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Abstract—Reconfigurable intelligent surface (RIS) is expected
to play a crucial role in exploiting the synergies across communi-
cation, localization, and sensing in future 6G networks. However,
in order to effectively utilize these synergies, the fundamental
limits of RIS-aided systems need to be better understood. Inspired
by this, we derive the Fisher information matrix (FIM) for the
channel parameters of the downlink of a single-cell RIS-assisted
wireless system. We show that the derived FIM can be decom-
posed into i) the information provided by the receiver, ii) the
information provided by the transmitter, and iii) the information
provided by the RIS components. We also derive the Bayesian
FIM and study the impact of the uncertainty in estimating
the complex path gains (nuisance parameters) on estimating
the geometric RIS-related parameters (angles of reflection and
incidence). This impact is analytically characterized through the
Bayesian equivalent FIM (EFIM) to have a recognizable structure.
Two key insights are obtained from our analysis. First, from the
Fisher information point of view, the presence of the Aols (angle
of incidence) and AoRs (angle of reflection) in the parameter
vector overparameterizes the model. Hence, the Aols and AoRs
can not be separately estimated. Second, localization of a single
antenna UE through the signals received from reflections from a
single RIS to the UE is not feasible in the far-field.

I. INTRODUCTION

The use of Reconfigurable intelligent surfaces (RIS) has
been explored separately for enhancing communication, lo-
calization, and sensing functions of wireless networks [2]-
[5]. However, since RISs control the propagation environment
that is common to all these functions, they have the potential
to enable a synergistic design of 6G networks in which the
synergies across these functions are exploited for a more
efficient operation. However, this will come at the expense of
increased complications while estimating the geometric chan-
nel parameters. Localization through the parametric estimation
of the geometric channel parameters has been explored in [1]-
[10]. Although most of these works present Fisher information
matrices (FIM) for the geometric channel parameters, the
structure of these FIMs has not been investigated.

Hence, in this paper, we rigorously investigate the structure
of the Fisher information derived by considering the channel
parameter vector, which consists of the geometric and nuisance
parameters. We present two main theoretical contributions for
the case in which the RIS reflection coefficients remain constant
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across all received orthogonal frequency division multiplexing
(OFDM) symbols. First, from the Fisher information point of
view, the presence of the Aols (angle of incidence) and AoRs
(angle of reflection) in the parameter vector overparameterizes
the resulting model and produces a rank-deficient FIM. Second,
through a Bayesian theoretical analysis of the FIM, we show
that localization of a single antenna UE through the signals
received at the UE from reflections by a single RIS is not
feasible in the far-field when the RIS reflection coefficients
remain constant across all OFDM symbols. To provide these
contributions, we derive the FIM of a multi-RIS-aided system
and show that the derived FIM can be decomposed into: i)
information provided by the receiver, ii) information provided
by the transmitter, and iii) information provided by the RIS
elements. We use this decomposition to show that the inclusion
of both the Aols and AoRs in the parameter vector results
in a rank-deficient FIM. Next, we quantify the information
loss associated with the geometric channel parameters due
to the unknown channel path gains. This quantification is
achieved by deriving the Bayesian Equivalent FIM (EFIM) for
the geometric channel parameters. We show that the resulting
information loss has a specific structure, and when no prior
information is available about the complex path gains, the
corresponding submatrix in the Bayesian EFIM related to the
RIS geometric parameters is a zero matrix. Due to this absence
of information, localization with a single RIS is not feasible
in the far-field. In order to put the importance of this result
in proper context, it is useful to note here that one cannot
reach such a conclusion by simply inspecting the number
of unknowns and the geometric conditions (since not every
geometric parameter is useful for localization). Although this
work is limited to the case when the RIS reflection coefficients
remain constant across all OFDM symbols, extensions to the
general case when RIS reflection coefficients change across
different OFDM symbols is presented in [1].

II. SYSTEM MODEL

We consider the downlink of an RIS-assisted single-cell
MIMO system consisting of a single BS with Np antennas,
a UE of interest with Ny antennas, and M distinct RISs.
The m!" RIS is assumed to contain N Em] reflecting elements
where m € My = {1,2,..., M;}. We further assume OFDM
for this transmission. The BS has an arbitrary but known array
geometry with its centroid located at ppg € R3. The UE is
defined by its position p € R3, orientation (fy, ¢g), and an
arbitrary but known array geometry. We use notations 6 and
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Figure 1: An illustration of the system model.

