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Abstract. Given a set S of n points in the plane and a parameter
ε > 0, a Euclidean (1 + ε)-spanner is a geometric graph G = (S,E)
that contains a path of weight at most (1 + ε)‖pq‖2 for all p, q ∈ S.
We show that the minimum weight of a Euclidean (1 + ε)-spanner for
n points in the unit square [0, 1]2 is O(ε−3/2√n), and this bound is the
best possible. The upper bound is based on a new spanner algorithm that
sparsifies Yao-graphs. It improves upon the baseline O(ε−2√n), obtained
by combining a tight bound for the weight of an MST and a tight bound
for the lightness of Euclidean (1 + ε)-spanners, which is the ratio of the
spanner weight to the weight of the MST. The result generalizes to d-
space for all d ∈ N: The minimum weight of a Euclidean (1 + ε)-spanner

for n points in the unit cube [0, 1]d is Od(ε(1−d2)/dn(d−1)/d), and this
bound is the best possible. For the n×n section of the integer lattice, we
show that the minimum weight of a Euclidean (1+ε)-spanner is between
Ω(ε−3/4n2) and O(ε−1 log(ε−1)n2). These bounds become Ω(ε−3/4√n)
and O(ε−1 log(ε−1)

√
n) when scaled to a grid of n points in [0, 1]2.
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1 Introduction

For a set S of n points in a metric space, a graph G = (S,E) is a t-spanner if G
contains, between any two points p, q ∈ S, a pq-path of weight at most t · ‖pq‖,
where t ≥ 1 is the stretch factor of the spanner. In other words, a t-spanner
approximates the true distances between the

(
n
2

)
pairs of points up to a factor t

distortion. Several optimization criteria have been developed for t-spanners for
a given parameter t ≥ 1. Natural parameters are the size (number of edges),
the weight (sum of edge weights), the maximum degree, and the hop-diameter.
Specifically, the sparsity of a spanner is the ratio |E|/|S| between the number of
edges and vertices; and the lightness is the ratio between the weight of a spanner
and the weight of an MST on S.

In the geometric setting, S is a set of n points in Euclidean d-space in constant
dimension d ∈ N. For every ε > 0, there exist (1 + ε)-spanners with Od(ε1−d)
sparsity and Od(ε−d) lightness, and both bounds are the best possible [23]. In
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particular, the Θ-graphs, Yao-graphs [31], gap-greedy and path-greedy spanners
provide (1 + ε)-spanners of sparsity Od(ε1−d). For lightness, Das et al. [9,10,28]
were the first to construct (1 + ε)-spanners of lightness ε−O(d). Gottlieb [18]
generalized this result to metric spaces with doubling dimension d; see also [6,15].
Recently, Le and Solomon [23] showed that the greedy (1 + ε)-spanner in Rd has
lightness O(ε−d); and so it simultaneously achieves the best possible bounds for
both lightness and sparsity. The greedy (1 + ε)-spanner algorithm [4] generalizes
Kruskal’s algorithm: It sorts the

(
n
2

)
edges of Kn by nondecreasing weight, and

incrementally constructs a spanner H: it adds an edge uv if H does not contain
an uv-path of weight at most (1 + ε)‖uv‖.

Lightness versus Minimum Weight. Lightness is a convenient optimization pa-
rameter, as it is invariant under scaling. It also provides an approximation ratio
for the minimum weight (1 + ε)-spanner, as the weight of a Euclidean MST (for
short, EMST) is a trivial lower bound on the spanner weight. However, minimiz-
ing the lightness is not equivalent to minimizing the spanner weight for a given
input instance, as the EMST is highly sensitive to the distribution of the points
in S. Given that worst-case tight bounds are now available for the lightness, it is
time to revisit the problem of approximating the minimum weight of a Euclidean
(1 + ε)-spanner, without using the EMST as an intermediary.

Euclidean Minimum Spanning Trees. For n points in the unit cube [0, 1]d, the
weight of the EMST is Od(n1−1/d), and this bound is also best possible [14,33]. In
particular, a suitably scaled section of the integer lattice attains these bounds up
to constant factors. Supowit et al. [34] proved similar bounds for the minimum
weight of other popular graphs, such as spanning cycles and perfect matchings
on n points in the unit cube [0, 1]d.

Extremal Configurations for Euclidean (1 + ε)-Spanners. The tight Od(ε−d)
bound on lightness [23] implies that for every set of n points in [0, 1]d, there
is a Euclidean (1 + ε)-spanner of weight O(ε−dn1−1/d). However, the combi-
nation of two tight bounds need not be tight; and it is unclear which n-point
configurations require the heaviest (1 + ε)-spanners. We show that this bound
can be improved to O(ε−3/2

√
n) in the plane. Furthermore, the extremal point

configurations are not an integer grid, but an asymmetric grid.

