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Abstract

When acquiring syntax, children consistently

choose hierarchical rules over competing non-

hierarchical possibilities. Is this preference

due to a learning bias for hierarchical struc-

ture, or due to more general biases that interact

with hierarchical cues in children’s linguistic

input? We explore these possibilities by train-

ing LSTMs and Transformers—two types of

neural networks without a hierarchical bias—

on data similar in quantity and content to chil-

dren’s linguistic input: text from the CHILDES

corpus. We then evaluate what these models

have learned about English yes/no questions, a

phenomenon for which hierarchical structure

is crucial. We find that, though they perform

well at capturing the surface statistics of child-

directed speech (as measured by perplexity),

both model types generalize in a way more con-

sistent with an incorrect linear rule than the

correct hierarchical rule. These results sug-

gest that human-like generalization from text

alone requires stronger biases than the general

sequence-processing biases of standard neural

network architectures.

1 Introduction

Syntax is driven by hierarchical structure, yet we

typically encounter sentences as linear sequences

of words. How do children come to recognize the

hierarchical nature of the languages they acquire?

Some argue that humans must have a hierarchical

inductive bias—an innate predisposition for hierar-

chical structure (Chomsky, 1965, 1980). An alter-

native view (e.g., Lewis and Elman, 2001) is that

no such bias is necessary: there may be clear evi-

dence for hierarchical structure in children’s input,

so that children would choose hierarchical rules

even without a hierarchical bias.

∗ Work done while at Johns Hopkins University.

At first blush, recent work in natural language

processing (NLP) may seem to indicate that no hier-

archical bias is necessary. Neural networks trained

on naturally-occurring text perform impressively

on syntactic evaluations even though they have no

explicit syntactic structure built into them (e.g., Gu-

lordava et al., 2018; Wilcox et al., 2018; Warstadt

et al., 2020a). However, these results do not pro-

vide strong evidence about the learning biases re-

quired to learn language from the data available

to humans because these models receive very dif-

ferent training data than humans do (Warstadt and

Bowman, 2022). First, NLP models are typically

trained on far more data than children receive, so

models have more opportunities to encounter rare

syntactic structures (Linzen, 2020). Second, most

training sets in NLP are built from Internet text

(e.g., Wikipedia), which differs qualitatively from

the utterances that children typically hear; e.g., sen-

tences in Wikipedia are on average 25 words long

(Yasseri et al., 2012), compared to 5 words for

sentences in the North American English subset

of the CHILDES corpus of child-directed speech

(MacWhinney, 2000).

In this work, to evaluate if neural networks with-

out a hierarchical bias generalize like children do,

we train models on text1 comparable to the sen-

tences in children’s linguistic input: English data

from CHILDES. We then analyze what they have

learned about the relationship between declarative

sentences, such as (1a), and their corresponding

yes/no questions, such as (1b):

(1) a. Those are your checkers.

b. Are those your checkers?

Crucially, nearly all naturally-occurring yes/no

questions are consistent with two rules: one based

1Section 6.5 discusses other input types (e.g., visual input).
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on hierarchical structure (2), and one based on lin-

ear order (3):2,3

(2) HIERARCHICALQ: The auxiliary at the start

of a yes/no question corresponds to the main

auxiliary of the corresponding declarative.

(3) LINEARQ: The auxiliary at the start of a

yes/no question corresponds to the first auxil-

iary of the corresponding declarative.

Despite the scarcity of evidence disambiguating

these rules, children reliably favor HIERARCHI-

CALQ (Crain and Nakayama, 1987), albeit with

occasional errors consistent with LINEARQ (Am-

bridge et al., 2008). Yes/no questions thus are a

prime candidate for an aspect of English syntax

for which human-like generalization requires a hi-

erarchical bias. We evaluate yes/no question per-

formance in LSTMs and Transformers, two neural-

network architectures that have no inherent hierar-

chical inductive bias (McCoy et al., 2020; Petty and

Frank, 2021). These architectures employ different

computational mechanisms, so consistent results

across both would indicate that our results are not

due to idiosyncrasies of one particular architecture.

To investigate if models generalize more con-

sistently with the hierarchical or linear rule, we

evaluate them on cases where the rules make dif-

ferent predictions, such as (4): under HIERARCHI-

CALQ, the question that corresponds to (4a) is (4b),

whereas under LINEARQ it is (4c).

(4) a. The boy who has talked can read.

b. Can the boy who has talked read?

c. *Has the boy who talked can read?

We find that across several ways of framing the

learning task, models fail to learn HIERARCHI-

CALQ. Instead, they generalize in ways that de-

pend on linear order and on the identities of spe-

cific words. These results suggest that children’s

training data, if taken to be words alone, may not

contain enough hierarchical cues to encourage hier-

archical generalization in a learner without a hierar-

chical bias. Thus, explaining human acquisition of

syntax may require postulating that humans have

stronger inductive biases than those of LSTMs and

2In past work these rules have been framed as transforma-
tions named MOVE-FIRST and MOVE-MAIN (McCoy et al.,
2020). We instead follow Berwick et al. (2011) and frame the
child’s knowledge as a relationship between sentences.

3Though these two rules are the most prominent in prior
literature, other rules are possible; see Section 5.2.

Transformers, or that information other than word

sequences plays a crucial role.4

2 Background

Though HIERARCHICALQ and LINEARQ often

make the same predictions, the evidence in chil-

dren’s input may still favor HIERARCHICALQ.

The most straightforward evidence would be ut-

terances that directly disambiguate the rules, such

as (4b). Pullum and Scholz (2002) show that disam-

biguating examples appear in the Wall Street Jour-

nal, in literature, and arguably in child-directed

speech, but direct evidence may still be too rare to

robustly support HIERARCHICALQ (Legate and

Yang, 2002). Nonetheless, children might con-

clude that yes/no questions obey HIERARCHI-

CALQ rather than LINEARQ based on indirect

evidence—evidence that other syntactic phenom-

ena are hierarchical (Mulligan et al., 2021).

To test if the cues favoring HIERARCHICALQ

render a hierarchical bias unnecessary, we study

how well non-hierarchically-biased models acquire

English yes/no questions. Several prior papers have

used this approach, but their training data differed

from children’s input in important ways: some used

synthetic datasets (Lewis and Elman, 2001; Frank

and Mathis, 2007; Clark and Eyraud, 2007; McCoy

et al., 2020), others used massive Internet corpora

(Lin et al., 2019; Warstadt and Bowman, 2020),

and those that used child-directed speech simpli-

fied the data by replacing each word with its part

of speech (Perfors et al., 2011; Bod et al., 2012).

We used training data closer to children’s input,

namely sentences from CHILDES with word iden-

tities preserved, rather than being converted to parts

of speech. Two other recent works have also trained

neural networks on CHILDES data (Pannitto and

Herbelot, 2020; Huebner et al., 2021), but neither

investigated yes/no questions.

One particularly important reason for training

models on CHILDES is that, in prior work, differ-

ent types of training data have yielded diverging

results: Recent models trained on synthetic data

failed to properly acquire yes/no questions (McCoy

et al., 2020; Petty and Frank, 2021), whereas ones

trained on large Internet corpora scored well on

evaluations of yes/no questions (Lin et al., 2019;

Warstadt and Bowman, 2020). Given these differ-

ing results, it is not clear from past work how these

4GitHub repo with data and code: https://github.com/
adityayedetore/lm-povstim-with-childes.
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models would generalize when faced with the type

of data that children receive.

3 Overview of Experimental Setup

We evaluated models on yes/no questions in two

ways. First, we used relative acceptability judg-

ments (Experiment 1): We trained neural networks

on the task of language modeling (predicting the

next word at every point in the sentence) and evalu-

ated whether they assigned a higher probability to

sentences consistent with LINEARQ or HIERAR-

CHICALQ. Our second approach was based on text

generation (Experiment 2): We trained networks

to take in a declarative sentence and output the

corresponding question, and tested whether they

generalized in a way more consistent with LIN-

EARQ or HIERARCHICALQ. Under both framings,

we trained models on data from CHILDES and

evaluated them on targeted datasets constructed to

differentiate LINEARQ and HIERARCHICALQ.

