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In some applications, it is reasonable to assume that geodesics (rays) have a consistent orientation
so that a time-harmonic elastic wave equation may be viewed as an evolution equation in one of
the spatial directions. With such applications in mind, motivated by our recent work [Hadamard-
Babich ansatz for point-source elastic wave equations in variable media at high frequencies, Mul-
tiscale Model Simul. 19/1 (2021) 46–86], we propose a new truncated Hadamard-Babich ansatz
based globally valid asymptotic method, dubbed the fast Huygens sweeping method, for compu-
ting Green’s functions of frequency-domain point-source elastic wave equations in inhomogeneous
media in the high-frequency asymptotic regime and in the presence of caustics. The first novelty
of the fast Huygens sweeping method is that the Huygens-Kirchhoff secondary-source principle
is used to integrate many locally valid asymptotic solutions to yield a globally valid asymptotic
solution so that caustics can be treated automatically. This yields uniformly accurate solutions
both near the source and away from it. The second novelty is that a butterfly algorithm is adapted
to accelerate matrix-vector products induced by the Huygens-Kirchhoff integral. The new method
enjoys the following desired features: (1) it treats caustics automatically; (2) precomputed asymp-
totic ingredients can be used to construct Green’s functions of elastic wave equations for many
different point sources and for arbitrary frequencies; (3) given a specified number of points per
wavelength, it constructs Green’s functions in nearly optimal complexity O(N logN) in terms of
the total number of mesh points N , where the prefactor of the complexity depends only on the
specified accuracy and is independent of the frequency parameter. Three-dimensional numerical
examples are presented to demonstrate the performance and accuracy of the new method.
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1. Introduction

We consider the following time-harmonic frequency-domain point-source elastic wave
equation,

ρω2G+ (λ+ µ)∇(∇ ·G) + µ∇2G+∇λ(∇ ·G)

+∇µ× (∇×G)) + 2(∇µ · ∇)G = −Iδ(r − r0), (1)

where the Kupradze-Sommerfeld radiation condition [16] is imposed at infinity,
G = G(r; r0) (with ω-dependence suppressed) is the so-called Green’s tensor at
the source r0, I is the 3 × 3 identity dyad, ω is the frequency parameter, ρ(r) is
the mass density, λ(r) and µ(r) are the so-called Lamé’s stiffness parameters, ∇
is the gradient operator, and r = (x1, x2, x3)

T . Since we are in the high-frequency
regime, we assume that ρ(r), λ(r) and µ(r) are infinitely smooth and approach
constants at infinity. When the frequency parameter ω is large, the solution of the
elastic wave equation is highly oscillatory so that it is costly for direct methods such
as finite-difference or finite-element methods to resolve these oscillations due to the
so-called pollution or dispersion errors [4]. Therefore, alternative methods, such as
geometrical optics (GO) based asymptotic methods, are sought to deal with such
difficulties. In this paper, motivated by our recent work [34], we develop a new
Hadamard-Babich (H-B) ansatz based globally valid asymptotic method, which we
call the fast Huygens sweeping method, for the time-harmonic elastic wave equation
in an inhomogeneous medium in the high frequency regime and in the presence of
caustics.
Our new method consists of three critical components: a truncated H-B ansatz
for computing locally valid asymptotic solutions, the Huygens-Kirchhoff secondary-
source principle for integrating many local solutions into a global solution, and a
butterfly algorithm for accelerating matrix-vector multiplication. We now motivate
these three crucial elements.

Why we use the Hadamard-Babich ansatz
The following GO ansatz is usually used to expand the solution of the elastic wave
equation (1),

G(r; r0) =
∞
∑

l=0

Āl(r; r0)

ωl
eiωτ(r;r0), (2)

where the unknowns Āl and τ are independent of ω. The governing eikonal equations
for τ and the transport equations for Āl are derived in [15], but the correspond-
ing initial conditions for Āl are not specified since Āl are singular at the source.
Moreover, since the entire elastic wave in an isotropic medium as we consider here is
composed of two wave modes, the compressional (P) wave and the shear (S) wave,
and the S-wave mode is of some particular singularity at the point source [34], the
common GO wisdom of keeping only the leading order term is not sufficient in terms
of capturing the correct source singularity of the Green’s tensor, which in turn will
affect the overall accuracy of the asymptotic solution. Such an initialization diffi-
culty at the point source also transpires in Helmholtz [2, 38] and Maxwell’s equations
[3, 22, 24, 32]. In a recent work [9], the Babich ansatz has been successfully used to
remove the source singularity in a finite element method for the Helmholtz equation.
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Consequently, in [34] we have developed the novel H-B ansatz for elastic wave equa-
tions to exactly resolve such an initialization difficulty at the source point. To achieve
this purpose, we first apply the Hadamard’s expansion in terms of the Gelfand-Shilov
function [11] to the time-dependent elastic wave equation satisfied by the second-
order time derivative of the Green’s tensor. Since we can write out the explicit
form of the second-order time derivative of the Green’s tensor in a homogeneous
elastic medium in terms of the Gelfand-Shilov function, we can derive the initial
conditions of asymptotic ingredients by demanding that the generic Green’s tensor
match with the Green’s tensor in a homogeneous medium at the source in an appro-
priate sense [34]. Once we have the time-domain Hadamard’s ansatz available with
appropriate initial conditions for asymptotic ingredients in place, we may take the
Fourier transform in time of the time-domain ansatz to obtain the corresponding
frequency-domain ansatz, yielding the desired Hadamard-Babich ansatz. Since this
novel ansatz enables us to compute uniformly accurate asymptotic ingredients at
the source, in [34] we have shown numerically that the new expansion indeed yields
a uniformly accurate solution in a region containing the point source but no other
caustics.