Contributions. We obtain a tight upper bound on the minimum weight of a
Euclidean (1 + ε)-spanner for n points in [0, 1]d.

Theorem 1. For constant d ≥ 2, every set of n points in the unit cube [0, 1]d

admits a Euclidean (1 + ε)-spanner of weight Od(ε(1−d
2)/dn(d−1)/d), and this

bound is the best possible.

The upper bound is established by a new spanner algorithm, SparseYao,
that sparsifies the classical Yao-graph using novel geometric insight (Section 3).
The weight analysis is based on a charging scheme that charges the weight of
the spanner to empty regions (Section 4).
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The lower bound construction is the scaled lattice with basis vectors of weight√
ε and 1√

ε
(Section 2); and not the integer lattice Zd. We analyze the minimum

weight of Euclidean (1 + ε)-spanners for the integer grid in the plane.

Theorem 2. For every n ∈ N, the minimum weight of a (1+ε)-spanner for the
n×n section of the integer lattice is between Ω(ε−3/4n2) and O(ε−1 log(ε−1)·n2).

When scaled to n points in [0, 1]2, the upper bound confirms that the integer
lattice does not maximize the weight of Euclidean (1 + ε)-spanners.

Corollary 1. For every n ∈ N, the minimum weight of a (1 + ε)-spanner for
n points in a scaled section of the integer grid in [0, 1]2 is between Ω(ε−3/4

√
n)

and O(ε−1 log(ε−1)
√
n).

The lower bound is derived from two elementary criteria (the empty ellipse
condition and the empty slab condition) for an edge to be present in every (1+ε)-
spanner (Section 2). The upper bound is based on analyzing the SparseYao
algorithm from Section 3, combined with results from number theory on Farey
sequences (Section 5). Closing the gap between the lower and upper bounds in
Theorem 2 remains an open problem. Higher dimensional generalizations are also
left for future work. In particular, multidimensional variants of Farey sequences
are currently not well understood.

Further Related Previous Work. Many algorithms have been developed for con-
structing (1+ε)-spanners for n points in Rd [1,8,9,10,13,19,25,27,29], designed for
one or more optimization criteria (lightness, sparsity, hop diameter, maximum
degree, and running time). A comprehensive survey up to 2007 is in the book by
Narasinham and Smid [28]. We briefly review previous constructions pertaining
to the minimum weight for n points the unit square (i.e., d = 2). As noted above,
the recent worst-case tight bound on the lightness [23] implies that the greedy
algorithm returns a (1 + ε)-spanner of weight O(ε−2‖MST‖) = O(ε−2

√
n).

A classical method for constructing a (1 + ε)-spanners uses well-separated
pair decompositions (WSPD) with a hierarchical clustering (e.g., quadtrees);
see [20, Chap. 3]. Due to a hierarchy of depth O(log n), this technique has been
adapted broadly to dynamic, kinetic, and reliable spanners [7,8,17,30]. However,
the weight of the resulting (1 + ε)-spanner for n points in [0, 1]2 is O(ε−3

√
n ·

log n) [17]. The O(log n) factor is due to the depth of the hierarchy; and it cannot
be removed for any spanner with hop-diameter O(log n) [3,11,32].

Yao-graphs and Θ-graphs are geometric proximity graphs, defined as follows.
For a constant k ≥ 3, consider k cones of aperture 2π/k around each point p ∈ S;
in each cone, connect p to the “closest” point q ∈ S. For Yao-graphs, q minimizes
the Euclidean distance ‖pq‖, and for Θ-graphs q is the point that minimizes the
length of the orthogonal projection of pq to the angle bisector of the cone. It
is known that both Θ- and Yao-graphs are (1 + ε)-spanners for a parameter
k ∈ Θ(ε−1), and this bound is the best possible [28]. However, if we place bn/2c
and dn/2e equally spaced points on opposite sides of the unit space, then the
weight of both graphs with parameter k = Θ(ε−1) will be Θ(ε−1 n).
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Organization. We start with lower bound constructions in the plane (Section 2)
as a warm-up exercise. The two elementary geometric criteria build intuition and
highlight the significance of

√
ε as the ratio between the two axes of an ellipse of

all paths of stretch at most 1 + ε between the foci. Section 3 presents Algorithm
SparseYao and its stretch analysis in the plane. Its weight analysis for n points
in [0, 1]2 is in Section 4. We analyze the performance of Algorithm SparseYao
for the n × n grid, after a brief review of Feray sequences, in Section 5. We
conclude with a selection of open problems in Section 6. The generalization of
Algorithm SparseYao and its analysis are sketched in the full paper [35].

