 3 shows the impact
of the degree of non-iid of the clients’ local training data
on recovering from Trim attack. Results for recovering from
backdoor attack are shown in Figure 15 in Appendix. We
observe that FedRecover can recover as accurate global models
as train-from-scratch for a wide range of degree of non-iid. The
TERs of both FedRecover and train-from-scratch are relatively
large when the degree of non-iid increases to 0.9. This is
because FedRecover and train-from-scratch do not change
the aggregation rule and their performance depends on the
aggregation rule. When the degree of non-iid is very large,
the aggregation rules themselves are not accurate even without
poisoning attacks. The ACP of FedRecover drops as the degree
of non-iid increases when recovering from Trim attack. This
is because the estimated model updates are more likely to be
abnormal when the degree of non-iid is larger, leading to more
frequent abnormality fixing and thus lower ACP.

Effect of the number of warm-up rounds Tw: Figure
4 shows the effect of Tw on FedRecover when recovering
from the two attacks. We observe that TER and ASR remain
stable while ACP decreases as the number of warm-up rounds

10
5

10
3

10
10

25

50

75

100
%

TER
ACP

(a) Trim attack

10
5

10
3

10
10

25

50

75

100

%

TER
ASR
ACP

(b) Backdoor attack

Fig. 6: Effect of the tolerance rate α on FedRecover for
recovery from (a) Trim attack and (b) backdoor attack. The
aggregation rule is Trimmed-mean. Figure 18 in Appendix
shows the results for FedAvg and Median.

5 10 15 20
Tf

0

25

50

75

100

%

TER
ACP

(a) Trim attack

5 10 15 20
Tf

0

25

50

75

100

%

TER
ASR
ACP

(b) Backdoor attack

Fig. 7: Effect of the number of final tuning rounds Tf on Fe-
dRecover for recovery from (a) Trim attack and (b) backdoor
attack. The aggregation rule is Trimmed-mean. Figure 19 in
Appendix shows the results for FedAvg and Median.

increases. Our results demonstrate that a small number of
warm-up rounds are enough for FedRecover to accurately and
efficiently recover a global model.
Effect of the correction period Tc: Figure 5 shows the effect
of Tc on FedRecover when recovering from the two attacks.
We observe that Tc controls a trade-off between accuracy and
efficiency. Specifically, ACP increases as Tc increases, though
the growth rate of ACP becomes smaller as Tc increases. When
the correction period Tc is small, e.g., Tc ≤ 10, both TER
and ASR remain almost unchanged. However, TER starts to
increase after Tc is larger than a certain threshold. Our results
demonstrate that a Tc ≈ 10 is sufficient for FedRecover to
achieve a good trade-off between accuracy and efficiency.
Effect of the tolerance rate α: Figure 6 shows the effect of
α on FedRecover. Recall that α determines the abnormality
threshold τ . A smaller α leads to a larger threshold τ . We
observe that α controls a trade-off between the accuracy and
the efficiency of FedRecover. In other words, FedRecover
saves less cost for the clients but also incurs lower TER when
α is larger. Specifically, ACP decreases while TER slightly
decreases as α increases.
Effect of the number of final tuning rounds Tf : Figure
7 shows the effect of Tf on FedRecover when recovering
from the two attacks. We observe that TER and ASR remain
stable while ACP slightly decreases as the number of final
tuning rounds increases. We note that although Tf does not
show much impact in Figure 7, it is necessary to achieve

0.0 0.1 0.2 0.3 0.4 0.5
FNR

0

20

40

60

80

100

TE
R

Train-from-scratch (FedAvg)
Train-from-scratch (Median)
Train-from-scratch (Trimmed-mean)
FedRecover (FedAvg)
FedRecover (Median)
FedRecover (Trimmed-mean)

0.0 0.1 0.2 0.3 0.4 0.5
FNR

0

20

40

60

80

100

AC
P

FedRecover (FedAvg)
FedRecover (Median)
FedRecover (Trimmed-mean)

0.0 0.1 0.2 0.3 0.4 0.5
FPR

0

20

40

60

80

100

TE
R

Train-from-scratch (FedAvg)
Train-from-scratch (Median)
Train-from-scratch (Trimmed-mean)
FedRecover (FedAvg)
FedRecover (Median)
FedRecover (Trimmed-mean)

0.0 0.1 0.2 0.3 0.4 0.5
FPR

0

20

40

60

80

100

AC
P

FedRecover (FedAvg)
FedRecover (Median)
FedRecover (Trimmed-mean)

Fig. 8: Effect of FNR (first row) and FPR (second row) on re-
covery from Trim attack. The TERs for historical-information-
only are very large (nearly random guessing) and thus are
omitted for simplicity.

good accuracy in some other scenarios. For instance, when
the dataset is Purchase and the aggregation rule is Trimmed-
mean, the TER without final tuning is 18%, while the TER
with Tf = 5 is 13%. Figure 20 in Appendix shows more
details. Our results demonstrate that a small number of final
tuning rounds are sufficient for FedRecover to recover a global
model accurately and efficiently.

Effect of false negative rate (FNR) and false positive
rate (FPR) in detecting malicious clients: In practice, the
malicious client detectors are not always perfect. For instance,
some malicious clients may escape from detection and some
benign clients may be detected incorrectly as malicious. We
define FNR as the fraction of malicious clients that are not
detected and FPR as the fraction of benign clients that are
falsely detected as malicious. We explore the effect of FNR
and FPR on model recovery. Figure 8 shows sthe results when
recovering global models from the Trim attack. Note that the
malicious clients missing detection still perform the attacks
when they are asked to compute their exact model updates
during the recovery process.