¢, respectively, with appropriate subscripts and superscripts
for all the elevation and azimuth angles. The set of RISs is
also defined bP/ their positions pl™ € R3 and orientation
angles (6™, ™), for m € M. The geometry of each RIS
is known but arbltrary. The LOS path between the BS and UE
is considered blocked to focus on the information provided
by the RISs, and the NLOS paths generated by the natural
scatters and reflectors are ignored (see Fig. 1). Hence, the only
considered paths between the BS and UE are the virtual LOS
paths created by the M; distinct RISs.

A. Far-Field Channel Model

All paths are described in part by their angle of departure
(AoD) at the BS, angle of arrival (AoA) at the UE, and
time of arrival (ToA) as specified by (0{"3, bou ) (9?,73]7 Eﬁ]),
and 7™l respectively. The array vector at the transmitter and

receiver is specified by
[m] (g[m] ¢[M]>

t,u Ft,u
alnl (i), elnl) 2

respectively, where
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A is the wavelength, A, , £ [Wr,u15 Urou,2s - - Ur o, Ng -
Here Uy up = [T Yrun, Zeun] 18 @ vector of Cartesian
coordinates of the n™ receiver element and Ny is the number
of receiving antennas. Similarly defined are the parameters
Nr, A, and u , , which are related to the transmit vector.
The array response due to the AoR (angle of reflection) and

Aol (angle of incidence) at the m™ RIS can be written as
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nates of the n™ RIS element. We also define Xim =
diag([#1,m,1,- - @, ] ") The definitions of Y., and
st N

Z) , are similar. The channel at the n'"
t'" OFDM symbol is written as

= 3.
t|n| = t
me=1 p[m]

where 8" is the complex channel gain, \/p[™! is the pathloss
of the m*" path and

H"™[n] = al™ (0 ( ru7¢[m]> atl!”) <9[117 g?])ﬂ[m][ ]
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B. Transmit Processing

subcarrier during the

—j2rnrlm]
NTg

c (CNRXNT7 (4)

[n]e

(&)

We consider the transmission of 7' OFDM symbols each
containing of N OFDM subcarriers. The BS precodes a vector
of communication symbols x[n] = [z1[n],...,zn,[n]]" €
CNe at the subcarrier level with a directional precoding matrix
F € CNtxNs | After precoding, the symbols are modulated
with an N —point inverse fast Fourier transform (IFFT). A
cyclic prefix of sufficient length N, is added to the trans-
formed symbol. In the time domain, this cyclic prefix has
length T, = N, T, where T, = 1/B represents the sampling
period. The directional beamforming matrix is defined as
F 2 [f,f,... ay, (eﬁ]b@ﬁ]b), 1<
¢ < Ng, is the beam pointing in the direction (8, ¢,) and
has the same representation as (1). In order to ensure a power
constraint, we set Tr (FHF) = 1, and E {x[n]x"[n]} = Iy,,
where Tr(-) denotes the matrix trace and Iy, is the Np-
dimensional identity matrix.

fng] where £, =

C. Far-Field Receive Processing

The reflection coefficients of the m!” RIS during the t"
OFDM symbol can be decomposed into Q™ = i™pimi
where 7[ ™) and T are termed fast and slow varying RIS
coefficients respectively because %[m] varies across the T
OFDM symbols, 'l is constant across those OFDM symbols.

After the removal of the cyclic prefix and the application of
an NN-point fast Fourier transform (FFT), the received signal
at the n'" subcarrier during the t** OFDM symbol is

r¢[n] = Hy[n]Fx[n] + nq[n], (6)

and n¢[n] ~ CN (0, Ny) is the Fourier transform of the thermal
noise local to the UE’s antenna array at the n'" subcarrier
during the t** OFDM symbol and x[n] are pilots transmitted.
To facilitate any subsequent derivations, we also write the
received signal as

ri[n] = p,n] +wiln], t=1,2,...,7, n=1,2,...,N,
(7

where p,[n] is the noise-free part of r:[n]. Based on the
received signal in (7), the vectors of the unknown channel



parameters related to the RIS paths are defined as
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Definition 1. Based on a set of observations r, the Bayesian
Fisher information of a parameter vector 1 is written as

9% Inx(r[n];n)
e
_ g [@hxCEEm)] g [Phx(m)] ®)
rin ononT ononT
i,

where X is the probability density function (PDF), J 2, and J 5
are the FIMs related to the likelihood and the prior.