4 Experiment 1: Relative Acceptability

4.1 Dataset

To train models on data as similar as possible to

the sentences children receive, we extracted data

from CHILDES (MacWhinney, 2000). We used

the North American English portion. We wished

to replicate children’s input, so we excluded the

children’s own utterances, leaving a 9.6-million-

word corpus. We allocated 90% of the data to

training, 5% to validation, and 5% to testing. We

replaced words that appeared two or fewer times in

the training set with <unk>, giving a replacement

rate of 0.3%. See Appendix A for more details.

4.2 Task: Next-Word Prediction

We trained models on next-word prediction, also

known as language modeling. We chose this task

for two reasons. First, it is clear empirically that

next-word prediction can teach neural networks a

substantial amount about syntax (e.g., Hu et al.,

2020). Second, it is plausible that humans per-

form some version of next-word prediction during

sentence processing (Altmann and Kamide, 1999;

Hale, 2001; Levy, 2008; Kutas et al., 2011) and

that such prediction may play a role in acquisition

(Elman, 1991). Thus, while next-word prediction

is certainly not the only goal of human language

learners, we view this task as a reasonable first step

in emulating human language acquisition.

4.3 Architectures

We used two neural network architectures: LSTMs

(Hochreiter and Schmidhuber, 1997) and Trans-

formers (Vaswani et al., 2017). We chose these

models for two reasons. First, they have been the

most successful architectures in NLP. Thus, we

have reason to believe that, of the types of low-bias

models invented, these two are the ones most likely

to discover linguistic regularities in our CHILDES

training data. Second, the two architectures pro-

cess sequences very differently (via recurrence vs.

via attention). Thus, if both generalize similarly,

we would have evidence that what was learned is

strongly evidenced in the data, rather than due to a

quirk of one particular architecture.

For our LSTMs, we used 2 layers, a hidden and

embedding size of 800, a batch size of 20, a dropout

rate of 0.4, and a learning rate of 10. For our Trans-

formers, the corresponding values were 4, 800, 10,

0.2, and 5, and we used 4 attention heads. We chose

these values based on a hyperparameter search de-

scribed in Appendix B. All following results are av-

eraged across 10 runs with different random seeds.

4.4 Results: Language Model Quality

Before testing models on questions, we used per-

plexity to evaluate how well they captured the basic

structure of their training domain. As a baseline,

we used a 5-gram model with Kneser-Ney smooth-

ing (Kneser and Ney, 1995) trained with KenLM

(Heafield, 2011). The test set perplexity for the

5-gram baseline was 24.37, while the average test

set perplexity for the LSTMs and Transformers

was 20.05 and 19.69, respectively. For perplexity,

lower is better. Thus, both neural network types

outperformed the strong baseline of a smoothed

5-gram model, showing that they performed well

at capturing the basic statistics of their training

domain.5

4.5 General Syntactic Evaluation

As an additional way to check the validity of our

setup, we evaluated our models on the Zorro dataset

(Huebner et al., 2021), which is based on BLiMP

(Warstadt et al., 2020a). Zorro contains 24 evalu-

ations, each of which targets one syntactic phe-

nomenon (e.g., subject-verb agreement) and in-

volves sentence pairs for which one sentence is

grammatical, and the other is minimally different

5For an intuitive illustration of our model quality, see the
sample text generated by them in Appendix H.
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but ungrammatical (e.g., by violating subject verb

agreement). A model is said to get a sentence

pair correct if it assigns a higher probability to the

grammatical sentence than the ungrammatical one.

Huebner et al. (2021) showed that Transformers

trained on CHILDES data can perform well on

many of the Zorro categories, so if our setup is

sound, our own models should also perform well

on Zorro.

See Appendix D for full results. For each syntac-

tic phenomenon, most model re-runs scored above

0.9, though at least one scored near the chance level

of 0.5. For each re-run of each architecture there

is at least one phenomenon for which the model

scores over 0.97, and many models score 1.00 on

some phenomena. Thus, all models score well on

at least some syntactic evaluations, attaining results

comparable to those of Huebner et al. (2021) and

providing additional support for the validity of our

setup. We now test whether these models have also

successfully learned the specific phenomenon that

we focus on, yes/no questions—a phenomenon not

included in the Zorro dataset.

4.6 Yes/No Questions

Evaluation Dataset: Forced-Choice Acceptabil-

ity Judgments As a first way to test whether our

models have learned HIERARCHICALQ, we eval-

uate whether they assign higher probabilities to

sentences consistent with HIERARCHICALQ than

to minimally different sentences that are ungram-

matical. For this purpose, we create an evaluation

dataset containing groups of 6 questions, each cre-

ated by starting with a declarative sentence, such

as (5), and then deleting the first, main, or neither

auxiliary, and inserting the first or main auxiliary

at the front of the sentence.6 For instance, in (6b),

the first auxiliary has been preposed, and the main

auxiliary has been deleted.

(5) The dog who has seen a boy did try.

(6) a. Has the dog who seen a boy did try?

b. Has the dog who has seen a boy try?

c. Has the dog who has seen a boy did try ?

d. Did the dog who seen a boy did try?

e. Did the dog who has seen a boy try?

f. Did the dog who has seen a boy did try?

6It would be possible to also use a ‘prepose other’ category,
where an auxiliary not in the input is inserted (McCoy et al.,
2018). We excluded this category because using it would raise
complications about which ‘other’ auxiliary to choose.

Within each group, we evaluate which question

the model assigned the highest probability to. If a

model has correctly learned HIERARCHICALQ, it

should assign the highest probability to the question

consistent with this rule, such as (6e).

Several past papers about yes/no questions have

used the same general approach (Lewis and El-

man, 2001; Reali and Christiansen, 2005). How-

ever, these papers considered only pairs of sen-

tences, whereas we consider groups of 6 to allow

for a wider range of possible generalizations that a

model might have learned.

To generate the declaratives from which we

formed groups of 6 questions, we used the context-

free grammar (CFG) in Appendix F, which has a vo-

cabulary selected from the most common words in

CHILDES. Each declarative generated by the CFG

(e.g., (5)) contains two auxiliary verbs: one before

the sentence’s main verb and one inside a relative

clause modifying the subject. One potential prob-

lem is that some questions are consistent with both

HIERARCHICALQ and LINEARQ. For instance,

(7a) can be formed from (7b) with the HIERARCHI-

CALQ-consistent steps PREPOSE-MAIN,DELETE-

MAIN, or from (7c) with the LINEARQ-consistent

steps PREPOSE-FIRST,DELETE-MAIN.

(7) a. Did the boy who did see the person laugh?

b. The boy who did see the person did laugh.

c. The boy who did see the person can laugh.

To avoid this problem, we required that the aux-

iliary before the main verb must select for a dif-

ferent verb inflection than the one in the relative

clause. For instance in (5), did selects for the verb’s

bare form, while has selects for the past participle

form. Thus, the auxiliary at the start of the question

could only correspond to whichever auxiliary in the

declarative has the same selectional properties.7

Results: Relative Question Acceptability For

each sentence group, we used per-word perplex-

ity to see which of the 6 candidates the models

scored most highly.8 For both LSTMs and Trans-

formers, the correct category (PREPOSE MAIN,

DELETE MAIN) was the second-rarest choice, and

7A model could succeed on this dataset with a rule that
relates the auxiliary at the start of a question with the last
auxiliary in the declarative form. Since our models fail on this
dataset, this consideration is not relevant here.

