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Abstract—Reconfigurable intelligent surface (RIS) is expected
to play a crucial role in exploiting the synergies across communi-
cation, localization, and sensing in future 6G networks. However,
in order to effectively utilize these synergies, the fundamental
limits of RIS-aided systems need to be better understood. Inspired
by this, we derive the Fisher information matrix (FIM) for the
channel parameters of the downlink of a single-cell RIS-assisted
wireless system. We show that the derived FIM can be decom-
posed into i) the information provided by the receiver, ii) the
information provided by the transmitter, and iii) the information
provided by the RIS components. We also derive the Bayesian
FIM and study the impact of the uncertainty in estimating
the complex path gains (nuisance parameters) on estimating
the geometric RIS-related parameters (angles of reflection and
incidence). This impact is analytically characterized through the
Bayesian equivalent FIM (EFIM) to have a recognizable structure.
Two key insights are obtained from our analysis. First, from the
Fisher information point of view, the presence of the AoIs (angle
of incidence) and AoRs (angle of reflection) in the parameter
vector overparameterizes the model. Hence, the AoIs and AoRs
can not be separately estimated. Second, localization of a single
antenna UE through the signals received from reflections from a
single RIS to the UE is not feasible in the far-field.

I. INTRODUCTION

The use of Reconfigurable intelligent surfaces (RIS) has
been explored separately for enhancing communication, lo-
calization, and sensing functions of wireless networks [2]–
[5]. However, since RISs control the propagation environment
that is common to all these functions, they have the potential
to enable a synergistic design of 6G networks in which the
synergies across these functions are exploited for a more
efficient operation. However, this will come at the expense of
increased complications while estimating the geometric chan-
nel parameters. Localization through the parametric estimation
of the geometric channel parameters has been explored in [1]–
[10]. Although most of these works present Fisher information
matrices (FIM) for the geometric channel parameters, the
structure of these FIMs has not been investigated.

Hence, in this paper, we rigorously investigate the structure
of the Fisher information derived by considering the channel
parameter vector, which consists of the geometric and nuisance
parameters. We present two main theoretical contributions for
the case in which the RIS reflection coefficients remain constant
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across all received orthogonal frequency division multiplexing
(OFDM) symbols. First, from the Fisher information point of
view, the presence of the AoIs (angle of incidence) and AoRs
(angle of reflection) in the parameter vector overparameterizes
the resulting model and produces a rank-deficient FIM. Second,
through a Bayesian theoretical analysis of the FIM, we show
that localization of a single antenna UE through the signals
received at the UE from reflections by a single RIS is not
feasible in the far-field when the RIS reflection coefficients
remain constant across all OFDM symbols. To provide these
contributions, we derive the FIM of a multi-RIS-aided system
and show that the derived FIM can be decomposed into: i)
information provided by the receiver, ii) information provided
by the transmitter, and iii) information provided by the RIS
elements. We use this decomposition to show that the inclusion
of both the AoIs and AoRs in the parameter vector results
in a rank-deficient FIM. Next, we quantify the information
loss associated with the geometric channel parameters due
to the unknown channel path gains. This quantification is
achieved by deriving the Bayesian Equivalent FIM (EFIM) for
the geometric channel parameters. We show that the resulting
information loss has a specific structure, and when no prior
information is available about the complex path gains, the
corresponding submatrix in the Bayesian EFIM related to the
RIS geometric parameters is a zero matrix. Due to this absence
of information, localization with a single RIS is not feasible
in the far-field. In order to put the importance of this result
in proper context, it is useful to note here that one cannot
reach such a conclusion by simply inspecting the number
of unknowns and the geometric conditions (since not every
geometric parameter is useful for localization). Although this
work is limited to the case when the RIS reflection coefficients
remain constant across all OFDM symbols, extensions to the
general case when RIS reflection coefficients change across
different OFDM symbols is presented in [1].

II. SYSTEM MODEL

We consider the downlink of an RIS-assisted single-cell
MIMO system consisting of a single BS with NT antennas,
a UE of interest with NR antennas, and M1 distinct RISs.
The mth RIS is assumed to contain N

[m]
L reflecting elements

where m ∈ M1 = {1, 2, . . . ,M1}. We further assume OFDM
for this transmission. The BS has an arbitrary but known array
geometry with its centroid located at pBS ∈ R3. The UE is
defined by its position p ∈ R3, orientation (θ0, ϕ0), and an
arbitrary but known array geometry. We use notations θ and
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Figure 1: An illustration of the system model.