Why we use the Huygens principle
When we apply the GO ansatz (2) or the H-B ansatz to solve the elastic wave equa-
tion (1), we have implicitly assumed that the phase function τ is a single-valued,
well-defined function in the sense that there is a unique ray connecting any obser-
vation point to the given source point. In fact, such an observation holds in general
when applying the GO or H-B ansatz to solve other point-source wave equations.
However, for waves propagating in an isotropic, generic inhomogeneous medium,
there is a high probability that caustics may occur [42] so that some observation
points may be connected to the given source point via multiple rays, making the
phase function τ multivalued ! Moreover, since the wavefield in the GO or H-B
ansatz depends nonlinearly upon the phase function τ , we cannot simply add up
multi-branched wavefields induced by the multivalued phase function. So what to
do now? The Huygens principle comes to our rescue!
According to [1, 40], in an isotropic medium there always exists a small neighbor-
hood of the source in which any observation point is connected to the source via
a unique ray, so that the phase function τ is single-valued in this neighborhood;
therefore, the GO or H-B ansatz is valid in this local neighborhood to yield a locally
valid asymptotic solution. To go beyond caustics so as to account for multivalued
phases implicitly, we use the Huygens secondary-source principle. Mathematically,
to construct globally valid asymptotic solutions, we use the Huygens-Kirchhoff in-
tegral to integrate many locally valid asymptotic solutions in terms of waves rather
than phases so that caustics are treated implicitly.
We sketch the methodology of using the Huygens secondary-source principle. To
start with, we assume that geodesics (rays) have a consistent orientation so that
elastic wave equations can be viewed as an evolution equation in one of the spatial
directions. Hence, along this consistent orientation, we partition the computational
domain into subdomains or layers satisfying certain properties and then develop a
layer-by-layer sweeping solver to construct a globally valid primary-source Green’s
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function by using the Huygens secondary-source principle. Specifically, we first
choose as the first layer a neighborhood of the primary point source where the
Green’s function is locally valid. This can be achieved by locating a region where
both the S- and P-wave phase functions are single-valued. Then we choose the
boundary of this layer as the secondary-source surface and identify the second layer
as the region where the asymptotic Green’s functions excited by secondary sources
are locally valid. Afterwards, the primary-source Green’s function in the second
layer can be computed by integrating those locally valid secondary-source Green’s
functions via the Huygens-Kirchhoff integral on the secondary-source surface. By
repeating this process, we can sweep through the entire domain to construct the
globally valid primary-source Green’s function so that caustics are treated automa-
tically and implicitly.
The question now is how to implement this sweeping strategy efficiently. To tackle
this challenge, there are two major obstacles. The first obstacle is how to construct
many locally valid secondary-source Green’s functions rapidly, which boils down
to how to rapidly construct corresponding asymptotic ingredients, such as phases
and H-B expansion coefficients. To achieve this task, we propose to first compute
phases and H-B expansion coefficients at each secondary source to higher order
accuracy and then compress these functions or their relatives into low-rank separated
representations in terms of tensor-product multivariate Chebyshev polynomials.
Computationally, since the information of each computed asymptotic ingredient is
encoded into a small number of Chebyshev coefficients, such compression leads to
significant storage reduction and efficient memory access.

Why we use the butterfly algorithm
The second obstacle is how to carry out efficiently dense matrix-vector multiplica-
tions induced by the discretized Huygens-Kirchhoff integral. To illustrate the point,
we use the 3-D scalar Helmholtz equation as an example [23]. Let n be the num-
ber of mesh points along each coordinate direction of the computational domain, so
that the total number of mesh points is N = n3 in the 3-D case. Because we are
interested in the globally valid asymptotic solution everywhere in the entire compu-
tational domain, the solution at observation points (receivers or nodes) corresponds
to the result of some matrix-vector products. In the 3-D case, straightforward im-
plementation of the above matrix-vector products will lead to O(N

2
3 ) operations

for each receiver point, and the total computation cost will be O(N
5
3 ) as we need

to carry out such matrix-vector products for roughly N points of receivers. Such
computational cost is far too high to make our strategy practical.
Therefore, to tackle this difficulty, we adapt to our application the multilevel matrix
decomposition based butterfly algorithm [7, 23, 26, 32, 33, 43]. The resulting but-
terfly algorithm allows us to carry out the required matrix-vector products with the
total computational cost of O(N logN) complexity, where the prefactor depends
only on the specified accuracy and is independent of the frequency parameter ω.
Such low-rank rapid matrix-vector products are responsible for the adjective “fast”
in the name “fast Huygens sweeping method” of our method.
Although the current work is motivated by [34], we emphasize that our new work
presented in this article is different from [34] in several aspects: first, [34] only pro-
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vides a locally valid asymptotic solution for the point-source elastic wave equation,
while our current work constructs a globally valid asymptotic solution for the point-
source elastic wave equation; second, the current work is based on [34] in the sense
that it integrates many locally valid solution provided in [34] to obtain a glob-
ally valid asymptotic solution for the point-source problem by using the Huygens
secondary-source principle (namely, the Huygens-Kirchhoff integral for elastic wave
equations); third, our current work implements the Huygens-Kirchhoff numerical
integration process rapidly by using the fast butterfly algorithm, and it is the first
time that the fast butterfly algorithm is applied to solve the three-dimensional elastic
wave equation to obtain a globally valid asymptotic solution.
Our fast Huygens sweeping method also has two unique merits which may be at-
tributed to the precomputed tables of the asymptotic ingredients. The first merit is
that because the asymptotic ingredients such as phase and H-B coefficients are inde-
pendent of the frequency parameter, those tables can be used to construct asymp-
totic Green’s functions at a given primary source for arbitrary frequencies. The
second merit is that those tables can be used to construct asymptotic Green’s func-
tions at many other primary sources for arbitrary frequencies as well. These two
merits are much desired in many applications, such as medical imaging and inverse
problems.

1.1. Layout
The rest of the paper is organized as follows. In Section 2, we introduce the trun-
cated H-B ansatz, a novel formulation to construct locally valid solutions of (1).
In Section 3, we present details of computing asymptotic ingredients with desired
order of accuracy. In Section 4, we present our fast Huygens sweeping method for
constructing globally valid asymptotic Green’s tensors as well as implementation
details and complexity analysis. In Section 5, we show several numerical examples
to illustrate the performance, effectiveness and accuracy of our method.