8We also explored evaluation of the models with a more
complex measure called SLOR where we additionally nor-
malized scores by word frequency (Pauls and Klein, 2012).
Both metrics produced qualitatively similar results, so we only
report the simpler metric here. See Appendix C.1.
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Figure 1: The question types that models prefer when

offered a choice between 6 questions. These 6 questions

are formed by modifying a declarative with a relative

clause on the subject according to ‘prepose’ and ‘delete’

rules. The correct category is PREPOSE MAIN, DELETE

MAIN. Within each architecture, the proportions across

all 6 question types necessarily sum to 1. Each bar

shows the average across 10 model re-runs, with single-

standard-deviation error bars.

the most frequent preference was for PREPOSE

FIRST, DELETE MAIN, a category that is only par-

tially correct because it references linear order in

addition to hierarchical structure (Figure 1).

Thus, neither model displays preferences con-

sistent with the correct, fully-hierarchical gener-

alization. The two model types showed similar

scores, which may mean that these results are

largely driven by the statistics of the training data

that both models share, rather than the models’ dif-

fering inductive biases.

One of the incorrect categories—PREPOSE

MAIN, DELETE NONE, such as (6f)—only re-

quires reference to hierarchical structure, so it

could be said to capture the hierarchical nature of

yes/no questions. Nonetheless, this category was

also relatively rare: combining the two fully hier-

archical possibilities (PREPOSE MAIN, DELETE

MAIN and PREPOSE MAIN, DELETE NONE) ac-

counts for only 26% of LSTM preferences and

27% of Transformer preferences, meaning that both

models over 70% of the time favored a sentence

generated at least partially based on linear order.

There are two likely reasons for why our mod-

els performed so poorly on yes-no questions when

they performed well on many of the phenomena

in the Zorro dataset (Section 4.5). First, yes/no

questions may simply be harder to learn than the

other phenomena; indeed, yes/no questions are of-

ten singled out as being likely to pose difficulties

for a general-purpose learner (Section 1). While

this focus in prior literature might simply be a his-

torical coincidence, it is also possible that it points

to a true difference in ease of learning. Alterna-

tively, it might be that the six-way evaluation we

used for yes/no questions is stricter than the binary

judgments used for the Zorro dataset.

5 Experiment 2: Question Formation

The previous experiment was designed to operate

entirely in the next-word-prediction paradigm, mo-

tivated by arguments from past literature about

the strength and relative ecological validity of

next-word-prediction as a training objective (see

Section 4.2). However, one of this setup’s

shortcomings is that HIERARCHICALQ describes

correspondences between questions and declara-

tives, but Experiment 1 focused on questions alone,

with no consideration of declaratives.

In this second experiment, to better capture that

HIERARCHICALQ is defined over sentence pairs,

we trained models on a sentence-pair task: trans-

forming a declarative into a question (McCoy et al.,

2020). For instance, given the child did learn the

model must produce did the child learn ?

We evaluated models in two ways. First, we

checked if the models’ predictions fully matched

the correct questions. This full-sentence evaluation

is demanding, and models might fail this evalua-

tion for reasons unrelated to our core hypotheses.

For instance, given the child did learn the model

might produce did the baby learn, which would be

marked as incorrect, even though this lexical error

is not relevant to HIERARCHICALQ.

As a metric that is less demanding and that also

more directly targets HIERARCHICALQ, we mea-

sured if the first word of the output question corre-

sponded to the first or main auxiliary of the input.

Critically, LINEARQ and HIERARCHICALQ make

different predictions for the first word of a question

so long as the two auxiliaries are distinct: see (4).

Because this framing lets the model freely generate

its output (instead of choosing one option from a

pre-specified set), we allow for the possibility that

the rule learned by models may not be identical to

any of our manually-generated hypotheses.

Solely training models to perform this transfor-

mation involves the implicit assumption that, when

children acquire English yes/no questions, the only

evidence they leverage is English yes/no questions.
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However, other types of sentences may also provide

useful evidence (Pearl and Mis, 2016): e.g., wh-

questions also illustrate subject-auxiliary inversion

(Pullum and Scholz, 2002), while, more generally,

many types of sentences could provide evidence

that syntax as a whole is hierarchical (Perfors et al.,

2011). To explore this possibility, we compared

a condition in which models were only trained to

perform question formation (the QUESTION FOR-

MATION condition) to another in which models

were first pre-trained on next-word prediction with

the exact same setup as in Experiment 1 before

being further trained to perform question forma-

tion (the NEXT-WORD PREDICTION + QUESTION

FORMATION condition).

5.1 Dataset

Training Set Our question formation dataset con-

sisted of the yes/no questions in the CHILDES

Treebank (Pearl and Sprouse, 2013a,b), a parsed

subset of CHILDES containing 189,359 sentences.

We used these parses to extract all yes/no ques-

tions from the CHILDES Treebank and derive their

corresponding declarative forms. The resulting

declarative was concatenated with the question. An

example declarative/question pair is:

(8) you can spell your name . can you spell your

name ?

The training set consisted of 10,870 declara-

tive/question pairs, the validation set 1,360 pairs,

and the test set 1,358 pairs (we will call this test

set the randomly-partitioned test set to distinguish

it from two other evaluation sets discussed below).

We trained models to perform next-word prediction

on such concatenated sentence pairs.

The first-word accuracy of the trained model

was then computed based on the model’s predic-

tion for the word after the period in each test exam-

ple, while the full-sentence accuracy was computed

based on its predictions for all tokens after the pe-

riod. All questions in the randomly-partitioned test

set were withheld from both the question-formation

training set and the next-word-prediction training

set. Thus, models had not seen these test examples

in their training, even in the NEXT-WORD PRE-

DICTION + QUESTION FORMATION condition in

which they were trained on both tasks.

Evaluation Sets In addition to the randomly-

partitioned test set, we used CFGs to generate two

targeted evaluation sets. As in Experiment 1, we se-

lected the CFGs’ vocabulary from common words

in our CHILDES data. In sentences generated from

the first CFG, the sentence’s first auxiliary was also

its main auxiliary, so LINEARQ and HIERARCHI-

CALQ make the same predictions. (9a) exemplifies

the type of declarative-question pair in this dataset.

We call this dataset FIRST-AUX = MAIN-AUX. For

sentences generated by the second CFG, the main

auxiliary was the second auxiliary in the sentence;

thus, these examples disambiguate LINEARQ and

HIERARCHICALQ. Example (9b) is a declarative-

question pair from this evaluation set. We call this

dataset FIRST-AUX ̸= MAIN-AUX. See Appendix

F for the CFGs used.

(9) a. a girl was playing . was a girl playing ?

b. a boy who is playing can try . can a boy

who is playing try ?

5.2 Results

Randomly-Partitioned Test Set The LSTMs

and Transformers in the QUESTION FORMA-

TION condition performed well on the randomly-

partitioned test set, with a full-question accuracy

of 0.68 ± 0.014 and 0.87 ± 0.005 (averaged across

10 reruns with margins indicating one standard de-

viation). The models in the NEXT-WORD PRE-

DICTION + QUESTION FORMATION condition per-

formed similarly well, with a full-question accu-

racy of 0.66 ± 0.008 for the LSTMs and 0.93 ±

0.004 for the Transformers. For both model types,

the first-word accuracy for the question was nearly

1.00 across re-runs. We suspect that Transform-

ers have a stronger full-question accuracy because

producing the question requires copying all words

from the declarative (but in a different order). Copy-

ing is likely easy for Transformers because they can

attend to specific words in the prior context, while

our LSTMs must compress the entire context into a

fixed-size vector, which may degrade the individual

word representations. Because both model types

achieved near-perfect performance on the crucial

first-word accuracy metric, we conclude that our

models have successfully learned how to handle

the types of declarative/question pairs that we ex-

tracted from the CHILDES Treebank.