ϕ, respectively, with appropriate subscripts and superscripts
for all the elevation and azimuth angles. The set of RISs is
also defined by their positions p[m] ∈ R3 and orientation
angles (θ

[m]
0 , ϕ

[m]
0 ), for m ∈ M1. The geometry of each RIS

is known but arbitrary. The LOS path between the BS and UE
is considered blocked to focus on the information provided
by the RISs, and the NLOS paths generated by the natural
scatters and reflectors are ignored (see Fig. 1). Hence, the only
considered paths between the BS and UE are the virtual LOS
paths created by the M1 distinct RISs.
A. Far-Field Channel Model

All paths are described in part by their angle of departure
(AoD) at the BS, angle of arrival (AoA) at the UE, and
time of arrival (ToA) as specified by (θ

[m]
t,u , ϕ

[m]
t,u ), (θ

[m]
r,u , ϕ

[m]
r,u ),

and τ [m], respectively. The array vector at the transmitter and
receiver is specified by

a
[m]
t,u

(
θ
[m]
t,u , ϕ

[m]
t,u

)
≜ e

−j∆T
t,uk

(
θ
[m]
t,u ,ϕ

[m]
t,u

)
∈ CNT , (1)

a[m]
r,u

(
θ[m]
r,u , ϕ

[m]
r,u

)
≜ e−j∆T

r,uk(θ
[m]
r,u ,ϕ[m]

r,u ) ∈ CNR , (2)

respectively, where k(θ, ϕ) =
2π
λ [cosϕ sin θ, sinϕ sin θ, cos θ]T is the wavenumber vector,
λ is the wavelength, ∆r,u ≜ [ur,u,1,ur,u,2, . . . ,ur,u,NR

].
Here ur,u,n ≜ [xr,u,n, yr,u,n, zr,u,n]

T is a vector of Cartesian
coordinates of the nth receiver element and NR is the number
of receiving antennas. Similarly defined are the parameters
NT ,∆r,u and ut,u,n which are related to the transmit vector.
The array response due to the AoR (angle of reflection) and
AoI (angle of incidence) at the mth RIS can be written as

a
[m]
t,l

(
θ
[m]
t,l , ϕ

[m]
t,l

)
≜ e

−j∆T
l,mk

(
θ
[m]
t,l ,ϕ

[m]
t,l

)
∈ CN

[m]
L ,

a
[m]
r,l

(
θ
[m]
r,l , ϕ

[m]
r,l

)
≜ e

−j∆T
l,mk

(
θ
[m]
r,l ,ϕ

[m]
r,l

)
∈ CN

[m]
L ,

(3)

where ∆l,m ≜
[
ul,m,1,ul,m,2, . . . ,ul,m,N

[m]
L

]
,ul,m,n ≜

[xl,m,n, yl,m,n, zl,m,n]
T is a vector of Cartesian coordi-

nates of the nth RIS element. We also define Xl,m =
diag([xl,m,1, · · · , xl,m,N

[m]
L

]T). The definitions of Yl,m and
Zl,m are similar. The channel at the nth subcarrier during the
tth OFDM symbol is written as

Ht[n] =

M1∑
m=1

β[m]√
ρ[m]

H
[m]
t [n]e

−j2πnτ[m]

NTS ∈ CNR×NT , (4)

where β[m] is the complex channel gain,
√
ρ[m] is the pathloss

of the mth path and

H
[m]
t [n] = a[m]

r,u

(
θ[m]
r,u , ϕ

[m]
r,u

)
aH

[m]

t,l

(
θ
[m]
t,l , ϕ

[m]
t,l

)
Ω

[m]
t [n]

× a
[m]
r,l

(
θ
[m]
r,l , ϕ

[m]
r,l

)
aH

[m]

t,u

(
θ
[m]
t,u , ϕ

[m]
t,u

)
.