We observe that FedRecover can still recover as accurate
global models as train-from-scratch even if FNR or FPR is
non-zero. In particular, the TER curves for FedRecover almost
overlap with those for train-from-scratch, except when FNR
is large (e.g., FNR≥ 0.4) for FedAvg. Moreover, the ACPs
of FedRecover are stable when the FNR or FPR ranges from
0 to 0.5. Our results imply that FedRecover can save lots of
cost for the clients even if the malicious client detector has
non-zero FNR or FPR.

Train-from-scratch with multiple local mini-batches per
global round: An intuitive way of reducing the communica-
tion cost of train-from-scratch is to ask the clients to train
their local models for l > 1 mini-batches in each global
round. In our default setting, we set l = 1. Figure 9a shows
the convergence rate of train-from-scratch with different l,

0 500 1000 1500 2000
Global Round

0

20

40

60

80

100
TE

R
l=1
l=5
l=10
l=20
l=50

(a) TER vs. global round

0 10 20 30 40 50
l

0

500

1000

1500

2000

gl

ob
al

 ro
un

ds

FedRecover
Multi-batch train-from-scratch

(b) #global rounds

0 10 20 30 40 50
l

0

2000

4000

6000

8000

av

er
ag

e
lo

ca
l b

at
ch

es

FedRecover
Multi-batch train-from-scratch

(c) Average# local batches

Fig. 9: (a) TER of train-from-scratch as a function of global round when a client trains its local model using l mini-batches per
global round. (b) The number of global rounds needed until convergence for train-from-scratch with different l and FedRecover.
(c) The average number of local mini-batches that each client computes until convergence for train-from-scratch with different
l and FedRecover. The results are for recovering from Trim attack and the aggregation rule is Trimmed-mean.

88.4 88.5 88.6 88.7 88.8 88.9 89.0
CP

0

5

10

15

20

25

N
um

be
r o

f C
lie

nt
s

(a)

0.0 0.1 0.2 0.3 0.4 0.5
FNR

0

20

40

60

80

100

%

TER
ASR
ACP

(b)
Fig. 10: (a) The distribution of CP among clients when
FedRecover recovers from backdoor attack. (b) Results for
FedRecover when the attacker performs adaptive backdoor
attack during recovery. The aggregation rule is Trimmed-mean.

which shows that train-from-scratch indeed requires less global
rounds (i.e., less communication cost) to converge when l is
larger. We say a global model converges in a global round
when the TER does not decrease for more than 0.1% in the
past 20 global rounds. Figure 9b shows the number of global
rounds per client on average needed to converge for train-
from-scratch with different l and FedRecover.

We observe that when l is smaller than some threshold (e.g.,
l ≤ 30), train-from-scratch needs more global rounds (i.e.,
more communication cost) than FedRecover. When l further
increases, train-from-scratch requires less global rounds to
converge than FedRecover. However, as shown in Figure 9c,
when l increases, train-from-scratch incurs substantially more
computation cost for the clients. Specifically, the average
number of local training mini-batches per client increases
substantially as l grows. For instance, when l = 50, train-from-
scratch reduces the communication cost by 35% but incurs
more than 30× computation cost for the clients, compared
to FedRecover. Our results show that FedRecover incurs less
communication and computation cost than train-from-scratch
when l is small, and incurs much less computation cost at the
expense of slightly larger communication cost when l is large.

Distribution of clients’ cost-saving percentage (CP): We
showed that FedRecover can save the average cost among the
clients in the previous experiments. However, it is not desired
if the cost-saving percentage for some clients is significantly
lower than the others. Therefore, we further study the distri-

50 100 200 500 1000
Number of fine-tuning examples

0

10

20

30

40

TE
R

Fine-tuning
FedRecover

(a) Trim attack

50 100 200 500 1000
Number of fine-tuning examples

0

10

20

30

40

%

Fine-tuning TER
FedRecover TER
Fine-tuning ASR
FedRecover ASR

(b) Backdoor attack
Fig. 11: Comparing FedRecover with fine-tuning for recovery
from (a) Trim attack and (b) backdoor attack. The aggregation
rule is Trimmed-mean. Figure 21 in Appendix shows the
results for FedAvg and Median.

bution of the cost-saving percentage (CP) among the clients.
Figure 10a shows the results for recovering from the backdoor
attack when Trimmed-mean is used as the aggregation rule.
We observe that the difference between the individual clients’
CPs is small. Specifically, all CPs fall in a small range between
88.5% and 88.9%.

Adaptive attack: An attacker can adapt its attack if it knows
FedRecover is used to recover the global model. For instance,
the attacker can perform adaptive attack during recovery using
the malicious clients that are not detected. We notice that Trim
attack solves the same optimization problem regardless of the
number of malicious clients. Therefore, the attack strategy for
untargeted attack is already optimal during recovery. However,
the attacker can adjust the scaling factor for backdoor attack
to perform adaptive backdoor attack. Specifically, assuming
m′ malicious clients are not detected and the original scaling
factor is λ, then the attacker can increase the scaling factor to
λ · m

m′ such that the sum of the scaling factors on malicious
clients remain the same. Figure 10b shows the results on
MNIST dataset when the FNR of detecting malicious clients
varies and Trimmed-mean is the aggregation rule. We observe
that the adaptive backdoor attack can slightly increase the
TER of FedRecover when FNR increases. However, the ASR
remains low and the ACP remains high.