Targeted Evaluation Sets On our targeted eval-

uation sets, models seldom produced the complete

question correctly. On the more lenient measure

of first-word accuracy, for cases where LINEARQ

and HIERARCHICALQ predict the same first out-

put word (FIRST-AUX = MAIN-AUX), the Trans-

former trained only on question formation per-
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Figure 2: Proportion of model-produced or target ques-

tions that were consistent with the linear rule LINEARQ

and/or the hierarchical rule HIERARCHICALQ. In the

FIRST-AUX = MAIN-AUX dataset, the first auxiliary is

the main auxiliary, so both LINEARQ and HIERARCHI-

CALQ produce the correct question string. The FIRST-

AUX ̸= MAIN-AUX dataset disambiguates the two rules.

Each bar in the LSTM and Transformer facets shows

the average across 10 model re-runs, with error bars

showing one standard deviation. The Correct Behavior

column shows how a model would perform if it had

perfectly learned the correct generalization.

formed strongly, while the Transformer trained on

both tasks, and both LSTMs, performed decently

(Figure 2; note chance performance is 1/vocabu-

lary size, which is near 0.00). For cases that dis-

ambiguate the two rules (FIRST-AUX ̸= MAIN-

AUX), both models in both conditions performed

more consistently with LINEARQ than HIERAR-

CHICALQ. Training on next-word prediction before

question formation had inconsistent effects: it mod-

estly increased the chance of hierarchical behavior

in LSTMs, and decreased it in Transformers.

Lexical Specificity In Appendix G, we further

break down the FIRST-AUX ̸= MAIN-AUX results

based the auxiliaries’ identity. The generalization

pattern varied considerably across auxiliary pairs.

For some auxiliary pairs, the auxiliary chosen to

begin the question was usually neither auxiliary

in the input (Figure 3, left facet). For other pairs,

models usually chose the first auxiliary, regardless

of lexical identity (Figure 3, middle facet). Finally,

for some pairs, the auxiliary chosen was usually

the same one, regardless of whether it was the first

or main auxiliary (Figure 3, right facet).

Generalization based on lexical identity is rarely

considered in past discussions of English yes/no

question acquisition. Of the papers on this phe-
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Figure 3: Lexical specificity in model behavior. Each

facet considers only the evaluation examples containing

the two auxiliaries in the facet heading; e.g., the can

and do facet includes, for example, the inputs the chil-

dren who can play do learn and the children who do

play can learn. The bars show the proportion of model

predictions for the first word of the output that are con-

sistent with four potential movement rules, averaged

across 10 model re-runs and with error bars showing

one standard deviation above and below the mean. This

plot only shows an illustrative subset of auxiliary pairs

for one model type (Transformers in the NEXT-WORD

PREDICTION + QUESTION FORMATION condition);

see Appendix G for the full results.

nomenon (see Clark and Lappin (2010), Lasnik

and Lidz (2017), and Pearl (2021) for overviews),

the only one to our knowledge that discusses lexi-

cal specificity is Frank and Mathis (2007), which

studied models trained on synthetic data. Our re-

sults highlight the importance of testing for a broad

range of generalizations: Lexically-specific hy-

potheses appear attractive for our low-bias learners,

so an account of what biases can yield human-like

learning should rule out these lexically-specific hy-

potheses along with linear ones.

6 Discussion

We have found that, when trained on child-directed

speech, two types of standard neural networks per-

formed reasonably well at capturing the statistical

properties of the dataset, yet their handling of En-

glish yes/no questions was more consistent with

a linear rule LINEARQ than the correct hierarchi-

cal rule HIERARCHICALQ. These results support

the hypothesis that a learner requires a hierarchical

bias to consistently learn hierarchical rules when

learning from the linguistic data children receive.

6.1 Takeaways for LSTMs and Transformers

When trained on massive corpora, LSTMs and

Transformers perform impressively on some syn-
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tactic evaluations. Based on such results, it is tempt-

ing to conclude that the general-purpose biases of

these architectures suffice to yield human-like syn-

tax acquisition. Our results caution against this

interpretation: When we trained the same architec-

tures on data more similar to children’s input, they

failed to learn the structure of English yes/no ques-

tions. Thus, at least when learning from text alone,

LSTMs and Transformers do not display human-

like language learning—they do not generalize as

humans do from the data that humans receive.

6.2 Takeaways for the Poverty of the Stimulus

Debate

Below we specify four possible positions in the

poverty-of-the-stimulus debate about the adequacy

of children’s input for inducing hierarchical rules in

low-bias learners, arranged from assuming the most

limited to the most expansive innate component:

(10) Any inductive biases: Any learner trained on

CHILDES will generalize like humans do.

(11) Any inductive biases that enable in-

distribution learning: Any learner that cap-

tures the statistical patterns of the training dis-

tribution will generalize to HIERARCHICALQ.

(12) Some non-hierarchical inductive biases:

Some general-purpose learners will generalize

as humans do, but others will not.

(13) Only a hierarchical inductive bias: No

general-purpose learners will generalize as

humans do: hierarchical biases are necessary.

Position (10) is clearly false: many learners can-

not learn certain aspects of syntax, no matter their

training data (e.g., bigram models cannot capture

long-distance dependencies). Our work shows that

position (11) is also false: Though our models per-

formed well on the in-distribution test sets of Exper-

iments 1 and 2, they did not generalize in human-

like ways. This leaves positions (12) and (13),

which our existing results cannot differentiate. It is

possible that only learners with hierarchical induc-

tive biases can demonstrate human-like language

learning (position (13)), but also that some learners

without this bias can succeed (position (12))—just

not the learners we tested. For further discussion

of how computational modeling can bear on learn-

ability arguments, see Wilcox et al. (2022).

One potential solution supporting position (12)

would be that learners leverage the hierarchical

structure of some syntactic phenomenon to help

conclude that other, impoverished phenomena are

hierarchical (Perfors et al., 2011; Mulligan et al.,

2021). However, our results from Experiment 2

show that giving learners access to a wider range

of phenomena does not automatically improve hi-

erarchical generalization: Models’ performance on

question formation was not substantially improved

(and in some cases was even harmed) when they

were trained not just on question formation but also

on next-word prediction on the entire CHILDES

corpus. Thus, although training on text that con-

tains many linguistic phenomena can give mod-

els a hierarchical inductive bias when the training

is done over large Internet corpora (Warstadt and

Bowman, 2020; Mueller et al., 2022), our results

provide evidence that this conclusion does not ex-

tend to models trained on child-directed speech.

Though both (12) and (13) remain as possibil-

ities, we believe that our results more strongly

support (13). Of all currently available general-

purpose learners, LSTMs and Transformers are the

best at modeling the probabilistic structure of lin-

guistic data. Therefore, if child-directed speech

contains clear evidence for the hierarchical nature

of yes/no questions—evidence so clear that at least

some general-purpose learners could recognize it—

it is likely that LSTMs and Transformers would

be among the set of general-purpose learners that

could use this evidence to make hierarchical gener-

alizations in our experiments. The fact that these

architectures instead predominantly favored linear

generalizations therefore supports position (13).

6.3 How to test for HIERARCHICALQ

We have argued that an ideal simulation of the

acquisition of English yes/no questions would have

the following properties:

(14) The training data should be similar to chil-

dren’s linguistic input.

(15) The training task should be ecologically valid.

(16) The evaluation method should focus on corre-

spondences between pairs of sentences rather

than the acceptability of individual sentences.

Property (14) motivated our use of text from

CHILDES as the training data. We are not aware

of a single experimental setup that fully satisfies

both Property (15) and Property (16), so we instead

used two experiments, each one focusing on one

property at the cost of satisfying the other one less
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well. Experiment 1 works entirely in the context

of the relatively ecologically valid task of next-

word prediction, motivated by Property (15), but its

evaluation is only based on the acceptability of in-

dividual sentences, failing to satisfy Property (16).

