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Abstract—Estimating the size of a botnet is one of the most
basic and important queries one can make when trying to under-
stand the impact of a botnet. Surprisingly and unfortunately, this
seemingly simple task has confounded many measurement efforts.
While it may seem tempting to simply count the number of IP
addresses observed to be infected, it is well-known that doing
so can lead to drastic overestimates, as ISPs commonly assign
new IP addresses to hosts. As a result, estimating the number
of infected hosts given longitudinal datasets of IP addresses has
remained an open problem.

In this paper, we present a new data analysis technique,
CARDCount, that provides more accurate size estimations by
accounting for IP address reassignments. CARDCount can be
applied on longer windows of observations than prior approaches
(weeks compared to hours), and is the first technique of its
kind to provide confidence intervals for its size estimations. We
evaluate CARDCount on three real world datasets and show
that it performs equally well to existing solutions on synthetic
ideal situations, but drastically outperforms all previous work in
realistic botnet situations. For the Hajime and Mirai botnets, we
estimate that CARDCount, is 51.6% and 69.1% more accurate
than the state of the art techniques when estimating the botnet
size over a 28-day window.

I. INTRODUCTION

Empirically measuring botnets is critical to understanding
how they operate, the threat they pose, and ultimately how to
mitigate them. One of the most basic yet important questions
researchers ask about botnets is: how big are they, and how
does their size change over time? Although these are such
simple questions, accurately measuring the size of a botnet
turns out to be incredibly challenging. Ideally, each bot would
have a unique, long-lived identifier that a researcher could
ascertain. While a small number of botnets do offer such
identifiers (e.g., Hajime bots can be queried for a public key
that they generate each time they reboot [10]), for most botnets
the only identifiers are the bots’ IP addresses.

It is therefore tempting to simply count IP addresses, but
unfortunately—as is now well-known in the community—
this can yield wildly inaccurate results. For instance, Stone-
Gross et al. [26] showed that counting the daily IP addresses

overestimated the size of the Torpig botnet by 36.5%. The
primary reason for this is that IP addresses are not necessarily
long-lived identifiers; ISPs regularly reassign IP addresses,
sometimes after short intervals (e.g., a couple of hours) [18].

Left with no better alternatives, researchers have continued
to use IP addresses to count bots, but limit their analyses to
short windows of time: typically 15–60 minutes. While op-
erating over short time-windows helps avoid double-counting
bots that obtain new IP addresses, it introduces at least two
unfortunate limitations in our understanding of botnets: First,
counting the number of bots every 15–60 minutes misses out
on important diurnal patterns that happen on daily or weekly
intervals. For instance, if the bots in one country experience a
daily lull at the same time that another country experiences
a daily spike, then limiting the analysis to small windows
of time might make it appear that the set of bots remains
largely unchanged over time. Second, it makes it difficult to
understand the impact of changes to the botnet itself. Herwig
et al. [10] observed that the Hajime botnet rapidly increased
in size immediately after rolling out the Chimay Red exploit.
However, prior techniques do not permit direct comparisons
of bots between windows of time, making it difficult to
understand who precisely the new bots are.

In this paper, we introduce a new data analysis approach
to count IP addresses that accounts for IP address assignment
durations. Our approach builds off of prior work that observed
that ISPs tend to follow a predictable reassignment dura-
tion [18]; for instance, Telefonica in Spain has been reported
to reassign approximately 90% of its IP addresses at precise
24-hour intervals. Our central insight is that we can use per-AS
(autonomous system) models of address assignment durations
to calculate the probability that two IP addresses measured at
different points in time correspond to the same physical bot.

We call our approach CARDCount (Considering Address
Reassignment Duration when Counting). In contrast to tradi-
tional counting approaches which consider only IP addresses,
CARDCount also incorporates per-AS distributions of IP
address durations. These distributions are readily available,
thanks to prior work [18], [19], and continue to be collected
with efforts such as RIPE Atlas [4], a set of network probes
distributed across thousands of networks around the world. Our
primary contribution is in the formulation, evaluation, and ap-
plication of an analytical framework that shows that combining
these datasets, with the datasets that botnet researchers collect,
we can more accurately count bots regardless of IP address
reassignments.
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Accounting for address assignment durations confers many
benefits over traditional approaches to botnet size estimation.
First, CARDCount can be applied to large windows of time
(weeks or more), and is not limited to the standard small
windows of 15–60 minutes. We show that when estimating the
size of real botnets (Hajime and Mirai) over 28-day windows,
CARDCount is 69% more accurate than the state of the art
tool. Second, CARDCount takes advantage of the probabil-
ity distributions of address assignment durations to compute
confidence intervals over the botnet sizes it estimates. These
allow researchers to reason with greater statistical certainty,
especially over large time windows.

Contributions We make the following contributions:

• We introduce CARDCount, a data analysis method
that accurately estimates (with confidence intervals) a
botnet’s size by accounting for IP address assignment
durations (§III).

• We compare CARDCount to state of the art bot count-
ing approaches on a ground-truth dataset, showing that
CARDCount is more resilient to confounding factors
such as churn or incomplete data (§IV).

• We show that CARDCount outperforms existing ap-
proaches when applied to real botnet measurements of
Hajime and Mirai (§V).

• We make our code and per-AS distribution data pub-
licly available at https://github.com/CardCount.

II. BACKGROUND AND RELATED WORK

We consider the following basic setting that is typical in
work that measures botnets. We assume that a measurement
infrastructure can periodically ascertain a set ST of bots’ IP
addresses over some window of time T (e.g., the amount of
time it takes to scan the botnet). Often, these windows of time
are small (on the order of a couple hours), but often repeated
to obtain longitudinal datasets spanning weeks, months, or
even years. The precise methods of measurement vary, for
instance, actively scanning a botnet’s command and control
infrastructure [10] or passively capturing attack traffic [7], [3].

While there are many reasons for studying botnets, we
focus in this paper on arguably the most common one: de-
termining how many hosts comprise the botnet. There are
two predominant ways by which prior work has attempted to
answer this question by counting IP addresses. We review these
techniques, and then we review the papers that apply them.

A. IP-based Size Estimation Techniques

a) Binned IP Counting (BinCount): The most common
technique for botnet size estimation is to simply count the
number of unique IP addresses seen within a small bin of
time. We will refer to this technique as BinCountT where T
represents the size of the time bin:

BinCountT = |ST |

There are two confounding factors that make BinCount
impractical or, at the very least, difficult to interpret. The first

is IP address reassignments: ISPs typically assign dynamic
IP addresses to their customers, and through DHCP can
periodically reassign them a new IP address. If a given bot’s
IP address changes within the observation window T , then
that one bot can be double-counted, leading BinCount to over-
estimate. To minimize the chances of double-counting, many
researchers prefer to use the smallest time windows possible,
but this exacerbates the next concern.

The second confounding factor is diurnal patterns: it has
been shown that botnets (including IoT botnets) exhibit diurnal
patterns, increasing or decreasing in size when users are at
home or at work. For globe-spanning botnets, this means
that there is no single window of time T during which the
number of bots is maximized across all countries. Thus, while
BinCount may accurately capture the number of bots for short
windows of time, it does not help in answering how many hosts
are infected worldwide over the course of a day or longer.

b) Max Simultaneously Active IPs (MaxCount): To
further reduce the impacts of address reassignment, another
popular approach is to count the number of IP addresses
that are simultaneously active at any point in time p. More
precisely, this means that the IP addresses were observed to
be sending messages before and after p. To compute this, an
IP address is assumed to be continuously active as long as it
sends a message every τ seconds. The size of the botnet is then
estimated by taking the maximum number of simultaneously
active IP addresses. We refer to this method as MaxCount:
More precisely, suppose that SpT represents the set of IP
addresses simultaneously active at time p, then:

MaxCount = max
p
|SpT |

Yan et al. [29] improved upon MaxCount by observing
that IP churn commonly occurs within an Autonomous System
(AS). They proposed computing MaxCount on a per-AS basis,
and then aggregating the sum over all of the ASes, even if the
maxima per AS are at different times p. We refer to this as
MaxCountAS . More precisely, if ASi(S

p
T ) denotes the subset

of IP addresses from SpT that are in ASi, then:

MaxCountAS =
∑
i

max
p
|ASi(S

p
T )|

MaxCount (in both variants) has two main benefits over
BinCount with small bin sizes. First, it does not rely on any
pre-specified bin size and identifies the maximum number of
hosts on a continuous scale. Second, by looking at each AS
independently it is less affected by diurnal patterns occurring
at different times throughout the world.