2 Lower Bounds in the Plane

We present lower bounds for the minimum weight of a (1 + ε)-spanner for the
n×n section of the integer lattice (Section 2.1); and for n points in a unit square
[0, 1]2 (Section 2.2).

Let S ⊂ R2 be a finite point set. We observe two elementary conditions that
guarantee that an edge ab is present in every (1 + ε)-spanner for S. Two points,
a, b ∈ S, determine a (closed) line segment ab = conv{a, b}; the relative interior
of ab is denoted by int(ab) = ab\{a, b}. let Eab denote the ellipse with foci a and b,
and great axis of weight (1+ε)‖ab‖, Lab be the slab bounded by two lines parallel
to ab and tangent lines to Eab; see Fig. 1. Note that the width of Lab equals the
minor axes of Eab, which is ((1 + ε)2−12)1/2‖ab‖ = (2ε+ ε2)1/2‖ab‖ >

√
2ε‖ab‖.

– Empty ellipse condition: S ∩ Eab = {a, b}.
– Empty slab condition: S ∩ int(ab) = ∅ and all points in S ∩ Lab are on

the line ab.

a b

Eab

(1 + ε)‖ab‖

>
2
√
ε
‖a

b‖ Lab

Fig. 1. The ellipse Eab with foci a and b, and great axis of weight (1 + ε)‖ab‖.

Observation 1. Let S ⊂ R2, G = (S,E) a (1 + ε)-spanner for S, and a, b ∈ S.

1. If ab meets the empty ellipse condition, then ab ∈ E.

2. If S is a section of Z2, ε < 1, and ab meets the empty slab condition, then
ab ∈ E.



Minimum Weight Euclidean (1 + ε)-Spanners 5

Proof. The ellipse Eab contains all points p ∈ R2 satisfying ‖ap‖ + ‖pb‖ ≤ (1 +
ε)‖ab‖. Thus, by the triangle inequality, Eab contains every ab-path of weight at
most (1 + ε)‖ab‖. The empty ellipse condition implies that such a path cannot
have interior vertices.

If S is the integer lattice, then S ∩ int(ab) = ∅ implies that
−→
ab is a primitive

vector (i.e., the x- and y-coordinates of
−→
ab are relatively prime), hence the dis-

tance between any two lattice points along the line ab is at least ‖ab‖. Given that
Eab ⊂ Lab, the empty slab condition now implies the empty ellipse condition.

2.1 Lower Bounds for the Grid

Lemma 1. For every n ∈ N with n ≥ 2 ε−1/4, the weight of every (1+ε)-spanner
for the n× n section of the integer lattice is Ω(ε−3/4n2).

Proof. Let S = {(s1, s2) ∈ Z2 : 0 ≤ s1, s2 < n} and A = {(a1, a2) ∈ Z2 :
0 ≤ a1, a2 < dε−1/4e/2}. Denote the origin by o = (0, 0). For every grid point
a ∈ A, we have ‖oa‖ ≤ ε−1/4/

√
2. A vector −→oa is primitive if a = (a1, a2) and

gcd(a1, a2) = 1. We show that every primitive vector −→oa with a ∈ A satisfies
the empty slab condition. It is clear that S ∩ int(oa) = ∅. Suppose that s ∈ S
but it is not on the line spanned by oa. By Pick’s theorem, area(∆(oas)) ≥ 1

2 .

Consequently, the distance between s and the line oa is at least ‖oa‖−1 ≥
√

2 ·
ε1/4 ≥ 2 ε1/2 ‖oa‖; and so s /∈ Loa, as claimed.

By elementary number theory,−→oa is primitive for Θ(|A|) points a ∈ A. Indeed,
every a1 ∈ N is relatively prime to Nϕ(a1)/a1 integers in every interval of length
N , where ϕ(.) is Euler totient function, and ϕ(a1) = Θ(a1). Consequently, the
total weight of primitive vectors −→oa, a ∈ A, is Θ(|A| · ε−1/4) = Θ(ε−3/4).

The primitive edges oa, a ∈ A, form a star centered at the origin. The
translates of this star to other points s ∈ S, with 0 ≤ s1, s2 ≤ n

2 ≤ n− dε−1/4e
are present in every (1 + ε)-spanner for S. As every edge is part of at most two
such stars, summation over Θ(n2) stars yields a lower bound of Ω(ε−3/4n2).

Remark 1. The lower bound in Lemma 1 derives from the total weight of prim-
itive vectors −→oa with ‖oa‖ ≤ O(ε−1/4), which satisfy the empty slab condition.
There are additional primitive vectors that satisfy the empty ellipse condition
(e.g., −→oa with a = (1, a2) for all |a2| < ε−1/3). However, it is unclear how to
account for all vectors satisfying the empty ellipse condition, and whether their
overall weight would improve the lower bound in Lemma 1.