Experiment 2 fully satisfies Property (16) by using

an evaluation based on sentence pairs, at the cost of

including a less ecologically-valid training compo-

nent based on sentence transformations. Both ex-

periments yielded qualitatively similar conclusions

(failure of models to learn HIERARCHICALQ).

6.4 Quantity of Training Data

The size of our training set was plausibly in the

range from which children can acquire HIERAR-

CHICALQ. Crain and Nakayama (1987) found that

children between ages 3 and 5 behaved much

more consistently with HIERARCHICALQ than

LINEARQ. Though these children made many er-

rors, their errors were usually compatible with a

hierarchical rule (e.g., PREPOSE MAIN, DELETE

NONE errors: see Section 4.6). By age 3, Ameri-

can children receive approximately 10 to 33 million

words of input (Hart and Risley, 1995), and the 8.5

million of our training set is near the lower end of

that range. Thus, while we cannot be completely

certain, it is reasonable to suppose that a learner

that generalizes as children do would favor HIER-

ARCHICALQ after being trained on our training

set. Our models, in contrast, preferred sentences

generated in ways based on linear order (Figures 1

and 2), a error category very rare in children (Crain

and Nakayama, 1987; Ambridge et al., 2008).

In order to give our models the strongest chance

of generalizing correctly, it would have been ideal

to provide a quantity of data closer to 33 million

words, the high end of Hart and Risley’s range. Our

data source did not contain enough text to make this

possible, but future work could investigate ways to

augment the data using other sources.

6.5 Type of Training Data

Our training set was both qualitatively and quanti-

tatively closer to children’s input than the massive

Internet corpora standardly used to train models in

NLP (Linzen, 2020). This difference is important:

Lin et al. (2019), Warstadt and Bowman (2020),

and Mueller et al. (2022) all found evidence that

models trained on large Internet corpora performed

well on yes/no questions evaluations, whereas our

models trained on CHILDES performed poorly—

though we cannot be certain the differences in re-

sults are solely due to differences in the training

data, since these prior papers used different model

architectures, training tasks, and evaluation setups.

Though our training data are more similar to

children’s input than massive Internet corpora are,

differences remain. Our experiments omit several

aspects of a child’s experience that might help

them acquire syntax, such as prosody (Morgan

and Demuth, 1996), visual information (Shi et al.,

2019), meaning (Fitz and Chang, 2017; Abend

et al., 2017), and social interaction (Kuhl et al.,

2003; Rowe and Weisleder, 2020), all of which

involve information that might correlate with syn-

tactic structure and thus provide cues to the cor-

rect hierarchical generalization. On the other hand,

our dataset might present an easier learning sce-

nario than children are faced with, because chil-

dren must learn to segment the speech stream into

words (Lakhotia et al., 2021), while our models do

not need to. Further, though real-world grounding

could provide helpful information, learners might

struggle to leverage this information due to diffi-

culty determining what is being discussed in the

physical world (Gleitman et al., 2005).

7 Conclusion

In this work, we trained two types of neural net-

works (LSTMs and Transformers) on sentences of

the types available to children and then analyzed

what they had learned about English yes/no ques-

tions. Across several evaluation paradigms, these

models failed to generalize in human-like ways:

Humans display hierarchical generalization, while

the models’ generalization was instead based on

linear order and individual words’ identities. Our

results support the hypothesis that human-like lin-

guistic generalization requires biases stronger than

those of LSTMs and Transformers. Future work

should investigate what inductive biases enable suc-

cessful generalization. One approach would be to

test architectures with built-in hierarchical struc-

ture; past work has shown that such architectures

have a hierarchical bias (McCoy et al., 2020) and

generalize better on the hierarchical phenomenon

of subject-verb agreement (Kuncoro et al., 2018;

Lepori et al., 2020), so they may also generalize bet-

ter on English yes/no questions. A final direction

would be to expand the input beyond words alone

so that learners can leverage hierarchical structure

that is present in other modalities, such as hierar-

chical structure in visual scenes.
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Ethics Statement

Use of human data: While we did not collect

any new human data ourselves, many of our anal-

yses involved the use of prior datasets within the

CHILDES database. All of these datasets were

collected in accordance with IRB policies at the

institutions of the data collectors, and all followed

standard practices in obtaining informed consent

and deidentifying data.9

Limitations

We view strong performance on our evaluation

datasets as necessary but not sufficient to demon-

strate human-like learning. Thus, if models per-

form poorly on our datasets (as the models we eval-

uated did), then we have strong reason to conclude

that models are not learning in human-like ways. If

future models perform better, such results would be

consistent with human-like learning but would not

conclusively establish that models learn as humans

do, as they might instead be using some shallow

heuristic that is not controlled for in our datasets.

In other words, a criterion that is necessary but not

sufficient facilitates strong conclusions about fail-

ure but does not facilitate strong conclusions about

success. If future papers are faced with models

that are more successful, such papers would ideally

supplement results based on our datasets with anal-

yses of models’ internal strategies in order to more

conclusively establish that what they have learned

is not a spurious heuristic.

Thus an important risk of our proposed analyses

is that future work using the same analyses might

draw overly strong conclusions based on increased

model performance, leading to overestimates of

model strength. Such overestimates are an issue

because they can lead users to place more trust in a

model than is warranted.
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A CHILDES preprocessing details

The train, test, and validation split kept each docu-

ment in the corpora intact to allow for learning of

context. Since a document roughly correspond to

a single recording session, and the sentence order

within each document was not randomized, the net-

works could utilize cross sentence context while

predicting the next word.

Generally, we kept the data as close to the actual

input that the child receives as possible. However,

in some cases we modified tokenization to match

the CHILDES Treebank, a syntactically parsed sub-

set of the CHILDES corpora. For instance, con-

tractions were split, e.g. we replaced don’t with do

n’t,

The ages of the children vary by corpus, ranging

from six months to twelve years. Almost 95%

(49/52) of the corpora consist of transcriptions with

children between one and six years of age.

Note that for Experiment 2, we used the same vo-

cabulary as we used in Experiment 1, which means

that the words that were not present in Experiment

1’s vocabulary were replaced with <unk> tokens.

The unprocessed CHILDES datasets were down-

loaded in XML format from the online XML ver-

sion10 of the CHILDES database (MacWhinney,

2000).11 A modified NLTK CHILDESCorpus-

Reader12 was used to parse the XML into plain

text for training.

The CHILDES dataset is licensed for use under

a CC BY-NC-SA 3.0 license13. Under the terms of

this license, the data can be freely used and adapted,

as long as it is not used for commercial purposes

and as long as attribution is provided.14 Our usage

fits these criteria.

Though CHILDES contains many corpora of

many languages, we use only corpora from the

North American English subset of CHILDES,

which contains child-directed speech with many

different North American children. See the

CHILDES database for more details.

10
https://childes.talkbank.org/data-xml/

11
https://childes.talkbank.org

12
https://www.nltk.org/howto/childes.html

13
https://talkbank.org/share/rules.html

14
https://creativecommons.org/licenses/

by-nc-sa/3.0/

By the CHILDES rules for data citation,15 re-

search that relies on more than 6 of the corpora

need only cite the overall database, not each indi-

vidual corpus.

All the data on CHILDES must adhere to

IRB guidelines,16 including a requirement for

anonymity.

The final dataset is included in our GitHub repos-

itory. This dataset is not intended for commercial

use.

CHILDES corpora included The CHILDES

corpora that we used were: Bates, Bernstein, Bliss,

Bloom70, Bloom73, Bohannon, Braunwald, Brent,

Brown, Carterette, Clark, Cornell, Demetras1,

Demetras2, EllisWeismer, Evans, Feldman, Garvey,

Gathercole, Gelman, Gillam, Gleason, HSLLD,

Haggerty, Hall, Higginson, Kuczaj, MacWhin-

ney, McCune, McMillan, Morisset, NH, Nelson,

NewEngland, NewmanRatner, Normal, POLER,

Peters, Post, Rollins, Sachs, Sawyer, Snow, Soder-

strom, Sprott, Suppes, Tardif, Valian, VanHouten,

VanKleeck, Warren, Weist.