Despite these benefits, MaxCount still has several draw-
backs. Most importantly, it only counts IP addresses that are
active simultaneously, and thus, as we will demonstrate, if the
measurement infrastructure is unable to achieve nearly perfect
coverage of an AS, then it suffers from under-estimating the
size of a botnet.

As we will demonstrate, our technique, CARDCount, ad-
dresses these shortcomings.
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TABLE I: Summary of counting technique usage to estimate
the size of botnets.

Technique Papers Botnet(s)

BinCount20m [10] Hajime
BinCount1h [15], [3], [26] Sality, Mirai, Torpig
BinCount2h [13] Storm
BinCount24h [12], [13], [11], [23], [15], [1], [26] Storm, Sality, ZeroAccess,

Torpig, Multiple P2P
BinCount14d [17] Multiple
BinCount1mo [11] Storm
BinCountmax [20], [25], [16], [26] Multiple IRC, Walowdac, Sal-

ity, ZeroAccess, Torpig
MaxCount [20], [11], [9] Multiple IRC, Storm, Sality,

ZeroAccess
MaxCountAS [29] Sality, ZeroAccess

B. Counting Botnet Infections

We have identified 14 papers dating back to 2004 that
have provided estimates for various botnets’ sizes, summarized
in Table I. We observe that BinCount is the most prevalent
counting approach, with 11 papers using it exclusively and
two additional papers reporting both MaxCount and BinCount
results. The most common bin size is 24h with seven out of
13 papers using it. This is somewhat surprising, as IP address
reassignment often occurs more quickly than 24h [18], [19].
Four papers use a MaxCount variant; of these, only Yan et
al. [29] use MaxCountAS , even though it provides the most
accurate lower bound estimates. In addition to the IP address
counting listed in Table I, some papers also measure botnet ID
counts [25], [3], [10], indicating that even when a botnet has
countable IDs, it is still valuable to researchers to be able to
accurately count IP addresses.

Three papers discuss the challenges of estimating a botnet’s
size. Rajab et al. [20] investigate how different botnet counting
approaches lead to vastly different size estimations. As part of
their study, they report on both the total aggregate (BinCount)
and simultaneously active IP addresses (MaxCount). They sug-
gest combining multiple independent measurements. Kanich
et al. [13] investigate measurement inaccuracies caused by IP
address reassignments, other researchers, and differences in the
measurement approach. While they highlight and investigate
the problem of IP address assignment durations, they do not
propose a solution to the problem. Finally, Stone-Gross et
al. [26] showed that counting the daily IP addresses of the
Torpig botnet overestimated the size by 36.5%. They further
observed that this overestimation varied by AS, and posited
that a per-AS analysis technique might help achieve greater
accuracy; our paper, at last, develops this idea.

III. CARDCOUNT TECHNIQUE

In this section, we describe our CARDCount methodology
for inferring how many hosts correspond to a set of IP
addresses over some period of time. We also show how to
compute confidence intervals over these estimates; to the best
of our knowledge, this is the first bot-counting technique to
do so. We begin by setting up the problem that CARDCount
seeks to solve.
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Fig. 1: Example IP address duration distributions

A. Problem Setup

Consider the following common scenario: a researcher has
measured a botnet over some duration of time T and has
obtained A distinct IP addresses by crawling or interacting
with the set of active bots during that time. The goal is to
determine the number of actual infected hosts H those IP
addresses correspond to.

As noted in Section II, the number of IP addresses (A)
is typically significantly larger than the number of hosts (H)
over a long window of time T . Prior work has observed that
this is predominantly due to the fact that any given host can
be assigned multiple IP addresses over time [20], [13].

The key insight behind CARDCount is to infer how each
individual AS reassigns its IP addresses, and to use data about
address assignment durations to estimate the number of hosts.
As a strawman example: if every host on the Internet were
assigned a new IP address every r seconds, then over a period
of time T , each host would have T/r IP addresses. Thus, A
addresses over time T would correspond to Ar/T hosts.

This is the main thrust of CARDCount, but of course this
toy example fails to account for two critical realities: First,
not every host on the Internet is reassigned its IP address on
some consistent, global schedule; rather, different ASes assign
IP addresses for different durations. We account for this by
using complementary datasets about AS’ address assignment
durations. Second, not all hosts obtain their IP addresses at the
same time; hosts come online at different times, restart due to
failures, and so on. As a result, even if a host obtained a new
IP address every 24 hours, they might obtain a new IP address
seconds into our window of observation T . We address this
with a mathematical model that accounts for how much hosts’
IP addresses overlap with our observation window.

In the remainder of this section, we discuss how CARD-
Count addresses these practical concerns.

B. IP Address Durations

The intuition behind CARDCount is that if we can un-
derstand the rates at which an individual ASes reassigns its
IP addresses, then we can estimate how many hosts a given
number of IP addresses correspond to. For instance, if an AS
reassigned IP addresses every 24 hours, and if we observed 7
addresses from that AS over the course of a week, then we
could estimate that those addresses correspond to a single host.
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Fig. 2: Computing how much a given IP address assignment
of duration d overlaps with an observation window of length
T . (Note the x- and y-axes have different scales.) Annotated
values denote the areas of the given regions; the area of the
entire shape is d(T − d) + d2 = d · T .

In order to perform this analysis, CARDCount requires
address assignment duration distributions of each AS for each
IP address under consideration. Although ISPs do not typically
make this information publicly available, Padmanabhan et
al. and Griffioen et al. [18], [8] have both independently
shown that address assignment durations can be measured
directly. For instance, Padmanabhan et al. used data from RIPE
Atlas probes: these are small measurement vantage points
deployed across thousands of networks around the world that
regularly perform basic measurement tasks (e.g., pinging root
DNS servers, performing traceroutes to target servers, etc.).
RIPE data is available to researchers, and Padmanabhan et
al. showed how to infer when a RIPE Atlas probe’s IP address
has changed, allowing them to measure assignment durations.

A core finding of these prior efforts is that, while IP address
assignment durations differ across ASes, durations within an
AS tend to exhibit repeated patterns. Addresses within a given
subnet exhibit even stronger similarity [8]. Figure 1 depicts
two example IP address assignment distributions for the ASes
3320 (DTAG: Deutsche Telekom in Germany) and 577 (BELL
Canada) taken from the RIPE Atlas probe dataset [19] from
2018. Two-thirds of DTAG’s IP addresses are assigned for 24h.
In contrast, BELL Canada has no discernible reassignment
period, with assignment durations assigned almost uniformly
at random throughout this observation window.

CARDCount takes each AS’s address assignment duration
distribution as input and computes their mean and variance.
(We detail how CARDCount applies these next.)

As a practical matter, when applying these datasets to
CARDCount, it is ideal to use distribution data that was
collected at approximately the same time as the botnet IP
address data, but there is some flexibility here. Prior work
showed that while address assignment policies can change, the
changes are infrequent [18], [19]. We use the existing datasets
for address assignment durations, as they were collected con-
temporaneously with the botnet data we analyze.

C. Accounting for Overlap with the Observation Window

As mentioned in §III-A, there is no global address re-
assignment schedule that all ASes follow; addresses can be

reassigned at any time, on any day. Thus, it is possible that
any host that is observed during an experiment’s observation
window was assigned its first observed IP address before the
experiment began. Similarly, a host may obtain a new IP
address shortly before the observation window ends.

In trying to convert the number of IP addresses A into an
expected number of hosts, it is important to account for the
fact that some addresses may have only overlapped for short
periods of time with the window of observation. CARDCount
accounts for this overlap by computing O(d, T ): the expected
amount of overlap that an IP address with duration d would
have with an observation window of duration T .

