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Abstract
In this work, we address the problem of Hes-
sian inversion bias in distributed second-order
optimization algorithms. We introduce a novel
shrinkage-based estimator for the resolvent of
gram matrices that is asymptotically unbiased,
and characterize its non-asymptotic convergence
rate in the isotropic case. We apply this estimator
to bias correction of Newton steps in distributed
second-order optimization algorithms, as well as
randomized sketching based methods. We exam-
ine the bias present in the naive averaging-based
distributed Newton’s method using analytical ex-
pressions and contrast it with our proposed bias-
free approach. Our approach leads to significant
improvements in convergence rate compared to
standard baselines and recent proposals, as shown
through experiments on both real and synthetic
datasets.

1. Introduction
In a distributed setting, where multiple agents have access
only to subsets of the entire dataset, accurate estimation of
the Hessian inverse and Newton steps is crucial for the ef-
fective application of second-order optimization algorithms.
A straightforward way for estimating Hessian inverse is to
simply collect and average over all local Hessian inverses,
however, this is usually not accurate due to the existence of
inversion bias, i.e., in general
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where m represents the total number of agents, such as
distributed workers, and Hi is the local Hessian computed
by worker i (see Theorem 2.5 for more details). Therefore,
a naive averaging of local Hessian inverses leads to a biased
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estimator of the global Hessian inverse. As a result, Newton
steps computed by averaging local Newton steps can be far
from exact.

Different ways to reduce the inversion bias mentioned above
have already been studied by a line of prior work. A par-
ticularly related one is the determinantal averaging method
proposed by Dereziński & Mahoney (2019). The authors
show that
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i=1 det(Hi) serves as an
unbiased estimator of the global Hessian inverse when the
data is uniformly distributed to each agent. However, this
method has shortcomings involving the overhead of com-
puting local Hessian determinants, and potential numerical
instabilities in computing determinants of local Hessian
when data is of large dimension.

In this work, we borrow tools from random matrix the-
ory and study the problem of estimation of the covariance
resolvent when the data is randomly distributed. A key
observation is that the inverses of positive semidefinite
Hessians typically have the form of a covariance resolvent
( 1
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X is the empirical co-

variance of an appropriately chosen matrix in which D is
diagonal and X is a data matrix. We propose an asymptotic
unbiased estimator of covariance resolvent in the form of a
shrinkage formula (Theorem 2.2) with its informal version
stated below, and we also characterize the non-asymptotic
convergence rate (Section 2.1.1). Specifically, we find that
under some weak assumptions on the data distribution,
Theorem. (informal, see Theorem 2.2 for details)

For a random data matrix A 2 Rn⇥d
, let d� denote the ef-

fective dimension of the true covariance ⌃n, and ⌃̂n denote

the empirical covariance,
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This result implies that a simple scaling of the Hessian by
1

1� d�
n

removes the inversion bias, where d� is the effective
dimension of the covariance. Since the Hessian inverse is
related to covariance resolvents, this theorem can help re-
ducing Hessian inversion bias in the large data regime. We
study its application to distributed second-order optimiza-
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tion algorithms and randomized second-order optimization
algorithms, where we observe a significant speedup in the
convergence rate compared to baseline methods (see Fig-
ure 1 below, and more simulation results in Section 5 and
Appendix C).

Figure 1: Synthetic data experiments on ridge regression.
Total number of data n = 30000, data dimension d = 150,
number of agents m = 200, regularizer � = 0.01. The left
plot shows the convergence of distributed Newton’s method
(Algorithm 1). The right plot shows the convergence of
our distributed preconditioned conjugate gradient method
(Algorithm 2). Step-sizes are chosen via line search in all
methods. See Section 5 for details.

1.1. Prior Work

Early work on distributed Newton-type methods including
DANE studied by Shamir et al. (2013), where the approxi-
mate Newton step is an average of local mirror descent steps.
Later work such as AIDE (Reddi et al., 2016), standing for
accelerated inexact DANE, solves an Nesterov accelerated
version of DANE’s local optimization problem inexactly to
some degree of accuracy. Other works include COCOA (Ma
et al., 2015) which solves a dual problem of logistic regres-
sion locally, DiSCO (Zhang & Lin, 2015) which considers
inexact damped Newton’s step solved with distributed pre-
conditioned conjugate gradient method using the resolvent
of first agent’s local Hessian as the preconditioning matrix,
and GIANT (Wang et al., 2017) which uses the average of
local Newton’s step as the global one. More recent work
by Dobriban & Sheng (2018) analyzes performance loss
in one-shot weighted averaging and iterative averaging for
linear regression, and Dobriban & Sheng (2019) also study
one-shot weighted averaging for distributed ridge regression
in high dimensions.

While most of the work mentioned above does not address
the Hessian inversion bias directly, another line of work
considers this issue. For example, the determinantal aver-
aging method (Dereziński & Mahoney, 2019) states that
one can pass by the inversion bias as long as an unbiased
estimator of Hessian matrix exists and computing determi-
nants of local Hessian matrices is feasible. This method is
unstable when data is of large dimension since local Hessian
determinant computation is usually infeasible there. It also
introduces computational overhead for computing local Hes-

sian determinants. Zhang et al. (2012) proposed a bootstrap
subsampling method to reduce bias in one-shot averaging
that improves the approximated optimizer to some finite sub-
optimality. However, the improved approximated optimizer
can still be much worse compared to the true optimizer
(shown in (Shamir et al., 2013), Section 2).

Our work addresses bias correction in distributed optimiza-
tion algorithms with analytical tools from random matrix
theory. When data is independently and identically dis-
tributed, we introduce a shrinkage formula for estimating
the resolvent of the covariance matrix of data which can
serve as an inversion bias corrector in the large data regime.
This bias correction method is more stable compared to
the determinantal averaging method and achieves signifi-
cantly better accuracy without any notable computational
overhead. In the field of asymptotic random matrix theory,
prior works studying similar shrinkage formulas exist only
for statistical estimation of covariance and precision matri-
ces. Ledoit & Wolf (2004) is one among the early works
studying linear shrinkage estimator of large covariance ma-
trices. Later work by Bodnar et al. (Bodnar et al., 2014)
studies linear shrinkage estimator of large covariance ma-
trices with almost sure smallest Frobenius loss. In Bodnar
et al. (2016), they studied linear shrinkage estimator for
the precision matrix. Bodnar et al. (2022) gives a compre-
hensive review of recent advancements in shrinkage-based
high dimensional inference studies. These shrinkage-based
methods have already been successfully applied to tests for
weights for portfolios (Bodnar et al., 2019) and to robust
adaptive beamforming (Xiao et al., 2018). Our work focuses
on shrinkage-based estimation of the resolvent of covariance
matrices, which is different from the shrinkage formula for
both covariance and precision matrices, and we study its
application to optimization algorithms.

Besides distributed second-order optimization, we find the
shrinkage formula we studied is also useful for improv-
ing sketching methods. We note Dereziński et al. (2020)
studied debiasing randomized optimization algorithms with
surrogate sketching, where a non-standard carefully chosen
sketching matrix is used. Also, in Bartan & Pilanci (2022),
the authors exploited random matrix theory for bias elim-
ination in distributed randomized ridge regression. They
showed when the covariance is isotropic, an asymptotically
unbiased estimator can be obtained by tuning local regular-
izers. Unlike their approach, our method works for general
covariance matrices and sketching matrices.

1.2. Contribution

In this work, we propose an asymptotically unbiased
shrinkage-based estimator of the resolvent of covariance
matrices. Unlike most prior studies in the field of large-
dimensional random matrix theory which consider only the
asymptotic settings, we also characterize the non-asymptotic
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convergence rate. Furthermore, we study the application of
this shrinkage formula to distributed second-order optimiza-
tion algorithms and randomized sketching methods. We
carry out real data simulations where a significant conver-
gence speedup is obtained compared to standard baselines.

To our best knowledge, there is no existing work on
shrinkage-based estimation of the resolvent of covariance
matrices, and we are also the first to derive a closed-form
formula for optimal shrinkage and apply it to optimization.

2. Main Theorems
In this section, we establish our main theoretic results. A
shrinkage-based asymptotically unbiased estimator of the
resolvent of covariance matrices is studied with its conver-
gence rate characterized and its variant in the small regular-
izer regime analyzed in Section 2.1. We then show that the
commonly used averaging method has non-zero asymptotic
bias and summarize different methods for estimating the
resolvent of covariance matrices in Section 2.2.