(5)

B. Transmit Processing

We consider the transmission of T OFDM symbols each
containing of N OFDM subcarriers. The BS precodes a vector
of communication symbols x[n] = [x1[n], . . . , xNB

[n]]
T ∈

CNB at the subcarrier level with a directional precoding matrix
F ∈ CNT×NB . After precoding, the symbols are modulated
with an N−point inverse fast Fourier transform (IFFT). A
cyclic prefix of sufficient length Ncp is added to the trans-
formed symbol. In the time domain, this cyclic prefix has
length Tcp = NcpTs where Ts = 1/B represents the sampling
period. The directional beamforming matrix is defined as
F ≜ [f1, f2, . . . fNB

] where fℓ = 1√
NB

at,b

(
θ
[l]
t,b, ϕ

[l]
t,b

)
, 1 ≤

ℓ ≤ NB, is the beam pointing in the direction (θℓ, ϕℓ) and
has the same representation as (1). In order to ensure a power
constraint, we set Tr

(
FHF

)
= 1, and E

{
x[n]xH[n]

}
= INB

,
where Tr(·) denotes the matrix trace and INB

is the NB-
dimensional identity matrix.

C. Far-Field Receive Processing

The reflection coefficients of the mth RIS during the tth

OFDM symbol can be decomposed into Ω
[m]
t = γ

[m]
t Γ[m]

where γ
[m]
t and Γ[m] are termed fast and slow varying RIS

coefficients respectively because γ
[m]
t varies across the T

OFDM symbols, Γ[m] is constant across those OFDM symbols.
After the removal of the cyclic prefix and the application of

an N -point fast Fourier transform (FFT), the received signal
at the nth subcarrier during the tth OFDM symbol is

rt[n] = Ht[n]Fx[n] + nt[n], (6)

and nt[n] ∼ CN (0, N0) is the Fourier transform of the thermal
noise local to the UE’s antenna array at the nth subcarrier
during the tth OFDM symbol and x[n] are pilots transmitted.
To facilitate any subsequent derivations, we also write the
received signal as

rt[n] = µt[n] +wt[n], t = 1, 2, . . . , T, n = 1, 2, . . . , N,
(7)

where µt[n] is the noise-free part of rt[n]. Based on the
received signal in (7), the vectors of the unknown channel



parameters related to the RIS paths are defined as

θr,u ≜
[
θ
[1]
r,u, . . . , θ

[M1]
r,u

]T
, ϕr,u ≜

[
ϕ
[1]
r,u, . . . , ϕ

[M1]
r,u

]T
,

θt,l ≜
[
θ
[1]
t,l , . . . , θ

[M1]
t,l

]T
, ϕt,l ≜

[
ϕ
[1]
t,l , . . . , ϕ

[M1]
t,l

]T
,

θr,l ≜
[
θ
[1]
r,l , . . . , θ

[M1]
r,l

]T
, ϕr,l ≜

[
ϕ
[1]
r,l , . . . , ϕ

[M1]
r,l

]T
,

θt,u ≜
[
θ
[1]
t,u, . . . , θ

[M1]
t,u

]T
, ϕt,u ≜

[
ϕ
[1]
t,u, . . . , ϕ

[M1]
t,u

]T
,

β ≜
[
β[1], . . . , β[M1]

]T
, τ ≜

[
τ [1], . . . , τ [M1]

]T
.

Definition 1. Based on a set of observations r, the Bayesian
Fisher information of a parameter vector η is written as

Jη ≜ Er|η

[
−∂2 lnχ(r[n];η)

∂η∂ηT

]
= −Er|η

[
∂2 lnχ(r[n]|η)

∂η∂ηT

]
− Er|η

[
∂2 lnχ(η)

∂η∂ηT

]
= JD

η + JP
η ,

(8)

where χ is the probability density function (PDF), JD
η , and JP

η

are the FIMs related to the likelihood and the prior.
Definition 2. If the FIM of a parameter η = [ηT

1 ηT
2 ]

T is
specified by

Jη =

[
Jη1η1

Jη1η2

JT
η1η2

Jη2η2

]
, (9)

where η ∈ RN ,η1 ∈ Rn,Jη1η1
∈ Rn×n,Jη1η2

∈ Rn×(N−n),
and Jη2η2

∈ R(N−n)×(N−n) with n < N , then the EFIM [11]
of parameter η1 is given by

Je
η1

= Jη1η1 − Jnu
η1η1

= Jη1η1 − Jη1η2J
−1
η2η2

JT
η1η2

. (10)

Note that the term Jnu
η1η1

= Jη1η2
J−1
η2η2

JT
η1η2

describes the
loss of information about η1 due to uncertainty in the nuisance
parameters η2.