Remark 2. The empty ellipse and empty slab conditions each imply that an
edge must be present in every (1 + ε)-spanner for S. It is unclear how the total
weight of such “must have” edges compare to the the minimum weight of a
(1 + ε)-spanner.

2.2 Lower Bounds in the Unit Square

Lemma 2. For every n ∈ N and ε ∈ (0, 1], there exists a set S of n points in
[0, 1] such that every (1 + ε)-spanner for S has weight Ω(ε−3/2

√
n).
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Proof. First let S0 be a set of 2m points, where m = bε−1/2c, with m equally
spaced points on two opposite sides of a unit square. By the empty ellipse prop-
erty, every (1+ε)-spanner for S0 contains a complete bipartite graph Km,m. The
weight of each edge of Km,m is between 1 and

√
2, and so the weight of every

(1 + ε)-spanner for S0 is Ω(ε−2).
For n ≥ ε−1, consider an b

√
εnc × b

√
εnc grid of unit squares, and insert a

translated copy of S0 in each unit square. Let S be the union of these Θ(εn)
copies of S0; and note that |S| = Θ(n). A (1 + ε)-spanner for each copy of S0

still requires a complete bipartite graph of weight Ω(ε−2). Overall, the weight
of every (1 + ε)-spanner for S is Ω(ε−1n).

Finally, scale S down by a factor of b
√
εnc so that it fits in a unit square. The

weight of every edge scales by the same factor, and the weight of a (1+ε)-spanner
for the resulting n points in [0, 1]2 is Ω(ε−3/2

√
n), as claimed.

Remark 3. The points in the lower bound construction above lie on O(
√
εn) axis-

parallel lines in [0, 1]2, and so the weight of their MST is O(
√
εn). Recall that the

lightness of the greedy (1 + ε)-spanner is O(ε−d log ε−1) [23]. For d = 2, it yields
a (1 + ε)-spanner of weight O(ε−2 log ε−1) · ‖MST(S)‖ = O(ε−3/2 log(ε−1)

√
n).

3 Spanner Algorithm: Sparse Yao-Graphs

Let S be a set of n points in the plane and ε ∈ (0, 19 ). As noted above, the
Yao-graph Yk(S) with k = Θ(ε−1) cones per vertex is a (1 + ε)-spanner for S.
We describe an new algorithm, SparseYao(S, ε), that computes a subgraph of
a Yao-graph Yk(S) (Section 3.1); and show that it returns a (1 + ε)-spanner for
S (Section 3.2). Later, we use this algorithm for n points in the unit square
(Section 4; and for an n× n section of the integer lattice (Section 5). Our algo-
rithm starts with a Yao-graph that is a (1 + ε

2 )-spanner, in order to leave room
for minor loss in the stretch factor due to sparsification. The basic idea is that
instead of cones of aperture 2π/k = Θ(ε), cones of much larger aperture Θ(

√
ε)

suffice in some cases. (This is idea is flashed out in Section 3.2). The angle
√
ε

then allows us to charge the weight of the resulting spanner to the area of empty
regions (specifically, to an empty section of a cone) in Section 4.

3.1 Sparse Yao-Graph Algorithm

We present an algorithm that computes a subgraph of a Yao-graph for S. It starts
with cones of aperture Θ(

√
ε), and refines them to cones of aperture Θ(ε−1). We

connect each point p ∈ S to the closest points in the larger cones, and use the
smaller cones only when “necessary.” To specify when exactly the smaller cones
are used, we define two geometric regions that will also play crucial roles in the
stretch and weight analyses.

Definitions. Let p, q ∈ S be distinct points; refer to Fig. 2. Let A(p, q) be the line

segment of weight
√
ε
2 ‖pq‖ on the line pq with one endpoint at p but interior-

disjoint from the ray −→pq; and Â(p, q) the set of points in R2 within distance
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p
q

c

W2

B(p, q)

√
ε

√
ε
4

√
ε
2

W1

Â(p, q)
a

b

A(p, q)

B̂(p, q)

Fig. 2. Wedges W1 and W2, line segment A(p, q), and regions Â(p, q), B(p, q), and

B̂(p, q) for p, q ∈ S.

ε
16 ‖pq‖ from A(p, q). Let W1 be the cone with apex p, aperture 1

2 ·
√
ε, and sym-

metry axis −→pq; and let W2 be the cone with apex q, aperture
√
ε, and symmetry

axis −→pq. Let B(p, q) = W1 ∩W2. Finally, let B̂(p, q) be the set of points in R2

within distance at most ε
8 ‖pq‖ from B(p, q).

We show below (cf. Lemma 3) that if we add edge pq to the spanner, then

we do not need any of the edges ab with a ∈ Â(p, q) and b ∈ B̂(p, q). We can
now present our algorithm.