B Hyperparameter Search and Model

Implementation

We conducted a hyperparameter search for each

of the architectures we investigated (LSTMs and

Transformers). Our broad goal in this paper is to

investigate the extent to which capturing the statis-

tical properties of the CHILDES dataset naturally

leads a learner to capture the structure of yes/no

questions. Therefore, we sought to find the hyper-

parameter settings that made models most effective

at capturing the statistical properties of CHILDES

data, a goal which we operationalized as finding

the model with the lowest perplexity.

B.1 Hyperparameter search

LSTMs For LSTMs we explored the following

hyper-parameters via a grid search for a total of

144 models.

1. layers: 2

2. hidden and embedding size: 200, 800

3. batch size: 20, 80

4. dropout rate: 0.0, 0.2, 0.4, 0.6

5. learning rate: 5.0, 10.0, 20.0

15
https://talkbank.org/share/citation.html

16
https://talkbank.org/share/irb/
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6. random seed: 3 per parameter combination,

unique for each LSTM

The LSTM model with the lowest perplexity on the

validation set after training had 2 layers, a hidden

and embedding size of 800, a batch size of 20, a

dropout rate of 0.4, and a learning rate of 10.17

A LSTM model with these hyperparameters has

37,620,294 parameters.

Transformers For the Transformers we per-

formed a hyperparameter sweep over the following

hyper-parameters for a total of 84 models.

1. layers: 2, 4, 8, 16

2. context size: 50, 100, 500

3. hidden and embedding size: 200, 800, 1600

4. heads: 2, 4, 8, 16

5. batch size: 20, 80, 160

6. dropout rate: 0.0, 0.2, 0.4, 0.6

7. learning rate: 0.5, 1.0, 5.0, 10.0, 20.0

8. random seed: 3 per parameter combination

The Transformer model with the lowest perplexities

after training had 4 layers, a context size of 500,

a hidden size of 800, a batch size of 10, 4 heads,

a dropout rate of 0.2, and a learning rate of 5.0.

A Transformer model with these parameters has

42,759,494 parameters.

We did not include a warmup period in our train-

ing procedure. In informal experiments, we tried

including a warmup period for both LSTMs and

Transformers, but we found that this did not mean-

ingfully affect the perplexity of the trained models

in our setting.

B.2 Comment on model size

Although neural networks generally perform better

as they increase in size, the best-performing models

that we found were not the largest ones. This re-

sult is consistent with the finding of Warstadt et al.

(2020b) that, for small training sets, smaller lan-

guage models sometimes outperform larger ones.

Thus, it is unlikely that scaling up models beyond

the range we investigated would have yielded bet-

ter CHILDES language models than the ones we

trained.
17The hyperparameters we explored for the LSTMs

were those of Gulordava et al. (2018), the code
for which can be found at https://github.com/

facebookresearch/colorlessgreenRNNs

B.3 Implementation

All models were implemented in PyTorch by

building on code from https://github.com/

facebookresearch/colorlessgreenRNNs and

https://github.com/pytorch/examples/

tree/main/word_language_model, and trained

using Nvidia k80 GPUs. The final models are

included in our GitHub repository. These models

are not intended for commercial use.

C PREPOSE-ONE&DELETE-ONE Full

Results

See Table 1 and Table 2 for these results.

LSTMs Prepose First Prepose Main

Delete First 0.01 0.14

Delete Main 0.39 0.12

Delete None 0.20 0.14

Table 1: Numerical results for LSTMs’ preference for

questions consistent with combinations of ‘prepose’ and

‘delete’ rules. Within each architecture, the proportion

preferences across all 6 question types necessarily sum

to 1.

Transformers Prepose First Prepose Main

Delete First 0.01 0.16

Delete Main 0.31 0.06

Delete None 0.25 0.21

Table 2: Numerical results for Transformers’ preference

for questions consistent with combinations of ‘prepose’

and ‘delete’ rules. Within each architecture, the propor-

tion preferences across all 6 question types necessarily

sum to 1.

C.1 Results using SLOR

See Table 3 and Table 4 for these results.

LSTMs Prepose First Prepose Main

Delete First 0.01 0.14

Delete Main 0.33 0.08

Delete None 0.26 0.18

Table 3: Analysis of LSTMs’ preference for questions

consistent with combinations of ‘prepose’ and ‘delete’

rules, evaluated using SLOR. Within each architecture,

the proportion preferences across all 6 question types

necessarily sum to 1.
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Transformers Prepose First Prepose Main

Delete First 0.01 0.15

Delete Main 0.27 0.04

Delete None 0.29 0.24

Table 4: Analysis of Transformers’ preference for ques-

tions consistent with combinations of ‘prepose’ and

‘delete’ rules, evaluated using SLOR. Within each archi-

tecture, the proportion preferences across all 6 question

types necessarily sum to 1.

1 0.460.98
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Figure 4: The performance of a selected subset of

model re-runs on a selected subset of the Zorro evalua-

tions. Each Zorro evaluation targets a specific syntactic

phenomenon—in the cases shown here, irregular verbs,

subject-verb agreement across relative clauses, and cor-

rect argument ordering.

D BabyBERTa dataset evaluation

For an illustrative subset of the results on the Zorro

evaluation dataset (discussed in Section 4.5), see

Figure 4. For the full results, see Figure 5.

E Move-One Dataset Results

One approach used in several past papers (e.g.,

Lewis and Elman (2001) and Reali and Chris-

tiansen (2005)) is to evaluate models using pairs

of sentences that can be formed by starting with a

declarative sentence (e.g., (17)) and moving one of

its auxiliaries to the front of the sentence. The first

sentence in each pair (e.g., (18a) ) follows HIER-

ARCHICALQ, because the main auxiliary is moved,

while the second (e.g., (18b)), follows LINEARQ

because the first auxiliary is moved.

(17) The children who are talking are sleeping.

(18) a. Are the children who are talking sleeping?

b. Are the children who talking are sleeping?

If a model assigns a higher probability to (18a)

than (18b), that is evidence that the models favors

HIERARCHICALQ over LINEARQ. While this pref-

erence is a necessary component of correctly learn-

ing HIERARCHICALQ, it is by no means sufficient:

indeed, Kam et al. (2008) showed that models can

prefer sentences consistent with HIERARCHICALQ

over sentences consistent with LINEARQ due to

shallow n-gram statistics rather than due to knowl-

edge of hierarchical structure. More generally,

there are infinitely many other incorrect hypotheses

besides LINEARQ, and demonstrating successful

learning of HIERARCHICALQ would require ruling

out all of them. Investigating all possibilities is

intractable, but we can at least investigate a few

additional plausible ones. Thus, in the main paper

we depart from prior work by considering a greater

number of candidate sentences than just the pairs

of sentences used in prior work.

To create the MOVE-ONE dataset, we ran-

domly sampled 10,000 declarative sentences from

our CFGs for which the first and main auxiliary

were identical and then modified them to give

10,000 sentence pairs. To create the PREPOSE-

ONE&DELETE-ONE dataset, we randomly sam-

pled a different 10,000 declarative sentences from

our CFGs for which the first and main auxiliary

were different and then we modified them to give

10,000 6-tuples of sentences. See Appendix F for

more details about the CFGs.

F Context Free Grammars

Figure 6 contains the context-free grammar used

for the analyses in Section 4.6. Figures 7 and 8 con-

tain the context-free grammars used for the targeted

evaluation sets in Section 5.2; for each of these

evaluation sets, we sampled 10,000 declarative sen-

tences from these grammars and transformed them

into questions according to HIERARCHICALQ. Fig-

ure 9 contains the vocabulary used for all of these

datasets.