We first introduce notations we use for stating our main
theorems. We follow the classical Kolmogorov asymp-
totics. Consider a sequence of problems Bn = (⌃, ⌃̂, x, d)n
with n, d ! 1, d/n ! y 2 [0, 1). ⌃n 2 Rd⇥d is
the true covariance and data distribution satisfies E[x] =
0,Cov(x) = ⌃n. Empirical covariance is denoted as
⌃̂n = 1

n

P
n

i=1 xix
T

i
where xi’s are i.i.d. samples of x. Con-

sider any � > 0,� 2 R. d�(⌃) = tr(⌃(⌃+ �I)�1) is the
effective dimension of ⌃ and we define d

n

�
= d�(⌃n). The

empirical spectral distribution (e.s.d.) of ⌃n is F⌃n(u) =

d
�1
P

d

i=1 I(�iu) where �i’s are eigenvalues of ⌃n. We
use F⌃n(u) ! F⌃(u) to indicate that the e.s.d. con-
verges almost surely to a density F⌃(u). We further define
M = sup|e|=1 E(eTx)4, ⌫ = supk⌦k=1 Var(x

T⌦x/d).

We collect the main assumptions required below,

Assumption 2.1.

A1. F⌃n(u) ! F⌃(u) almost for any u � 0

A2. M < 1, ⌫ ! 0

A3. eigenvalues of each ⌃n are in the interval [�min,�max]

where �min > 0 and �max does not depend on n

2.1. Asymptotically Unbiased Shrinkage Formula for
the Resolvent of Covariance

We propose an asymptotically unbiased estimator of the re-
solvent of covariance matrices in the form of a local shrink-
age formula under notations defined at the beginning of this
section, and we characterize an explicit convergence rate for
the isotropic case in Section 2.1.1.

Theorem 2.2. Under Assumption 2.1, for any � > 0 and

any data matrix with i.i.d. rows, assume additionally d
n

�
<

n for each n, d, then we have

E

2

4
 

1

1�
d
n
�
n

⌃̂n + �I

!�1
3

5 = (⌃n + �I)�1 + ⌦0

where k⌦0k ! 0 as n, d ! 1, d/n ! y 2 [0, 1). 1

Proof. See Appendix A.2.

Note that this result universally holds for a large class of
random data matrices with i.i.d. rows. In Assumption 2.1,
we only require M bounded and ⌫ vanishing as n, d tend to
infinity. To see such constraints are quite mild, note requir-
ing M = sup|e|=1 E(eTx)4 staying bounded is essentially
bounding the dependence of x’s components. When x ⇠

N (0,⌃), M = 3k⌃k2. For ⌫ = supk⌦k=1 Var(xT⌦x/d),
when components of x are independent, ⌫  M/d, and
when x ⇠ N (0,⌃), ⌫  2k⌃k2/d. For more discussions
on these constraints, see Serdobolskii (2008), Chapter 3.1.

2.1.1. ISOTROPIC CONVERGENCE RATE

To evaluate the convergence rate in Theorem 2.2, note if
there is no constraint on how fast d/n converges to y, then
the convergence rate can be arbitrarily bad. To characterize
the convergence rate, here we require d/n = y always
holds. Then from the expression for ⌦0 (see inequality (7)
in Appendix A.2), we need to find the convergence rate of
the Stieltjes transform of the spectral distribution of gram
matrices. Such task is in general hard if no constraint on
the covariance matrices is imposed. Prior work analyzing
such bounds exists for covariance matrices with correlated
Curie-Weiss entries (Fleermann & Heiny, 2019), sparse
covariance matrices (Erdős et al., 2020), covariance matrices
with independent but not necessarily identically distributed
entries (Bai & Silverstein, 2010).

Here we focus on the isotropic covariance case where we
can exploit isotropic local Marchenko-Pastur law to derive
an explicit convergence rate for Theorem 2.2.

Theorem 2.3. When ⌃n = I , under Assumption 2.1,

k⌦0k 2 O

✓
1
p
n
+
p
⌫

◆

Proof. See Appendix A.3.

Remark. For x ⇠ N (0, I), Assumption 2.1 holds and
k⌦0k 2 O

⇣
1p
n

⌘

1Here ⌦0 depends on n and we write ⌦0 = ⌦0(n) for nota-
tional simplicity. The same convention is used in later sections as
well as in the appendix.
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2.1.2. SMALL REGULARIZER REGIME

In this subsection, we study the behavior of Theorem 2.2
when the regularizer diminishes to zero, which results in a
simpler local shrinkage coefficient requiring no estimation
of any effective dimension.
Theorem 2.4. Under Assumption 2.1, assume d < n al-

ways holds. If ⌃n is invertible and eigenvalues of ⌃̂n are

bounded away from zero, then for ✏ > 0,

E
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with k⌦1k ! 0 as n, d ! 1 and ✏ ! 0. If ⌃n is not

invertible, replacing ⌃�1
n

by (⌃n + ✏I)�1
, the theorem still

holds.

Proof. See Appendix A.4.

Remark. With a small regularizer, the estimation of the
resolvent of covariance matrices is close to the estimation
of precision matrices. Theorem 2.4 parallels results on
shrinkage estimators for the precision matrix as investigated
in Theorem 3.2 of Bodnar et al. (2015). However, their work
only considers the asymptotic setting.

2.2. Asymptotic Bias of the Naive Averaging Method

After introducing our asymptotic unbiased estimator for the
resolvent of covariance matrices, we now analyze the asymp-
totic bias for simple averaging method without shrinkage.
Theorem 2.5 below states that this bias is non-zero for small
�. See Appendix A.5 for analysis for general positive �.
Theorem 2.5. Under Assumption 2.1, and if � 2 o(1),

lim
n,d!1
d/n!y

����E
⇣
⌃̂n + �I

⌘�1
� (⌃n + �I)�1

���� �
y�min

�2
max

Proof. See Appendix A.5.

This result demonstrates that the asymptotic bias for sim-
ple averaging method without shrinkage can be substantial,
and our proposed shrinkage formula serves as an effective
improvement to solve this issue.

As a summary, for random data matrices of growing size
satisfying Assumption 2.1, Table 1 summarizes the bias of
various methods for estimating the resolvent of covariance
matrices under both non-asymptotic and asymptotic settings.

3. Application to Distributed Second-Order
Optimization Algorithms

Now we are ready to utilize theorems studied in Section
2 in distributed second-order optimization algorithms. We

outline the algorithms for distributed Newton’s method with
optimal shrinkage and its inexact version solved with dis-
tributed preconditioned conjugate gradient method with opti-
mal shrinkage below. The convergence proofs for quadratic
loss and general convex smooth loss are provided in Section
3.1, Section 3.2, and Appendix B.4. Finally, we analyze
communication and computation complexity for the pro-
posed algorithms in Section 3.3.

Let n denote the number of data samples and m denote
the number of agents. Consider the `2 regularized loss
function f(x) = 1

m

P
m

i=1 fi(x) +
�

2 kxk
2
2 where fi(x) =

1
k

P
k

j=1 `ij(x) denotes loss function corresponding to agent
i and k is the number of samples available to each agent.
Here, we consider the case where the data is evenly split to
all agents and thus k = n/m. Denote r

2
f as the Hessian

and rf as the gradient of function f . In order to apply our
results in Section 2, we need the effective dimension of the
population Hessian E 1

m

P
m

i=1 r
2
fi(x). We use the empir-

ical effective dimension d�,i = tr
�
r

2
fi(r2

fi + �I)�1
�

available at each agent as an approximation. Algorithm 1
gives a description of the proposed method.

Algorithm 1 Distributed Newton’s method with optimal
shrinkage

Initialize: starting point x(0)
, t = 1

repeat
Gather local gradients rfi(x(t�1)) from each agent i
Compute global gradient rf(x(t�1)) =
1
m

P
m

i=1 rfi(x(t�1)) + �x
(t�1) and broadcast

to all agents
for i = 1, 2, ... do

agent i computes x(t)
i

=✓
1

1�
md�,i

n

r
2
fi

�
x
(t�1)

�
+ �I

◆�1

rf(x(t�1))

end for
Compute approximate Newton step �x

(t) =
1
m

P
m

i=1 x
(t)
i

(Optional) Choose step size ⌘ by line search
Update x

(t) = x
(t�1)

� ⌘�x
(t)
, t = t+ 1

until convergence criterion or maximum iterates reached

We then provide a preconditioned conjugate gradient
method that exploits optimal shrinkage for solving a single
Newton step in Newton’s method. Let v denote the current
point at which the next Newton step needs to be performed.
Algorithm 2 gives the distributed preconditioned conjugate
gradient method for inexact Newton’s method.