Figure 2 shows how we compute how much an IP address
with duration d overlaps with an observation window of length
T .1 If the observation window starts at time 0, then an IP
address will overlap with the window only if its assignment
started between time −d and T . Assuming that address reas-
signments can occur at any time chosen uniformly at random,
the probability of an overlapping IP address starting at any
given time in the range [−d, T ] is equal to 1

d+T . The average
amount of overlap is equal to the area of the trapezoid depicted
in Figure 2, which is equal to d ·T . Thus, the expected amount
of overlap, O(d, T ), given average duration d and observation
window size T , is equal to the average overlap times the
probability:

O(d, T ) = (d · T ) · 1

d+ T
=

d · T
d+ T

(1)

When d is much smaller than T , the overlap approaches d. To
see this, suppose that d = εT for some very small ε > 0 (e.g.,
d is on the order of minutes and T is on the order of months).
Then we get O(d, T ) = d·T

(1+ε)T = d
1+ε ≈ d. However, we

caution against simply using d instead of O(d, T ), as even
small values of ε can aggregate when considering the sizes of
large botnets.

Equation 1 gives us the expected overlap for a given IP
address duration d. It will also be useful to compute the
average overlap across a distribution of address durations
D. We denote this as Ō(D,T ) and compute it as follows,
assuming that we have taken n discrete samples {d1, . . . , dn}
from D:

Ō(D,T ) =
1

n

n∑
i=1

O(di, T ) =
1

n

n∑
i=1

di · T
di + T

(2)

Because the samples are selected independently, this in
essence gives us a weighted sum corresponding to the expected
overlap for any IP address whose duration is drawn from the
distribution D.

D. Estimating Botnet Sizes

We are now able to present precisely how CARDCount
estimates the number of hosts in a botnet upon observing A
addresses over an observation window of duration T .

1Note that Figure 2 assumes that d ≤ T . When d > T , a similar geometric
argument can be made, and it turns out that the resulting expected overlap is
precisely the same as Equation 1.

4



CARDCount analyzes each AS differently. It breaks up the
number of addresses A into the number of addresses across
each AS: if AS k has Ak addresses then A =

∑
k Ak. Then,

it estimates the number of hosts on a per-AS basis.

The expected number of IP addresses that will be assigned
per host from AS k with duration distribution Dk, number of
samples nk, over time window T is:

T
/
Ō(Dk, T ) = 1

/
1

nk

nk∑
i=1

di
di + T

(3)

Thus, the expected number of hosts for AS k with Ak
addresses is simply Ak divided by the expected number of
IP addresses per host:

CARDCount(Ak, Dk, T ) = Ak

/
T

Ō(Dk, T )

= Ak ·
1

nk

nk∑
i=1

di
di + T

(4)

Across the entire dataset, we estimate the total number
of hosts by summing Equation 4 across all of the ASes:∑
k CARDCount(Ak, Dk, T ).

E. Computing Confidence Intervals

CARDCount relies on the mean observed durations in order
to make its estimates. While the law of large numbers dictates
that with sufficiently large samples, i.e., number of assigned
IP addresses, the mean of the samples will reflect the mean of
the distribution, the mean may still deviate depending on the
standard deviation of D and the sample size.

In order to compute how large the possible error of
CARDCount could be in practice, we compute the confidence
intervals as follows. While the input distribution Dk for a
given AS k is usually not normally distributed, the central limit
theorem states that the means of any distribution are normal
for large sample sizes Ak. Therefore, we can estimate the 95th
percentiles for a given AS k using the central limit theorem:

CARDCount(Ak, Dk, T ) ± 1.96 · σk√
Ak

where σk is the mean sample standard deviation of the distri-
bution Dk. To compute the aggregate confidence intervals, we
sum across all of the ASes:∑

k

CARDCount(Ak, Dk, T ) ±
∑
k

1.96 · σk√
Ak

Based on common recommendations, these confidence inter-
vals can be computed when the number of samples Ak > 30.
In instances where Ak ≤ 30, it is still possible to compute
confidence intervals, but not with the above formulas. Instead,
we repeat drawing Ak samples from the distribution 1000
times and then compute the confidence intervals over those
1000 rounds of sampling.

F. Assumptions and Threats to Validity

The above mathematical model makes several tacit as-
sumptions related to confounding factors that, if violated,
could affect the accuracy of CARDCount. As most of these
confounding factors apply to all counting approaches, we
discuss and empirically evaluate them—based on real world
data and simulations—in Section IV.

IV. EVALUATION USING GROUND TRUTH

Our overarching goal with the CARDCount approach is to
improve the accuracy with which botnet sizes are estimated,
even in the presence of confounding factors such as short IP
address durations, bot churn, etc. In this section, we begin
by describing different factors that can affect the accuracy of
botnet size estimation techniques. Next, we describe the RIPE
Atlas dataset. We use this dataset for two purposes: to obtain
IP address assignment duration distributions for ISPs and also
as a source of ground truth against which we can evaluate the
accuracy of different techniques. We then proceed to evaluate
the accuracy of CARDCount for estimating botnet sizes under
various settings and in the presence of confounding factors,
and compare against state of the art approaches.

A. Confounding factors for botnet size estimation techniques

A1. Short IP address durations Short IP address durations
would lead prior techniques such as BinCount to overestimate
the number of bots. This factor is the main motivator for
alternate approaches such as CARDCount and MaxCount, that
mitigate overestimation caused by IP reassignments.

A2. Bot churn Botnet size estimation techniques usually do
not account for bot churn; specifically, they assume that all
bots are online through the entire measurement period T . This
factor can lead CARDCount and MaxCount to underestimate
the number of bots. As an extreme example, consider a
time window T of 7 days and an average duration d of 1
day, and suppose we observed A = 7 total IP addresses in
that time. CARDCount would estimate that this constituted
a single host. But with churn, it is possible that each of
the 7 addresses was a single bot entering the system and
then leaving before obtaining a new IP address. In a sense,
what CARDCount computes is the weighted lifetime of active
bots: although in this example there were 7 bots, each only
lived for 1/7 of the duration window, resulting in a weighted
average of 1 bot. MaxCount would also underestimate the
number of bots in this case if their IP addresses are not
observed simultaneously. Conversely, BinCount would not be
affected by this confounding factor, since each observed IP
address would be interpreted as a bot. Similar to MaxCount,
CARDCount can limit the effect of bot churn by decreasing
the size of the observation window. In our simple example, a
time window of T = 1 would allow CARDCount to accurately
estimate the botnet’s size for every single day.

A3. Capturing partial bot activity Although botnet mea-
surement efforts have become impressive over the years,
measurements remain imperfect, and may not track all bots’
IP addresses all the time. Recall that MaxCount tries to
account for this by assuming that if an address was seen at
measurement intervals i − 1 and i + 1 then it was probably
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also active at interval i. For CARDCount, it will lead to an
underestimate only if we miss one of a bot’s IP addresses
entirely; so long as we see any IP address at least once,
CARDCount properly accounts for it.

A4. Accuracy of the address duration distributions
CARDCount makes use of additional datasets to ascertain the
address assignment duration distributions, Dk. This introduces
another potential source of error: how does CARDCount fare
when the empirically measured distributions are not accurate?
Note that BinCount and MaxCount are not affected by this
confounding factor, since they do not model address assign-
ment distributions. If the true mean of Dk is larger than what
is measured, then CARDCount will underestimate the botnet’s
size (because it will think that addresses are changing more
frequently than they are). However, we show empirically that
CARDCount is surprisingly robust to even large errors in the
distributions.

A5. Shared IP addresses The scarcity of IPv4 addresses has
led to a large scale adoption of Network Address Translation
(NAT) in both home and carrier networks. This may lead to
multiple bots sharing a single public IP address. Consequently,
all IP based measurements, including CARDCount, will un-
derestimate the actual number of bots. Furthermore, absent
bot-unique identifiers, there exist no approaches to count the
number of bots behind NAT. While this topic should clearly be
addressed, its complexity [21] prevented us from including it
in this paper. In §VI we discuss this topic in greater detail, and
how similar concepts used for CARDCount could be applied
to shared IP addresses.

In the rest of this section, we evaluate the extent to which
each of these potential confounding factors actually impacts
CARDCount’s results in practice. In Section VI, we also
discuss other potential limitations to CARDCount.

B. The RIPE Atlas dataset

The RIPE Atlas2 dataset provides reliable ground truth
about the status of hosts and their IP address assignments. This
dataset allows us to achieve two goals: it provides us with a
source of empirical IP address distributions from ASes around
the world and also enables us to measure the accuracy of
CARDCount, BinCount, and MaxCount in a controlled setting
(i.e., where the number of “bots” is known). We considered
using other datasets as a source of ground truth; however, while
some botnets implement botnet specific identifiers [10], [6],
[2] or can be fingerprinted [8], these identifiers are volatile
and cannot provide reliable ground truth.