G Breakdown by lexical identity

Here we further break down models’ predictions

for the FIRST-AUX ̸= MAIN-AUX evaluation set

based on the identities of the two auxiliaries in

the input sentence. Figure 10 gives the results for

the LSTM in the QUESTION FORMATION condi-

tion; Figure 11 for the LSTM in the NEXT-WORD

PREDICTION + QUESTION FORMATION condi-

tion; Figure 12 for the Transformer in the QUES-

TION FORMATION condition; and Figure 13 for the

for the Transformer in the NEXT-WORD PREDIC-

TION + QUESTION FORMATION condition.
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Figure 5: Results on the targeted syntactic evaluations in Huebner et al. (2021) in percent accuracy. Evaluation

names in Figure 4 were shortened.

H Example generated text

Figure 14 gives some example text generated by our

models. Models trained on next-word prediction

produce their predictions as a probability distribu-

tion over the vocabulary. To use such models to

generate text, we sample a word from this distribu-

tion then use that word as the model’s input for the

next time step.
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S → {NP_S RC_S_BARE MAIN-AUX VP_S_PAST}

S → {NP_S RC_S_PAST MAIN-AUX VP_S_BARE}

S → {NP_S RC_S_BARE MAIN-AUX VP_S_PROG}

S → {NP_S RC_S_PROG MAIN-AUX VP_S_BARE}

S → {NP_S RC_S_PAST MAIN-AUX VP_S_PROG}

S → {NP_S RC_S_PROG MAIN-AUX VP_S_PAST}

S → {NP_P RC_P_BARE MAIN-AUX VP_P_PAST}

S → {NP_P RC_P_PAST MAIN-AUX VP_P_BARE}

S → {NP_P RC_P_BARE MAIN-AUX VP_P_PROG}

S → {NP_P RC_P_PROG MAIN-AUX VP_P_BARE}

S → {NP_P RC_P_PAST MAIN-AUX VP_P_PROG}

S → {NP_P RC_P_PROG MAIN-AUX VP_P_PAST}

NP_S → {Det_S N_S}

NP_P → {Det_P N_P}

NP_O → {Det_S N_S | Det_P N_P | Det_S N_S Prep Det_S N_S | Det_S N_S Prep

Det_P N_P | Det_P N_P Prep Det_S N_S | Det_P N_P Prep Det_P N_P}

VP_S_BARE → {Aux_S IV }

VP_S_BARE → {Aux_S TV NP_O}

VP_S_PROG → {Aux_S_BE IV_IS}

VP_S_PROG → {Aux_S_BE TV_IS NP_O}

VP_S_PAST → {Aux_S_HAS IV_HAS}

VP_S_PAST → {Aux_S_HAS TV_HAS NP_O}

VP_P_BARE → {Aux_P IV}

VP_P_BARE → {Aux_P TV NP_O}

VP_P_PROG → {Aux_P_BE IV_IS}

VP_P_PROG → {Aux_P_BE TV_IS NP_O}

VP_P_PAST → {Aux_P_HAS IV_HAS}

VP_P_PAST → {Aux_P_HAS TV_HAS NP_O}

RC_S_BARE → {Rel Aux_S IV | Rel Det_S N_S Aux_S TV | Rel Det_P N_P Aux_P TV |
Rel Aux_S TV Det_S N_S | Rel Aux_S TV Det_P N_P}

RC_S_PROG → {Rel Aux_S_BE IV_IS | Rel Det_S N_S Aux_S_BE TV_IS | Rel Det_P

N_P Aux_P_BE TV_IS | Rel Aux_S_BE TV_IS Det_S N_S | Rel Aux_S_BE

TV_IS Det_P N_P}

RC_S_PAST → {Rel Aux_S_HAS IV_HAS | Rel Det_S N_S Aux_S_HAS TV_HAS | Rel

Det_P N_P Aux_P_HAS TV_HAS | Rel Aux_S_HAS TV_HAS Det_S N_S |
Rel Aux_S_HAS TV_HAS Det_P N_P}

RC_P_BARE → {Rel Aux_P IV | Rel Det_S N_S Aux_S TV | Rel Det_P N_P Aux_P TV |
Rel Aux_P TV Det_S N_S | Rel Aux_P TV Det_P N_P}

RC_P_PROG → {Rel Aux_P_BE IV_IS | Rel Det_S N_S Aux_S_BE TV_IS | Rel Det_P

N_P Aux_P_BE TV_IS | Rel Aux_P_BE TV_IS Det_S N_S | Rel Aux_P_BE

TV_IS Det_P N_P}

RC_P_PAST → {Rel Aux_P_HAS IV_HAS | Rel Det_S N_S Aux_S_HAS TV_HAS | Rel

Det_P N_P Aux_P_HAS TV_HAS | Rel Aux_P_HAS TV_HAS Det_S N_S |
Rel Aux_P_HAS TV_HAS Det_P N_P}

Figure 6: CFG used to generate PREPOSE-ONE-AND-DELETE-ONE evaluation dataset
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S → {NP_M_S VP_M_S | NP_M_P VP_M_P}

NP_M_S→ {Det_S N_S | Det_S N_S Prep Det_S N_S | Det_S N_S Prep Det_P N_P}

NP_M_P→ {Det_P N_P | Det_P N_P Prep Det_S N_S | Det_P N_P Prep Det_P N_P}

NP_O → {Det_S N_S | Det_P N_P | Det_S N_S Prep Det_S N_S | Det_S N_S Prep

Det_P N_P | Det_P N_P Prep Det_S N_S | Det_P N_P Prep Det_P N_P | Det_S

N_S RC_S | Det_P N_P RC_P }

VP_M_S→ {Aux_S IV }

VP_M_S→ {Aux_S TV NP_O}

VP_M_S→ {Aux_S_BE IV_IS}

VP_M_S→ {Aux_S_BE TV_IS NP_O}

VP_M_S→ {Aux_S_HAS IV_HAS}

VP_M_S→ {Aux_S_HAS TV_HAS NP_O}

VP_M_P→ {Aux_P IV}

VP_M_P→ {Aux_P TV NP_O}

VP_M_P→ {Aux_P_BE IV_IS}

VP_M_P→ {Aux_P_BE TV_IS NP_O}

VP_M_P→ {Aux_P_HAS IV_HAS}

VP_M_P→ {Aux_P_HAS TV_HAS NP_O}

RC_S → {Rel Aux_S IV | Rel Det_S N_S Aux_S TV | Rel Det_P N_P Aux_P TV |
Rel Aux_S TV Det_S N_S | Rel Aux_S TV Det_P N_P}

RC_S → {Rel Aux_S_BE IV_IS | Rel Det_S N_S Aux_S_BE TV_IS | Rel Det_P

N_P Aux_P_BE TV_IS | Rel Aux_S_BE TV_IS Det_S N_S | Rel Aux_S_BE

TV_IS Det_P N_P}

RC_S → {Rel Aux_S_HAS IV_HAS | Rel Det_S N_S Aux_S_HAS TV_HAS | Rel

Det_P N_P Aux_P_HAS TV_HAS | Rel Aux_S_HAS TV_HAS Det_S N_S |
Rel Aux_S_HAS TV_HAS Det_P N_P}

RC_P → {Rel Aux_P IV | Rel Det_S N_S Aux_S TV | Rel Det_P N_P Aux_P TV |
Rel Aux_P TV Det_S N_S | Rel Aux_P TV Det_P N_P}

RC_P → {Rel Aux_P_BE IV_IS | Rel Det_S N_S Aux_S_BE TV_IS | Rel Det_P

N_P Aux_P_BE TV_IS | Rel Aux_P_BE TV_IS Det_S N_S | Rel Aux_P_BE

TV_IS Det_P N_P}

RC_P → {Rel Aux_P_HAS IV_HAS | Rel Det_S N_S Aux_S_HAS TV_HAS | Rel

Det_P N_P Aux_P_HAS TV_HAS | Rel Aux_P_HAS TV_HAS Det_S N_S |
Rel Aux_P_HAS TV_HAS Det_P N_P}