3.1. Convergence Analysis for Regularized Quadratic
Loss

Given data matrix A 2 Rn⇥d with data i.i.d. with mean zero
and covariance ⌃, and label b 2 Rn, let A(i)

2 R(n/m)⇥d
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METHOD SAMPLE SIZE NON-ASYMPTOTIC BIAS ASYMPTOTIC BIAS COMPLEXITY

AVERAGING 8k SEE (8) � y�min/�
2
max 0

DETERMINANTAL AVERAGING 8k 0 0 O(d3)

OPTIMAL SHRINKAGE k � d�  O

⇣
1p
n
+

p
⌫
⌘

0 0

Table 1: The bias in the estimation of covariance resolvent with different methods under asymptotic/non-asymptotic settings.
For any real positive �, d� denotes the effective dimension of the covariance matrix. The asymptotic bias for the averaging
method is given for � 2 o(1), see Theorem 2.5 for details. The non-asymptotic bias for optimal shrinkage method is given
for isotropic covariance, see Section 2.1.1 for details. The complexity column refers to agents’ additional computational
overhead compared to the averaging method. When � 2 o(1), shrinkage coefficient requires no effective dimension
estimation and thus no computational overhead, see Section 2.1.2 for details. When � 62 o(1), we assume the effective
dimension of the covariance is either known or has been estimated in advance and is distributed to all agents .

Algorithm 2 Distributed preconditioned conjugate gradient
with optimal shrinkage

Compute b = rf(v) = 1
m

P
m

i=1 rfi(v) + �v by gath-
ering local gradients rfi(v) from each agent
Initialize: x = 0, r = b

for i = 1 to m do
agent i computes zi =✓

1

1�
md�,i

n

r
2
fi(v) + �I

◆�1

r

end for
z = 1

m

P
m

i=1 zi, p = z, ⇢1 = r
T
z

for t = 1 to tmax do
quit if stopping criterion achieved
! =

P
m

i=1 r
2
fi(v)p+ �p by gathering r

2
fi(v)p

↵ = ⇢t

!T p

x = x+ ↵p

r = r � ↵!

for i = 1 to m do
agent i computes zi

=

✓
1

1�
md�,i

n

r
2
fi(v) + �I

◆�1

r

end for
z = 1

m

P
m

i=1 zi

⇢t+1 = z
T
r

p = z + ⇢t+1

⇢t
p

end for

denote agent i’s local data. Consider the regularized
quadratic loss function f(x) = 1

2nkAx�bk
2
2+

�

2 kxk
2
2 with

gradient g(x) := rf(x) and Hessian H := r
2
f(x) =

1
n
A

T
A+ �I. Denote

H̃ =

0

@ 1

m

mX

i=1

 
1

1� md�
n

m

n
A

(i)T
A

(i) + �I

!�1
1

A
�1

with the true effective dimension of the covariance, ⌃ :=
E 1

n
A

T
A

d� = tr
⇣
⌃ (⌃+ �I)�1

⌘

Theorem 3.1. (Convergence of Newton’s method with

Shrinkage) Denote �t+1 = !t+1 � !
?

with !
? =

argmin f(x) and !t+1 = !t � H̃
�1

g(!t). Then,

k�t+1k  �k�tk

where � =
p
2↵p

1�↵2

q
�max+�+↵0
�min+��↵0

with ↵0 = k⌃ �

1
n
A

T
Ak,↵1 = kH̃

�1
� E[H̃�1]k, and ↵ = (�max +

� + ↵0)
�

1
�2↵0 + ↵1 + k⌦0k

�
. �min and �max denote the

smallest and largest eigenvalues of ⌃ correspondingly.

Proof. See Appendix B.2.

The most important aspect of the above result is that the
contraction rate � vanishes to zero as the number of workers
increase and data dimensions grow asymptotically as we
formalize next.
Remark. Consider a sequence of data matrices {A}n

with n/m ! 1, d ! 1,md/n ! y 2 [0, 1) and
each A

(i) satisfies Assumption 2.1, then k⌦0k ! 0 by
Theorem 2.2. When data is Gaussian or sub-Gaussian,
↵0 ! 0 almost surely given d/n ! 0. By standard
matrix concentration bounds, ↵1  ✏ with probability
� 1 � 2d exp

�
�✏

2
/
�
(4✏)/(3m�) + 2/(m�2)

��
. Thus

� ! 0 almost surely when each A
(i) satisfies Assump-

tion 2.1, data is Gaussian or subGaussian, and m, d, n !

1, d,m = o(n), log d = o(m), md/n ! y 2 [0, 1).

Theorem 3.2. (Convergence of inexact Newton’s method

with Shrinkage) Let ↵,↵0,�t+1,�min,�max defined as in

Theorem 3.1. Then,

k�t+1k 

p
2↵0

p
1� ↵02

r
�max + �+ ↵0

�min + �� ↵0
k�tk

where ↵
0 =

s

4

✓
1�

p
1� ↵

1�↵

1+
p

1� ↵
1�↵

◆st

and st denotes the

number of iterations in preconditioned conjugate gradient

method.
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Proof. The derivation follows by Lemma 14 in Dereziński
& Mahoney (2019) and Lemma B.1.

3.2. Convergence Analysis for Regularized General
Convex Smooth Loss

Given data matrix A 2 Rn⇥d with data i.i.d. with mean
zero. Let A(i)

2 R(n/m)⇥d denote agent i’s local data and
A

(i)
j

denote the jth piece of data held by agent i. Consider
general convex smooth loss function f of the following
form,

f(x) =
1

n

nX

i=1

fi(x
T
Ai) +

�

2
kxk

2

with gradient g(x) := rf(x) and hessian H(x) :=
r

2
f(x) = 1

n

P
n

i=1 f
00
i
(xT

Ai)AiA
T

i
+ �I . Assume f is

twice differentiable and its hessian is L-Lipschitz. Denote

H̃(x)�1 =
1

m

mX

i=1

0

@�
n/mX

j=1

f
00
i

⇣
x
T
A

(i)
j

⌘
A

(i)
j
A

(i)T

j
+ �I

1

A
�1

where � = m/n

⇣
1� md�(x)

n

⌘
with d�(x) =

tr
⇣
⌃(x) (⌃(x) + �I)�1

⌘
and ⌃(x) defined in Theorem

3.3.

Theorem 3.3. (Convergence of Newton’s method with

Shrinkage) Assume !t independent of all A
(i)
j

’s, denote

⌃(!t) = Cov

✓
f
00
i

⇣
!
T

t
A

(i)
j

⌘ 1
2
A

(i)
j

◆
. Denote �t+1 =

!t+1 � !
?

with !
? = argmin f(x) and !t+1 = !t �

H̃
�1(!t)g(!t),

k�t+1k  max

⇢
2L

�min + �� ↵0
k�tk

2
,

p
2↵

p
1� ↵2

r
�max + �+ ↵0

�min + �� ↵0
k�tk

)

where ↵ = (�max + � + ↵0)
�

1
�2↵0 + ↵1 + k⌦0k

�
with

↵0 =
��⌃(!t)�

1
n

P
n

i=1 f
00
i

�
!
T

t
Ai

�
AiA

T

i

�� and ↵1 =���H̃(!t)�1
� E

h
H̃(!t)�1

i���. �min and �max denote the

smallest and largest eigenvalues of ⌃(!t) correspondingly.

Proof. See Appendix B.3.

3.3. Communication and Computation Complexity
Analysis

In this section, we analyze the communication and compu-
tation complexity of distributed Newton’s method with opti-
mal shrinkage. The analysis for inexact Newton’s method is
similar and omitted.

On the communication side, in each Newton iteration2, four
rounds of communication between server and agents are
required: the server broadcasts the current iterate, collects
the local gradients, and then computes and broadcasts the
global gradient to the agents and collects local approxi-
mate descent directions. Each communication involves
O(d) words. In ridge regression, to achieve some fixed
accuracy k�tk  ✏, the number of iterations is bounded
by O

⇣
log(

p
/✏)

log(
p
1�↵2/↵)

⌘
where  is the condition number of

the Hessian matrix and ↵ is asymptotically vanishing (see
Theorem 3.1 for definition). Therefore, the number of it-
erations decreases as the number of workers increases and
vanishes asymptotically. This should be compared with GI-
ANT’s bound O

⇣
log(d/✏)

log(n/µdm)

⌘
on the number of Newton

iterations to achieve the same degree of accuracy, which
does not vanish asymptotically due to the Hessian inver-
sion bias. Note that our bound also gets rid of the depen-
dency on the matrix coherence number µ, and we do not
impose assumption such as n > O(µdm). Compared to
DiSCO’s bound Õ

⇣
d

1/2
m

3/4

n3/4 + 
1/2

m
1/4

n1/4 log 1
✏

⌘
which is

also non-vanishing asymptotically due to the inversion bias,
our bound only has log dependency on the square root of
 instead of polynomial dependency, which is an improve-
ment3.