Algorithm SparseYao(S, ε). Input: a set S ⊂ R2 of n points, and ε ∈ (0, 19 ).
Preprocessing Phase: Yao-graphs. Subdivide R2 into k := d16π/

√
εe con-

gruent cones of aperture 2π/k ≤ 1
8 ·
√
ε with apex at the origin, denoted

C1, . . . , Ck. For i ∈ {1, . . . , k}, let −→r i be the symmetry axis of Ci, directed
from the origin towards the interior of Ci. For each i ∈ {1, . . . , k}, subdivide
Ci into k congruent cones of aperture 2π/k2 ≤ ε/8, denoted Ci,1, . . . , Ci,k; see
Fig. 3. For each point s ∈ S, let Ci(s) and Ci,j(s), resp., be the translates of
cones Ci and Ci,j to apex s.

For all s ∈ S and i ∈ {1, . . . , k}, let qi(s) be a closest point to s in Ci(s)∩(S \
{s}); and for all j ∈ {1, . . . , k}, let qi,j(s) be a closest point in Ci,j(s)∩ (S \{s});
if such points exist. For each i ∈ {1, . . . , k}, let Li be the list of all ordered
pairs (s, qi(s)) sorted in decreasing order of the orthogonal projection of s to the
directed line −→r i; ties are broken arbitrarily.
Main Phase: Computing a Spanner. Initialize an empty graph G = (S,E)
with E := ∅.

1. For all i ∈ {1, . . . , k}, do:

– While the list Li is nonempty, do:
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(a) Let (p, q) be the first ordered pair in Li.
(b) Add (the unordered edge) pq to E.
(c) For all i′ ∈ {i− 2, . . . , i+ 2} and j ∈ {1, . . . , k}, do:

If ‖pqi(p)‖ ≤ ‖pqi′,j(p)‖ and qi′,j(p) /∈ B(p, q), then add pqi′,j(p) to
E.

(d) For all s ∈ Â(p, q), including s = p, delete the pair (s, qi(s)) from Li.

2. Return G = (S,E).

s

q1

C1(s)
q2

C2(s)

q3

q4

C3(s)

q5

q6 C6(s)

q5

C5(s)C4(s)

q1,1

q1,4

q1,3
q1,2

q1,6

C3,5(s)

q3,6

q4,1

C3,6(s)

C3,4(s)

Fig. 3. Cones Ci(s) and Ci,j(s) for a point s ∈ S, with k = 6.

It is clear that the runtime of Algorithm SparseYao is polynomial in n
in the RAM model of computation. In particular, the runtime is dominated
preprocessing phase that constructs the Yao-graph with O(ε−1n) edges: finding
the closest points qi(s) and qi,j(s) is supported by standard range searching data
structures [2]. The main phase then computes a subgraph of Yk2(S) in O(ε−1n)
time. Optimizing the runtime, however, is beyond the scope of this paper.

3.2 Stretch Analysis

In this section, we show that G = SparseYao(S, ε) is a (1 + ε)-spanner for
S. In the preprocessing phase, Algorithm SparseYao computes a Yao-graph
with k2 = Θ(ε−1) cones. The following lemma justifies that we can omit some
of the edges sqi,j from G. In the general case, we have s = a ∈ Ã(p, q) and

qi,j = b ∈ B̂(p, q). For technical reasons, we use a slightly larger neighborhood

instead of Â(p, q). Let Ã(p, q) be the set of points in R2 within distance at most
ε
5 from A(p, q).

Lemma 3. For all a ∈ Ã(p, q) and b ∈ B̂(p, q), we have

(1 + ε)‖ap‖+ ‖pq‖+ (1 + ε)‖qb‖ ≤ (1 + ε)‖ab‖. (1)

The proof of Lemma 3 is a fairly technical; see the full paper [35]. Next we

clarify the relation between Â(p, q) and Ã(p, q).
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Lemma 4. Let p, q ∈ S, and assume that q ∈ Ci′,j(p) for some i, j ∈ {1, . . . , k}
and i′ ∈ {i− 1, i, i + 1}, where qi′,j = qi′,j(p) is a closest point to p in Ci′,j(p).

Then Â(p, qi) ⊂ Ã(p, qi′,j).

Proof. Since the aperture of Ci(p) is 1
8 ·
√
ε and qi ∈ Ci(p), then ∠qipqi′,j ≤ 1

4

√
ε.

Since ‖pqi‖ ≤ ‖pqi′,j‖, then ‖A(p, qi)‖ ≤ ‖A(p, qi′,j)‖. Consequently, every point

in A(p, qi) is within distance at most ‖A(p, qi)‖ sin∠qipqi′,j) ≤
√
ε
2 ‖pqi‖ ·

1
4

√
ε ≤

ε
8 ‖pqi‖ from A(p, qi′,j). By the triangle inequality, the ( ε

16 ‖pqi‖)-neighborhood
of A(p, qi) is within distance at most ( ε

8 + ε
16 )‖pqi‖ < ε

5 ‖pqi‖ from A(p, qi′,j).