2. Hadamard-Babich ansatz for elastic waves
We are interested in the Green’s tensor G(r; r0) for equation (1) at the primary
source r0 in the high-frequency regime. In [34], by applying the Hadamard’s ex-
pansion in the basis of the Gelfand-Shilov function to the time-domain elastic wave
equation, we have obtained a novel asymptotic series based on spherical Hankel
functions, dubbed the Hadamard-Babich ansatz, to expand the highly oscillatory
Green’s tensor for the frequency-domain elastic wave equation. This new ansatz
yields uniform asymptotic solutions as the frequency parameter ω → ∞ in the
region of space containing the point source but no other caustics.
We briefly summarize this novel construction. We apply the Hadamard’s method to
develop an asymptotic expansion to form the fundamental solution, starting from
the following time-domain point-source elastic wave equation,

ρG̈− (λ+ µ)∇(∇ ·G)− µ∇2G−∇λ(∇ ·G)

−∇µ× (∇×G))− 2(∇µ · ∇)G = Iδ(r − r0)δ(t), (3)

where G = G(r, t; r0) indicating the dependence on time t.
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According to [34], when parameters ρ, µ, and λ are constant, the second time-
derivatives of the Green’s tensors, G̈(r, t; r0), take the following explicit forms for
the two different wave modes,

G̈S
hom =

γS3

ρπ
[2γS2

r2(I − r̃r̃T )f
(−3)
+ (t2 − γS2

r2)− 2If
(−2)
+ (t2 − γS2

r2)], (4)

and G̈P
hom =

γP 3

ρπ

[

2γP 3
r2r̃r̃Tf

(−3)
+ (t2 − γP 2

r2)− If
(−2)
+ (t2 − γP 2

r2)
]

. (5)

Here r = |r−r0|; the superscripts S and P refer to the S- and P-wave, respectively,
and γS =

√

ρ
µ

and γP =
√

ρ
λ+2µ

are the S and P wave slowness (where these two
slowness definitions are also valid for the non-constant case), respectively, as will
become apparent later; the vector r̃ = r−r0

|r−r0| is the unit tangent vector to the S- or
P-ray as the case may be, and the S- and P-rays coincide in this special case of a
uniform medium; the Gelfand-Shilov generalized function f

(k)
+ [11] is defined to be

f
(k)
+ (x) =

xk
+

k!
with x+ =

{

x for x ≥ 0,
0 otherwise (6)

for k > −1; for other values of k, f
(k)
+ is defined by analytic continuation. Also,

since
f
(k)
+

′
= f

(k−1)
+ , (7)

f
(k)
+ can be defined for negative integer values of k by successive differentiation

in the sense of distribution. Since f
(0)
+ (x) = H(x), the Heaviside unit function,

f
(−k−1)
+ (x) = δ(k)(x), the k-th derivative of the δ-function for k = 0, 1, 2, · · · .

When the elastic parameters vary spatially in r, the exact formulas of the Green’s
tensors are not available. However, the formulas (4) and (5) for the constant case
motivate us to seek the solution of equation (3) in the following form of asymptotic
series,

G̈(r, t; r0) =
∞
∑

l=0

Al(r; r0)f
(−3+l)
+ (t2 − T (r; r0)), (8)

where T (r; r0) = τ 2(r; r0), and τ(r; r0) is the traveltime from the source r0 to r.
We shall define Al(r; r0) ≡ 0 for l < 0.
Plugging the asymptotic expansion (8) into the equation obtained from taking the
double time-derivative of equation (3), we obtain two cases [34], and we call them
Case I and Case II.
Case I, the S wave:

∇T ·A0
j = 0, and 4ρT − µ|∇T |2 = 0, (9)

or Case II, the P wave:

A0
j ∥ ∇T , and 4ρT − (λ+ 2µ)|∇T |2 = 0, (10)

where A0
j is the jth column of A0.
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In [34], we have derived the governing equations of traveltimes (a.k.a. phase func-
tions) and amplitudes (a.k.a H-B coefficients) for both S- and P-waves, and we will
show these equations for the truncated H-B ansatz later on.
Since Al may not be smooth at the source for an inhomogeneous medium, we in-
troduce Ãl = AlT l. Taking the Fourier transform of (8) in time, we can obtain
the Green’s function G for the frequency-domain point-source elastic wave equation
known as the H-B ansatz,

G(r; r0) =
∞
∑

l=0

Ãl(r; r0)

−ω2T l(r; r0)
f−3+l+ 1

2
(ω, τ(r; r0)). (11)

Here we have from [24]

fν(ω, τ) :=

∫ ∞

τ

eiωtf
(ν− 1

2
)

+ (t2 − τ 2(r; r0))dt =
1

2
i
√
π

(

2τ

ω

)ν

eiωνH(1)
ν (ωτ), (12)

where H
(1)
ν denotes the Hankel function of the first kind of order ν.

The governing equations and initial conditions for amplitudes Ãl for both S- and
P-waves are also derived in [34], and we will show these equations for the truncated
H-B ansatz later on.
In order to distinguish the two wave modes, S-wave and P-wave, we introduce the
following wave-mode specific Green’s tensors,

GS(r; r0) =
∞
∑

l=0

ÃSl(r; r0)

−ω2τS2l(r; r0)
f−3+l+ 1

2
(ω, τS(r; r0)), (13)

where the superscript S refers to the S-wave, and

GP (r; r0) =
∞
∑

l=0

ÃPl(r; r0)

−ω2τP 2l(r; r0)
f−3+l+ 1

2
(ω, τP (r; r0)), (14)

where the superscript P refers to the P wave. Since we are in the high-frequency
regime and are dealing with a smooth elastic medium, we have

G(r; r0) = GS(r; r0) +GP (r; r0). (15)

3. Numerics for the truncated H-B ansatz

3.1. Truncating the ansatz for the S-wave

Since, numerically, it is impossible to construct ÃSl for all l ≥ 0, we need to trun-
cate the ansatz in implementation. In order to at least reproduce the fundamental
solution (4) in a homogeneous medium, we truncate the formula (13) to keep only
two terms,

GS(r; r0) =
ÃS0(r; r0)

−ω2
f−3+ 1

2
(ω, τS(r; r0)) +

ÃS1(r; r0)

−ω2T (r; r0)
f−2+ 1

2
(ω, τS(r; r0)), (16)

where the superscript S refers to the S-wave and T = τS
2.
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In [34] we have verified that keeping the first two terms is sufficient to capture the
S-wave source singularity. Here we summarize the governing equations for τS, ÃS0

and ÃS1 for the S-wave as the following [34].
We have the eikonal equation for τS,

|∇τS| = γS (17)

with the initial condition τS(r0; r0) = 0, where γS is the S-wave slowness function,
γS =

√

ρ
µ
, and T = τS

2.

We have the transport equation for the leading H-B coefficient ÃS0,

(∇T · ∇)ÃS0 +
1

2µ
[∇ · (µ∇T )− 14ρ]ÃS0 +

µ

2ρ
∇T

[

∇
(

ρ

µ

)

· ÃS0

]

= 0, (18)

with the initial condition

ÃS0 =
T 5

2

ρ0πr3
(I − 3r̃r̃T ) +

γS
0
2T 3

2

ρ0πr
(I + r̃r̃T ) +O(T 3

2 ), (19)

where γS
0 = γS(r0) and ρ0 = ρ(r0).