The per-iteration computation complexity for each agent
involves operations required for forming the local gradient,
solving a linear equation involving the local Hessian matrix,
and computing the effective dimension of the local Hessian
matrix. The only overhead compared to GIANT is the
computation of the effective dimension of the local Hessian
matrix, which can be done in O(kdmin{k, d}) by singular
value decomposition or can be estimated much quicker by
trace estimation method such as Hutch++ (Meyer et al.,
2020). Note if the effective dimension of the global Hessian
matrix is known beforehand, then it can be used in replace
of the effective dimension of local Hessian matrices and
there is no additional computational overhead for each agent.
Another option is to use md/n in replace of md�i/n in
Algorithm 1, which should work well for small regularizer
� by Theorem 2.4. There is no significant computational
complexity on the server’s side since only some simple
averaging and subtraction operations are required.

4. Application to Randomized Second-Order
Optimization Algorithms

In this section, we study the application of our main the-
oretic result in Section 2 to randomized second-order op-

2Assuming fixed step size instead of line search for simplicity.
3The iteration bounds for GIANT and DiSCO are taken from

Wang et al. (2017), Section 1.1. Note the number of iterations for
DiSCO is required to achieve ✏-accuracy in terms of function value
evaluations.
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timization algorithms. We mainly focus on the classic It-
erative Hessian Sketch (IHS) method and discuss how our
shrinkage formula can be used for bias correction there.
Our results can also be used for randomized preconditioned
conjugate gradient method and the more general Newton
Sketch method.

We first give an introduction on randomized sketching which
is used in the Iterative Hessian Sketch method. Randomized
sketching is an important tool in randomized linear algebra
for dealing large-scale data problems. Given a data matrix
A 2 Rn⇥d

, consider a randomized sketching matrix S 2

Rm⇥n
, SA is referred to as a sketch of A and is of size m

by d. It is usually the case m < n, thus storage is reduced
when SA is stored instead of the original data matrix A,
and with carefully chosen S, some properties of A can be
preserved by considering only SA. When SA is composed
of randomly selected rows of A, it is referred to as row
subsampling and when SA is composed of random linear
combination of rescaled rows of A, it is referred to as a
random projection. A commonly used random projection
is Gaussian projection, where S contains i.i.d. Gaussian
entries N

�
0, 1

m

�
.

Consider regularized quadratic loss function defined in Sec-
tion 3.1. With data matrix A 2 Rn⇥d and labels b 2 Rn, the
Hessian matrix is H = 1

n
A

T
A+�I . Note we are not requir-

ing the data to be i.i.d. with mean zero here as required in
Section 3.1. Let S 2 Rm⇥n be Gaussian projection matrix.
Iterative Hessian Sketch method is a preconditioned first-
order method that replaces the Newton direction H

�1
gt at

the t-th Newton’s step in Newton’s method by H
�1
S

gt where
HS = 1

n
A

T
S
T
SA+ �I and gt denotes the gradient at the

t-th Newton’s step.

Since HS can be expressed as 1
m

P
m

i=1 xix
T

i
+ �I where

xi ⇠ N
�
0, 1

n
A

T
A
�
, debiasing IHS reduces to minimizing

kH
�1
S

�H
�1

k and is exactly the problem of unbiased esti-
mation of a covariance resolvent. We adapt Theorem 2.2 as
below and obtain an asymptotically unbiased estimation of
H

�1 as a shrinkage formula involving HS .

Consider a sequence of problems Bn = (A,S, d,m)n with
data matrix A 2 Rn⇥d

, S 2 Rm⇥n being Gaussian projec-
tion matrix, m, d ! 1 and d/m ! y 2 [0, 1). Assume
the empirical spectral distribution F( 1

nATA)(u) ! F⌃(u)

almost surely for almost every u � 0,
��n�1

A
T
A
��2  1,

and eigenvalues of each n
�1

A
T
A are located on a segment

[�min,�max] where �min > 0 and �max does not depend on
n. Denote d

n

�
= tr

⇣
1
n
A

T
A
�
1
n
A

T
A+ �I

��1
⌘

.

Theorem 4.1. Assume additionally d
n

�
< m always holds.

For any � > 0,

lim
m,d!1

������
E

2

4
 

1

1�
d
n
�
m

(HS � �I) + �I

!�1
3

5�H
�1

������
= 0

Theorem 4.1 suggests to use
✓

1

1�
dn
�
m

(HS � �I) + �I

◆�1

in place of H
�1
S

when d
n

�
is available. For practical-

ity, when only sketched data SA is available, d̃
n

�
=

tr
⇣

1
n
A

T
S
T
SA

�
1
n
A

T
S
T
SA+ �I

��1
⌘

can be used as an
approximation for dn

�
. According to our real data simulation

results in Section 5.4, using d̃
n

�
in place of dn

�
significantly

improves the plain IHS method in most cases.

In Lacotte et al. (2021), Chapter 3.2, the authors studied
preconditioned conjugate gradient method with H

�1
S

as
the preconditioning matrix. Using the shrinked version✓

1

1�
dn
�
m

(HS � �I) + �I

◆�1

in replace of H�1
S

there will

also help.

Newton Sketch method generalizes IHS to regularized
general convex smooth loss defined in Section 3.2. At
tth Newton’s step, the Hessian matrix can be expressed
as Ht = 1

n
A

T

t
At + �I with an appropriate choice of

matrix At, and Newton Sketch method proposes to use�
1
n
A

T

t
S
T
SAt + �I

��1
gt as approximate Newton’s de-

scent direction with gt denoting the gradient at the tth New-
ton’s step. By replacing A with At in Theorem 4.1, the
asymptotically unbiased estimation for H�1

t
can be derived.

Table 2 summarizes the bias to estimate the Hessian inverse
for regularized quadratic loss with classic IHS paradigm
and IHS with optimal shrinkage described above under both
non-asymptotic setting and asymptotic setting.

5. Numerical Simulation
We now present synthetic and real data simulation re-
sults . All real datasets used in this section are public
and available at https://www.csie.ntu.edu.tw/
˜cjlin/libsvmtools/datasets/. For normalized
real data plots, we experiment with ten random permu-
tations. For sketched real data plots, we experiment ten
random sketches. Median is plotted with 0.2/0.8 quantile
shaded. We interpolate over x�axis whenever x ticks vary
for different trials. We run all experiments on google cloud
n1-standard-8 machine. One-hot embedding is used to trans-
fer classification labels to regression labels when classi-
fication datasets are used for regression tasks. Code for
experiments is included in the submission. According to
our simulation results, optimal shrinkage helps speeding up
both second-order optimization algorithms and sketching
based algorithms significantly.

5.1. Estimation of the Effective Dimension
Our optimal shrinkage method requires the knowledge of
the effective dimension d� of the true covariance matrix.
In Algorithms 1 and 2, we employ the empirical effective
dimension available at each worker as an approximation to
the true effective dimension. Although this is a heuristic
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Figure 2: Experiments with real data in covariance resolvent estimation. The dataset is split evenly to each agent. We
let � = 0.001 and ⌃ = 1

n
A

T
A. The relative matrix spectral norm difference between true covariance resolvent R and

estimated covariance resolvent R̃ is plotted, see Section 5.2 for details.

METHOD SKETCH METHOD SKETCH SIZE NON-ASYMPTOTIC BIAS ASYMPTOTIC BIAS

IHS GAUSSIAN PROJECTION 8k SEE (8) � y�min/�
2
max

IHS WITH OPTIMAL SHRINKAGE GAUSSIAN PROJECTION k � d�  O

⇣
1p
m

⌘
0

Table 2: Bias of estimation of Hessian inverse in IHS for regularized quadratic loss under asymptotic/non-asymptotic setting.
For any real positive �, d� denoting the effective dimension of AT

A/n. The asymptotic bias for the IHS method is for
� 2 o(1), see Theorem 2.5 for details. The non-asymptotic bias for IHS with optimal shrinkage method is for isotropic
covariance, see Section 2.1.1 for details.

to approximate effective dimension in Theorem 2.2, our
numerical results show that this approach works extremely
well. Alternatively, the effective dimension can be estimated
from a sketch of the data. We illustrate the effectiveness of
this approach in the simulation for Iterative Hessian Sketch
method in Section 5.4.

5.2. Experiments on Covariance Resolvent Estimation

In order to show that the shrinkage-based covariance resol-
vent estimation method studied in Section 2 helps improve
the accuracy for covariance resolvent estimation compared
to classic averaging method and determinantal averaging
methods discussed in the introduction, we include simula-
tion results for covariance resolvent esimation. Specifically,
we let ⌃ denote the covariance matrix, we plot the relative
matrix spectral norm difference kR̃ � Rk2/kRk2 where
R = (⌃ + �I)�1 is the resolvent of the true covariance
matrix. The expressions for computing the estimated co-
variance resolvent R̃ with different methods are given in
Appendix C.1.1. Since we require data rows to be i.i.d. with
mean zero for the optimal shrinkage formula to hold, we
standardize datasets by removing the mean and scaling to
unit variance.