Comparing with fine-tuning: Fine-tuning assumes that the
server has access to a clean dataset and uses it to fine-tune
the poisoned global model. Figure 11 shows the impact of the

number of fine-tuning examples on MNIST dataset, where the
fine-tuning examples are sampled from the MNIST training
set uniformly at random and we fine-tune a poisoned global
model for 100 epochs with the same learning rate to train
the global model. We observe that fine-tuning requires a large
number of clean examples, e.g., 1,000 examples, to achieve
TER and ASR comparable to FedRecover. In Figure 11, we
assume the fine-tuning dataset has the same distribution as
the overall training dataset. Figure 22 in Appendix shows the
results when the fine-tuning dataset has a different distribution
from the overall training dataset. In particular, we assume the
fine-tuning dataset includes 1,000 examples and the 10 classes
follow a Dirichlet distribution, which is characterized by a
parameter β. β → ∞ indicates a uniform distribution among
the 10 classes, i.e., the same distribution as the overall training
dataset. A smaller β means that the fine-tuning dataset distribu-
tion deviates more from the overall training data distribution.
We observe that fine-tuning has much larger TER (i.e., less
accurate global model) when the fine-tuning dataset deviates
from the overall training data distribution. Our results show
that, even if the server can collect a clean dataset, fine-tuning
is insufficient when the clean dataset is small or deviates from
the overall training data distribution.
More experiments: We also evaluate FedRecover without
approximate local model updates, which shows that the ap-
proximate local model updates are necessary for FedRecover.
The details are shown in Appendix B. Table III in Appendix
shows that all the four optimization strategies are necessary
for FedRecover.

VI. DISCUSSION AND LIMITATIONS

A. Security/Privacy Concern of Storing Historical Information

In FedRecover, the server stores the historical information
of the clients, including their model updates in each round.
Therefore, one natural question is whether the stored historical
information introduces extra security/privacy concerns for the
clients. In our threat model, we assume the server is not
compromised by an attacker, in which the stored historical
information does not introduce extra security/privacy concerns.
Moreover, even if the server could be compromised by an
attacker, whether FedRecover introduces extra security/privacy
concerns for the clients depends on when the server is com-
promised. If the server is compromised before training, then
storing the historical information does not introduce extra
security/privacy concerns for the clients because the attacker
can access the historical information no matter the server
stores them or not. However, we acknowledge that if the server
is compromised after training, storing historical information
may introduce extra security/privacy concerns for the clients.
We believe it is an interesting future work to study the extra
security/privacy risks in such scenarios.

B. Clients Dropout

In this work, we focus on recovering a global model when
some malicious clients are removed by the server after being
detected. In practice, benign clients may also drop out of

the FL system after the global model has been trained for
various reasons such as privacy concerns. In particular, the
dropout clients may desire the global model to forget the
knowledge learnt from their private local training data or even
their existence. We can use FedRecover to recover a global
model after benign-clients dropout via treating the dropout
benign clients as detected “malicious” clients. Our Corollary 1
shows that the recovered global model would be the same as
the train-from-scratch global model in some scenarios, which
means that the recovered global model forgets the existence
of the dropout benign clients and protects their privacy. We
believe it is an interesting future work to study the privacy
guarantee of the recovered global model for the dropout benign
clients in other scenarios.

C. Storage and Computation Cost for the Server

FedRecover incurs extra storage and computation cost for
the server. Assuming a local/global model has M parameters.
The server needs O(nMT) extra storage to save the original
model updates and global models, where n is the number of
clients and T is the number of global rounds. For instance,
when there are one million clients, each of which participates
in 100 global rounds on average, and the global model is
ResNet-20, the server needs roughly 100 TB extra storage.
In our experiments, FedRecover needed at most 200 GB extra
storage on our server. We note that this storage can be hard
disk drive instead of main memory. Moreover, the server needs
to estimate roughly O((n−m)T) model updates, where m is
the number of malicious clients. The complexity of estimating
a model update is O(M2s), where s < M is the buffer
size. Therefore, the total extra computation cost for the server
is O((n − m)TM2s). The storage and computation cost is
acceptable for a powerful server, e.g., a modern data center.

VII. CONCLUSION AND FUTURE WORK

In this work, we propose a model recovery method called
FedRecover to eliminate the impact of poisoning attacks on
the global model in FL. Our theoretical and empirical results
show that the historical information, which the server collected
during the training of the poisoned global model before the
malicious clients are detected, is valuable for recovering an
accurate global model efficiently after detecting the malicious
clients. An interesting future work is to explore the accuracy
and efficiency of FedRecover under adaptive poisoning attacks.
Specifically, an adaptive poisoning attack may be designed for
the end-to-end FL pipeline that consists of training a global
model, detecting malicious clients, and recovering the global
model. Another interesting direction for future work is to
extend FedRecover to FL in other domains (e.g., graphs).

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for constructive com-
ments. This work was supported by NSF under grant No.
2112562, 2131859, 2125977, and 1937786 as well as ARO
grant No. W911NF2110182.

REFERENCES

[1] “Acquire valued shoppers challenge at kaggle,” https://www.kaggle.com/
c/acquire-valued-shoppers-challenge/data, Last accessed April, 2021.

[2] “Federated learning: Collaborative machine learning without cen-
tralized training data,” https://ai.googleblog.com/2017/04/federated-
learning-collaborative.html, Last accessed April, 2021.

[3] “Utilization of fate in risk management of credit in small
and micro enterprises,” https://www.fedai.org/cases/utilization-of-fate-
in-risk-management-of-credit-in-small-and-micro-enterprises, Last ac-
cessed April, 2021.

[4] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A public
domain dataset for human activity recognition using smartphones.” in
ESANN, 2013.

[5] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How to
backdoor federated learning,” in AISTATS, 2020.

[6] M. Baruch, G. Baruch, and Y. Goldberg, “A little is enough: Circum-
venting defenses for distributed learning,” in NeurIPS, 2019.

[7] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo, “Analyzing
federated learning through an adversarial lens,” in ICML, 2019.

[8] P. Blanchard, E. M. E. Mhamdi, R. Guerraoui, and J. Stainer, “Ma-
chine learning with adversaries: Byzantine tolerant gradient descent,” in
NeurIPS, 2017.