The following lemma justifies the role of the regions B̂(p, qi). Due to space
constraints, its proof is deferred to the full paper [35].

Lemma 5. Let p, q ∈ S, and assume that q ∈ Ci′,j(p) for some i, j ∈ {1, . . . , k}
and i′ ∈ {i− 1, i, i + 1}, where qi′,j = qi′,j(p) is a closest point to p in Ci′,j(p).

If q /∈ B(p, qi) but qi′,j ∈ B(p, qi), then q ∈ B̂(p, qi).

Completing the Stretch Analysis. We are now ready to present the stretch anal-
ysis for SparseYao(S, ε).

Theorem 3. For every finite point set S ⊂ R2 and ε ∈ (0, 19 ), the graph G =
SparseYao(S, ε) is a (1 + ε)-spanner.

Proof. Let S be a set of n points in the plane. Let L0 be the list of all
(
n
2

)
edges

of the complete graph on S sorted by Euclidean weight (ties broken arbitrarily).
For ` = 1, . . . ,

(
n
2

)
, let e` be the `-th edge in L0, and let E(`) = {e1, . . . , e`}. We

show the following claim, by induction, for every ` = 1, . . . ,
(
n
2

)
:

Claim. For every edge ab ∈ E(`), G = (S,E) contains an ab-path of weight at
most (1 + ε)‖ab‖.

For ` = 1, the claim clearly holds, as the shortest edge pq is necessarily the
shortest in some cones Ci(p) and Ci′(q), as well, and so the algorithm adds pq
to E. Assume that 1 < ` ≤

(
n
2

)
and the claim holds for ` − 1. If the algorithm

added edge e` to E, then the claim trivially holds for `.
Suppose that e` /∈ E. Let e` = pq, and q ∈ Ci,j(p) for some i, j ∈ {1, . . . , k}.

Recall that qi = qi(p) is a closest point to p in the cone Ci; and qi,j = qi,j(p) is
a closest point to p in the cone Ci,j(p). We distinguish between two cases.

(1) The algorithm added the edge pqi to E. Note that ‖qiq‖ < ‖pq‖ and ‖qi,jq‖ <
‖pq‖. By the induction hypothesis, G contains a qiq-path Pi of weight at most

(1+ε)‖qiq‖ and a qi,jq-path Pi,j of weight at most (1+ε)‖qi,jq‖. If q ∈ B̂(p, qi),
then pqi +Pi is a pq-path of weight at most (1 +ε)‖pq‖ by Lemma 3. Otherwise,

q /∈ B̂(p, qi). In this case, qi,j /∈ B(p, qi) by Lemma 5. This means that the

algorithm added the edge pqi,j to E. We have q ∈ B̂(p, qi,j) by Lemma 5, and
so pqi,j + Pi,j is a pq-path of weight at most (1 + ε)‖pq‖ by Lemma 3.



10 Cs. D. Tóth

(2) The algorithm did not add the edge pqi to E. Then the algorithm deleted
(p, qi) from the list Li in a step in which it added another edge p′q′i to E. This

means that p ∈ Â(p′, q′i), where q′i is the closest point to p′ in the cone Ci(p
′). As

diam(A(pi, q
′
i)) < (

√
ε+ 2 · ε

16 )‖p′q′i‖ < 1
4 ‖p

′q′i‖ for ε ∈ (0, 19 ), then p ∈ Â(p′, q′i)
implies ‖pp′‖ ≤ 1

4 ‖p
′q′i‖. Since Li is sorted by weight, then ‖p′q′i‖ ≤ ‖pqi‖.

Although we have q ∈ Ci(p), the point q need not be in the cone Ci(p
′);

see Fig. 4. We claim that q lies in the union of three consecutive cones: q ∈
Ci−1(p′)∪Ci(p

′)∪Ci+1(p′). Let Di(p
′) be part of the cone Ci(p

′) outside of the
circle of radius ‖p′q′i‖ centered at p′. Since q ∈ Ci(p) and ‖p′q′i‖ < ‖pq‖, then q

lies in the translate Di(p
′) +
−→
p′p of Di(p

′). Consider the union of translates:

D = Di(p) + {
−→
p′a : a ∈ Api,q′i

},

and note that q ∈ D. We have diam(Â(p′, q′i)) ≤ (
√
ε
2 + 2 · ε

16 )‖p′q′i‖ < 1
4 ‖p

′q′i‖
for ε ∈ (0, 19 ); and recall that the aperture of Ci(p

′) is γ := 2π/k ≤ 1
8 ·√

ε. We can now approximate ∠qp′q′i as follows; refer to Fig. 4: tan∠qp′q′i ≤
‖p′q′i‖ tan γ/(‖p′q′i‖−2diam(A(p′, qi))) ≤ 2 tanα. Consequently, ∠qp′q′i < 2 γ. It

follows that q ∈
⋃i+2

i′=i−2 Ci′(p
′). We distinguish between two subcases:

Â(p′, q′i)
p′

Ci(p)

q′ip

Â(p′, q′i)

B̂(p′, q′i)

√
ε
8

p′

q′i
√
ε

Ci+1(p
′)

Ci(p
′)

Ci−1(p
′)

p
Ci(p)

q
Ci(p

′)

Di(p
′)

D

q

√
ε
8

Fig. 4. The relative position of pq and p′q′i. Specifically, p ∈ Â)(p′, q′i) and q ∈ Ci(p).

Left: the region Di(p
′) and translates of Â(p′, q′i) to two critical points of Di(p

′). Right:
q ∈ Ci−1(p′) ∪ Ci(p

′) ∪ Ci+1(p′) and the region B(p′q′i).

(2a) q ∈ B̂(p′, q′i). By induction, G contains (1+ε)-paths between p and p′, and
between q and q′i. By Lemma 3 (with a = p and b = q), the concatenation of
these paths and the edge p′q′i is a pq-path of weight at most (1 + ε)‖pq‖.

(2b) q /∈ B̂(p′, q′i). Then q ∈ Ci′,j′(p
′) for some i′ ∈ {i − 1, i, i + 1} and j′ ∈

{1, . . . , k}. By Lemma 5, we have qi′,j′ /∈ B(p′, qi). and so the algorithm added
the edge p′qi′,j′ , where qi′,j′ is the closest point to p′ in the cone Ci′,j′(p

′). We

have p ∈ Â(p′, q′i) ⊂ Ã(p′, qi′,j) by Lemma 4, and q ∈ B̂(p′, qi′,j) by Lemma 5.
By induction, G contains (1 + ε)-paths between p and p′, and between qi′,j′ and
q. The concatenation of these paths and the edge p′qi′,j′ is a pq-path of weight
at most (1 + ε)‖pq‖ by Lemma 3.
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4 Spanners in the Unit Square

In this section, we show that for a set S ⊂ [0, 1]2 of n points in the unit
square and ε ∈ (0, 19 ), Algorithm SparseYao returns a (1+ε)-spanner of weight

O(ε−3/2
√
n) (cf. Theorem 4).

The spanner SparseYao(S, ε) is a subgraph of the Yao-graph with cones of
aperture 2π/k2 = O(ε), and so it has O(ε−1n) edges. Recall that for all p ∈ S
and all i ∈ {1, . . . , k}, there is at most one edge pqi(p) in G, where qi(p) is the
closest point to p in the cone Ci(p) of aperture 1

8

√
ε. Let

F =
{
pqi(p) ∈ E(G) : p ∈ S, i ∈ {1, . . . , k}

}
.

We first show that the weight of F approximates the weight of the spanner.

Lemma 6. If Algorithm SparseYao adds pqi(p) and pqi′,j(p) to G in the same
iteration, then ‖pqi′,j(p)‖ < 2 ‖pqi(p)‖.
Proof. For short, we write qi = qi(p) and qi′,j = qi′,j(p), where i ∈ {i−1, i, i+1}.
Since SparseYao added pqi′,j to G, then qi′,j /∈ B(p, qi). Recall (cf. Fig. 2) that
B(p, qi) = W1 ∩W2, where W1 and W2 are cones centered at p and qi, resp.,
with apertures 1

2

√
ε and

√
ε. Since the aperture of the cone Ci(p) is 1

8

√
ε, then

Ci−1(p) ∪ Ci(p) ∪ Ci+1(p) ⊂W1, hence (Ci−1(p) ∪ Ci(p) ∪ Ci+1(p)) \B(p, qi) ⊂
W1 \W2. The line segment pqi decomposes W1 \W2 into two isosceles triangles.
By the triangle inequality, the diameter of each isosceles triangle is less than
2‖pqi‖. This implies ‖pq′‖ < 2 ‖pqi‖ for any q′ ∈W1 \W2, as claimed.