Figure 7: CFG used to generate FIRST-AUX = MAIN-AUX evaluation dataset
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S → {NP_M_S VP_M_S | NP_M_P VP_M_P}

NP_M_S→ {Det_S N_S | Det_S N_S Prep Det_S N_S | Det_S N_S Prep Det_P N_P}

NP_M_P→ {Det_P N_P | Det_P N_P Prep Det_S N_S | Det_P N_P Prep Det_P N_P}

NP_O → {Det_S N_S | Det_P N_P | Det_S N_S Prep Det_S N_S | Det_S N_S Prep

Det_P N_P | Det_P N_P Prep Det_S N_S | Det_P N_P Prep Det_P N_P | Det_S

N_S RC_S | Det_P N_P RC_P }

VP_M_S→ {Aux_S IV }

VP_M_S→ {Aux_S TV NP_O}

VP_M_S→ {Aux_S_BE IV_IS}

VP_M_S→ {Aux_S_BE TV_IS NP_O}

VP_M_S→ {Aux_S_HAS IV_HAS}

VP_M_S→ {Aux_S_HAS TV_HAS NP_O}

VP_M_P→ {Aux_P IV}

VP_M_P→ {Aux_P TV NP_O}

VP_M_P→ {Aux_P_BE IV_IS}

VP_M_P→ {Aux_P_BE TV_IS NP_O}

VP_M_P→ {Aux_P_HAS IV_HAS}

VP_M_P→ {Aux_P_HAS TV_HAS NP_O}

RC_S → {Rel Aux_S IV | Rel Det_S N_S Aux_S TV | Rel Det_P N_P Aux_P TV |
Rel Aux_S TV Det_S N_S | Rel Aux_S TV Det_P N_P}

RC_S → {Rel Aux_S_BE IV_IS | Rel Det_S N_S Aux_S_BE TV_IS | Rel Det_P

N_P Aux_P_BE TV_IS | Rel Aux_S_BE TV_IS Det_S N_S | Rel Aux_S_BE

TV_IS Det_P N_P}

RC_S → {Rel Aux_S_HAS IV_HAS | Rel Det_S N_S Aux_S_HAS TV_HAS | Rel

Det_P N_P Aux_P_HAS TV_HAS | Rel Aux_S_HAS TV_HAS Det_S N_S |
Rel Aux_S_HAS TV_HAS Det_P N_P}

RC_P → {Rel Aux_P IV | Rel Det_S N_S Aux_S TV | Rel Det_P N_P Aux_P TV |
Rel Aux_P TV Det_S N_S | Rel Aux_P TV Det_P N_P}

RC_P → {Rel Aux_P_BE IV_IS | Rel Det_S N_S Aux_S_BE TV_IS | Rel Det_P

N_P Aux_P_BE TV_IS | Rel Aux_P_BE TV_IS Det_S N_S | Rel Aux_P_BE

TV_IS Det_P N_P}

RC_P → {Rel Aux_P_HAS IV_HAS | Rel Det_S N_S Aux_S_HAS TV_HAS | Rel

Det_P N_P Aux_P_HAS TV_HAS | Rel Aux_P_HAS TV_HAS Det_S N_S |
Rel Aux_P_HAS TV_HAS Det_P N_P}

Figure 8: CFG used to generate FIRST-AUX ̸= MAIN-AUX evaluation dataset
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Det_S → {the | some | this }

Det_P → {the | some | those}

N_S → {baby | girl | boy | animal | child | person | horse }

N_P → {babies | girls | boys | animals | children | people | horses }

IV → {play | read | draw | sit | fall | talk | sleep | try | work | walk}

IV_IS → {playing | reading | drawing | sitting | falling | talking | sleeping | trying |
working | walking}

IV_HAS → {played | read | drawn | sat | fallen | talked | slept | tried | worked | walked}

TV → {call | see | find | help | feed | know | pick | visit | watch | reach}

TV_IS → {calling | seeing | finding | helping | feeding | knowing | picking | visiting |
watching | reaching}

TV_HAS → {called | seen | found | helped | fed | known | picked | visited | watched |
reached}

Aux_P → {do | did | can | would | shall}

Aux_S → {does | did | can | would | shall}

Aux_S_BE → {is | was}

Aux_P_BE → {are | were}

Aux_S_HAS→ {has}

Aux_P_HAS→ {have}

Prep → {by | behind }

Rel → {who | that }

Figure 9: Vocabulary used for the PREPOSE-ONE-AND-DELETE-ONE, FIRST-AUX ̸= MAIN-AUX, and FIRST-AUX

= MAIN-AUX evaluation datasets

Figure 10: Breakdown by the identities of the two auxiliaries for outputs in the FIRST-AUX ̸= MAIN-AUX

evaluation set for LSTMs trained only on question formation. The two leftmost bars in each cell show a First-vs-

main comparison, while the two rightmost bars show an AuxY-vs-AuxX comparison.
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Figure 11: Breakdown by the identities of the two auxiliaries for outputs in the FIRST-AUX ̸= MAIN-AUX evaluation

set for LSTMs first trained on next-word prediction and then question formation. The two leftmost bars in each cell

show a First-vs-main comparison, while the two rightmost bars show an AuxY-vs-AuxX comparison.

Figure 12: Breakdown by the identities of the two auxiliaries for outputs in the FIRST-AUX ̸= MAIN-AUX evaluation

set for Transformers trained only on question formation. The two leftmost bars in each cell show a First-vs-main

comparison, while the two rightmost bars show an AuxY-vs-AuxX comparison.
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Figure 13: Breakdown by the identities of the two auxiliaries for outputs in the FIRST-AUX ̸= MAIN-AUX evaluation

set for Transformers first trained on next-word prediction and then question formation. The two leftmost bars in

each cell show a First-vs-main comparison, while the two rightmost bars show an AuxY-vs-AuxX comparison.

Text from

CHILDES

do you eat in nursery school too ? oh . it ’s nursery school . xxx . what do you

get to eat ? what else do you get to eat besides a book ? do n’t play with those

books . what else do you have ? what do you have in nursery school ? alright -

you can take it . why do n’t you put the turtle back . well - you ’re not going to

change his water now . tonight . tonight - you change it about ten times a day .

no - you can do it later . forget it now . too bad . too bad . that poor turtle . you

do n’t let him sit there five minutes . that was five minutes ?

LSTM gen-

erated text

do you eat in nursery school too ? oh . it ’s nursery school . no ! tomorrow ’s

Friday . right . yeah - yeah . yeah I know what . I told you that he liked

snipsnap that way . well this is address the grayish kings . ok . what kind of

bird do you want to play with ? what else do you want to do ? your crayons .

got a circle . I ’m going to use these . there . remember ? ok do you want to put

all of these there ? ok let ’s put everything away . what do you want to do ? you

want to play in the box ? it ’s just like a ball because it has a ball on it .

Transformer

generated

text

do you eat in nursery school too ? oh . it ’s nursery school . mm-hm . and it

looks like a little girl . mm-hm . like a little girl . hm , mm-hm . looks like she

’s concerned about baseball this is a picture of a double football player . mm-hm

. um , it has a uniform on it . mm-hm . anything more ? no . ok great . got a hat

on . and a flower and a little flower . remember that ? do you remember that

word ? what do you remember that word ? do you remember what it word says

? it says seven - eight . what ’s that word ? it says eight . look at that word .

three - four - six ... eight - nine ...

Figure 14: Comparison of text generated by the LSTM and Transformer models with a block of text chosen

randomly from the training data. The LSTMs and Transformers were both prompted with the first three sentences

of the text taken from CHILDES, which is the underlined in the two model generated texts. Note that neither of

the model generated texts were cherry-picked either for quality or to be representative of the models’ usual output:

rather they were the first things they generated when prompted with the above underlined portion.
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