[9] L. Bourtoule, V. Chandrasekaran, C. A. Choquette-Choo, H. Jia,
A. Travers, B. Zhang, D. Lie, and N. Papernot, “Machine unlearning,”
in IEEE S&P, 2021.

[10] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory algo-
rithm for bound constrained optimization,” SIAM Journal on scientific
computing, vol. 16, no. 5, pp. 1190–1208, 1995.

[11] X. Cao, M. Fang, J. Liu, and N. Z. Gong, “Fltrust: Byzantine-robust
federated learning via trust bootstrapping,” in NDSS, 2021.

[12] X. Cao and N. Z. Gong, “Mpaf: Model poisoning attacks to federated
learning based on fake clients,” in CVPR Workshops, 2022.

[13] X. Cao, J. Jia, and N. Z. Gong, “Provably secure federated learning
against malicious clients,” in AAAI, 2021.

[14] Y. Cao and J. Yang, “Towards making systems forget with machine
unlearning,” in IEEE S&P, 2015.

[15] H. Chen, C. Fu, J. Zhao, and F. Koushanfar, “Deepinspect: A black-box
trojan detection and mitigation framework for deep neural networks.” in
IJCAI, 2019.

[16] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” arXiv preprint
arXiv:1512.01274, 2015.

[17] Y. Chen, L. Su, and J. Xu, “Distributed statistical machine learning in
adversarial settings: Byzantine gradient descent,” in POMACS, 2017.

[18] J. R. Douceur, “The sybil attack,” in IPTPS, 2002.
[19] M. Fang, X. Cao, J. Jia, and N. Z. Gong, “Local model poisoning attacks

to byzantine-robust federated learning,” in USENIX Security Symposium,
2020.

[20] N. Z. Gong, M. Frank, and P. Mittal, “Sybilbelief: A semi-supervised
learning approach for structure-based sybil detection,” IEEE Transac-
tions on Information Forensics and Security, vol. 9, no. 6, 2014.

[21] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communica-
tion efficiency,” in NeurIPS Workshop on Private Multi-Party Machine
Learning, 2016.

[22] S. Lang, Real and Functional Analysis. Springer, 1993.
[23] Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit database,”

Available: http://yann. lecun. com/exdb/mnist, 1998.
[24] S. Li, Y. Cheng, W. Wang, Y. Liu, and T. Chen, “Learning to detect

malicious clients for robust federated learning,” arXiv, 2020.
[25] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,

“Communication-efficient learning of deep networks from decentralized
data,” in AISTATS, 2017.

[26] E. M. E. Mhamdi, R. Guerraoui, and S. Rouault, “The hidden vulnera-
bility of distributed learning in byzantium,” in ICML, 2018.

[27] T. D. Nguyen, P. Rieger, H. Chen, H. Yalame, H. Möllering, H. Fer-
eidooni, S. Marchal, M. Miettinen, A. Mirhoseini, S. Zeitouni et al.,
“Flame: Taming backdoors in federated learning,” in USENIX Security
Symposium, 2022.

[28] J. Nocedal, “Updating quasi-newton matrices with limited storage,”
Mathematics of computation, vol. 35, no. 151, pp. 773–782, 1980.

TABLE I: Notations

n number of clients
m number of malicious clients
t round index
i client index
T total number of rounds
Tw number of warm-up rounds
Tc periodic correction parameter
Tf number of final tuning rounds
s buffer size of the L-BFGS algorithm
τ abnormality threshold
α tolerance rate to choose τ
w̄t original global model in round t
wt train-from-scratch global model in round t
ŵt recovered global model in round t
ḡi
t original model update for client i in round t

gi
t exact model update for client i in round t

ĝi
t estimated model update for client i in round t

Hi
t integrated Hessian matrix for client i in round t

H̃i
t estimated Hessian matrix for client i in round t

[29] N. N. Schraudolph, J. Yu, and S. Günter, “A stochastic quasi-newton
method for online convex optimization,” in Artificial intelligence and
statistics, 2007.

[30] V. Shejwalkar and A. Houmansadr, “Manipulating the byzantine: Opti-
mizing model poisoning attacks and defenses for federated learning,” in
NDSS, 2021.

[31] S. Shen, S. Tople, and P. Saxena, “Auror: Defending against poisoning
attacks in collaborative deep learning systems,” in ACSAC, 2016.

[32] B. Wang, J. Jia, and N. Z. Gong, “Graph-based security and privacy
analytics via collective classification with joint weight learning and
propagation,” in NDSS, 2019.

[33] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y.
Zhao, “Neural cleanse: Identifying and mitigating backdoor attacks in
neural networks,” in S&P, 2019.

[34] G. Wang, B. Wang, T. Wang, A. Nika, H. Zheng, and B. Y. Zhao,
“Ghost riders: Sybil attacks on crowdsourced mobile mapping services,”
IEEE/ACM transactions on networking, vol. 26, no. 3, 2018.

[35] Y. Wu, E. Dobriban, and S. Davidson, “Deltagrad: Rapid retraining of
machine learning models,” in ICML, 2020.

[36] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv, 2020.

[37] D. Yin, Y. Chen, K. Ramchandran, and P. Bartlett, “Byzantine-robust
distributed learning: Towards optimal statistical rates,” in ICML, 2018.

[38] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman, “Sybilguard:
defending against sybil attacks via social networks,” in SIGCOMM,
2006.

[39] D. Yuan, Y. Miao, N. Z. Gong, Z. Yang, Q. Li, D. Song, Q. Wang, and
X. Liang, “Detecting fake accounts in online social networks at the time
of registrations,” in CCS, 2019.

[40] Z. Zhang, X. Cao, J. Jia, and N. Z. Gong, “FLDetector: Defending fed-
erated learning against model poisoning attacks via detecting malicious
clients,” in KDD, 2022.