RIPE Atlas overview: In 2018 The RIPE NCC’s Atlas
project deployed more than 10,000 hardware devices (called
“probes”) in volunteers’ networks around the globe. All RIPE
Atlas probes conduct periodic measurements, called “built-
in” measurements, such as pings, traceroutes, and DNS mea-
surements. The RIPE NCC makes efforts to deploy Atlas
probes across diverse ASes in countries around the world and
represents ASes in Europe and North America particularly
well. Though its coverage in other parts of the world is lower,

2https://atlas.ripe.net/

the number of probes has almost doubled since 2018. More-
over, the Atlas project actively aims to diversify its coverage,
having at least one probe in 86.2% of all countries in 2022.
Furthermore, it remains one of the largest publicly available
datasets of IP address durations, and as a result, has been
used to shed considerable light on dynamic address assignment
patterns and practices employed by various ASes [18], [19].

Obtaining IP address durations and host-counts: We ob-
tained our IP address durations dataset—which serves as
the input for CARDCount’s address assignment duration
distributions—from RIPE Atlas. We used the methodology
described by Padmanabhan et. al [19] to obtain this dataset
and we summarize it below. Every RIPE Atlas probe has a
globally unique identifier (“probe-ID”). This identifier persists
across reboots and is included in each measurement reported
by the probe. For obtaining IP address durations, we harness
the “IP echo” built-in measurement. RIPE Atlas probes are
configured to automatically run “IP echo” measurements every
hour towards a measurement server operated by RIPE. In
each IP echo measurement, a RIPE Atlas probe executes
an HTTP GET request to the RIPE-controlled measurement
server, which in turn echoes back the IP address of the client
as seen by the server. The response contains the publicly
visible IP address of the client in the “X-Client-IP” field in the
response header. The probe then reports this response, which
contains its IP address and its unique probe-ID (and other
fields such as the measurement-time), to a RIPE-controlled
server that collects and processes measurements. By stitching
together the IP addresses seen over time for each probe-ID,
we are able to observe when clients’ addresses change, and
thereby arrive at the duration that each address is assigned.

The address available in the “IP echo” measurement is
typically that of a Customer Premises Equipment (CPE) device
(like a home router), especially in the residential ASNs that
our study focuses on. Sometimes, the ASN in which the probe
is housed may be using CG-NATs (Carrier-Grade NATs), in
which case the address in the IP echo measurement is one
of the addresses from the CG-NAT’s address pool [21]. Prior
work [18], [19] has shown that the prevalence of CG-NATs in
the RIPE Atlas dataset is low, since the vast majority of ASes
with more than 20 RIPE Atlas probes (we focus on these ASes
in this work) are major residential ISPs in Europe and North
America that are not using CG-NATs [21].

Since our datasets of the Hajime and Mirai botnet used
in Section V are both from 2018, we obtained IPv4 address
durations from RIPE Atlas for the same year. We follow the
recommendations from Padmanabhan et al. [19] to filter probes
deployed in atypical scenarios that can lead to the inference
of false assignment changes. Specifically, we filter out probes
that were observed for very short durations, probes that are
multihomed (since inferred addresses changes on such probes
could be spurious), probes that are not in residences (using
user-provided and RIPE-provided tags), and probes deployed
behind atypical NATs [19].

We obtained probe-counts from the Atlas dataset by count-
ing the number of unique probe-IDs within the measurement
duration T . Since every probe-ID is unique and persistent, the
probe-count we obtain in this manner accurately represents the
number of Atlas probes active during that time. Furthermore,
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TABLE II: Size estimation for RIPE Atlas probes in 2018

T = 1 day (std) 7 days (std) 28 days (std)

CARDCount 0.98 (0.0056) 0.96 (0.0090) 0.91 (0.0102)
MaxCountAS 1.00 (0.0011) 0.99 (0.0024) 0.97 (0.0039)
MaxCount 0.99 (0.0017) 0.98 (0.0035) 0.95 (0.0057)
BinCountT 1.14 (0.0107) 2.06 (0.0417) 5.12 (0.1165)

to obtain reliable distributions D we limited ourselves to ASes
with probe-counts of at least 20 probes.

Key advantages of the Atlas dataset: The RIPE Atlas
dataset has several characteristics that make it ideal for the
evaluation of CARDCount. In contrast to botnet-ID-based
datasets, RIPE Atlas probes have a unique, persistent identifier.
Thus, we can infer probe counts accurately, and we use these
probe counts as a source of ground truth against which we
compare the size estimates based on IP addresses. Moreover,
the individual probes actively contact the servers at regular
intervals, whenever they are turned on and connected to the
Internet, providing a reliable source of address durations.

C. Evaluation in different scenarios

Next, we evaluate CARDCount, BinCount, and MaxCount
against the ground truth Atlas dataset in the presence (and
absence) of confounding factors and evaluate their accuracy.
We define accuracy as the estimate of botnet size divided by
the actual number of bots.

1) Minimal confounding factors: Our first experiment cov-
ers the size estimation of the RIPE ATLAS probe dataset
without any modifications. The population of RIPE Atlas
probes experiences relatively little churn. This behavior is
very atypical of botnets [8], [10]. Nevertheless, measuring the
accuracy of the approaches in this setting allows us to obtain
a baseline for further experiments that simulate confounding
factors on top of the RIPE Atlas dataset.

We compare three different measurement windows aligned
to common human patterns of one day, one week, and one
month (T = 1d, 7d, 28d). We chose these values as they are
most likely to capture human influenced diurnal and other
churn patterns, i.e., if a machine is used once a day, a week or
a month, which should be captured by the chosen intervals.
Table II shows the accuracy and standard deviation of the
different approaches.

Of these approaches MaxCountAS provides the best ap-
proximation of the total population in all three observation
windows, followed by MaxCount, CARDCount, and BinCount
in that order. This high accuracy is a result of the dataset
collection process. As Atlas probes are stand-alone devices
intended to provide continuous measurements, they typically
remain active for long periods of time and are rarely turned
off. Consequently, even probes that churn are typically active
simultaneously at least once within the analyzed window sizes.
Hence, both variants of MaxCount perform well in these
conditions. However, as we will show later, MaxCount strongly
drops in performance in the presence of more erratic churn
behavior, which is common in botnet measurement [7].

CARDCount performs slightly worse than MaxCount in
this scenario. We investigated the cause and found that CARD-

Count is more affected by the type of churn present in the
RIPE Atlas dataset. While probes are active simultaneously
at least once, churn causes the probes to generate fewer IP
addresses than they normally would. As discussed in (A2)
CARDCount tends to estimate the weighted lifetime of active
bots if they are not active throughout the entire window T .
This can be seen in Figure 3, which visualizes the results of
Table II. It clearly shows that CARDCount closely matches the
weighted average active population of the RIPE Atlas dataset.
Moreover, we can see that the ground truth value lies within
the confidence intervals of CARDCount.

Lastly, BinCount’s accuracy is the worst, with more than
12% overestimation, for even small observation windows of
T = 24h. This is related to many ASes reassigning IP
addresses within 24h.

We also observe that for all counting approaches the size
estimation worsens for longer observation windows T . For
MaxCount this can be explained by a decreasing likelihood
that all devices that were active over a month are all active
at the same time. CARDCount’s case is similar: bot churn
increases over longer periods and some bots consequently do
not generate IP addresses throughout the entire period (A1).
For BinCount, the reassignment of IP addresses leads to an
ever increasing count even if the number of hosts remains
constant (or as in our case, when it decreases over time).

2) Effect of short address durations: We next examine how
the address duration distributions within individual ASes af-
fects the accuracy of various approaches. Intuitively, we would
expect ASes with short assignment durations to adversely
affect BinCount and for longer address durations to not have as
much of an effect. Figure 4 shows how each approach’s accu-
racy is affected by the mean IP address assignment duration per
AS and confirms this intuition. BinCount’s accuracy is worse
when IP address assignment durations are short. CARDCount
is also affected as shorter address duration in combination with
host churn leads to larger underestimations (A1). In contrast
MaxCountAS is not affected by the mean address duration.