Definition 2. If the FIM of a parameter n = [nf ni]T
specified by
J J
J, = mm n1M2 ]’ (9)
K |: J;I';l"lz J772772
where n € RN, my € R*, J,p 0 € R T, 0 € RPXV=),

and J .y, € RN=XWN=1) yith n < N, then the EFIM [11]
of parameter my is given by

e _ nu o __ 1 T
J"h - Jmm Jmm - Jmm - ']771772J772772J771772 (10)
nu — 1
Note that the term J3%, = J"71"72J772172J1717]2 describes the

loss of information about 1)1 due to uncertainty in the nuisance
parameters 1.

ITII. FISHER INFORMATION FOR RIS PATHS

The unknown channel parameters are represented by the
vector
T
- [ r,u’ ¢r u’ t 17 (r/)t 1o Br 1 qbrrI:lv agua d)tT,‘ua TTa /81{7 ﬂ’IT] ]7)
where Br = R{3}, and B; = 3{3} are the real and i 1mag1nary
parts of 3, respectively. We define the geometric channel pa-
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and the nuisance parameter as 1y = . To derive the
FIM of ), we define the PDF as x(r:[n];n) = x(rn]|n)x(n)
where x(n) = x(1m1)x(n2). The FIM of the channel parame-
ters due to the observation r is an 11M; x 11M; matrix which
can be viewed as a collection of M; x M; submatrices

Jo,.6.. Jo.uden Jo. .61
J3 :
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in which Jp, »,, = % Zn 1 Zt 1 R on,
where 1)y,, 7y, are both dummy variables that sltand for the
parameters of interest, and o2 is the signal-to-noise-ratio which
incorporates the pathloss and composite noise power.

A. Entries of the FIM from the Observations

After taking the first derivative, and using the definitions in
the previous sections, the autocovariance terms in the FIM in
(12), which are related to elevation AoA parameter vectors are

2
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The corresponding terms for the AoD at the BS can be obtained
by replacing r with t in (15) and (18). In addition to replacing
A With Ay, the term related to the elevation Aol defined
as K[ ™ can be obtained by replacing 0[ u] with 9[ ™ The
correspondmg terms related to the AoR can be obtamed from
the terms related to the Aol by replacing r with t. Other terms
relating to Aol and AoR at the RISs are él[:?] £ I‘[m]aR n,
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The angle-related expressions in (13) - (19) are related to
the elevation angles, similar expressions for azimuth angles
are obtained by replacing k and K with p and P, re-
spectively. These expressions are more thoroughly expressed
in [1]. Also, the scalar part of the RIS reflecting coeffi-
cient which is used for multipath separation is arranged as

~lml = Mm]ﬁgm],...,ygm]]T, and can be arranged in a
matrix as D, = [y, 412 ... ~4[Mi]]. This matrix, henceforth



referred to as a sequence matrix provides control in both
spatial and temporal domains through the fast-varying part
of reflecting coefficients, %m] of the RISs. The signal factor
representing the effect of the transmitted bearns is s?emﬁed

by [Rul,, £ S50 (2mn (NE) ol
where k € {0,1,2}.

Remark 1. In general, we notice from the structure of (13)
that all submatrices of the FIM in (12) can be written simi-
larly, and have a general form of Jy,v, = R{(Rx factor) ®
(RIS gain)® (RIS correlation) ® (Tx factor)® (signal factor)}.
From this equation, we notice that the FIM decreases with
SNR and all other submatrices in (12) are presented in [I].
We notice that the submatrices can be decomposed into: i)
information provided by the receiver specified by some com-
bination of the terms {P, ., K, u, B, A}, ii) information
provided by the transmitter specified by some combination
of the terms {Py .y, K, F, A}, iii) information provided
by the RIS gain specified by some combination of the terms
{kl,kt71,kr71,pt71,pnl}, iv) the correlation across the RIS
specified by the product D,IY{D,Y, and v) the transmit signal
factor.