APPENDIX A
PROOF OF THEOREM 1

We aim to show that the the difference between the global
model recovered by FedRecover and that recovered by train-
from-scratch can be bounded, i.e., ∥ŵt − wt∥ is bounded.
Recall that the global model recovered by FedRecover is
updated as follows:

• Case I: If t < Tw, or (t − Tw + 1) mod Tc = 0, or
t ≥ T − Tf ,

ŵt+1 = ŵt − η

n∑︂
i=m+1

|Di|
|D′|

gi
t. (7)

https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data

Algorithm 1 FedRecover

Input: n − m remaining clients Cr = {Ci|m + 1 ≤ i ≤
n}; original global models w̄0, w̄1, · · · , w̄T and original
model updates ḡi

0, ḡ
i
1, · · · , ḡi

T−1(m+1 ≤ i ≤ n); learning
rate η; number of warm-up rounds Tw; periodic correction
parameter Tc; number of final tuning rounds Tf ; buffer
size s of the L-BFGS algorithm; abnormality threshold τ ;
and aggregation rule A.

Output: Recovered global model ŵT .
1: ŵ0 ← w̄0 // initialize the recovered global model
2: for t = 0, 1, · · · , Tw − 1 do // warm-up
3: ŵt+1 ← ExactTraining(Cr, ŵt, η,A)
4: end for
5: for t = Tw, Tw + 1, · · · , T − Tf − 1 do
6: update the buffers ∆Wt and ∆Gi

t if needed
7: if (t−Tw+1) mod Tc == 0 then // periodic correction
8: ŵt+1 ← ExactTraining(Cr, ŵt, η,A)
9: else

10: for i = m+ 1,m+ 2, · · · , n do
11: H̃i

t(ŵt − w̄t)← L-BFGS(∆Wt, ∆Gi
t, ŵt − w̄t)

12: ĝi
t = ḡi

t + H̃i
t(ŵt − w̄t)

13: if ∥ĝi
t∥∞ > τ then // abnormality fixing

14: server sends ŵt to the ith client
15: ith client computes gi

t =
∂Li(ŵt)

∂ŵt

16: ith client reports gi
t to the server

17: ĝi
t ← gi

t

18: end if
19: end for
20: ŵt+1 ← ŵt − η · A(ĝm+1

t , ĝm+2
t , · · · , ĝn

t)
21: end if
22: end for
23: for t = T − Tf , T − Tf + 1, · · · , T − 1 do // final tuning
24: ŵt+1 ← ExactTraining(Cr, ŵt, η,A)
25: end for
26: return ŵT

Algorithm 2 L-BFGS

Input: A global-model difference buffer ∆W =
[∆wb1 ,∆wb2 , · · · ,∆wbs], a model-update difference
buffer ∆G = [∆gb1 ,∆gb2 , · · · ,∆gbs], and a vector v.

Output: Approximated Hessian-vector product H̃v.
1: A = ∆W T∆G
2: D = diag(A) // diagonal matrix of A
3: L = tril(A) // lower triangular matrix of A
4: σ = (∆gT

bs−1
∆wbs−1

)/(∆wT
bs−1

∆wbs−1
)

5: p =

[︃
−D LT

L σ∆W T∆W

]︃−1 [︃
∆GTv
σ∆W Tv

]︃
6: H̃v = σv −

[︁
∆G σ∆W

]︁
p

7: return H̃v

• Case II: Otherwise,

ŵt+1 = ŵt − η

n∑︂
i=m+1

|Di|
|D′|

[H̃
i

t(ŵt − w̄t) + ḡi
t], (8)

Algorithm 3 ExactTraining

Input: Clients C; current global model ŵt; learning rate η;
and aggregation rule A.

Output: Updated global model ŵt+1.
1: server broadcasts ŵt to the clients
2: for i = 1, 2, · · · , |C| do
3: ith client computes exact model update gi

t =
∂Li(ŵt)

∂ŵt

4: ith client reports gi
t to the server

5: end for
6: ŵt+1 ← ŵt − η · A(g1

t , g
2
t , · · · , g

|C|
t)

7: return ŵt+1

where D′ =
⋃︁n

i=m Di is the joint training dataset of the
remaining n −m clients. Moreover, let hi

t denote the model
update for client i in round t of train-from-scratch. We
know that the global model recovered by train-from-scratch
is updated as follows:

wt+1 = wt − η

n∑︂
i=m+1

|Di|
|D′|

hi
t. (9)

Given the updates of ŵt and wt in round t, we can bound
their difference in round t+1 by respectively considering the
two cases in ŵt’s update.

Case I: We consider t < Tw or (t − Tw + 1) mod
Tc = 0 in this case, i.e., ŵt is updated based on Equation (7).
Specifically, we have the following equation for the difference
between ŵt+1 and wt+1:

∥ŵt+1 −wt+1∥ (10)

=

⃦⃦⃦⃦
⃦(ŵt − η

n∑︂
i=m+1

|Di|
|D′|

gi
t)− (wt − η

n∑︂
i=m+1

|Di|
|D′|

hi
t)

⃦⃦⃦⃦
⃦ (11)

=

⃦⃦⃦⃦
⃦ŵt −wt − η

n∑︂
i=m+1

|Di|
|D′|

(gi
t − hi

t)

⃦⃦⃦⃦
⃦ . (12)

We have Equation (11) from (10) based on Equation (7)
and (9). For simplicity, we denote A1 = ∥ŵt − wt −
η

n∑︁
i=m

|Di|
|D′| (g

i
t − hi

t)∥. Then, we have:

A2
1 =∥ŵt −wt∥2 − 2η⟨ŵt −wt,

n∑︂
i=m+1

|Di|
|D′|

(gi
t − hi

t)⟩

+ η2

⃦⃦⃦⃦
⃦

n∑︂
i=m+1

|Di|
|D′|

(gi
t − hi

t)