3) Partial Monitoring Coverage: With this experiment we
want to simulate the confounding factors of (A2) bot churn,
and (A3) capturing partial bot activity. The most important
differences between the RIPE Atlas dataset and real world
botnet measurements are bot churn and discovery delays.
Griffioen et al. [7] reported that most Mirai bots have a
lifetime of a few hours, highlighting extreme amounts of churn.
Similarly, measuring large botnets with telescopes or active
crawling may easily delay the discovery of a newly infected
bot by a few hours. Therefore, the amount of churn, specifically
short term bot churn, in real world botnets is much higher than
in the RIPE Atlas dataset. To simulate these high amounts of
churn in combination with capturing only partial bot activity
we did the following.

We chunked the RIPE Atlas dataset into one hour blocks
and for each hour chose with a probability of 80%, 50% or
30% if a given host was captured by our measurement during
that hour. These values were chosen to represent a range from
mild to heavier amounts of bot churn.

While a rudimentary simulation, it represents most com-
mon cases of bot churn, i.e,. devices being inactive for short
to long durations, and perceived bot churn, i.e,. not capturing
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(c) Size estimate with T = 28d

Fig. 3: Size estimation over varying observation windows T with unaltered ATLAS probe data. The shaded area depicts the 95th
confidence intervals of CARDCount. We omitted BinCount for T = 28d to keep the figure readable.
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Fig. 4: Estimation error of counting approaches in relation to
mean assignment durations. MaxCount is not affected, whereas
CARDCount and BinCount are more accurate for higher mean
assignment durations.

TABLE III: Accuracy with limited coverage per hour.

Bots/h 1 day 7 days 30 days

CARDCount
80% 0.97 0.95 0.91
50% 0.96 0.95 0.90
30% 0.95 0.93 0.89

MaxCountAS

80% 0.89 0.91 0.90
50% 0.63 0.67 0.67
30% 0.42 0.47 0.48

MaxCount
80% 0.81 0.81 0.78
50% 0.52 0.52 0.50
30% 0.32 0.32 0.32

BinCount
80% 1.14 2.05 5.12
50% 1.12 2.03 5.06
30% 1.10 1.98 4.96

the activity of a bot in a given time window. Furthermore,
for a lesser probability of activity, bots may be inactive for
longer periods of time, similar to diurnal patterns. Other factors
such as not observing a bot at all, is a problem of the actual
measurement, rather than the applied data analysis approach.
We also did not simulate IP addresses being reassigned to

multiple bots, as we lack a proper model. However, analysing
the data available to us, this is not a frequent occurrence.

The results of this experiment are presented in Table III.
We can see that both CARDCount and BinCount are almost
not affected at all by the changes, even at an hourly coverage
as low as 30%. This is because both approaches take as input
only whether an IP was seen in a given observation window
or not. Therefore, even if we only see 30% of the botnet in
a given hour, we will likely see the assigned IP address at
least once throughout the day. Given that the shortest known
reassignment durations are 4 hours [8] and more commonly
12 or 24 hours [18], we have a probability of 75.99% (4h),
98.62% (12h), and 99.98% (24h) to see the bot once while its
IP address was assigned. MaxCount and MaxCountAS perform
much worse in this scenario. This is to be expected, as even
within an AS, only a small fraction of bots will be observed
at the same time, limiting the number of bots that can be
observed active simultaneously by MaxCountAS . Interestingly,
MaxCountAS covers a much higher fraction of the total
population than the fraction of the population seen per hour,
e.g., 89.2% for a coverage of 80% over an observation window
of one day. The reason for this is the focus on individual
ASes. While it is nearly impossible to observe 89.2% of the
total population given the odds of including a host with 80%
probability, the probability of seeing more than 80% of smaller
ASes in an hour is quite likely. Since MaxCountAS computes
the sum of peaks of each individual AS, the peaks can occur at
different times throughout the observation window. Therefore,
a total sum exceeding the expected value of 80% becomes
likely as seen in these experiments.

Figure 5 provides a more in-depth look for T = 1d, which
is the most common observation window observed in Table I.
It once again shows that CARDCount and BinCount are only
minimally affected by the reduced coverage. In comparison,
both variants of MaxCount strongly underestimate the ground
truth population. Interestingly, the two widely applied estima-
tors, BinCount and MaxCount, are also the most inaccurate
estimators of population size, in settings with IP address churn,
device churn, and limited monitoring coverage.
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(c) Botnet coverage 30%/hour 1d

Fig. 5: Size estimation over one day windows and varying fractions of the hosts covered by the simulated measurement.
CARDCount outperforms the state of the art in all three scenarios of limited coverage.

The high amounts of churn simulated by coverage of 50%
and 80% lead to the ground truth being outside the confidence
intervals of CARDCount. This is because the confidence
intervals address errors of sampling from the distribution D,
but just like all other approaches cannot account for unknown
confounding factors such as bot churn. However, even for the
most extreme case of churn CARDCount’s accuracy only drops
by 3.03%, compared to MaxCountAS , which drops in accuracy
by 57.27%. This highlights that CARDCount retains a high
level of accuracy regardless of IP reassignments or bot churn.

4) Variations in Session Lengths: Lastly, we analyze how
CARDCount is affected when the underlying address duration
distributions are inaccurate (A4). Recall that this confounding
factor only affects CARDCount.

To recapitulate, the performance of CARDCount relies on
knowing the address assignment durations of a given AS.
We retrieve this information from the ATLAS probe data and
apply it to the ATLAS probe data. However, in practice the
input distribution D and the (commonly unknown) address
assignment distribution of the monitored population, referred
to as actual distribution D̂, could deviate. A deviation in the
mean of those two distributions will affect the accuracy of size
estimations made by CARDCount. To understand how much
discrepancy is acceptable, we artificially increase or decrease
the duration of observed IP address assignments. To do this,
we added the following modification to each individual session
in the input distribution {d± 2h, d± 12h, d+ 24h}, ∀d ∈ D,
to generate a modified D̂. If the modification causes an IP
address assignment to have a negative duration, we set it to
zero instead. Afterward we recompute CARDCount with D̂ as
input, but measure the IP addresses of the unmodified RIPE
Atlas dataset. It is important to note that d + 24h doubles
the IP address duration for many of the ASes in the dataset.
Furthermore, we did not evaluate d − 24h as this led to a
majority of durations being set to zero.

Figure 6 presents the results of this experiment. The
experiments show that smaller differences of ±2h in the input
and actual distributions do not lead to strong deviations in
CARDCount’s predictions. An interesting observation is that
shortened input distributions lead to greater deviations than

longer input distributions. This is because the overlap of d and
t grows slower with increasing d. Increasing the IP address
duration by 24h or decreasing them by 12h leads to over-
and underestimations with the unmodified CARDCount being
outside the respective 95th percentiles. Interestingly, for the
24h increase the ground truth is within the 95th percentile for
windows sizes of 7d and 28d. This is related to CARDCount
underestimating the ground truth in the unmodified RIPE
Atlas dataset. Consequently, the overestimation introduced
by the increased assignment durations cancels out the initial
underestimation caused by churn and duplicate assignments.

Concluding this experiment, we learned that CARDCount
remains highly accurate in the presence of even large devia-
tions between input and actual distributions. Furthermore, the
margin of error is larger if the input distribution overestimates
the actual mean IP address durations.

D. Summary

In this section, we compared CARDCount against the state
of the art and analyzed the impact of confounding factors
on all counting approaches. We found that the accuracy of
BinCount—the most commonly used Botnet size estimation
technique—is unfortunately the lowest, as it overestimates con-
siderably due to IP address reassignments. MaxCount performs
best if the amount of churn is minimal. However, its accuracy
dropped tremendously in more realistic scenarios of higher
churn and limited capturing of bot activity. CARDCount was
accurate throughout all scenarios. Most notably, it performs
very well in high churn scenarios. Moreover, almost all con-
founding factors lead to underestimations by CARDCount.
Therefore, CARDCount is very unlikely to overestimate the ac-
tual population and can be considered a lower bound. The only
reason for CARDCount to overestimate is an overestimation of
the mean address duration in D. However, even then there is a
wide margin of error, specifically if other confounding factors
leading to underestimation are present.

V. SIZE ESTIMATION OF REAL-WORLD BOTNETS

In the previous section, we evaluated CARDCount in a
highly stable scenario of long-running measurement endpoints.
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Fig. 6: CARDCount mean session length deviations, with differing input (D) and actual address assignment distributions (D̂).