III. FISHER INFORMATION FOR RIS PATHS

The unknown channel parameters are represented by the
vector

η ≜
[
θT
r,u,ϕ

T
r,u,θ

T
t,l,ϕ

T
t,l,θ

T
r,l,ϕ

T
r,l,θ

T
t,u,ϕ

T
t,u, τ

T,βT
R,β

T
I

]T
,

(11)
where βR ≜ ℜ{β}, and βI ≜ ℑ{β} are the real and imaginary
parts of β, respectively. We define the geometric channel pa-

rameters η1 ≜
[
θT
r,u,ϕ

T
r,u,θ

T
t,l,ϕ

T
t,l,θ

T
r,l,ϕ

T
r,l,θ

T
t,u,ϕ

T
t,u, τ

T
]T

and the nuisance parameter as η2 ≜
[
βT
R,β

T
I

]T
. To derive the

FIM of η, we define the PDF as χ(rt[n];η) = χ(rt[n]|η)χ(η)
where χ(η) = χ(η1)χ(η2). The FIM of the channel parame-
ters due to the observation r is an 11M1×11M1 matrix which
can be viewed as a collection of M1 ×M1 submatrices

JD
η ≜


Jθr,uθr,u

Jθr,uϕr,u
· · · Jθr,uβI

JT
θr,uϕr,u

. . . · · ·
...

... · · ·
. . .

...
JT
θr,uβI

· · · · · · JβIβI

 (12)

in which Jηv1
ηv2

≜ 2
σ2

∑N
n=1

∑T
t=1 ℜ

{
∂µt[n]H

∂ηv1

∂µt[n]
∂ηv2

}
,

where ηv1 , ηv2 are both dummy variables that stand for the
parameters of interest, and σ2 is the signal-to-noise-ratio which
incorporates the pathloss and composite noise power.

A. Entries of the FIM from the Observations

After taking the first derivative, and using the definitions in
the previous sections, the autocovariance terms in the FIM in
(12), which are related to elevation AoA parameter vectors are

Jθr,uθr,u =
2

σ2
ℜ
{(

BHKH
r,uKr,uB

)
⊙
(
klk

H
l

)
⊙
(
DH

γ Dγ

)
⊙(

AH
t,uFF

HAt,u

)T ⊙R0

}
,

(13)
JβRβR

= JβIβI
=

2

σ2
ℜ
{(

AH
r,uAr,u

)
⊙
(
klk

H
l

)
⊙
(
DH

γ Dγ

)
⊙(

AH
t,uFF

HAt,u

)T ⊙R0

}
,

(14)
where ⊙ represents elementwise multiplications, B =

diag(β), Ar,u ≜
[
a
[1]
r,u,a

[2]
r,2, . . . , a

[M1]
r,u

]
,

K[m]
r,u ≜ diag

(
∂

∂θ
[m]
r,u

∆T
r,uk

(
θ[m]
r,u , ϕ

[m]
r,u

))
, (15)

K
[m]
t,l ≜ diag

(
∂

∂θ
[m]
t,l

∆T
l,mk

(
θ
[m]
t,l , ϕ

[m]
t,l

))
, (16)

K
[m]
r,l ≜ diag

(
∂

∂θ
[m]
r,l

∆T
l,mk

(
θ
[m]
r,l , ϕ

[m]
r,l

))
, (17)

Kr,u ≜
[
K[1]

r,ua
[1]
r,u,K

[2]
r,ua

[2]
r,u, . . . ,K

[M1]
r,u a[M1]

r,u

]
. (18)

The corresponding terms for the AoD at the BS can be obtained
by replacing r with t in (15) and (18). In addition to replacing
∆r,u with ∆l,m, the term related to the elevation AoI defined
as K

[m]
r,l can be obtained by replacing θ

[m]
r,u with θ

[m]
r,l . The

corresponding terms related to the AoR can be obtained from
the terms related to the AoI by replacing r with t. Other terms
relating to AoI and AoR at the RISs are ã

[m]
r,l ≜ Γ[m]a

[m]
r,l ,

ãk
[m]
r,l ≜ K

[m]
r,l ã

[m]
r,l , a

[m]
kt,l

≜ K
[m]
t,l a

[m]
t,l ,

kl ≜
[
aH

[1]

t,l ã
[1]
r,l ,a

H[2]

t,l ã
[2]
r,l , . . . , a

H[M1]

t,l ã
[M1]
r,l

]H
,

kt,l ≜
[
aH

[1]

kt,l
ã
[1]
r,l ,a

H[2]

kt,l
ã
[2]
r,l , . . . , a

H[M1]

kt,l
ã
[M1]
r,l

]H
,

kr,l ≜
[
aH

[1]

t,l ãk
[1]
r,l ,a

H[2]

t,l ãk
[2]
r,l , . . . , a

H[M1]

t,l ãk
[M1]
r,l

]H
.