We have the transport equation for the second H-B coefficient ÃS1,

(∇T · ∇)ÃS1 +
1

2µ
[∇ · (µ∇T )− 18ρ]ÃS1 +

µ

2ρ
∇T

[

∇
(

ρ

µ

)

· ÃS1

]

= R̃0,

where R̃0 = −∇T ã0

2
+

µ∇T [(∇T · ∇)ã0]

4ρ
− ∇T b̃0

8ρ
(20)

−T ∇λã0

2µ
− (λ+ µ)T ∇ã0

2µ
+

T B̃0

2µ
. (21)

Here B̃0, the row vector ã0, and the row vector b̃0 are given by

B̃0 = (λ+ µ)∇(∇ · ÃS0) + µ∇2ÃS0 +∇λ(∇ · ÃS0)

+∇µ× (∇× ÃS0) + 2(∇µ · ∇)ÃS0, (22)

ã0 = ∇ · ÃS0 +
1

λ+ µ
∇µ · ÃS0 +

2µ

(λ+ µ)|∇T |2∇T [(∇T · ∇)ÃS0], (23)

b̃0 = 10ρã0 − (λ+ µ)(∇T · ∇)ã0 − µ∇2T ã0

− (∇T · ∇λ)ã0 − (∇T · ∇µ)ã0 +∇T · B̃0. (24)

And the initial condition for ÃS1 is

ÃS1 =− 3

2
ÃS0 +

T 5
2

ρ0πr3
(I − 3r̃r̃T ) +O(T 2). (25)
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Because these governing equations are weakly coupled to each other, we need to
design appropriate schemes to solve these equations up to suitable orders of accu-
racy. To obtain a first-order accurate approximation of ÃS1 by solving the cor-
responding transport equation, we need a third-order accurate approximation of
ÃS0, since equation (3.1) involves the second-order derivative of ÃS0 in its right-
hand side. Moreover, a third-order accurate ÃS0 requires a fifth-order accurate τS

due to the appearance of ∆T in (18). For the eikonal equation (17), we can employ
Lax-Friedrichs (LxF) high-order weighted essentially non-oscillatory (WENO) based
schemes developed in [12, 13, 14, 20, 21, 30, 38, 39, 45, 46]. Since the governing
equations for ÃS0 and ÃS1 are linear, we can also apply LxF-WENO based schemes
directly to the linear system. But since the S-wave is analogous to the electromag-
netic wave satisfying the Maxwell’s equations, we employ the schemes developed in
[22] to decouple the components of ÃS0. Namely, instead of computing the nine
components of ÃS0 directly, we decouple the governing transport equation so that
we are able to compute ÃS0 more efficiently.
We mention in passing that one essential difficulty in solving point-source eikonal
and transport equations to high-order accuracy is how to properly treat the upwind
singularity of the eikonal equation at the point source. To do that, one may use an
adaptive mesh refinement method at the source [35] or use either multiplicative or
additive factorization of singularity at the source [10, 25, 27, 31, 44].

3.1.1. Computing take-off directions

In our computational algorithm, we frequently need to use the so-called take-off
direction, and we derive the related transport equation for computing this quantity.
Suppose that T = τS

2 is available. According to the method of characteristics, a
geodesic ray tracing out from r0 to r is governed by

t(1)(r; r0) := ṙ =
dr

ds
=

∇τS(r(s))

γS
, (26)

where the s parameter is the arc length parameter and the ˙ indicates the derivative
in s. The unit take-off vector at a given spatial position r is defined as

t(0)(r; r0) := lim
r′→r0

t(1)(r′; r0), (27)

where r′ approaches r0 along the geodesic ray from r0 to r. It is clear that t(0) is
invariant along each geodesic ray so that it is governed by the following advection
equation,

ṫ(0)(r; r0) =
∇τS · ∇

γS
t(0) = 0, (28)

with the initial condition lim
r→r0

(t(0)(r; r0)− r̃) = 0, (29)

where r̃ = r−r0
|r−r0| .
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3.1.2. Computing ÃS0

Following [22], we first write ÃS0 = AP (1), where A is a scalar amplitude function
and P (1) = (P

(1)
1 ,P

(1)
2 ,P

(1)
3 ) is the 3 by 3 polarization dyad, and we then insert this

into equation (18) to obtain

(∇T · ∇A)P (1) + A(∇T · ∇)P (1) + A
1

2µ
[∇ · (µ∇T )− 14ρ]P (1)

+
µ

2ρ
A∇T

[

∇
(

ρ

µ

)

· P (1)

]

= 0. (30)

By property of the S-wave, we know that ∇T is orthogonal to the two-dimensional
subspace spanned by the columns of P (1), and we further assume that the norm of
the polarization vector P

(1)
j , 1 ≤ j ≤ 3, is invariant along a ray r(s); consequently,

d
ds
P

(1)
j · P (1)

j = 0 so that we have

P
(1)
j · (∇T · ∇)P

(1)
j = 0, (31)

where we have used the property that d
ds

= ∇T ·∇ along a ray with s the arc length
parameter. Taking the dot product of equation (30) with P

(1)
j in terms of individual

columns, we can obtain

∇T · ∇A+
1

2µ
[∇ · (µ∇T )− 14ρ]A = 0. (32)

Inserting equation (32) into equation (30), we get the following equation for P
(1)
j :

(∇T · ∇)P
(1)
j +

µ

2ρ
∇T

[

∇
(

ρ

µ

)

· P (1)
j

]

= 0, (33)

so that we see that d
ds
P

(1)
j is parallel to ∇T . The above decomposition is analogous

to that in [22] which introduces a variable v0 satisfying that ÃS0 = v0T P (1).
Since, in a small neighborhood of the primary source r0, γS(r) and ρ(r) approxi-
mately equal γS

0 and ρ0, respectively, we expect that ÃS0 is consistent with

2γS
0
5|r − r0|2
ρ0π

(I − r̃r̃T )

in this neighborhood according to the S-wave Green’s tensor (4). Therefore, we
enforce the following initial conditions

lim
r→r0

(

A(r; r0)−
2γS

0
5|r − r0|2
ρ0π

)

= 0, (34)

lim
r→r0

(

P (1)(r; r0)− (I − r̃r̃T )
)

= 0, (35)

where the limit r → r0 should be understood in the sense that r approaches r0
along its ray r(s) as s → 0+.
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Now by writing A = v0T , we can derive the governing equation for v0,