Although not representative of the Internet as a whole, these
long-running nodes enabled us to artificially cut up long
running traces, and thereby allowed us to evaluate how the
established algorithms and CARDCount perform under differ-
ent observation periods and how their performance is affected
by confounding factors.

In this section, we apply CARDCount against two real
world botnets, Hajime and Mirai. We obtained datasets from
Herwig et al. [10] and Griffioen et al. [8]; these datasets
measured which hosts were infected by the Hajime and Mirai
botnets, respectively. Using these datasets, we evaluate and
compare the performance of counting algorithms in practice.

A. Datasets

Hajime. The Hajime botnet was assessed by Herwig et
al. [10], primarily by crawling the BitTorrent Distributed Hash
Table (DHT) to find bots that provide Hajime configuration
files or platform-specific malware files for download. Addi-
tionally, the researchers passively identified infected hosts, by
advertising some botnet-specific files within the network to
identify bots trying to download these Hajime files. Within the
study we only utilize the active bot identification data. While
Hajime bots choose an installation-specific identifier we could
not leverage it as ground truth, as it frequently changes upon
reboot and is sometimes more volatile than IP addresses.

While the entire dataset for the Hajime botnet spans a
period of five months from January until May 2018, there
were several updates to the botnet in that time frame. An
update to the Hajime botnet causes its bots to restart, leading
to changes in the bot’s port and ID. Therefore we chose to
take a 28-day subset of the data ranging from February 22nd
to March 21st, for which there was uninterrupted coverage and
no updates to the botnet. This dataset encompasses 2,254,532
IP addresses spread across 2,412 ASes. Within this set, 33,486
IP addresses (1.5%) were observed within 36 ASes in which
there are at least 20 hosts in the RIPE Atlas dataset. We focus
in the evaluation on these 33k IPs, as we can rely on the RIPE
Atlas dataset to obtain D and validate the performance of the
algorithms.

As referenced in the original paper for the dataset, an
exhaustive crawl was conducted every 16 minutes. Based on

the recommendations of Yan et al. [29], we set the timeout τ
to identify two separate sessions for MaxCount to ten times
the crawl interval, i.e., 160 minutes.

Mirai. The Mirai dataset was made available by Grif-
fioen and Doerr [8], [7]. As after an infection, Mirai bots
immediately start to scan the Internet to identify and infect
other vulnerable devices, it is possible to track Mirai-infected
hosts by collecting this probing traffic. To do so, these studies
utilized a large network telescope of 65,000 IP addresses,
tracking various Mirai families based on their attack traffic.
To match the time frame of data collection for Hajime and the
RIPE Atlas probe dataset, the Mirai dataset is limited to data
from February 2018.

The Mirai dataset identifies 1,052,552 infected IP addresses
distributed over 6,418 ASes. Also, Mirai contains an infection-
unique identifier, which we can use to identify infections across
IP addresses. From this set, 40,609 IP addresses (3.9%) were
located in 38 ASes which contained at least 20 measurement
endpoints in the RIPE Atlas platform.

As the Mirai dataset was collected in a passive mea-
surement, we cannot set the τ for MaxCount based on the
crawl frequency. Griffioen et al. report that if a bot sends
25 packets per second, 95% of all bots should contact their
telescope within two hours. Moreover, they report an average
time between receiving two packets of 421 seconds. Based on
these values, we chose to set τ to the larger value of two hours
to allow a fair comparison of MaxCount, even for slow hosts.

Lastly, as the Mirai dataset is a passive measurement,
we observed bot fingerprints that changed IP addresses at an
unusually high frequency. Upon further investigation, we could
identify them to be part of a Carrier Grade NAT (CG-NAT). As
these IP addresses in CG-NATs differ from regular IP address
assignment patterns, we filtered them from the dataset. To do
this, we identified all Mirai fingerprints that had at least three
IP addresses assigned to them for less than 10 minutes. Based
on these IP addresses, we derived and filtered all /24 network
ranges that contained bots behind a CG-NAT. This reduced the
set of IP addresses from 40,609 to 37,389 in the Mirai dataset.
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Fig. 7: Size estimations for the Hajime and Mirai botnets.
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TABLE IV: Size estimation of Hajime

T =1d (avg) T =7d (avg) T =28d

CARDCount 4108 5930 7269
MaxCountAS 3096 3351 3521
MaxCount 2974 3092 3169
BinCountT 4592 11,290 33,496

TABLE V: Size estimation of Mirai

T =1d (avg) T =7d (avg) T =28d

CARDCount 2980 5769 8654
MaxCountAS 1837 2187 2673
MaxCount 1700 1972 2335
BinCountT 3387 11,396 37,389

B. Applicability of IP Address Duration Distributions

To understand whether CARDCount can be applied to these
botnets, we first ask: Do the bots in these botnets experience
similar address assignment durations as the underlying RIPE
Atlas dataset we use in CARDCount?

In the Appendix, we provide a thorough comparison of
the address assignment distributions of Hajime and Mirai as
compared to RIPE. At a high level, our results show that the
distributions are close—a mean difference of 8.6h for Hajime
and 16h for Mirai—and that these differences are well within
CARDCount’s resilience to errors in the underlying distribu-
tion D that we showed in §IV. Therefore, the size estimations
of CARDCount should be highly accurate in comparison to
MaxCount and BinCount, which are both heavily affected by
confounding factors.

C. Estimating Hajime

Table IV and Figures 7 (a) and (b) present the results of
the size estimation of Hajime for daily, weekly, and monthly
observation windows. As a first observation, we can see that
the size estimates grow for larger observation windows. This
indicates that even if the size estimates for a single day
do not exceed 4358 infections for CARDCount and 3316
infections for MaxCount, the total number of infections over
a week or month are larger than on any single day. This
observation matches the reports of Stone-Gross et al. [26]
for the Torpig botnet. This is a clear sign of the presence
of churn expected in the Hajime botnet, as infections do
not persist, and new machines are actively infected at all
times. Therefore, infections on different days are likely to
be different devices leading to greater estimates for longer
observation windows. Even though the population seems to
churn frequently, there are only moderate daily fluctuations
for CARDCount (11.9%) and MaxCount (7.9%). Moreover, we
can not observe any repeating patterns, e.g., weekly repetitions,
for the daily size estimates. Such repeating patterns have been
previously reported for Windows-based botnets [9].

The second observation is the considerable difference be-
tween the measurement approaches. For BinCount we can
clearly observe a stark increase in overestimation with in-
creasing observation window sizes. Similarly, we can observe
that the presence of churn causes MaxCount to provide a
drastically smaller estimate than CARDCount. Considering the

small difference in IP durations (c.f. §V-B) and CARDCount’s
resilience to even large amounts of bot churn, it represents the
most accurate estimate available. Based on this, we provide
rough estimates for the actual error of MaxCountAS and Bin-
Count by comparing them to the mean value of CARDCount.

We compute the estimation error as the percent difference
between two estimates, E1 and E2:

|E1 − E2|
1
2 (E1 + E2)

∗ 100

For MaxCountAS this indicates underestimations of the bot
population by 24.6%, 43.5%, and 51.6% for observation win-
dows of 1, 7, and 28 days respectively. For BinCount, we as-
sess overestimates by 11.8%, 90.4% and 360.8%. While these
numbers may deviate by a few percentage points, the results
clearly resemble the results of our experiments conducted on
the RIPE Atlas probe dataset. Therefore, CARDCount provides
a crucial improvement in the accuracy of estimating botnet
sizes.

D. Estimating Mirai

Figures 7 (c) and (d) and Table V present the size estima-
tions of the Mirai botnet using CARDCount and MaxCount.
Again, we can see that the size estimates grow for larger
observation windows. This indicates that even if the size
estimates for a single day do not exceed 4024 infections
for CARDCount and 2451 infections for MaxCount, the total
number of infections over a week or month is larger than on
any single day. This is to be expected as Mirai infections do not
persist and actively infect new machines at all times. Therefore,
infections on different days are likely to be different devices
leading to greater estimates for longer observation windows.
Another observation similar to Hajime is that there are large
daily fluctuations for CARDCount (36.8%) and MaxCount
(41.1%). In contrast, the weekly fluctuation is only 18.0% for
CARDCount and 27.5% for MaxCount. Once again, we can
not observe any repeating patterns, e.g., weekly repetitions, for
the daily size estimates. Lastly, the larger deviations across
time windows can be explained by the finding of Griffioen
et al. [7], that some Mirai variants are very unstable and
frequently crash. This leads to very short infection durations
for these variants.