(19)

The angle-related expressions in (13) - (19) are related to
the elevation angles, similar expressions for azimuth angles
are obtained by replacing k and K with p and P, re-
spectively. These expressions are more thoroughly expressed
in [1]. Also, the scalar part of the RIS reflecting coeffi-
cient which is used for multipath separation is arranged as
γ[m] = [γ

[m]
1 , γ

[m]
2 , . . . , γ

[m]
T ]T, and can be arranged in a

matrix as Dγ = [γ[1],γ[2], . . . ,γ[M1]]. This matrix, henceforth



referred to as a sequence matrix provides control in both
spatial and temporal domains through the fast-varying part
of reflecting coefficients, γ[m]

1 , of the RISs. The signal factor
representing the effect of the transmitted beams is specified

by [Rk]uv ≜
∑N

n=1 (2πn/ (NTs))
k
x[n]xH[n]e−j2πn τ[v]−τ[u]

NTs ,
where k ∈ {0, 1, 2}.
Remark 1. In general, we notice from the structure of (13)
that all submatrices of the FIM in (12) can be written simi-
larly, and have a general form of Jv1v2

= ℜ{(Rx factor) ⊙
(RIS gain)⊙(RIS correlation)⊙(Tx factor)⊙(signal factor)}.
From this equation, we notice that the FIM decreases with
SNR and all other submatrices in (12) are presented in [1].
We notice that the submatrices can be decomposed into: i)
information provided by the receiver specified by some com-
bination of the terms {Pr,u,Kr,u,B,Ar,u}, ii) information
provided by the transmitter specified by some combination
of the terms {Pt,u,Kt,u,F,At,u}, iii) information provided
by the RIS gain specified by some combination of the terms
{kl,kt,l,kr,l,pt,l,pr,l}, iv) the correlation across the RIS
specified by the product DH

γ Dγ , and v) the transmit signal
factor.

Assumption 1. The fast-varying coefficients of distinct RISs
are assumed to be orthogonal over the T OFDM symbols such
that DH

γ Dγ = IM1
.

B. Relationship between AoI and AoR Under Assumption 1

Based on the angle relationships and the coordinate transla-
tions, we provide the relationship between the AoI and AoR
for an RIS deployed as a passive uniform rectangular array
(URA).

Lemma 1. The matrix specified by

V =
[
ν1 ν2

]
=

[
cos(θ

[m]
t,l ) sin(ϕ

[m]
t,l ) sin(θ

[m]
t,l ) cos(ϕ

[m]
t,l )

cos(θ
[m]
t,l ) cos(ϕ

[m]
t,l ) − sin(θ

[m]
t,l ) sin(ϕ

[m]
t,l )

]
(20)

is a full rank matrix. Hence, the 2D vectors ν3 =[
cos(θ

[m]
r,l ) sin(ϕ

[m]
r,l ) cos(θ

[m]
r,l ) sin(ϕ

[m]
r,l )

]T
and ν4 =[

sin(θ
[m]
r,l ) cos(ϕ

[m]
r,l ) − sin(θ

[m]
r,l ) sin(ϕ

[m]
r,l )

]T
can be ob-

tained as a linear combination of ν1 and ν2.

Proof. See Appendix B.

The following corollaries establish relationships between the
information provided by the FIMs of various channel parame-
ters. The first corollary is a vital step in showing dependence
among some of the FIMs of the geometric channel parameters.
More specifically , Corollary 1 follows from Lemma 1 and it is
used to show Corollary 2. Corollary 2 shows that the columns
in (12) which correspond to the AoIs can be obtained as a
linear combination of the columns in (12) that corresponds to
the AoR.

Corollary 1. For a RIS deployed as a passive URA with a
normal in the z-direction, there exist scalars α1, α2, α3, and
α4 such that1

α1K
[m]
t,l + α2P

[m]
t,l = K

[m]
r,l , α3K

[m]
t,l + α4P

[m]
t,l = P

[m]
r,l .

(21)

Proof. See Appendix C.