∇T · ∇v0 +
1

2µ
[∇ · (µ∇T )− 6ρ]v0 = 0, (36)

with the initial condition v0(r; r0) =
2γS

0
3

ρ0π
. Following [22], the above transport

equation has the following solution along the unique ray connecting r and r0,

v0(τ
S) =

2γS
0
3

ρ0π
exp

(

−
∫ τS

0

∇ · (µ∇τ ′2)− 6ρ

4τ ′µγS2 dτ ′

)

. (37)

If we define P (0) =
(

I − t(0)t(0)
T
)

, then we can derive the following relations by
using equation (28),

Ṗ (0) = 0, (38)

t(0) · P (0) = 0, (39)
with the initial condition

P (0)(r; r0)− (I − r̃r̃T ) = O(r) as r → r0 (40)

due to equation (29).
We may use the method proposed in [22] to compute A and P (1) with desired
order of accuracy. In comparison with the method of applying the LxF WENO-
based schemes directly to the governing equations (18), the method in [22] is more
efficient in computing nine components of ÃS0, and we therefore adopt this method
in our implementation; we omit the related details here.

3.1.3. Computing ÃS1

We first notice that, in equation (3.1), the term ∇T (∇( ρ
µ
) · ÃS1) entangles with

ÃS1. Since we know that ÃS0
j , 1 ≤ j ≤ 3, are orthogonal to ∇T , we take the scalar

product of equation (3.1) columnwise with ÃS0
j so that we can obtain a decoupled

governing equation. Thus, we have

(∇T · ∇)gkj +
1

µ
[∇ · (µ∇T )− 16ρ]gkj (41)

= R̃0
k · ÃS0

j − µ

2ρ
T
(

∇
(

ρ

µ

)

· ÃS0
j

)(

∇ · ÃS0
k − µ3

ρ(λ+ µ)
∇
(

ρ

µ2

)

· ÃS0
k

)

,

where gkj = ÃS1
k · ÃS0

j , and we have used the relation [34]

∇T · ÃS1
k = T ∇ · ÃS0

k − µ3T
ρ(λ+ µ)

∇
(

ρ

µ2

)

· ÃS0
k . (42)

Since ÃS0 = O(r2) and ÃS1 = O(r2), gkj = O(r4) are very close to 0 near r0,
making numerical errors quite sensitive to the initialization and inducing numerical
instabilities.
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To remedy the situation, we define new variables

g̃kj := gkl/T . (43)

Hence we get the following governing equations

(∇T · ∇)g̃kj +
1

µ
[∇ · (µ∇T )− 12ρ]g̃kj

=
R̃0

k · ÃS0
j

T − µ

2ρ

(

∇
(

ρ

µ

)

· ÃS0
j

)(

∇ · ÃS0
k − µ3

ρ(λ+ µ)
∇
(

ρ

µ2

)

· ÃS0
k

)

, (44)

with the initial condition g̃kj = −4γS
0
8
r2

ρ20π
2
(I − r̃r̃T )kj. (45)

Then the LxF WENO-based schemes can be used to compute g̃kj. Once all g̃kj are
available, we can obtain the dyadic coefficients ÃS1 by using the method proposed
in [22] and details are omitted here.

3.2. Truncating the ansatz for the P-wave

We truncate formula (14) to keep only two terms,

GP (r; r0)

=
ÃP0(r; r0)

−ω2
f−3+ 1

2
(ω, τP (r; r0)) +

ÃP1(r; r0)

−ω2T (r; r0)
f−2+ 1

2
(ω, τP (r; r0)), (46)

where the superscript P refers to the P-wave and T = τP
2.

We have the following eikonal equation for the P-wave,

|∇τP | = γP , (47)

with the initial condition τP (r0; r0) = 0, where γP =
√

ρ
λ+2µ

.

For the P-wave we have the following relation for ÃP0 and ÃP1 [34],

ÃP0 = ∇T α̃0, (48)

ÃP1 = C̃0 +∇T α̃1, (49)

where α̃0 = (α̃0
1, α̃

0
2, α̃

0
3) and α̃1 = (α̃1

1, α̃
1
2, α̃

1
3) are row vectors, which are governed

by some transport equations. According to [34], the governing equations for α̃0 are

∇T · ∇α̃0 + [
1

2ρ
∇ · (ρ∇T )− 5ρ

λ+ 2µ
]α̃0 = 0, (50)

with the initial condition

α̃0 =
γP
0
3

ρ0π
(r − r0) +O(r2) as r → r0. (51)

Similarly, according to [34], the governing equations for α̃1 are

∇T · ∇α̃1 + [
1

2ρ
∇ · (ρ∇T )− 7ρ

λ+ 2µ
]α̃1 = c̃0, (52)
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with the initial condition α̃0 = O(r2) as r → r0, where c̃0 is

c̃0 =
1

8ρ
{10ρ− µ∇2T −∇T · ∇(λ+ µ)](∇T · C̃0)− (λ+ µ)∇T · ∇(∇T · C̃0)

− (λ+ µ)|∇T |2(∇ · C̃0)− 2µ∇T · [(∇T · ∇)C̃0]− (∇µ · C̃0)|∇T |2 + d̃0}. (53)

Here C̃0 and d̃0 are defined to be

C̃0 ≡ −∇α̃0 − (λ+ 2µ)2

ρ(λ+ µ)
∇
(

ρ

λ+ 2µ

)

α̃0 − ∇λα̃0

λ+ µ
, (54)

d̃0 ≡ (λ+ µ)∇T · ∇(∇ · ÃP0) + µ∇T · ∇2ÃP0 + (∇λ · ∇T )(∇ · ÃP0)

+∇T · [∇µ× (∇× ÃP0)] + 2∇T · [(∇µ · ∇)ÃP0]. (55)

To compute the formula (46) numerically, we need to solve the eikonal equation (47)
to obtain τP , and the governing equations (50) and (52) to obtain ÃP0 and ÃP1,
respectively. To obtain a first-order accurate GP , we need a fifth-order accurate τP ,
a third-order accurate α̃0, and a first-order accurate α̃1. For the eikonal equation
(47), we can employ fifth-order LxF WENO-based schemes developed in [38] to
compute τP . Since the governing equations (50) and (52) are decoupled, we can
also apply high-order schemes in [38] to compute α̃0 and α̃1 with desired oder of
accuracy.