Following the same arguments stated in the section on
Hajime, the data available to us shows that CARDCount should
provide the most accurate estimation for the size of Mirai.
Based on this, comparing MaxCountAS and CARDCount indi-
cates an underestimation of the bot population by a percent dif-
ference of 38.4%, 62.1%, and 69.1% for observation windows
of T = 1d, 7d, 28d, respectively. While these results are even
worse for MaxCountAS than for Hajime, this can be explained
by the greater volatility and churn of Mirai [7]. BinCount once
again overestimates at similar ratios to RIPE Atlas and Hajime
with 13.8%, 97.5%, and 332.0%. These results once again
show that CARDCount provides a significant improvement in
accurately estimating a botnet’s size.

VI. DISCUSSION

In the previous sections, we introduced CARDCount and
evaluated it together with the state of the art counting mech-
anisms on three real world datasets. The goal of this section
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is to discuss the lessons we learned and how to apply them
to future botnet measurements. We also discuss the potential
limitations of CARDCount.

A. Importance of Estimating Botnet Size: Accurate size esti-
mations enable adequate response.

The size of a botnet oftentimes influences the attention
and resources defenders allocate to defend against it. Knowing
how many devices are infected, how many users’ credentials
were stolen, or estimating the capacity of a Distributed Denial
of Service (DDoS) attack enables defenders to make better
decisions. Furthermore, precisely knowing the size of a botnet,
and being able to measure if it is growing or shrinking is
essential to judge the (cost-)effectiveness of countermeasures.
But as we show in this paper, the state of the art is only
accurate for time windows of a few hours. As reported
previously by Stone Gross et al. [26] and shown in §V, even
24 hours are insufficient to capture the full size of a botnet. To
make things worse, the error of both MaxCount and BinCount
is volatile and dependent on the IP reassignment frequency
(BinCount) and amount of churn (MaxCount) in the botnet.
Therefore, estimates are incomparable between botnets. This
is exacerbated by the fact that botnets often exhibit biases
towards which ASes they infect, for instance, if a vulnerable
device is rolled out en masse by an ISP or service provider, or
especially popular in a certain region [10]. Consequently, if the
population of the two botnets differs significantly in their churn
and IP reassignment characteristics, one may appear much
larger than the other, even if it is not. CARDCount addresses
these issues by providing an accurate and less volatile size
estimate for botnets, which enables defenders to make better
decisions in prioritizing and addressing botnet threats.

B. Best Practices for Botnet Size Estimations: Size estimations
are always context sensitive.

Our evaluations have shown that CARDCount outperforms
the state of the art counting approaches in the presence of
IP address reassignment and bot churn, which are present in
all known botnet measurements. Nevertheless, in the unlikely
case that there is little to no bot churn, CARDCount performs
slightly worse than MaxCountAS . Therefore, we suggest ap-
plying the following guidelines to future botnet size estimation:

• Consider the characteristics of the measured botnet,
e.g., if there are large amounts of churn, CARDCount
outperforms MaxCountAS , whereas MaxCountAS per-
forms better in low churn scenarios. If in doubt, re-
porting all three counting mechanisms, i.e., BinCount,
MaxCountAS , and CARDCount, will help comparison
between botnets and reports.

• Consider the availability and applicability of the input
distribution D. We recommend comparing the distri-
bution D to the IP address durations observed in the
botnet measurement D̂. A detailed example of this
comparison is included in Appendix A.

• If D is unavailable or inapplicable for an AS, we
recommend falling back to MaxCountAS , as it is more
accurate that BinCount in most cases.

C. Other Applications

Within this paper, we only applied CARDCount in the
context of botnet size estimation. However, the concepts of
CARDCount are generally applicable to any scenario involving
the counting of hosts on the Internet based on IP addresses.
As such, it could also be used to count the active hosts in a
peer-to-peer network, count malware infections, or active users
in a webservice if no alternative means (such as logins) are
available.

D. Limitations

In Section IV, we discussed several confounding factors for
estimating botnet sizes, and we showed empirically that they
do not significantly affect CARDCount’s accuracy in practice.
We close this section by discussing two other potential limita-
tions: one specific to CARDCount (the availability of address
assignment distributions) and another that affects all IP-based
techniques (shared IP addresses).

1) Availability of Input Distributions: Given accurate IP
address assignment distributions, CARDCount is the least
volatile and most accurate approach to estimate the size of
botnets in practice. Unfortunately, these IP address assignment
durations are not yet available for all ASes. At the time of our
study, the RIPE Atlas dataset provided sufficient data for 39
ASes, covering 1.49% and 3.9% of all IPs in Hajime and Mirai.
This small coverage was a result of the uneven deployment
of RIPE Atlas in its initial stages, with countries in North
America and Europe hosting the majority of probes. However,
in recent years, RIPE Atlas has actively been increasing the
number of probes. Just as importantly, it has been diversi-
fying probe locations by distributing new probes in under-
represented countries and ASes. At the time of writing in 2022,
the number of probes has nearly doubled since the time of the
botnet measurements [4]. These probes now cover 4.941% of
all ASes and 86.224% of all countries. Specifically, we observe
that RIPE has these many probes in Hajime’s 10 most-infected
countries [10]: Brazil (91), Iran (103), Mexico (29), China
(73), India (139), South Korea (27), US (1637), Turkey (53),
Russia (604), Indonesia (65). This shows broad coverage even
in bot-heavy locations.

Moreover, to date, there has been little incentive to collect
and share IP address assignment information. Fortunately, there
are other potential sources for Dk beyond RIPE Atlas. For
example, UDmap [28] used Hotmail user login traces to study
dynamic addressing properties, and Casado et al. used HTTP
cookies available from CDN datasets [5]. Ideally, ISPs would
share their reassignment policies. While the incentives for ISPs
to do so have been lacking in the past, our paper provides
a tangible benefit to the ISPs themselves: more accurate
estimates of botnet size counts can lead to better mitigation
strategies for the ISP. So while we agree that Dk coverage
is not perfect, it is growing, and publication might in and of
itself help improve it. As part of this work, we make per AS
assignment distributions available for public download as well
as source code to generate these from the Atlas data for future
use at https://github.com/CardCount.

If the necessary distributions remain unavailable for some
ASes, we recommend using MaxCountAS as a fallback. We
assume, that Dk will eventually be available for big ASes,
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limiting the lower accuracy of MaxCountAS to smaller ASes
with likely lower infection numbers.

2) Shared IP Addresses (NAT and VPN): As we mentioned
in §IV, CARDCount, like all other IP based counting methods
cannot count bots sharing IP addresses. Two common forms
of address sharing are NAT and VPNs. When two hosts share
an IP address, any IP-based technique risks underestimating
the true botnet size. However, while IP address reassignments
require us to filter noise from the collected dataset, there is
currently no generic way to identify shared IP addresses in the
first place. An exception to this is the availability of additional
identifiers, that if simultaneously active at the same IP provide
insight into IP sharing. In practice, such identifiers cannot be
assumed to be available.

Another important factor is that shared IP addresses may
coincide with IP address reassignments. Consider that three
bots share a public IP address. Even if we can identify the
three bots, each IP reassignment would cause us to count
three additional bots with each new IP address. Therefore, any
solution should be paired with an approach like CARDCount.

What complicates the confounding factor of shared IP
addresses is the variety of implementations. NAT in customer
premises enables sharing of the public IP address among mul-
tiple devices in the home. In the case of IP reassignment, these
bots will always be grouped behind the same reassigned public
IP. Apart from customer NAT, some Internet Service Providers
(ISPs) have started to deploy NAT at a network-wide level—
so-called Carrier Grade NAT (CG-NAT)—grouping several
customers behind a single public IP address. In a CG-NAT
IP reassignments can vary from changing with subsequent
connection attempts, being stable for individual conversations,
or change similar to regular IP address reassignments [21].
Furthermore, bots that are grouped at one point, may be
reassigned to two or more different IP addresses. Yet another
cause of IP address sharing is VPNs, in which multiple clients
make use of the same VPN proxy server (and thus appear
to have that VPN server’s public IP address). To the best
of our knowledge, little is known about this type of shared
IP addresses, and how they may change over time. These
complexities and differences require a deep understanding
on the configuration and extent of CG-NAT in practice, to
properly address the confounding factor of shared IP addresses.