Figure 2 shows the relative matrix spectral norm difference
between R and R̃ plotted over different number of local data,
which suggests that our shrinkage method provides a more
accurate estimate of the resolvent of covariance matrices
than the naive averaging method and determinantal averag-
ing over all the datasets we have tested on. The improvement
is more pronounced when the local data size is small. Since

the determinantal averaging method is also unbiased, this
result also suggests that our shrinkage method does not need
a large number of distributed agents to achieve an accurate
estimation compared to the determinantal averaging. For
simulations on additional datasets, see Appendix C.1.3. We
also experiment with synthetic data and sketched real data
in Appendix C.1.2 and Appendix C.1.4. We include the sim-
ulation results for the the small regularizer regime discussed
in Section 2.1.2 in Appendix C.1.5.

5.3. Experiments on Distributed Second-Order
Optimization

In this subsection, we include simulation results for dis-
tributed Newton’s method and an inexact version where
each Newton’s step solved by the distributed preconditioned
conjugate gradient method (see Section 3 for a description).
We implement distributed line search for choosing step sizes
in all methods. Datasets are standardized by removing the
mean and scaling to unit variance. Due to limited space,
we present additional results on different datasets in Ap-
pendix C.2.1, the inexact Newton’s method applied to ridge
regression in Appendix C.2.2 and experiments on logistic
regression in Appendix C.2.3.

Figure 3 shows simulation results for distributed Newton’s
method applied to ridge regression. We compare with
DANE and GIANT (see Section 1.1 for a discussion of
these two methods). Determinant stands for the determinan-
tal averaging method (see also Section 1.1 for details). Note
DANE and GIANT coincides when regularized quadratic
loss is minimized and both methods are simply taking the

8
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Figure 3: Experiments with real data for distributed New-
ton’s method applied to ridge regression. Line search is
used in all methods to determine the step sizes. Number
of total samples is rounded down to a multiple of the num-
ber of agents and split evenly to each agent. We let m =
100,� = 0.1 for segment, m = 20,� = 0.05 for bodyfat,
m = 20,� = 0.5 for eunite2001, m = 100,� = 0.01 for
pendigits, where � is the regularization parameter and m

denotes the number of agents.

average of local descent direction as the global step, while
the determinant averaging method adds a bias correction.
The plots suggest that distributed Newton’s method with
optimal shrinkage achieves better log optimality gap within
fewer communication rounds than other methods, which
reveals that our shrinkage method is approximating the Hes-
sian inverse more accurately. The ability of bias correction
of determinantal averaging method can also be seen in the
plots, but it is less effective compared to our approach.

5.4. Experiments on Iterative Hessian Sketch

In this subsection, we consider the Iterative Hessian Sketch
paradigm, which can be seen as a stochastic Newton’s
method and incorporate our optimal shrinkage. This method
is discussed in Section 4. We consider the ridge regression
problem defined in Section 3.1. We use line search for the
step size. Since the sketching matrix is generated from a
random Gaussian ensemble, our required assumptions for
the optimal shrinkage formula holds. We use the effective
dimension of the sketched data as an approximation. We
include additional simulation results with the effective di-
mension of the true covariance in Appendix C.2.4.

Figure 4 presents simulation results for the IHS method and
IHS with optimal shrinkage. Although an inexact effective
dimension is used for practicality, Iterative Hessian Sketch
equipped with shrinkage still leads to significant speedup
in the convergence rate, which once more confirms our

shrinkage formula’s ability for bias correction in Hessian
inverse estimation.

Figure 4: Experiments with real data for Iterative Hessian
Sketch method applied to ridge regression. Line search
is used to determine the step-sizes. We let � = 0.01 for
bodyfat, housing, mpg and � = 0.001 for triazines; m =
100 for bodyfat, m = 50 for housing, m = 30 for mpg,
m = 300 for triazines where � denotes the regularization
parameter and m denotes the sketch size.

6. Conclusion
In this work, we addressed bias correction in distributed
second-order optimization and sketching based methods.
Specifically, both types of algorithms require accurate esti-
mation of a Hessian inverse. When either data can be mod-
eled random or data sketching is used, this problem amounts
to estimation of the resolvent of appropriately defined co-
variance matrix. We studied an asymptotically unbiased es-
timator for this resolvent, characterized its convergence rate,
and leveraged it in Hessian inversion bias reduction, where
significant convergence speedups are observed in real and
synthetic datasets. One limitation of our theory is the need
for prior knowledge of the effective dimension. Despite this
limitation, we have shown that empirical approximations of
the effective dimension yield highly accurate results. There
exist other approaches to estimate the effective dimension,
including trace estimation methods (Meyer et al., 2020),
which can be used to further improve our scheme.
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A. Proofs in Section 2
A.1. Technical Lemmas

Lemma A.1. For any z < 0, z 2 R, if F⌃n ! F⌃ almost everywhere,M < 1, ⌫ ! 0. Then

limn,d!1
1
n
E


tr

⇣
I � z⌃̂n

⌘�1
�

exists.

Proof. Denote ⌃̂0
n
= ⌃̂n �

1
n
xnx

T

n
, n = 1

n
x
T

n
(I � z⌃̂n)�1

xn. By y < 1, without loss of generality consider the regime

d < n for all n. Denote s0(z) = 1 �
d

n
+ 1

n
E


tr
⇣
I � z⌃̂n

⌘�1
�

, then s0(z) 2 (0, 1]. Follow Theorem 3.1 in book

(Serdobolskii, 2008),

(I � zs0(z)⌃n)E
⇣

I � z⌃̂n

⌘�1
�
= I + ⌦

where
⌦ = z

2E
⇣

I � z⌃̂0
n

⌘�1
xnx

T

n
( n � E[ n])

�
+ zs0(z)E

⇣
I � z⌃̂0

n

⌘�1
�

⇣
I � z⌃̂n

⌘�1
�
⌃n

and

k⌦k 
Mz

2

n
+
p

5Mz
2

r
M2d2z2

n3
+

d2⌫

n2

Thus,

E
⇣

I � z⌃̂n

⌘�1
�
= (I � zs0(z)⌃n)

�1 + (I � zs0(z)⌃n)
�1 ⌦

Since M bounded and ⌫ diminishing,

lim
n,d!1

����E
⇣

I � z⌃̂n

⌘�1
�
� (I � zs0(z)⌃n)

�1

���� = 0

which indicates
lim

n,d!1

✓
1

n
E


tr
✓⇣

I � z⌃̂n

⌘�1
◆�

�
1

n
tr
⇣
(I � zs0(z)⌃n)

�1
⌘◆

= 0

Denote en = 1
n
E


tr
✓⇣

I � z⌃̂n

⌘�1
◆�

, zn = z(1� d

n
),

lim
n,d!1

✓
en �

1

n
tr
⇣
(I � (zn + zen)⌃n)

�1
⌘◆

= 0

Since F⌃n ! F⌃ abd d

n
! y, denote the Stieltjes transform as mµ(z) =

R
R

1
x�z

µ(dx), define

f(en) = �
y

(z(1� y) + zen)
m⌃

✓
1

z(1� y) + zen

◆

with f(en) monotone decreasing and
lim

n,d!1
(en � f(en)) = 0

which indicates that for any ✏ > 0, there exists N > 0 such that for any n1, n2 > N , |(en1 �f(en1))� (en2 �f(en2))| < ✏.
Assume limn,d!1 en doesn’t exist, then there exists l1, l2 > N and |el1 � el2 | > ✏. Without loss of generality assume
el1 > el2 . But then

|(el1 � f(el1))� (el2 � f(el2))| = |(el1 � el2)� (f(el1)� f(el2))| > ✏

Contradiction. Therefore limn,d!1 en = limn,d!1
1
n
E


tr
⇣
I � z⌃̂n

⌘�1
�

exists.

Lemma A.2. If F⌃n(u) ! F⌃(u) almost surely for almost every u > 0, limn,d!1
d
n
�
n

exists for any � > 0.
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Proof.

d
n

�

n
=

tr(⌃n(⌃n + �I)�1)

n

=
tr(I � �(⌃n + �I)�1)

n

=
d

n
�
�

n
tr(⌃n + �I)�1

Denote the Stieltjes transform as mµ(z) =
R
R

1
x�z

µ(dx). Since F⌃n ! F⌃ almost everywhere, limn,d!1
1
n

tr(⌃n+�I)�1

exists and
lim

n,d!1

1

n
tr(⌃n + �I)�1 = ymF⌃(��) 2 (0,

y

�
]

Thus
lim

n,d!1

d
n

�

n
= y � �ymF⌃(��) 2 [0, y) exists

Lemma A.3. If y > 0, F⌃n(u) ! F⌃(u) almost surely for almost every u > 0, eigenvalues of each ⌃n are located on a

segment [�min,�max]. For any z < 0, s > 0, z, s 2 R, the fixed point equation in s

s = 1 + lim
n,d!1

1

n
tr

⇣
zs⌃n (I � zs⌃n)

�1
⌘

(1)

has at most one non-negative real solution.