⃦⃦⃦⃦
⃦
2

(13)

≤∥ŵt −wt∥2 − 2η

n∑︂
i=m+1

|Di|
|D′|
⟨ŵt −wt, g

i
t − hi

t⟩

+ η2
n∑︂

i=m+1

|Di|2

|D′|2
∥gi

t − hi
t∥2 (14)

=(∥ŵt −wt∥2 − η

n∑︂
i=m+1

|Di|
|D′|
⟨ŵt −wt, g

i
t − hi

t⟩)

−

(︄
η

n∑︂
i=m+1

|Di|
|D′|
⟨ŵt −wt, g

i
t − hi

t⟩

− η2
n∑︂

i=m+1

|Di|2

|D′|2
∥gi

t − hi
t∥2
)︄
, (15)

where ⟨· , ·⟩ represents the inner product of two vectors. We
have Equation (14) from (13) based on triangle inequality.
Recall that in Assumption 1, we assume the loss function Li

is µ-strongly convex and L-smooth for any i. Thus, we have
the following two inequalities:

⟨ŵt −wt, g
i
t − hi

t⟩ ≥ µ∥ŵt −wt∥2, (16)

⟨ŵt −wt, g
i
t − hi

t⟩ ≥
1

L
∥gi

t − hi
t∥2. (17)

Given the above two inequalities, we can bound A2
1 based on

Equation (13) - (15). Specifically, we have the following:

A2
1 ≤ (∥ŵt −wt∥2 − ηµ∥ŵt −wt∥2)

− η

(︄
1

L

n∑︂
i=m+1

|Di|
|D′|
∥gi

t − hi
t∥2

− η

n∑︂
i=m+1

|Di|2

|D′|2
∥gi

t − hi
t∥2
)︄

(18)

= (1− ηµ)∥ŵt −wt∥2

− η

n∑︂
i=m+1

(
|Di|
L|D′|

− η|Di|2

|D′|2
)∥gi

t − hi
t∥2. (19)

When the learning rate η satisfies η ≤ 1
L ≤

|D′|
L·maxn

i=m |Di| , we

have |Di|
L|D′| −

η|Di|2
|D′|2 ≥ 0 for any i = m + 1,m + 2, · · · , n.

Therefore, we obtain the following inequality from Equa-
tion (19):

A2
1 ≤ (1− ηµ)∥ŵt −wt∥2. (20)

And we can bound A1 as follows:

A1 ≤
√︁
1− ηµ∥ŵt −wt∥. (21)

Next, we consider the second case in ŵt’s update.
Case II: In this case, we consider t ≥ Tw and (t−Tw +1)

mod Tc ̸= 0, i.e., ŵt is updated based on Equation (8). In
particular, we can bound the difference between ŵt+1 and
wt+1 as follows:

∥ŵt+1 −wt+1∥

=

⃦⃦⃦⃦
⃦
(︄
ŵt − η

n∑︂
i=m+1

|Di|
|D′|

[H̃
i

t(ŵt − w̄t) + ḡi
t]

)︄

− [wt − η

n∑︂
i=m+1

|Di|
|D′|

hi
t]

⃦⃦⃦⃦
⃦ (22)

=

⃦⃦⃦⃦
⃦ŵt −wt − η

n∑︂
i=m+1

|Di|
|D′|

(gi
t − hi

t)

+ η

n∑︂
i=m+1

|Di|
|D′|

[gi
t − H̃

i

t(ŵt − w̄t)− ḡi
t]

⃦⃦⃦⃦
⃦ (23)

10 20 30 40 50
m

0

20

40

60

80

100

TE
R

Before recovery
Train-from-scratch
Historical-information-only
FedRecover

10 20 30 40 50
m

0

20

40

60

80

100

AC
P

Historical-information-only
FedRecover

10 20 30 40 50
m

0

20

40

60

80

100

TE
R

Before recovery
Train-from-scratch
Historical-information-only
FedRecover

10 20 30 40 50
m

0

20

40

60

80

100

AC
P

Historical-information-only
FedRecover

Fig. 12: Effect of the number of malicious clients m on
recovery from Trim attack. The aggregation rules are FedAvg
(first row) and Median (second row).

≤

⃦⃦⃦⃦
⃦ŵt −wt − η

n∑︂
i=m+1

|Di|
|D′|

(gi
t − hi

t)

⃦⃦⃦⃦
⃦

+

⃦⃦⃦⃦
⃦η

n∑︂
i=m+1

|Di|
|D′|

[gi
t − H̃

i

t(ŵt − w̄t)− ḡi
t]

⃦⃦⃦⃦
⃦ , (24)

where we have the last inequality based on triangle inequality.
We notice that the first term in the last inequality is A1. For

simplicity, let A2 = ∥η
∑︁n

i=m+1
|Di|
|D′| [g

i
t−H̃

i

t(ŵt−w̄t)−ḡi
t]∥

be the second term. Based on Assumption 2, we can bound
A2 as follows:

A2 ≤ η

n∑︂
i=m+1

|Di|
|D′|
∥gi

t − H̃
i

t(ŵt − w̄t)− ḡi
t∥ ≤ηM. (25)

Substituting Equation (21) and (25) into Equation (24), we
obtain the following bound:

∥ŵt+1 −wt+1∥ ≤ A1 +A2 ≤
√︁

1− ηµ∥ŵt −wt∥+ ηM (26)

Combining case I and case II, we can bound the difference
between ŵt+1 and wt+1 in round t+ 1 as follows:

∀t ≥ 0, ∥ŵt+1 −wt+1∥ ≤
√︁
1− ηµ∥ŵt −wt∥+ ηM (27)

By applying the inequality in Equation (27) recursively, we
have the following bound for any t ≥ 0:

∥ŵt −wt∥ ≤ (
√︁

1− ηµ)t∥ŵ0 −w0∥+
1− (

√
1− ηµ)t

1−
√
1− ηµ

ηM,

(28)

where ŵ0 and w0 are the initializations of ŵ and w,
respectively. When the learning rate η satisfies η ≤ min(1µ ,

1
L),

the upper bound converges to 1
1−

√
1−ηµ

ηM as t goes to
∞.