The Hajime and Mirai datasets shed light on the extent
to which IP address sharing takes place. Specifically, we look
at the number of concurrent infections in which a single IP
address reported two or more bot IDs in an overlapping fashion
(i.e., a given IP address identified as bot ID A, then ID B, then
A again). These concurrent infections indicate IP address reuse
by two different bots (due to NAT, CG-NAT, or VPN), because
both Hajime and Mirai choose bot IDs randomly, and are very
unlikely to ever choose the same ID twice.

In the Hajime dataset, we found that 214,686 IP addresses
out of the total of 2,254,532 (9.5%) exhibited concurrent
infections. Address sharing was not limited to a small number
of networks; we found that 1,626 out of 2,412 ASes (67.4%)
had at least one concurrent infection. Similarly, Griffioen et
al. [8] reported that, for Mirai, 9,370 out of 12,112 ASes
(77.4%) had concurrent infections.

These numbers highlight the importance of addressing
this topic in future work. Specifically, two things should be
addressed: i) means to count bots sharing an IP address without
additional identifiers, and ii) models of IP assignment and
sharing in CG-NATs, similar to models of how they reassign
IP addresses. Provided with these means, we are hopeful that
the general approach of CARDCount—reverse-engineering the
address assignment policy to infer host count—could apply in
CG-NATs, and be combined with CARDCount to provide a
holistic approach to accurate botnet size estimation.

VII. CONCLUSION AND FUTURE WORK

Within this paper, we studied and addressed the inaccura-
cies in IP based botnet size estimation caused by IP address
reassignments.

We introduce CARDCount and show that knowledge about
the IP address assignment durations and policies of ASes
can be leveraged to provide more accurate size estimations
in the presence of IP address churn. This greatly improves
our abilities to accurately estimate the size of botnets using IP
addresses, specifically in the presence of heavy churn and over
longer periods of data collection. Interestingly, we found that
the two most common estimators, BinCount and MaxCount,
are also the most inaccurate estimators of population size,
in settings with IP address churn, device churn, and limited
monitoring coverage.

While CARDCount provides large improvements in accu-
rately estimating a botnet’s size, there are two open problems
that should be addressed in future work. To increase the
applicability of CARDCount in more ASes, additional means
to obtain IP address assignment durations of ASes should be
investigated. Furthermore, to obtain a complete picture, we
need to investigate generic approaches to identify if, and how
many bots share a NAT gateway.
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APPENDIX

In this appendix, we describe how we compare the input
distributions D taken from RIPE Atlas, against the actual
distribution D̂ in the Hajime and Mirai botnets. As the actual
distribution D̂ is not readily available, we need a reliable way
to measure IP address durations in the botnet datasets. Simply
taking the duration for which we observed an IP address in the
botnet would underestimate the actual IP duration, as i) the IP
may be assigned before or longer than the bot is infected, and
ii) our measurements may not immediately discover or track
the bot from its infection to inactivity. Therefore, we need a
more accurate way to measure the actual IP duration for bots.

For Hajime and Mirai we do this by leveraging the IDs and
fingerprints of the botnets. While in each case IDs and finger-
prints change upon reboot, they provide a unique identifier for
continuous periods of bot activity. This allows us to observe
multiple IP address changes for a constant ID or fingerprint.
If we see at least three IP addresses IPA, IPB , and IPC , we
can compute the minimum IP duration min(IPB) as the time
between the first and last contact with IPB . Similarly, we can
estimate the maximum IP duration max(IPB) as the duration
between the last contact with IPA and the first contact with
IPC . This allows us to estimate D̂ as a set of IP assignment
durations d̂ = (min(IPB),max(IPB)) ∈ D̂. In some cases,
the min and max duration deviated by multiple days, indicating
measurement artifacts (caused by, e.g., the loss of Internet
connectivity of the infected device). Therefore, we filtered all
IP durations where min and max deviated by more than 12h.

Another issue that needs to be addressed before we can
compare the two distributions is the bias toward short du-
rations. This bias is caused by two factors. First, infected
devices are less likely to be active for as long as RIPE Atlas
probes. Therefore, it is unlikely to see very long IP durations.
Second, the limited measurement period of 28d allows us to
observe at most one IP duration of 28d for a bot, whereas we
could see over two million IP durations of 1s. This problem is
exacerbated since we can only measure the durations of bots
with at least three IP addresses.

To address this bias, we apply the create-based method
proposed by Roselli et al. [22]. This method was previously
applied by Stutzbach et al. and Sariou et al. [27], [24] in
the context of measuring the lifetimes of hosts in peer-to-peer
filesharing, and Karuppayah [14] for measuring the lifetimes
of peer-to-peer bots. The create-based method proposes to split
the total period τ into two equal-sized parts. By considering
only IP assignment durations that start in the first half and
durations of at most τ

2 , all IP durations between [1, τ2 ] have
equal probability of being observed.

We use the create-based method to compare D and D̂ for
a measurement period of τ = 28d, and consider all ASes
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Fig. 8: CDFs comparing IP address assignment durations of RIPE Atlas against available IP durations for Hajime and Mirai.

with at least 30 IP address durations. As the hosts in a botnet
are more likely to churn, and we need three consecutive IP
addresses, we cannot observe as many long durations even if
we apply the create-based method. Therefore, we compare D
and D̂ by limiting the maximum length to the longest duration
observed in D̂. This provides us with seven ASes for Hajime
and six ASes for Mirai, where we can compare the ground
truth and actual distributions D and D̂. Figure 8 plots the
CDF for all these ASes. For Hajime and Mirai, we plot both
min and max durations. Furthermore, the figure includes the
actual distribution of the RIPE Atlas distribution, and error
margins of d+ 24h and d− 12h, which we evaluated in §IV.
As shown in Section IV, deviations within this range have a
limited impact on the accuracy of CARDCount. For Hajime,
at least 75% of the actual durations D̂ fall within these ranges,
with a slight tendency towards shorter durations. Furthermore,
in three out of seven cases, the IP assignment durations of
Hajime are fully encompassed within the error margin of the
RIPE Atlas distribution. For Mirai, we can similarly observe
that for five out of six ASes, at least 90% of IP assignment
durations are encompassed within the error margin of the RIPE
Atlas distributions.

For both botnets, the greatest deviations can be observed
for AS 3215. The cause of these deviations is that both botnet
measurements failed to capture a large volume of 7d durations,
which is a common reassignment frequency in AS 3215. The
CDF for Hajime exhibits a mode at 7d, showing that the botnet
measurements are also able to capture some of these longer
duration instances in AS 3215, but are likely underestimating
other instances. We thus see that (a) shorter bot lifetimes
and (b) the requirement that three consecutive IP address
durations need to be observed result in botnet measurements
underestimating durations. For Mirai, we can also observe a
much larger fraction of short durations in the ASes 3320, 3215,
3269, 3209, and 1267. These are highly likely related to the
presence of a CG-NAT, which we could not identify in our
sanitization step. This interpretation is supported by the reports
of Griffioen et al. [7]. They found that Mirai infections have
different lifetimes depending on the AS of the infected bot.
They specifically mention that bots in the ASes 3320 and 3269
had among the shortest lifetimes.

All that said, the actual impact on CARDCount’s estimates
depends on the difference in the mean IP address duration
of D and D̂. We computed the mean differences between
Hajime and RIPE Atlas based on the available data and found
a mean difference of 8.6h and 16h for Mirai and RIPE Atlas.
As discussed before, the higher deviation for Mirai is likely
caused by our inability to identify and filter all hosts in a
CG-NAT, and the unusually short bot lifetimes in some of the
ASes. Given these deviations, and based on our experiments
in §IV, CARDCount might slightly overestimate the actual bot
population. However, this overestimation is counteracted by
the underestimation caused by the presence of churn.

Overall, a large similarity in nearly all ASes, for which we
could provide an accurate comparison of IP address assignment
durations, strongly indicates that CARDCount provides an
accurate estimate of the bot population in Hajime and Mirai.
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