Proof. First note zero is not a solution to (1). Assume (1) has two positive real solutions s1 and s2 such that s1 6= s2.
Without loss of generality assume s1 > s2. Then

s1 = 1� y + lim
n,d!1

tr(I � zs1⌃n)�1

n
= 1� y + lim

n,d!1

tr(I � zs2⌃n)�1

n
= s2

Therefore,
lim

n,d!1

1

n

�
tr(I � zs1⌃n)

�1
� tr(I � zs2⌃n)

�1
�
= 0

Apply resolvent identity,

lim
n,d!1

z(s1 � s2)

n
tr
�
⌃n(I � zs2⌃n)

�1(I � zs1⌃n)
�1
�
= 0

Equivalently,
1

z

✓
1

s2
�

1

s1

◆
lim

n,d!1

1

n

dX

i=1

�ni⇣
�ni �

1
zs2

⌘⇣
�ni �

1
zs1

⌘ = 0

where �ni is the ith eigenvalue of ⌃n. But

1

z

✓
1

s2
�

1

s1

◆
lim

n,d!1

1

n

dX

i=1

�ni⇣
�ni �

1
zs2

⌘⇣
�ni �

1
zs1

⌘ 
y

z

✓
1

s2
�

1

s1

◆
�min⇣

�max �
1

zs2

⌘⇣
�max �

1
zs1

⌘

Thus, s1 = s2.

Lemma A.4. With ⌃n = I . Fix a small ! 2 (0, 1). Define the domain D = {z = u+ vi 2 C :
p
y + 1p

y
� 2 + |

up
y
| 

!
�1

, d
!�1


vp
y
 !

�1
, |z| � !

p
y}. Then

����E

1

n
tr(⌃̂n � zI)�1

�
� lim

n,d!1
E

1

n
tr(⌃̂n � zI)�1

����� 
1

v
p
nd

for any z 2 D.
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Proof. Lemma A.4 is a direct corollary from Theorem 2.4 in (Bloemendal et al., 2013). For sake of complementness, we
restate the theorem here again together with the derivation of Lemma A.4.

Lemma A.5. (Theorem 2.4 in (Bloemendal et al., 2013)) With ⌃n = 1p
y
I . Fix a small ! 2 (0, 1). Define the domain

D = {z = u+ vi 2 C :
p
y + 1p

y
� 2 + |u|  !

�1
, d

!�1
 v  !

�1
, |z| � !}. Then

����
1

d
tr(⌃̂n � zI)�1

�m�

���� �
1

dv

uniformly for z 2 D, where � denote stochastic dominance and m� is Stieltjes transform of the Marchenko-Pastur law with

variance
1p
y

.

Note given
��� 1
d

tr(⌃̂n � zI)�1
�m�

��� � 1
dv

, since 1
d

tr(⌃̂n � zI)�1
 z for each n, by dominated convergence theorem, we

can bound
����E

1

d
tr(⌃̂n � zI)�1

�
� lim

n,d!1
E

1

d
tr(⌃̂n � zI)�1

����� =
����E

1

d
tr(⌃̂n � zI)�1

�
� E[m�]

����

 E
����
1

d
tr(⌃̂n � zI)�1

�m�

����

�

< 2zd�D +
d
✏

dv
(1� d

�D)

for any ✏ > 0, D > 0. Since ✏ can be taken arbitrarily close to 0 and D can be taken arbitrarily large,
����E

1

d
tr(⌃̂n � zI)�1

�
� lim

n,d!1
E

1

d
tr(⌃̂n � zI)�1

����� 
1

dv

With some algebra, we get Lemma A.4

Lemma A.6. Under Assumption 2.1, for any z > 0, ✏n > 0, if

�����E
"

tr(⌃̂n + (z � ✏ni)I)�1

n

#
� lim

n,d!1
E
"

tr(⌃̂n + (z � ✏ni)I)�1

n

�����

�����  ⌦(n, ✏n)

then �����E
"

tr(⌃̂n + zI)�1

n

#
� lim

n,d!1
E
"

tr(⌃̂n + zI)�1

n

#����� 
2d|✏n|

nz2
+ ⌦(n, ✏n)

Proof. by resolvent identity,
�����E
"

tr(⌃̂n + zI)�1

n

#
� E

"
tr(⌃̂n + (z � ✏ni)I)�1

n

#�����

=

����
1

n
E
h
tr
⇣
(⌃̂n + zI)�1(�✏niI)(⌃̂n + (z � ✏ni)I)

�1
⌘i����


d|✏n|

nz2

Since the above inequality holds for each n,

����� lim
n,d!1

E
"

tr(⌃̂n + zI)�1

n

#
� lim

n,d!1
E
"

tr(⌃̂n + (z � ✏ni)I)�1

n

#����� 
|✏n|d

nz2
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Thus, �����E
"

tr(⌃̂n + zI)�1

n

#
� lim

n,d!1
E


tr(⌃n + zI)�1

n

������



�����

 
E
"

tr(⌃̂n + zI)�1

n

#
� E

"
tr(⌃̂n + (z � ✏ni)I)�1

n

#!�����+
�����

 
lim

n,d!1
E
"

tr(⌃̂n + zI)�1

n

#
� lim

n,d!1
E
"

tr(⌃̂n + (z � ✏ni)I)�1

n

#!�����+
�����

 
E
"

tr(⌃̂n + (z � ✏ni)I)�1

n

#
� lim

n,d!1
E
"

tr(⌃̂n + (z � ✏ni)I)�1

n

#!�����


2d|✏n|

nz2
+ ⌦(n, ✏n)

Lemma A.7. Under Assumption 2.1, for any � > 0, denote d� = lim infn,d!1 n
�1

d
n

�
, then

E
"✓

1

1� d�

⌃̂n + �I

◆�1
#
= (⌃n + �I)�1 + ⌦2

where k⌦2k ! 0 as n, d ! 1, d/n ! y 2 [0, 1).

Proof. The existence of d� = limn,d!1
d
n
�
n

has been established in Lemma A.2. Take any z < 0, z 2 R, by Lemma

A.1, limn,d!1 E
h tr(I�z⌃̂n)

�1

n

i
exists. Denote s(z) = 1� y + limn,d!1 E

h tr(I�z⌃̂n)
�1

n

i
, by Lemma A.1 again, s(z) =

limn,d!1 s0(z) 2 [0, 1]. We can compute

(I � zs(z)⌃n)E
h
(I � z⌃̂n)

�1
i
= I + ⌦+ ⌦0 (2)

with ⌦0 = z (s0(z)� s(z))⌃nE
h
(I � z⌃̂n)�1

i
. Thus,

E
h
(I � z⌃̂n)

�1
i
= (I � zs(z)⌃n)

�1 + (I � zs(z)⌃n)
�1(⌦+ ⌦0) (3)

We can bound

k(I � zs(z)⌃n)
�1(⌦+ ⌦0)k  k⌦+ ⌦0

k

 k⌦k+ k⌦0
k


Mz

2

n
+
p

5Mz
2

r
M2d2z2

n3
+

d2⌫

n2
+ �max|z||s0(z)� s(z)|

Since M stays bounded, ⌫ ! 0 and s(z) = limn,d!1 s0(z),

lim
n,d!1

���E
h
(I � z⌃̂n)

�1
i
� (I � zs(z)⌃n)

�1
��� = 0

which indicates
lim

n,d!1

✓
1

n
E
h
tr(I � z⌃̂n)

�1
i
�

1

n
tr(I � zs(z)⌃n)

�1

◆
= 0

by Lemma A.1, limn,d!1
1
n
E
h
tr(I � z⌃̂n)�1

i
exists and therefore,

lim
n,d!1

✓
1

n
E
h
tr(I � z⌃̂n)

�1
i◆

= lim
n,d!1

✓
1

n
tr(I � zs(z)⌃n)

�1

◆
(4)

15



Optimal Shrinkage for Distributed Second-Order Optimization

substitute (4) back into expression for s(z), we get

s(z) = 1� y + lim
n,d!1

tr(I � zs(z)⌃n)�1

n

= 1� lim
n,d!1

✓
d

n
�

tr(I � zs(z)⌃n)�1

n

◆

= 1 + lim
n,d!1

tr(zs(z)⌃n(I � zs(z)⌃n)�1)

n

(5)