APPENDIX B
FEDRECOVER W/O APPROX. LOCAL MODEL UPDATES

We consider a variant of FedRecover without approxi-
mate local model updates. Specifically, we ask the clients
to compute exact local model updates during warm-up, pe-
riodic correction, and final tuning rounds. Table II shows

10 20 30 40 50
m

0

20

40

60

80

100

TE
R

Before recovery
Train-from-scratch
Historical-information-only
FedRecover

10 20 30 40 50
m

0

20

40

60

80

100

AS
R

Before recovery
Train-from-scratch
Historical-information-only
FedRecover

10 20 30 40 50
m

0

20

40

60

80

100

AC
P

Historical-information-only
FedRecover

10 20 30 40 50
m

0

20

40

60

80

100

TE
R

Before recovery
Train-from-scratch
Historical-information-only
FedRecover

10 20 30 40 50
m

0

20

40

60

80

100

AS
R

Before recovery
Train-from-scratch
Historical-information-only
FedRecover

10 20 30 40 50
m

0

20

40

60

80

100

AC
P

Historical-information-only
FedRecover

10 20 30 40 50
m

0

20

40

60

80

100

TE
R

Before recovery
Train-from-scratch
Historical-information-only
FedRecover

(a) TER

10 20 30 40 50
m

0

20

40

60

80

100

AS
R

Before recovery
Train-from-scratch
Historical-information-only
FedRecover

(b) ASR

10 20 30 40 50
m

0

20

40

60

80

100

AC
P

Historical-information-only
FedRecover

(c) ACP
Fig. 13: Effect of the number of malicious clients m on
recovery from backdoor attack. The aggregation rules are
FedAvg (first row), Median (second row), and Trimmed-mean
(third row).

0.1 0.3 0.5 0.7 0.9
Degree of Non-iid

0

20

40

60

80

100

TE
R

Before recovery
Train-from-scratch
Historical-information-only
FedRecover

0.1 0.3 0.5 0.7 0.9
Degree of Non-iid

0

20

40

60

80

100

AC
P

Historical-information-only
FedRecover

0.1 0.3 0.5 0.7 0.9
Degree of Non-iid

0

20

40

60

80

100

TE
R

Before recovery
Train-from-scratch
Historical-information-only
FedRecover

(a) TER

0.1 0.3 0.5 0.7 0.9
Degree of Non-iid

0

20

40

60

80

100

AC
P

Historical-information-only
FedRecover

(b) ACP
Fig. 14: Effect of degree of non-iid on recovery from Trim
attack. The aggregation rules are FedAvg (first row) and
Median (second row).

TABLE II: The test error rate (TER), attack success rate
(ASR), and average cost-saving percentage (ACP) of Fe-
dRecover without approximate local model updates and Fe-
dRecover. All values are in %. Smaller TER and ASR imply
better accuracy and larger ACP implies better efficiency.

FL method Recovery method Trim attack Backdoor attack
TER ACP TER ASR ACP

FedAvg FedRecover w/o approx. 52 89 52 18 89
FedRecover 5 88 6 0 89

Median FedRecover w/o approx. 67 89 68 8 89
FedRecover 8 87 10 1 89

Trimmed-mean FedRecover w/o approx. 61 89 61 15 89
FedRecover 7 88 9 1 89

the results on MNIST dataset. We observe that the ACP for
both FedRecover w/o approximate local model updates and
FedRecover is similar. However, without approximate local
model updates, the TER increases significantly. For instance,

0.1 0.3 0.5 0.7 0.9
Degree of Non-iid

0

20

40

60

80

100

TE
R

Before recovery
Train-from-scratch
Historical-information-only
FedRecover

0.1 0.3 0.5 0.7 0.9
Degree of Non-iid

0

20

40

60

80

100

AS
R

Before recovery
Train-from-scratch
Historical-information-only
FedRecover

0.1 0.3 0.5 0.7 0.9
Degree of Non-iid

0

20

40

60

80

100

AC
P

Historical-information-only
FedRecover

0.1 0.3 0.5 0.7 0.9
Degree of Non-iid

0

20

40

60

80

100

TE
R

Before recovery
Train-from-scratch
Historical-information-only
FedRecover

0.1 0.3 0.5 0.7 0.9
Degree of Non-iid

0

20

40

60

80

100

AS
R

Before recovery
Train-from-scratch
Historical-information-only
FedRecover

0.1 0.3 0.5 0.7 0.9
Degree of Non-iid

0

20

40

60

80

100

AC
P

Historical-information-only
FedRecover

0.1 0.3 0.5 0.7 0.9
Degree of Non-iid

0

20

40

60

80

100

TE
R

Before recovery
Train-from-scratch
Historical-information-only
FedRecover

(a) TER

0.1 0.3 0.5 0.7 0.9
Degree of Non-iid

0

20

40

60

80

100

AS
R

Before recovery
Train-from-scratch
Historical-information-only
FedRecover

(b) ASR

0.1 0.3 0.5 0.7 0.9
Degree of Non-iid

0

20

40

60

80

100

AC
P

Historical-information-only
FedRecover

(c) ACP
Fig. 15: Effect of degree of non-iid on recovery from backdoor
attack. The aggregation rules are FedAvg (first row), Median
(second row), and Trimmed-mean (third row).