4. Huygens principle based globally valid Green’s functions

As motivated in the Introduction and verified in [34], the truncated H-B ansatz
provides an approximation to the Green’s tensor if no caustic occurs in the region
of space containing the point source, and the resulting Green’s tensor is locally
valid and does not contain the interference effect due to multivaluedness of phase
functions. As motivated in the introduction, to get back such interference effects, we
will use the Huygens principle to integrate many locally valid H-B Green’s tensors
so that we can construct a globally valid Green’s tensor in a coherent way, and the
Huygens-Kirchhoff formula for elastic wave fields is exactly the vehicle that we need.
We mention in passing that in the setting of time-dependent Schrodinger or wave
equations, the Huygens principle has been used implicitly to reinitialize Gaussian
beam propagation in [18, 36, 37] and explicitly to restart wave propagation in [17, 19].

4.1. Huygens-Kirchhoff formula for elastic wave fields

Assuming that the wave field u(r; r0) due to the primary source r0 is known for
r ∈ Ω in a domain Ω enclosing the primary source r0, we would like to extrapolate
this wave field to obtain the wave field u(r; r0) for r ∈ Ωext in the exterior domain
Ωext; see Figure 4.1.
As illustrated in Figure 4.1, the elastic wave field u(r; r0) in Ωext excited by the
source r0 satisfies the following equation,

ρ(r)ω2uk(r; r0) + ∂j
[

λ(r)δkj∂mum(r; r0)

+ µ(∂kuj(r; r0) + ∂juk(r; r0))
]

= 0, r ∈ Ωext, (56)
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where ∂k represents the xk-derivative, uk is the k-th component of u, and the Ein-
stein summation convention is assumed.

(a) (b)

Figure 4.1: Huygens-Kirchhoff formula for wave field extrapolation.
(a) Spherical domains. (b) Planar domains.

Meanwhile, since the (k, l)-th element of the Green’s tensor G(r; r′) excited by a
source r′ ∈ Ωext satisfies

ρ(r)ω2Gkl(r; r
′) + ∂j

[

λ(r)δkj∂mGml(r; r
′)

+ µ(r)(∂kGjl(r; r
′) + ∂jGkl(r; r

′))
]

= −δklδ(r − r′) (57)

for 1 ≤ k, l ≤ 3, where δkl is the Kronecker delta, we have for the l-th element of u
in Ωext,

−ul(r
′; r0) =

∫

Ωext

−δklδ(r − r′)uk(r; r0)dr (58)

=

∫

Ωext

{

ρω2Gkl + ∂j[λδkj∂mGml + µ(∂kGjl + ∂jGkl)]
}

ukdr

=

∫

Ωext

{

∂j[λδkj∂mGml + µ(∂kGjl + ∂jGkl)]uk

−∂j[λδkj∂mum + µ(∂kuj + ∂juk)]Gkl

}

dr.

Integrating by parts, we get

ul(r
′; r0) =

∫

Ωext

{

[λδkj∂mGml + µ(∂kGjl + ∂jGkl)]∂juk (59)

− [λδkj∂mum + µ(∂kuj + ∂juk)]∂jGkl

}

dr

−
∫

S+SR

{

[λδkj∂mGml + µ(∂kGjl + ∂jGkl)]uk

− [λδkj∂mum + µ(∂kuj + ∂juk)]Gkl

}

νjdS(r)

=−
∫

S

{

λ[∂mGmlujνj − ∂mumGjlνj]

+ µνj[(∂kGjl + ∂jGkl)uk − (∂kuj + ∂juk)Gkl]
}

dS(r)
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for l = 1, 2, 3, where ν = (ν1, ν2, ν3)
T is the unit normal vector directing outward

Ωext. The last equality holds since by letting R → ∞, the integration on SR vanishes
by virtue of the imposed radiation condition.
Consequently, in vector notation, we have obtained the following equivalence of the
Huygens-Kirchhoff formula,

u(r′; r0) =

∫

S

{

λ[−(∇ ·G)(u(r; r0) · ν) + (∇ · u(r; r0))(G · ν)]

+ µ[(ν · ∇)u(r; r0) ·G− (ν · ∇)G · u(r; r0)]

+ µ[(G · ∇)u(r; r0) · ν − (u(r; r0) · ∇)G · ν]
}

dS(r), (60)

on the boundary S of the domain Ω enclosing r0. The formula indicates that if the
wave fields u(r; r0) and the Green’s tensor G(r; r′) are known on the boundary S,
then the wave fields u(r′; r0) in the domain Ωext away from S can be constructed.
In particular, we are interested in the case when the boundary S is the plane at
z = z0, and the wave field is known in the domain Ω = {z ≤ z0}. In other words,
we need to determine u in Ωext := {r = (x, y, z)|z > z0}, and hence in this case,
ν = (0, 0,−1)T . Therefore, equation (59) reduces to

ul(r
′; r0) =

∫

z=z0

{

λ(r)[∂mGml(r; r
′)u3(r; r0)− ∂mum(r; r0)G3l(r; r

′)]

+ µ(r)(∂kG3l(r; r
′) + ∂3Gkl(r; r

′))uk(r; r0)

− µ(r)(∂ku3(r; r0) + ∂3uk(r; r0))Gkl(r; r
′)
}

dxdy. (61)

Consequently, to obtain the (l, n)-th element of Green’s tensor G(r′; r0), Gln(r
′; r0),

we can replace ul with Gln in equation (61). Then the corresponding Huygens-
Kirchhoff formula for the Green’s tensor G(r′; r0) is

Gln(r
′; r0) =

∫

z=z0

{

λ(r)[∂mGml(r; r
′)G3n(r; r0)− ∂mGmn(r; r0)G3l(r; r

′)]

+ µ(r)(∂kG3l(r; r
′) + ∂3Gkl(r; r

′))Gkn(r; r0)

− µ(r)(∂kG3n(r; r0) + ∂3Gkn(r; r0))Gkl(r; r
′)
}

dxdy (62)

for 1 ≤ l, n ≤ 3. Numerically, it is expensive to compute the Green’s tensors G(r; r′)
excited by all r′ ∈ Ωext since the dimension of the manifold Ωext is higher than that
of S. However, since the following reciprocal relations are satisfied

τ(r; r′) = τ(r′; r), G(r; r′) = GT (r′; r), (63)

we can interchange the two arguments r and r′ in G(r′; r) in (62) to get

Gln(r
′; r0) =

∫

z=z0

{

λ(r)[∂mGlm(r
′; r)G3n(r; r0)− ∂mGmn(r; r0)Gl3(r

′; r)]