Assumption 1. The fast-varying coefficients of distinct RISs
are assumed to be orthogonal over the T' OFDM symbols such
that DYD., = Iy,

B. Relationship between Aol and AoR Under Assumption 1

Based on the angle relationships and the coordinate transla-
tions, we provide the relationship between the Aol and AoR
for an RIS deployed as a passive uniform rectangular array
(URA).

Lemma 1. The matrix specified by
V = [ v, Vs ]
B 005(9[ ])sm( [m]) sin(@t[l])cos((bt"l') (20)
N l COS(@ET )cos((bt’1 ) —sin(9£l])sm( Enf]) ]
is a full rank matrix. Hence,
[cos(@fﬁl])sin(gbk?]) cos(ﬁg?})sin(gék?]) }T and vy =

T
[ sin(@lﬁ”) cos(gi)yff]) — sin(&ﬁ?}) sin(d)%]) } can be ob-
tained as a linear combination of v, and vs.

the 2D vectors v3 =

Proof. See Appendix B. [

The following corollaries establish relationships between the
information provided by the FIMs of various channel parame-
ters. The first corollary is a vital step in showing dependence
among some of the FIMs of the geometric channel parameters.
More specifically , Corollary 1 follows from Lemma 1 and it is
used to show Corollary 2. Corollary 2 shows that the columns
in (12) which correspond to the Aols can be obtained as a
linear combination of the columns in (12) that corresponds to
the AoR.

Corollary 1. For a RIS deployed as a passive URA with a
normal in the z-direction, there exist scalars o, oo, s, and
ay such that!

K/ + aoP = K

r,l

asK" + au Pl = P,
21

Proof. See Appendix C. O

Corollary 2 shows that the information provided by the
Aol can be obtained as linear combination of the information
provided by the AoR.

Corollary 2. Under Assumption 1 and with Corollary 1, there
exist scalars o1, o, a3, and oy such that

alJV19c,1 + a2JV1¢t,l = JV19r,17 (22)
O‘3‘]V1¢9c,1 + a4JV1¢t,l = JV1¢r,17

where vi € 1.

Proof. See Appendix D. O

Theorem 1. From the purely information-theoretic point of
view, the presence of both the Aols and AoRs in a parameter
vector, m, overparameterizes the model.

Proof. The proof follows from Corollary 2, by observing that
the FIM of the channel parameters n specified by J B is rank
deficient and non-invertible due to the elevation and azimuth
Aols. More specifically, if there are M; RISs, the resultant
FIM JE has a rank of atmost 11M; — 2Mj. O

C. Entries of the General FIM

To incorporate any prior knowledge about the unknown
channel parameters, the Bayesian FIM is also analyzed. Similar
to (12), the Bayesian FIM of the channel parameters 7 is
also an 11M; x 11M; matrix which can also be viewed as
several M7 x M, submatrices such that its entries are written
as Jy,v, = Ju,v, +J5 ., where vi,vo € 7. We assume
uninformative a priori information about the geometric channel
parameters 17;. However, a priori information is available
about the nuisance parameters (complex path gains). This a
priori information about the real and imaginary part of the
complex gains are independent. Now, due to the nature of the
a priori informatign, the block entrjes in the Bayesi~an FIM
can be written as Jy,v, = Jvives Jvavy = Jvave, Jvavs =
Jvgvs —|—J53v3, where v, vy € 1)1, V3, V4 € 19, and vz #£ vy.

D. Structure of General EFIM

In this section, we analyze the structure of the Bayesian
EFIM under Assumption 1.

Lemma 2. Except the information loss terms related to the
cross covariance between the receive/transmit angles of el-
evation and azimuth, all other off-diagonal information loss
terms related to the ToA, AoAs, and AoDs in the Bayesian

lP[ ™l is related to the azimuth AoR defined similarly to the definition

related to the elevation AoR in (16). P ] is related to the azimuth Aol
defined similarly to the definition related to the elevation Aol in (17).



EFIM matrix have a structure of Bayesian FIM of Br x FIM
of Brx FIM of parameters of interest. More specifically,

Jnu

-1
viva = JﬁRﬁRJﬁRﬁRJVIVQ’ (23)

T 4T T 4T T 17T
where vi € [0r7u,¢r7u,9t7u, b T ,} , V2 €M1, V1 # Va.