10 100 1000
Tw

0

25

50

75

100

%

TER
ACP

10 100 1000
Tw

0

25

50

75

100

%

TER
ASR
ACP

10 100 1000
Tw

0

25

50

75

100

%

TER
ACP

(a) Trim attack

10 100 1000
Tw

0

25

50

75

100

%

TER
ASR
ACP

(b) Backdoor attack
Fig. 16: Effect of the number of warm-up rounds Tw on
FedRecover for recovery from (a) Trim attack and (b) back-
door attack. The aggregation rules are FedAvg (first row) and
Median (second row).

1 10 100
Tc

0

25

50

75

100

%

TER
ACP

1 10 100
Tc

0

25

50

75

100

%

TER
ASR
ACP

1 10 100
Tc

0

25

50

75

100

%

TER
ACP

(a) Trim attack

1 10 100
Tc

0

25

50

75

100

%

TER
ASR
ACP

(b) Backdoor attack
Fig. 17: Effect of the correction period Tc on FedRecover for
recovery from (a) Trim attack and (b) backdoor attack. The
aggregation rules are FedAvg (first row) and Median (second
row).

10
5

10
3

10
10

25

50

75

100

%

TER
ACP

10
5

10
3

10
10

25

50

75

100

%

TER
ASR
ACP

10
5

10
3

10
10

25

50

75

100

%

TER
ACP

(a) Trim attack

10
5

10
3

10
10

25

50

75

100

%

TER
ASR
ACP

(b) Backdoor attack
Fig. 18: Effect of the tolerance rate α on FedRecover for
recovery from (a) Trim attack and (b) backdoor attack. The
aggregation rules are FedAvg (first row) and Median (second
row).

5 10 15 20
Tf

0

25

50

75

100

%

TER
ACP

5 10 15 20
Tf

0

25

50

75

100

%

TER
ASR
ACP

5 10 15 20
Tf

0

25

50

75

100

%

TER
ACP

(a) Trim attack

5 10 15 20
Tf

0

25

50

75

100

%

TER
ASR
ACP

(b) Backdoor attack
Fig. 19: Effect of the number of final tuning rounds Tf

on FedRecover for recovery from (a) Trim attack and (b)
backdoor attack. The aggregation rules are FedAvg (first row)
and Median (second row).

TABLE III: The test error rate (TER) and average cost-saving
percentage (ACP) of different variants of FedRecover for re-
covery from Trim attack on MNIST and Purchase datasets. All
values are in %. FedRecover is not applicable without warm-
up rounds. Our results show that all optimization strategies are
necessary for FedRecover.

Variant MNIST Purchase
TER ACP TER ACP

w/o periodic correction 37 93 35 97
w/o abnormality fixing 26 89 14 88

w/o final tuning 9 88 18 86
FedRecover 7 88 13 86

when recovering from Trim attack and the aggregation rule
is Trimmed-mean, the TER without approximate local model
updates is 61%, compared to 7% with approximate local model
updates. Moreover, the ASR for recovery from backdoor
attacks without approximate local model updates is higher.
Our results imply that the approximate local model updates
help recover an accurate global model.

w/ final tuning w/o final tuning
0.12

0.14

0.16

0.18

0.20

0.22

TE
R

Fig. 20: Error bar of TER of FedRecover with or without final
tuning on Purchase dataset for recovery from Trim attack. The
aggregation rule is Trimmed-mean. We run each experiment
for 10 times. The points are the mean TER and the vertical
lines are the standard deviation. FedRecover with final tuning
achieves lower TER and is more stable.

50 100 200 500 1000
Number of fine-tuning examples

0

25

50

75

100

TE
R

Fine-tuning
FedRecover

50 100 200 500 1000
Number of fine-tuning examples

0

25

50

75

100

%

Fine-tuning TER
FedRecover TER
Fine-tuning ASR
FedRecover ASR

50 100 200 500 1000
Number of fine-tuning examples

0

25

50

75

100

TE
R

Fine-tuning
FedRecover

(a) Trim attack

50 100 200 500 1000
Number of fine-tuning examples

0

25

50

75

100

%

Fine-tuning TER
FedRecover TER
Fine-tuning ASR
FedRecover ASR

(b) Backdoor attack
Fig. 21: Comparing FedRecover with fine-tuning for recovery
from (a) Trim attack and (b) backdoor attack. The aggregation
rules are FedAvg (first row) and Median (second row).

0.001 0.01 0.1 1.0
0

25

50

75

100

TE
R

Fine-tuning
FedRecover

(a) Trim attack

0.001 0.01 0.1 1.0
0

25

50

75

100

TE
R

Fine-tuning TER
FedRecover TER
Fine-tuning ASR
FedRecover ASR

(b) Backdoor attack

Fig. 22: Comparing FedRecover with fine-tuning for recovery
from (a) Trim attack and (b) backdoor attack when the fine-
tuning dataset distribution deviates from the overall training
data distribution. The aggregation rule is Trimmed-mean and
the size of fine-tuning dataset is 1,000.

	Introduction
	Background and related work
	Background on FL
	Poisoning Attacks to FL
	Detecting Malicious Clients
	Machine Unlearning

	Problem Definition
	Threat Model
	Design Goals
	Server Requirements

	FedRecover
	Overview
	Estimating Clients' Model Updates
	Optimization Strategies
	Complete Algorithm
	Theoretical Analysis

	Evaluation
	Experimental Setup
	Datasets
	FL Settings
	Attack Settings
	Recovery Settings
	Compared Methods
	Evaluation Metrics

	Experimental Results

	Discussion and Limitations
	Security/Privacy Concern of Storing Historical Information
	Clients Dropout
	Storage and Computation Cost for the Server

	Conclusion and Future Work
	References
	Appendix A: Proof of Theorem 1
	Appendix B: FedRecover w/o Approx. Local Model Updates