Set z = �
1

�(1�d�)
. Since d

n
�
n


d

n
for each n, d�  y < 1, and therefore z < 0. Note s(z) = 1� d� satisfies (5). When

y > 0, by Lemma A.3, we conclude s(z) = 1�d�. When y = 0, d� = 0. We get s(z) = 1+limn,d!1
tr(I�zs(z)⌃n)

�1

n
� 1

from (5), but since s(z) 2 [0, 1], s(z) = 1 = 1�d�. Thus, s(z) = 1�d� for y 2 [0, 1). Substitute (z = �
1

�(1�d�)
, s(z) =

1� d�) back into (3), we get

E
"✓

1

1� d�

⌃̂n + �I

◆�1
#
= (⌃n + �I)�1 + (⌃n + �I)�1(⌦+ ⌦0)

= (⌃n + �I)�1 + ⌦2

with k⌦2k = k(⌃n + �I)�1(⌦+ ⌦0)k. Therefore, we can bound

k⌦2k = k(⌃n + �I)�1(⌦+ ⌦0)k


1

�
k⌦+ ⌦0

k


1

�

 
Mz

2

n
+
p

5Mz
2

r
M2d2z2

n3
+

d2⌫

n2
+ �max|z| |s0(z)� s(z)|

!


1

�

 
Mz

2

n
+
p

5Mz
2

r
M2d2z2

n3
+

d2⌫

n2
+ �max|z|

����

✓
y �

d

n

◆
+

✓
E

1

n
tr
⇣
I � z⌃̂n

⌘�1
�
�

lim
n,d!1

E

1

n
tr
⇣
I � z⌃̂n

⌘�1
�◆����

◆

(6)

where z = �
1

�(1�d�)
. Thus k⌦2k ! 1 as n, d ! 1.

A.2. Proof of Theorem 2.2

Proof. Theorem 2.2 can be derived as a corollary of Lemma A.7. We include its derivation for sake of completeness. Build
on proof of Theorem A.7,

E

2

4
 

1

1�
d
n
�
n

⌃̂n + �I

!�1
3

5 = (⌃n + �I)�1 +

0

@E

2

4
 

1

1�
d
n
�
n

⌃̂n + �I

!�1
3

5

�E

2

4
 

1

1� limn,d!1
d
n
�
n

⌃̂n + �I

!�1
3

5

1

A+ ⌦2
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Denote !n = limn,d!1
d
n
�
n

�
d
n
�
n

, by resolvent identity,
������
E

2

4
 

1

1�
d
n
�
n

⌃̂n + �I

!�1
3

5� E

2

4
 

1

1� limn,d!1
d
n
�
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!�1
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5
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=
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2
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1

1�
d
n
�
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!�1
0

@ !n⇣
1� limn,d!1

d
n
�
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⌘⇣
1�

d
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�
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1
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1
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d
n
�
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⌃̂n + �I

!�1
3

5

������

 �
2 |!n|⇣

1� limn,d!1
d
n
�
n

⌘⇣
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d
n
�
n

⌘kE[⌃̂n]k


�
2
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1� limn,d!1
d
n
�
n

⌘⇣
1�

d
n
�
n

⌘

Since limn,d!1
d
n
�
n


y+1
2 < 1, therefore,

������
E

2

4
 

1

1�
d
n
�
n

⌃̂n + �I

!�1
3

5� (⌃n + �I)�1

������


2�max�
2
|!n|

(1� y)
⇣
1�

d
n
�
n

⌘ + k⌦2k (7)

with the right-hand side diminishing to 0.

A.3. Proof of Theorem 2.3

Proof. When ⌃n = I , d
n
�
n

= y

�+1 for each n and thus d� = y

�+1 . Let z = �(1� y

�+1 ) and ✏n = 1p
n

in Lemma A.6, under
Assumption 2.1 and with Lemma A.4,
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"
1

n
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✓
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+
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p
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=
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p
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+

1
p
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Since k⌃nk = 1 for each n, �max = 1 and from (6), denote z
0 = �

1
z

,
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02
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1
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✓
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y

p

5M

r
M2z02
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1
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In (7), since |!n| = 0,
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1
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n
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1
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A.4. Proof of Theorem 2.4

Proof. Assume eigenvalues of ⌃̂n are no less than � > 0. By resolvent identity,
������
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From Theorem 2.2, we know
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Furthermore, if ⌃�1
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exists for each n, by resolvent identity,
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A.5. Proof of Theorem 2.5

Proof. Built on equation (2) in proof of Lemma A.7, for any z < 0, z 2 R,

(I � z⌃n)E
⇣

I � z⌃̂n

⌘�1
�
= (zs(z)⌃n � z⌃n)E

⇣
I � z⌃̂n

⌘�1
�
+ I + ⌦+ ⌦0

Take z = �
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Therefore,
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B. Proofs in Section 3
B.1. Technical Lemmas

Lemma B.1. If data matrix A is random and satisfies Assumption 2.1, with Ai i.i.d. mean zero and covariance ⌃. Denote
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Lemma B.2. If data matrix A is random and satisfies Assumption 2.1, with Ai i.i.d. mean zero, assume !t independent of
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preconditioned conjugate gradient method.

Proof. Follow the same argument as in Lemma B.1 with H replaced by H(!t), H̃ replaced by H̃(!t), and ⌃ replaced by
⌃(!t).
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B.2. Proof of Theorem 3.1

Proof. We build on proof in Dereziński & Mahoney (2019). Consider the tth Newton’s step. Denote p
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B.3. Proof of Theorem 3.3

Proof. Follow similar argument as in the convergence proof for Newton’s method with quadratic loss (Appendix B.2), it can
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B.4. More Convergence Analysis Results

B.4.1. CONVERGENCE OF INEXACT NEWTON’S METHOD FOR REGULARIZED GENERAL CONVEX SMOOTH LOSS

Theorem B.3. (Convergence of inexact Newton’s method with Shrinkage) Assume !t independent of all A
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’s. Let
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with st being the number of iterations in preconditioned conjugate gradient method.

Proof. The proof follows by a combination of Lemma 14 in (Dereziński & Mahoney, 2019) and Lemma B.2.

C. Supplementary Simulation Results
C.1. Supplementary Simulation for Section 5.2

C.1.1. FORMULAS FOR DIFFERENT METHODS FOR COVARIANCE RESOLVENT ESTIMATION

Here we explicitly list the formulas used by different methods to compute R̃ which is used for the plots. Let n denote the
number of data, m denote number of agents, create n,m in the way that n is divided by m and split the data evenly to each
agent, let A 2 Rn⇥d denote the global data and Ai denote local data of size R(n/m)⇥d, we compare three methods:
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C.1.2. EXPERIMENTS ON COVARIANCE RESOLVENT ESTIMATION WITH SYNTHETIC DATA

Here we give simulation results for covariance resolvent estimation with synthetic data. See Section 5.2 for a description of
the setup and different methods being compared. Figure 5 shows that our shrinkage method gives more accurate estimation
of covariance resolvent than both the averaging method and the determinantal averaging method for synthetic data created
with difference covariance matrices.

Figure 5: Synthetic data experiments for covariance resolvent estimation. Let m denote the number of agents, d denote data
dimension, and � denote the regularizer. We take m = 100, d = 10,� = 0.1. Data is i.i.d. N (0,⌃) with ⌃ = 0.1I in the
left plot, and ⌃ = 100CT

C,Cij ⇠ U(0, 1) in the right plot.

C.1.3. MORE EXPERIMENTS ON COVARIANCE RESOLVENT ESTIMATION WITH NORMALIZED DATA

Here we give more simulation results for covariance resolvent estimation with normalized real datasets. See Section 5.2 for
a description of the setup and different methods being compared. Figure 6 shows our simulation results, which confirms the
shrinkage method’s superiority over the averaging method and the determinantal averaging method in covariance resolvent
estimation for normalized real data.

C.1.4. EXPERIMENTS ON COVARIANCE RESOLVENT ESTIMATION WITH SKETCHED REAL DATA

Here we give simulation results for covariance resolvent estimation with sketched real datasets. See Section 5.2 for a
description of the setup and different methods being compared. Take a real dataset, we experiment with a sketch of it. See
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Figure 6: Normalized real data experiments for covariance resolvent estimation. � = 0.001. Number of total data is rounded
down as multiple of number of local data, number of agent is number of total data divided by number of local data. We use
⌃ = 1

n
A

T
A.

Section 4 for an introduction to data sketching. We test with sketching matrix with both gaussian entries and uniform entries
and they give similar results as what can be witnessed from Figure 7 and Figure 8. Figure 7 and Figure 8 demonstrate that
the advantage of our method is not constrained to a specific data distribution.