Also If vi = O,y then vo # ¢r . Again for the transmit
angles, if vi = O, then vy # ¢y .

Proof. See Appendix F. [
Lemma 3. The information loss terms related to the Aol

and AoR (both elevation and azimuth) in the Bayesian EFIM
matrix have a structure of Bayesian FIM of Br x FIM of Br X

FIM of parameters of interest. More specifically, J3",, =
Toa I g dvives where vi € |67, 07,08, ¢T,, | and
Vo €M1

Proof. See Appendix F. O

Lemma 4. When the a priori information of the nuisance
parameters is uninformative, the Bayesian EFIM related to the
RIS geometric angle parameters is an all zero matrix. More
specifically,

Jgt,let,l = J?ﬁt,lif%,l = Jgr,ler,l = J?ﬁmd)r,l =0.

This indicates that with no prior information about the complex
channel path gains, the Aol and AoR can not be estimated.

Proof. When the a priori information of the nuisance param-
eters is uninfor.mative thet,n. JBrBr = J g, 8, - Substituting this
and Lemma 3 into Definition 2 completes the proof. O

Theorem 2. In the far-field, it is not feasible to localize a
single antenna UE using only the signals received at the UE
through reflections from a single RIS when the RIS reflection
coefficients remain constant across all OFDM symbols.

Proof. The proof follows as Lemma 4 indicates that the
AoR can not be estimated in the far-field without a priori
information about the complex path gains. Hence, because a
priori information about the complex path gain is nontrivial
to obtain and a single antenna receiver can not estimate the
AoAs, only a single ToA measurement without any angle
information is available. Localization is not feasible under
these conditions. O

IV. NUMERICAL RESULTS

The CRLB of the AoR and AoA are shown in Fig. 2 as
a function of the number of receive antennas. The CRLB is
obtained by first inverting the FIM in (12), and subsequently
taking the square root of appropriate diagonals. This figure
indicates that the AoA can be more accurately estimated than
the AoR. This difference in accuracy is not surprising as the
lack of processing at the RIS hinders the AoR estimation, while
the antenna elements at the UE enable AoA estimation.
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Figure 2: CRLB (AoR and AoA) vs Ny with perfect knowl-
edge of 3 and 1/02 = 20 dB.

V. CONCLUSION

This paper has investigated the FIM for the downlink of
a RIS-assisted system. We analytically showed that the FIM
is decomposable into i) information provided by the receiver,
i) information provided by the transmitter, and iii) information
provided by the RIS components. We also derived the Bayesian
FIM. Through the Bayesian EFIM, we analytically showed that
the information loss in estimating the geometric angle channel
parameters due to the complex path gains takes a specific
structure. This structure showed that the absence of prior
information about the complex path gains makes it impossible
to estimate the geometric angle channel parameters. Hence,
due to the lack of information about the AoRs, localization of
a single antenna UE through the signals received at the UE
from reflections by a single RIS is not feasible in the far-field
when the RIS reflection coefficients remain constant across all
OFDM symbols.

APPENDIX
A. RIS Related Angle Definitions and Relationships

To analyze both the angle relationships and derive the
FIM for positioning, we define the rotation matrix Q (6, ¢o)
given by Q (0, ¢0) = Q- (do) Qo (6p), where Q: (¢o)
and Q_, (fp) define the counter-clockwise rotation around
the z-axis and the clockwise rotation around the z-axis re-
spectively. We define gl = (p[”™! — pgg), and specify the

AoD at the BS as 9&? = cos! (ng}/Hg[m]H), L”fl] =
tan~—! gz[,m] /g™, Next, we translate the m!" RIS to the
origin, and the new coordinates of the BS can be written
as cl™ = (pps — pi™), &l = Q—l@yi¢ygcmy
With respect to these new coordinates, we can write Gﬁ] =

cos™! C[Zm]/Hé[m]H , 1[:?] = tan~! c%m]/cgn] . Subse-

quently, the translated coordinates allow the following defi-
nition vi™l = (p — pl™), vl = Q! (Hém],q%m] ylml

and we can write HET] = cos™! (Uém]/H‘N’[m]”)v Enll] =

tan—1 (fu?[jm] /vg”]). Similarly, we obtain a new set of



coordinates by translating the UE to the origin, and
we write the following definitions el™ = —(p —
p™), e&m = Q7' (6,,¢,)el™. Hence, we can write
Hkﬁ] =cos~! (eém]/Hé[m]Hg ¢£7:§] = tan~! (e%m]/e;m]).