Corollary 2 shows that the information provided by the
AoI can be obtained as linear combination of the information
provided by the AoR.

Corollary 2. Under Assumption 1 and with Corollary 1, there
exist scalars α1, α2, α3, and α4 such that

α1Jv1θt,l
+ α2Jv1ϕt,l

= Jv1θr,l
,

α3Jv1θt,l
+ α4Jv1ϕt,l

= Jv1ϕr,l
,

(22)

where v1 ∈ η.

Proof. See Appendix D.

Theorem 1. From the purely information-theoretic point of
view, the presence of both the AoIs and AoRs in a parameter
vector, η, overparameterizes the model.

Proof. The proof follows from Corollary 2, by observing that
the FIM of the channel parameters η specified by JD

η is rank
deficient and non-invertible due to the elevation and azimuth
AoIs. More specifically, if there are M1 RISs, the resultant
FIM JD

η has a rank of atmost 11M1 − 2M1.

C. Entries of the General FIM

To incorporate any prior knowledge about the unknown
channel parameters, the Bayesian FIM is also analyzed. Similar
to (12), the Bayesian FIM of the channel parameters η is
also an 11M1 × 11M1 matrix which can also be viewed as
several M1 ×M1 submatrices such that its entries are written
as J̃v1v2

= Jv1v2
+ JP

v1v2
where v1,v2 ∈ η. We assume

uninformative a priori information about the geometric channel
parameters η1. However, a priori information is available
about the nuisance parameters (complex path gains). This a
priori information about the real and imaginary part of the
complex gains are independent. Now, due to the nature of the
a priori information, the block entries in the Bayesian FIM
can be written as J̃v1v2

= Jv1v2
, J̃v3v4

= Jv3v4
, J̃v3v3

=
Jv3v3

+JP
v3v3

, where v1,v2 ∈ η1, v3,v4 ∈ η2, and v3 ̸= v4.

D. Structure of General EFIM

In this section, we analyze the structure of the Bayesian
EFIM under Assumption 1.

Lemma 2. Except the information loss terms related to the
cross covariance between the receive/transmit angles of el-
evation and azimuth, all other off-diagonal information loss
terms related to the ToA, AoAs, and AoDs in the Bayesian

1P
[m]
t,l is related to the azimuth AoR defined similarly to the definition

related to the elevation AoR in (16). P
[m]
r,l is related to the azimuth AoI

defined similarly to the definition related to the elevation AoI in (17).



EFIM matrix have a structure of Bayesian FIM of βR× FIM
of βR× FIM of parameters of interest. More specifically,

Jnu
v1v2

≜ J̃−1
βRβR

JβRβR
Jv1v2

, (23)

where v1 ∈
[
θT
r,u,ϕ

T
r,u,θ

T
t,u,ϕ

T
t,u, τ

T,
]T

, v2 ∈ η1, v1 ̸= v2.
Also If v1 = θr,u then v2 ̸= ϕr,u. Again for the transmit
angles, if v1 = θt,u then v2 ̸= ϕt,u.

Proof. See Appendix F.

Lemma 3. The information loss terms related to the AoI
and AoR (both elevation and azimuth) in the Bayesian EFIM
matrix have a structure of Bayesian FIM of βR× FIM of βR×
FIM of parameters of interest. More specifically, Jnu

v1v2
≜

J̃−1
βRβR

JβRβR
Jv1v2

, where v1 ∈
[
θT
t,l,ϕ

T
t,l,θ

T
r,l,ϕ

T
r,l,
]T

and
v2 ∈ η1.

Proof. See Appendix F.

Lemma 4. When the a priori information of the nuisance
parameters is uninformative, the Bayesian EFIM related to the
RIS geometric angle parameters is an all zero matrix. More
specifically,

Je
θt,lθt,l

= Je
ϕt,lϕt,l

= Je
θr,lθr,l

= Je
ϕr,lϕr,l

= 0.

This indicates that with no prior information about the complex
channel path gains, the AoI and AoR can not be estimated.

Proof. When the a priori information of the nuisance param-
eters is uninformative then J̃βRβR

= JβRβR
. Substituting this

and Lemma 3 into Definition 2 completes the proof.

Theorem 2. In the far-field, it is not feasible to localize a
single antenna UE using only the signals received at the UE
through reflections from a single RIS when the RIS reflection
coefficients remain constant across all OFDM symbols.