+ µ(r)(∂kGl3(r
′; r) + ∂3Glk(r

′; r))Gkn(r; r0)

− µ(r)(∂kG3n(r; r0) + ∂3Gkn(r; r0))Glk(r
′; r)

}

dxdy, (64)
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Without using the summation convention, we can rewrite formula (64) into the
following,

Gln(r
′, r0) =

∫

z=z0

{

λ(r)
3
∑

m=1

[∂mGlm(r
′; r)G3n(r; r0)− ∂mGmn(r; r0)Gl3(r

′; r)]

+ µ(r)(∂1Gl3(r
′; r) + ∂3Gl1(r

′; r))G1n(r; r0)

+ µ(r)(∂2Gl3(r
′; r) + ∂3Gl2(r

′; r))G2n(r; r0)

+ µ(r)(∂3Gl3(r
′; r) + ∂3Gl3(r

′; r))G3n(r; r0)

− µ(r)(∂1G3j(r; r0) + ∂3G1n(r; r0))Gl1(r
′; r)

− µ(r)(∂2G3j(r; r0) + ∂3G2n(r; r0))Gl2(r
′; r)

− µ(r)(∂2G3j(r; r0) + ∂3G3n(r; r0))Gl3(r
′; r)

}

dxdy, (65)

As can be seen, the only unknowns in formula (65) are G(r′; r) and its spatial
derivatives. To use the truncated H-B ansatz to approximate G(r′; r), we assume
that caustics do not occur in the domain Ωext. By formulas (16) and (46), we may
approximate

Gkj(r
′; r) = GS

kj(r
′; r) +GP

kj(r
′; r)

≈
ÃS0

kj (r
′; r)

−ω2
f−3+ 1

2
(ω, τS(r′; r)) +

ÃS1
kj (r

′; r)

−ω2τS2 f−2+ 1
2
(ω, τS(r′; r))

+
ÃP0

kj (r
′; r)

−ω2
f−3+ 1

2
(ω, τP (r′; r)) +

ÃP1
kj (r

′; r)

−ω2τP 2 f−2+ 1
2
(ω, τP (r′; r)). (66)

Then based on the formula (12) and the properties of Hankel functions, we can
compute the spatial derivative of GS(r′; r) with respect to r,

∂xi
GS

kj(r
′; r) ≈

2τS∂xi
τSÃS0

kj (r
′; r)

ω2
f−4+ 1

2
(ω, τS(r′; r))

+

[

∂xi
ÃS0

kj (r
′; r)

−ω2
+

2∂xi
τSÃS1

kj (r
′; r)

ω2τS

]

f−3+ 1
2
(ω, τS(r′; r))

+ ∂xi

[

ÃS1
kj (r

′; r)

−ω2τS2

]

f−2+ 1
2
(ω, τS(r′; r)); (67)

the same can be done for GP (r′; r) to obtain ∂xi
GP (r′; r). Because we have

f−3+l+ 1
2
(ω, τ) = O(ω−l+2) as ω → ∞, retaining the only leading order terms, i.e. the

O(1) terms in (66) and O(ω) terms in (67), leads to the following approximations,

GS
kj(r

′; r) ≈
ÃS0

kj (r
′; r)

8τS3(r′; r)
eiωτ

S(r′;r), (68)

∂xi
GS

kj(r
′; r) ≈

iω∂xi
τS(r′; r)ÃS0

kj (r
′; r)

8τS3(r′; r)
eiωτ

S(r′;r); (69)

similar approximations for the P-wave can be obtained accordingly.
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Such approximations are adequately accurate for computing G(r′; r0) the formula
(65) for the following reason. The integrand in the formula (65) is in general O(ω)
and becomes O(1) only when ∂xi

G(r′; r) = O(1) for all i and G(r′; r) = O(1/ω)
(due to ∂xi

G(r; r0) = O(ω)). Hence the approximations lose accuracy only when
the approximations for both ∂xi

G(r′; r) and G(r′; r) become 0 simultaneously, and
the points with such a property constitute only a set of measure 0 and will not affect
the value of G(r′; r0) in the formula (65).
As can be seen, the only unkowns in (68) and (69) are τS, ÃS0 and ∇rτ

S(r′; r).
Hence in order to obtain the Green’s tensor G(r′; r0), we need to compute the
asymptotic ingredients: τS, ÃS0 and ∇rτ

S(r′; r) for the S-wave and τP , ÃP0 and
∇rτ

P (r′; r) for the P-wave. In the previous section, we have shown how to compute
the phase functions and H-B coefficients for both the S- and P-waves up to a suitable
order of accuracy. The same methodology can be used here for all secondary sources.
Since ∇rτ(r

′; r) is opposite to the take-off direction t(0)(r′, r) along the ray from r

to r′, where t(0)(r′, r) is governed by the following equation

(∇r′τ(r′; r) · ∇r′)t(0)(r′, r) = 0, (70)

with the initial condition lim
r′→r

[

t(0)(r′; r)− r′ − r

|r′ − r|

]

= 0, (71)

the high-order LxF-WENO schemes [22, 23] can be applied to first compute t(0) for
both the S- and P-waves, yielding ∇rτ(r

′; r) accordingly.

4.2. Huygens principle based sweeping method

Based on the Huygens-Kirchhoff formula, we now develop a layer-by-layer sweeping
method to construct the globally valid Green’s tensors.
The Green’s tensor G as constructed by the ansatz (11) is valid only in a local neigh-
borhood of r0 where no caustics occur since the computed ingredients in formula
(11) are single-valued. Therefore, the integration formula (65) can only be used in a
narrow layer where the Green’s tensor G excited by every selected secondary source
point r ∈ S is valid. However, since caustics will not develop close to a source in
an isotropic medium, we can construct the entire elastic wave field excited from a
primary point source in a global domain in a layer-by-layer manner.
Given a primary source r0, we can first construct the asymptotic Green’s tensor
G(r; r0) by substituting the already computed ingredients into the ansatz (11),
which is valid in a local neighborhood Ω1 containing the primary source r0; con-
sequently, the Green’s function G(r; r0) and its gradient ∇G(r; r0) is known on
the boundary of Ω1, denoted by S1. Letting Ω1 be the first layer, we can set up
secondary point sources on the boundary S1, and identify a narrow layer, denoted
by Ω2, where the Green’s functions G(r′; r) (r ∈ S1, r