Lemma 7. For G = SparseYao(S, ε), we have ‖G‖ = O(ε−1/2) · ‖F‖.
Proof. Fix p and i ∈ {1, . . . , k}, let qi = qi(p) for short, and suppose pqi ∈ E(G).
Consider one step of the algorithm that adds the edge pqi to G, together with up
to 3k = Θ(ε−1/2) edges of type pqi′,j , where qi′,j /∈ B(p, qi) and i′ ∈ {i−1, i, i+1}.
By Lemma 6, ‖pqi′,j‖ < 2‖pqi‖. The total weight of all edges pqi′,j added to the
spanner is

‖pqi(p)‖+
i+1∑

i′=i−1

k∑
j=1

‖pqi′,j‖ ≤ ‖pqi‖+3k ·2 ‖pqi‖ ≤ O(k‖pqi‖) ≤ O(ε−1/2)‖pqi‖).

Summation over all edges in F yields ‖G‖ = O(ε−1/2) · ‖F‖.

It remains to show that ‖F‖ ≤ O(ε−1
√
n). For i = 1, . . . , k, let Fi = {pqi(p) ∈

E(G) : p ∈ S}, that is, the set of edges in G between points p and the closest
point qi(p) in cone Ci(p) of aperture

√
ε. We prove that ‖Fi‖ ≤ O(ε−1/2

√
n)

(in the full version of this paper citefull). Since k = Θ(ε−1/2) this implies the
following.

Theorem 4. For every set of n points in [0, 1]2 and every ε > 0, Algorithm
SparseYao returns a Euclidean (1 + ε)-spanner of weight O(ε−3/2

√
n).

Proof. Let G = SparseYao(S, ε), and define F ⊂ E(G) and F1, . . . , Fk as

above. We prove ‖F‖ =
∑k

i=1 ‖Fi‖ = O(k ε−1/2
√
n) = O(ε−1

√
n) in the full

paper [35]. Now Lemma 7 yields ‖G‖ ≤ O(ε−1/2)·(‖F‖+
√

2) ≤ O(ε−3/2
√
n).
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5 Spanners for the Integer Grid

Two points in the integer lattice p, q ∈ Z2 are visible if the line segment pq does
not pass through any lattice point. An integer point (i, j) ∈ Z2 is visible from
the origin (0, 0) if i and j are relatively prime, that is, gcd(i, j) = 1. The slope
of a segment between (0, 0) and (i, j) is j/i. For every n ∈ N, the Farey set of
order n, Fn =

{
a
b : 0 ≤ a ≤ b ≤ n

}
, is the set of slopes of the lines spanned by

the origin and lattice points (b, a) ∈ [0, n]2 with a ≤ b. The Farey sequence is the
sequence of elements in Fn in increasing order. Note that Fn ⊂ [0, 1]. Farey sets
and sequences have fascinating properties, and the distribution of Fn, as n→∞
is not fully understood [12,16,22,26].

The key result we need is a bound on the average distance to a Farey set Fn.
For every x ∈ [0, 1], let

ρn(x) = min
p
q∈Fn

∣∣∣∣pq − x
∣∣∣∣

denote the distance between x and the Farey set Fn. Kargaev and Zhigljavsky [21]
proved that ∫ 1

0

ρn(x) dx =
3

π2

lnn

n2
+O

(
1

n2

)
, as n→∞. (2)

In the full paper [35], we use (2) to prove the following.

Theorem 5. Let S be the n× n section of the integer lattice for some positive
integer n. Then the graph G =SparseYao(S, ε) has weight O(ε−1 log(ε−1) ·n2).

The combination of Lemma 1 and Theorem 5 establishes Theorem 2.

6 Outlook

Our SparseYao algorithm combines features of Yao-graphs and greedy span-
ners. It remains an open problem whether the celebrated greedy algorithm [4]
always returns a (1 + ε)-spanner of weight O(ε−3/2

√
n) for n points in the unit

square (and O(ε(1−d
2)/dn(d−1)/d) for n points in [0, 1]d). The analysis of the

greedy algorithm is known to be notoriously difficult [15,23]. It is also an open
problem whether SparseYao or the greedy algorithm achieves an approxima-
tion ratio better than the tight lightness bound of O(ε−d) for n points in Rd

(where the approximation ratio compares the weight of the output with the
instance-optimal weight of a (1 + ε)-spanner).

All results in this paper pertain to Euclidean spaces. Generalizations to Lp-
norms for p ≥ 1 (or Minkowski norms with respect to a centrally symmetric
convex body in Rd) would be of interest. It is unclear whether some or all
of the machinery developed here generalizes to other norms. Finally, we note
that Steiner points can substantially improve the weight of a (1 + ε)-spanner in
Euclidean space [5,23,24]. It is left for future work to study the minimum weight
of a Euclidean Steiner (1 + ε)-spanner for n points in the unit square [0, 1]2 (or
unit cube [0, 1]d); and for an n× n section of the integer lattice.
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35. Tóth, C.D.: Minimum weight Euclidean (1+ε)-spanners. CoRR abs/2206.14911
(2022), https://arxiv.org/abs/2206.14911


	Minimum Weight Euclidean (1+)-Spanners