Proof. The proof follows as Lemma 4 indicates that the
AoR can not be estimated in the far-field without a priori
information about the complex path gains. Hence, because a
priori information about the complex path gain is nontrivial
to obtain and a single antenna receiver can not estimate the
AoAs, only a single ToA measurement without any angle
information is available. Localization is not feasible under
these conditions.

IV. NUMERICAL RESULTS

The CRLB of the AoR and AoA are shown in Fig. 2 as
a function of the number of receive antennas. The CRLB is
obtained by first inverting the FIM in (12), and subsequently
taking the square root of appropriate diagonals. This figure
indicates that the AoA can be more accurately estimated than
the AoR. This difference in accuracy is not surprising as the
lack of processing at the RIS hinders the AoR estimation, while
the antenna elements at the UE enable AoA estimation.
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Figure 2: CRLB (AoR and AoA) vs NR with perfect knowl-
edge of β and 1/σ2 = 20 dB.

V. CONCLUSION

This paper has investigated the FIM for the downlink of
a RIS-assisted system. We analytically showed that the FIM
is decomposable into i) information provided by the receiver,
ii) information provided by the transmitter, and iii) information
provided by the RIS components. We also derived the Bayesian
FIM. Through the Bayesian EFIM, we analytically showed that
the information loss in estimating the geometric angle channel
parameters due to the complex path gains takes a specific
structure. This structure showed that the absence of prior
information about the complex path gains makes it impossible
to estimate the geometric angle channel parameters. Hence,
due to the lack of information about the AoRs, localization of
a single antenna UE through the signals received at the UE
from reflections by a single RIS is not feasible in the far-field
when the RIS reflection coefficients remain constant across all
OFDM symbols.

APPENDIX

A. RIS Related Angle Definitions and Relationships

To analyze both the angle relationships and derive the
FIM for positioning, we define the rotation matrix Q (θ0, ϕ0)
given by Q (θ0, ϕ0) = Qz (ϕ0)Q−x (θ0), where Qz (ϕ0)
and Q−x (θ0) define the counter-clockwise rotation around
the z-axis and the clockwise rotation around the x-axis re-
spectively. We define g[m] = (p[m] − pBS), and specify the
AoD at the BS as θ

[m]
t,u = cos−1

(
g
[m]
z /∥g[m]∥

)
, ϕ

[m]
t,u =

tan−1
(
g
[m]
y /g

[m]
x

)
. Next, we translate the mth RIS to the

origin, and the new coordinates of the BS can be written
as c[m] = (pBS − p[m]), c̃[m] = Q−1

(
θ
[m]
0 , ϕ

[m]
0

)
c[m].

With respect to these new coordinates, we can write θ
[m]
r,l =

cos−1
(
c
[m]
z̃ /∥c̃[m]∥

)
, ϕ

[m]
r,l = tan−1

(
c
[m]
ỹ /c

[m]
x̃

)
. Subse-

quently, the translated coordinates allow the following defi-
nition v[m] = (p − p[m]), ṽ[m] = Q−1

(
θ
[m]
0 , ϕ

[m]
0

)
v[m]

and we can write θ
[m]
t,l = cos−1

(
v
[m]
z̃ /∥ṽ[m]∥

)
, ϕ

[m]
t,l =

tan−1
(
v
[m]
ỹ /v

[m]
x̃

)
. Similarly, we obtain a new set of



coordinates by translating the UE to the origin, and
we write the following definitions e[m] = −(p −
p[m]), ẽ[m] = Q−1 (θ0, ϕ0) e

[m]. Hence, we can write
θ
[m]
r,u = cos−1

(
e
[m]
z̃ /∥ẽ[m]∥

)
, ϕ

[m]
r,u = tan−1

(
e
[m]
ỹ /e

[m]
x̃

)
.

B. Proof of Lemma 1

By simple geometry and based on the angle definitions, we
can write (20) as

V =


v
[m]
ỹ v

[m]
z̃(

∥ṽ[m]∥
√

(v
[m]
x̃ )2+(v

[m]
ỹ )2

) v
[m]
x̃

∥ṽ[m]∥

v
[m]
x̃ v

[m]
z̃(

∥ṽ[m]∥
√

(v
[m]
x̃ )2+(v

[m]
ỹ )2

) −v
[m]
ỹ

∥ṽ[m]∥

 . (24)

Based on the property that a rank deficient matrix has a
zero determinant, we obtain −(v

[m]
ỹ )2 = (v

[m]
x̃ )2 as the only

condition for rank deficiency. Because this rank deficiency
condition is not possible, the lemma is proved. The second
part of the Lemma is obvious as ν3 and ν4 are 2D vectors
which can be obtained from a linear combination of ν1 and
ν2.