B. Proof of Lemma 1

By simple geometry and based on the angle definitions, we
can write (20) as

vLm] v£7rL] ’U,[;m]

) [Ivi=I|
(m) | - (24)

—V~

(H\"r[ml\l
V= tm], [m]

Sim [m]
(ot 2+ )

Based on the property that a rank deficient matrix has a
zero determinant, we obtain —(vz[}m])2 = ("2 as the only
condition for rank deficiency. Because this rank deficiency
condition is not possible, the lemma is proved. The second
part of the Lemma is obvious as v3 and v, are 2D vectors
which can be obtained from a linear combination of r; and
Vy.

C. Proof of Corollary 1

The diagonal matrices in (21) have a size of (N} Nim ]) and each
element in these matrices can be decomposed 1nto components
in the x and y directions. The angle component of KET] in the
x and y direction can be shown to correspond with the elements
of v1. More spemﬁcally K£ 1] =7Y1m cos(ﬁt[t?]) sin(qu]) +
X1 m cos(@t’1 ) cos(<bt’1 ). Similarly, the angle components of
PJET] and K[m] can be shown to equal v, and v, respectively.
Hence, K][r"ll} is a linear combination of K[ ™ and P[ ]. The
second equation in this corollary can be proved s1mllarly

D. Proof of Corollary 2

vt

First, note that the FIMs in the above corollary
are diagonal matrices. Due to the properties relating
Hadamard products with diagonal matrices [12], the left-

hand side of the above Corollary can be decomposed as
Z{V o o () oo (kpl) © (DD,

where V,, is a dummy diagonal matrix representing the
common terms between Jy,q,, and Jy, 4, ,. Analyzing the
diagonal elements of the matrices in the square brackets gives

%%{ULT] oal) [kl + ;P[] a1 o (DID,) },

’ 25)
where vl[,TIn] represents the common terms on the m" diagonal.
From Corollary 1, the terms in the square brackets equals

KKTIL]’ hence 2 §R [m] H[m]K[ m] < [m] ® (DHD )} nd
we can write F?R V,, ® ngkr’l) ® (DEDW)} =Jve,,-

The second part of the corollary can be proved similarly.
E. Effect of Assumption 1 on Complex Path Gains

The submatrix J, , and its corresponding entries
{JIBrBr,Jpip } are diagonal matrices. With Assumption 1,
the various RIS paths can be orthogonalized and we can write

‘]ﬁRﬁI = JﬁIBI - % {(AEuAr,u) ©
(AR FFIA, ) @ Roj
E Proof of Lemma 2 and Lemma 3
To prove Lemmas 2 and 3, we focus on the cross covariance
between the elevation AoAs and the azimuth AoAs. The in-
formation loss due to the nuisance parameters which concerns
the cross covariance between the receive elevation angle and
the elevation angle of reflection can be written as

(kik") © (DID,) ©

_ J—1 T J—1 T
Jg‘rl,ugt,l - Je'v“'BRJﬁR,@RJOt,IBR + Jel‘quIJﬁIﬁIJet’I'BI (26)

_ 31 T T
- JﬁR,BR [JGTwUBRJGt,lﬁR + JgrwllﬁIJet,lﬁI:| )

which is a consequence of Appendix E. Now, applying basic
complex analysis, S(v1)S(v2) + R(v1)R(re) = R(vdl) =
R(vv,), we have

Jer uet 1 jgfliﬂR |:(Jer,u,81 + jJer,uﬁR)(Jet,lﬂI + jJGtYIBR)H
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. . . . nu
Wlth appropriate manipulations, we have Or .00

NP | J . Derivations of the expressions for other

ﬁRBR BrBR" 0:r,ub:,1" ) ]
terms describing the information losses due to the nuisance
parameters which are presented in Lemmas 2 and 3, can be
obtained similarly.
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