Figure 7: Sketched real data experiments for covariance resolvent estimation. We use sketching matrix with entry i.i.d.
N (0, 1

m
), sketch size m = 10000, regularizer � = 0.001. We use ⌃ = 1

n
A

T
A.

C.1.5. EXPERIMENTS OF SMALL REGULARIZER REGIME

We test our method in the small regularizer regime discussed in Section 2.1.2. Figure 9 shows the simulation results on
synthetic data. The results suggest that when the regularizer is large, using md

n
is much worse than using md�

n
, while when

the regularizer is small, md

n
can be used in replace of md�

n
in computing R̃s and R̃s still approximates R well, which

confirms Theorem 2.4 (see Section 5.2 for the definition of R̃s and R).

We also test with sketched real data. Figure 10 shows the result for sketched abalone dataset, which is similar to the synthetic
data result.
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Figure 8: Sketched real data experiments for covariance resolvent estimation. We use sketching matrix with entry i.i.d.
1p
n
U(�

p
12
2 ,

p
12
2 ), sketch size m = 10000, regularizer � = 0.001. We use ⌃ = 1

n
A

T
A.

Figure 9: Synthetic data experiments for small regularizer regime. We experiment with m = 100 agents and data dimension
d = 10. Data is i.i.d. N (0,⌃),⌃ = 100CT

C,Cij ⇠ U(0, 1). We take regularizer � = 2000 in the first two plots and � = 1
in the third plot. md

n
is used in replace of md�

n
in the first plot and the third plot. md�

n
is used in the second plot.

Figure 10: Sketched real data experiments for small regularizer regime. We use sketching matrix with entry i.i.d. N (0, 1
m
),

sketch size m = 10000. We use ⌃ = 1
n
A

T
A. We take regularizer � = 1 in the first two plots and � = 0.001 in the third

plot. md

n
is used in replace of md�

n
in the first plot and the third plot. md�

n
is used in the second plot.

C.2. Supplementary Simulation for Section 5.3

C.2.1. MORE EXPERIMENTS ON DISTRIBUTED NEWTON’S METHOD

Here we give more simulation results on distributed Newton’s method for minimizing regularized quadratic loss with
normalized real datasets. See Section 5.3 for a description of the setup and different methods being compared. Figure 11
shows the superiority of our method for saving communication rounds in distributed Newton’s method.

C.2.2. EXPERIMENTS ON DISTRIBUTED INEXACT NEWTON’S METHOD

Figure 12 shows simulation results for distributed inexact Newton’s method. The algorithm of our method is given in
Section 3. We compare with DiSCO, where Hessian resolvent of the first agent is used as the preconditioning matrix in
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Figure 11: Normalized real data experiments for distributed Newton’s method for ridge regression. Number of total data
is rounded down as multiple of number of agents and number of local data is number of total data divided by number
of agents. Let � denote the regularizer and m denote the number of agents. We pick m = 1000,� = 0.001 for poker,
m = 20,� = 0.05 for vowel, m = 10,� = 0.01 for wine, m = 50,� = 0.5 for a6a.

distributed preconditioned conjugate gradient method5. Average method is taking the average of local Hessian inverses as the
preconditioning matrix. Determinant method is using exactly the same approximate Hessian inverse as in the determinantal
averaging method discussed in Section 1.1 as the preconditioning matrix. We don’t compare with conjugate gradient method
since it usually takes many more steps to converge and involving it in the plot will make the difference between other
methods less obvious. Determinant method is not plotted whenever there rises numerical issue.

From the plots, we see that compared to averaging method, DiSCO, and determinantal averaging method, our shrinkage
method achieves smaller log optimality gap in fewer rounds of communication on the datasets we have tested, which suggests
our shrinkage method is approximating Hessian inverse more accurately. Another takeaway is that determinantal averaging
method is unstable when data dimension is large and computing determinant becomes infeasible, while our shrinkage
method is always valid as long as the local data size is larger than effective dimension of local Hessian matrix. Note for
minimizing quadratic loss, inexact Newton’s method usually converges in one Newton step, and thus the discrepancy for
different methods are smaller in these plots compared to distributed Newton’s method’s simulation plots.

Figure 12: Normalized real data experiments for distributed inexact Newton’s method for ridge regression. Number of
total data is rounded down as multiple of number of agents and number of local data is number of total data divided by
number of agents. Let � denote the regularizer and m denote the number of agents. We pick m = 1000,� = 0.1 for letter,
m = 20,� = 0.01 for bodyfat, m = 30,� = 1 for w6a, m = 50,� = 0.1 for protein and usps, m = 50,� = 10 for
dna.scale, m = 40,� = 1 for vehicle, m = 200,� = 0.01 for phishing.

5For the implementation of DiSCO, we only borrow its preconditioner and don’t use its initialization step and step size choice since
they are too specific.
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C.2.3. EXPERIMENTS ON LOGISTIC REGRESSION

We give simulation results for distributed Newton’s method and distributed inexact Newton’s method for logistic regression
on normalized real datasets. See Section 5.3 for a description of the setup and different methods being compared for
distributed Newton’s method. See Appendix C.2.2 for a description of methods being compared for distributed inexact
Newton’s method. According to our convergence analysis for non-quadratic loss in Section 3.2, we need each Newton’s step
to operate on data independent of previous Newton’s steps. Therefore we are taking fresh data batches for computing each
Newton’s step. Determinantal averaging method does not appear in the inexact Newton’s method plots since the method
failes due to numerical issues.

According to Figure 13, our shrinkage method frequently saves communication rounds for both Newton’s method and
inexact Newton’s method compared to other methods, though the discrepancy is not as significant for the case with quadratic
loss. Moreover, a larger variance in the performance of Newton’s method is observed. This might be due to a small batch
size used in each worker. We believe that our shrinkage method can be optimized further for non-quadratic losses, which is
left as future work.

Figure 13: Normalized real data experiments for distributed second-order optimization algorithms for logistic regression.
Top four plots are for distributed Newton’s method and bottom four plots are for distributed inexact Newton’s method.
Number of total data is rounded down as multiple of number of agents and number of local data is number of total data
divided by number of agents. For each Newton’s step, a refreshed data batch containing the number of local data divided by
max iters pieces of data is used (we limit number of Newton’s step to not exceed max iters). Let � denote the regularizer and
m denote the number of agents. We pick m = 5,� = 0.01,max iters= 20 for heart, m = 2,� = 0.01,max iters= 10 for
liver-disorders, m = 3,� = 0.1,max iters= 5 for splice, m = 10,� = 0.1,max iters= 20 for svmguide3, m = 100,� =
1e� 5,max iters= 50 for cod-rna, m = 200,� = 1e� 5,max iters= 50 for covtype, m = 40,� = 0.01,max iters= 50 for
phishing, m = 50,� = 0.1,max iters= 50 for w8a.

C.2.4. EXPERIMENTS ON ITERATIVE HESSIAN SKETCH WITH OPTIMAL SHRINKAGE

We only present the simulation plots for IHS and IHS with shrinkage where a heuristic shrinkage coefficient is used in the
main text in Section 5.4. Here we provide more plots on these two methods and we also provide the exact version for IHS
with optimal shrinkage. For sake of comparison, we include the plots in the main text here again.

Figure 14 presents our simulation results on IHS with shrinkage where the effective dimension of sketched data is used.
From the figure, we see that IHS equipped with shrinkage method beats the classic IHS method in datasets we experimented
with, though for datasets bodyfat, housing, mpg and triazines, the difference between these two methods are more obvious.
Figure 15 presents the plots for IHS with the exact optimal shrinkage coefficient, on the same datasets choice and with
the same parameter choice. Still, IHS with shrinkage method beats the classic IHS method in datasets we have tested on.
But this time, the difference between the two methods are obvious for all datasets. If we look at Figure 14 and Figure 15
together, the performance of IHS with the exact shrinkage coefficient is at least as good as IHS with the heuristic shrinkage
coefficient, which is as expected, though the heuristic version does not worsen the performance much such that IHS with
heuristic shrinkage still remains superior compared to the classic IHS method.
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Figure 14: Real data experiments for Iterative Hessian Sketch method with heuristic shrinkage coefficient for ridge regression.
Let � denote the regularizer and m denote the sketch size. We pick � = 0.001 for abalone,triazines and � = 0.01 for
bodyfat, eunite2001, housing, mg, pyrim, mpg . We pick m = 50 for abalone, m = 100 for bodyfat and pyrim, m = 300
for eunite2001, housing, and triazines, m = 20 for mg, and m = 30 for mpg.

Figure 15: Real data experiments for Iterative Hessian Sketch method with exact shrinkage coefficient for ridge regression.
Same parameter choice as in Figure 14.
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