C. Proof of Corollary 1

The diagonal matrices in (21) have a size of (N [m]
L ) and each

element in these matrices can be decomposed into components
in the x and y directions. The angle component of K[m]

t,l in the
x and y direction can be shown to correspond with the elements
of ν1. More specifically K

[m]
t,l = πYl,m cos(θ

[m]
t,l ) sin(ϕ

[m]
t,l ) +

πXl,m cos(θ
[m]
t,l ) cos(ϕ

[m]
t,l ). Similarly, the angle components of

P
[m]
t,l and K

[m]
r,l can be shown to equal ν2 and ν3, respectively.

Hence, K[m]
r,l is a linear combination of K

[m]
t,l and P

[m]
t,l . The

second equation in this corollary can be proved similarly.

D. Proof of Corollary 2

First, note that the FIMs in the above corollary
are diagonal matrices. Due to the properties relating
Hadamard products with diagonal matrices [12], the left-
hand side of the above Corollary can be decomposed as
2
σ2ℜ

{
Vv1

⊙
[
α1

(
kv1

kH
t,l

)
+ α2

(
kv1

pH
t,l

)]
⊙
(
DH

γ Dγ

)}
,

where Vv1
is a dummy diagonal matrix representing the

common terms between Jv1θt,l
and Jv1ϕt,l

. Analyzing the
diagonal elements of the matrices in the square brackets gives

2

σ2
ℜ
{
v[m]
v1

⊙ aH
[m]

t,l

[
α1K

[m]
t,l + α2P

[m]
t,l

]
ã
[m]
r,l ⊙

(
DH

γ Dγ

)}
,

(25)
where v

[m]
v1 represents the common terms on the mth diagonal.

From Corollary 1, the terms in the square brackets equals
K

[m]
r,l , hence 2

σ2ℜ
{
v
[m]
v1 ⊙ aH

[m]
t,l K

[m]
r,l ã

[m]
r,l ⊙

(
DH

γ Dγ

)}
, and

we can write 2
σ2ℜ

{
Vv1

⊙
(
kv1

kH
r,l

)
⊙
(
DH

γ Dγ

)}
= Jv1θr,l

.

The second part of the corollary can be proved similarly.
E. Effect of Assumption 1 on Complex Path Gains

The submatrix Jη2η2
and its corresponding entries

{JβRβR ,JβIβI} are diagonal matrices. With Assumption 1,
the various RIS paths can be orthogonalized and we can write

JβRβI
= JβIβI

= 2
σ2

{(
AH

r,uAr,u

)
⊙
(
klk

H
l

)
⊙
(
DH

γ Dγ

)
⊙(

AH
t,uFF

HAt,u

)T ⊙R0

}
.

F. Proof of Lemma 2 and Lemma 3

To prove Lemmas 2 and 3, we focus on the cross covariance
between the elevation AoAs and the azimuth AoAs. The in-
formation loss due to the nuisance parameters which concerns
the cross covariance between the receive elevation angle and
the elevation angle of reflection can be written as

Jnu
θr,uθt,l

= Jθr,uβR
J̃−1
βRβR

JT
θt,lβR

+ Jθr,uβI
J̃−1
βIβI

JT
θt,lβI

= J̃−1
βRβR

[
Jθr,uβR

JT
θt,lβR

+ Jθr,uβI
JT
θt,lβI

]
,

(26)

which is a consequence of Appendix E. Now, applying basic
complex analysis, ℑ(ν1)ℑ(ν2) + ℜ(ν1)ℜ(ν2) = ℜ(ν1νH2 ) =
ℜ(νH1 ν2), we have

Jnu
θr,uθt,l

= J̃−1
βRβR

[
(Jθr,uβI + jJθr,uβR)(Jθt,lβI

+ jJθt,lβR
)H
]
.

(27)
With appropriate manipulations, we have Jnu

θr,uθt,l
=

J̃−1
βRβR

JβRβR
Jθr,uθt,l

. Derivations of the expressions for other
terms describing the information losses due to the nuisance
parameters which are presented in Lemmas 2 and 3, can be
obtained similarly.
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