′ ∈ Ω2) are locally valid. The
method of identifying the narrow layer will be addressed later. Then we can apply
the integration formula (65) to construct the Green’s function G(r′; r0) in the layer
Ω2, so that G(r′; r0) and ∇G(r′; r0) are available on S2 = ∂Ω2. The process can be
repeated so that the Green’s functions can be constructed everywhere by sweeping
through the whole domain in a layer-by-layer fashion.
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As addressed in [23, 26, 32], the method of partitioning the whole computational
domain into layers is based on the first-arrival traveltime solutions for both the S-
and P-wave eikonal equations with point-source conditions. Suppose that the trav-
eltime solutions, τS(r; r0) and τP (r; r0), are computed in the whole domain, we can
determine the first layer Ω1 as the neighborhood of r0 where both τS(r; r0) and
τP (r; r0) are smooth. Then we can set up a few secondary-source points on the
boundary S1 of the first layer, solve both the S- and P-wave point-source eikonal
equations at those secondary sources to obtain first-arrival traveltimes, and deter-
mine a local neighborhood where all those traveltimes from both the S- and P-wave
eikonal equations are smooth. This neighborhood will serve as the second narrow
layer Ω2. The process can be repeated so that the whole domain will be covered by
all such layers.
Since the Green’s functions are singular at the source point, we will use the Huygens-
Kirchhoff formula (65) to compute the Green’s functions G at observation points
away from the secondary source surface. To well separate the receiver domain and
the secondary source surface, we can move the secondary source surface slightly
closer to the primary source, and the missing portion of the Green’s functions is
already computed by either using the primary source or using the previous layer.
Since, in practice, we are interested in designing methods with efficiency independent
of frequency, we will set a fixed distance df ≥ 0 to separate the secondary source
surface and the receiver domain; the reason is that when the frequency parameter
ω is big enough, the asymptotic Green’s functions become accurate roughly away
from the source by this distance.

4.3. Planar-layer based Huygens sweeping

To better illustrate the sweeping process, we consider the wave fields directed along
the positive z-direction. As shown in Figure 4.2, the computational domain is par-
titioned into some non-overlapping layers Ωj, where all secondary-source surfaces
Sj are planar and perpendicular to the z-direction, and this partition satisfies the
properties discussed above. The planar-based sweeping method can be summarized
as the following.

Algorithm 1
Stage 1. Precompute asymptotic ingredients.
• The computational domain is partitioned into layers Ωj and the secondary-

source planes Sj are identified using the above approach.
• For each secondary source plane Sj, the tables of traveltime, amplitudes and

take-off directions are computed at each secondary source on a coarse mesh in
the layer Ωj+1. In practice, those tables can be computed for a coarse set of
secondary sources since the tables on a dense set of secondary sources can be
obtained by interpolating those coarse tables.

• The tables for the coarse set of secondary sources are stored (on a hard drive)
and can be used to construct the wave fields for all high frequencies and for
arbitrary point sources.
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Stage 2. Given a free-space frequency ω, construct the wave field layer by layer.
• For each secondary source plane Sj, the tables of the traveltimes, amplitudes

and take-off directions for both the S- and P-wave are loaded from the hard
drive to construct the Green’s function G(r; r0) in the corresponding layer Ωj+1.

Figure 4.2: The computational domain is partitioned into three layers: Ω1, Ω2, and
Ω3. The first layer Ω1 contains the primary source r0; the source plane S1 is placed
in Ω1 and is df wide away from Ω2; the source plane S2 is df wide away from Ω3

and locates in Ω2.

• For each table, the data are first interpolated onto a finer mesh to resolve the
highly oscillatory nature of G and then compute G(r; r0) by the Huygens-
Kirchhoff formula with a quadrature rule.

• If the sampling of secondary sources on the source plane Sj is not dense enough,
we can interpolate the tables from the given source locations onto the region
bounded by these source locations. This is feasible because asymptotic ingre-
dients are continuous functions of source locations. For instance, given the
four source points sA, sB, sC and sD which are vertices of a rectangular region
ABCD of the mesh on Sj, and at which the tables are computed and are already
interpolated onto finer mesh in the corresponding layer, we can interpolate the
four tables to find the table at any source point inside the rectangular region
ABCD.

To implement the above algorithm, we need to overcome some obstacles. The first
obstacle is how to store the data tables generated in Stage 1 since there are many
sources in the source plane Sj and also we are dealing with nine-component Green’s
functions for 3-D elastic wave equations. The second obstacle is how to efficiently
carry out the matrix-vector products induced by the discretization of the Huygens-
Kirchhoff integral (65). We will address these two issues in the following subsections.

4.4. Data tables and compression
To reduce data storage, we will follow the approach in [33] to compress each data
table into a linear combination of tensor product based multivariate Chebyshev
polynomials so that information in each table is encoded into a small number of
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Chebyshev coefficients. In our implementation, we need to compress the data tables
for both the S- and P-wave related ingredients separately.
To efficiently reconstruct the information from those compressed tables, we will fol-
low the method in [33] which is equivalent to Orszag’s partial summation method [6].

4.5. Discretization of Huygens-Kirchhoff integral
In numerical implementation, it is difficult to evaluate the (k, j)-entry of the Green’s
function G(r; r0) by the equation (65) for k, j = 1, 2, 3, when the secondary-source
plane is unbounded. Hence, first we need to truncate the unbounded integration
domain S to a finite, bounded domain S̃ according to the specified computational
domain for elastic wave equations. Since the expansion (11) automatically exhibits
outgoing wave behavior and satisfies the Sommerfeld radiation condition at infinity,
such a truncation may slightly affect the accuracy of the wave field near the boundary
of S̃ only.
After truncation, the bounded domain S̃ can be discretized so that the quadrature
rule can be applied to approximate the integral in (65). Since we are interested
in computing highly oscillatory waves, we have to specify sufficient mesh points to
sample the overall solution. In principle, the optimal number of sampling points is
arguably four to six mesh points per wavelength in each direction. However, in the
high-frequency regime, the direct methods such as finite-difference or finite-element
methods require many more points per wavelength so as to yield accurate numerical
solutions due to pollution or dispersion errors [4, 5]. On the other hand, the H-B
ansatz based method requires only four to six mesh points per wavelength to resolve
the overall solution in the high-frequency regime and this has been verified in [32, 34]
and in the following examples.
Since given the index of refraction γ and the frequency parameter ω, the smallest
wavelength in the computational domain can be estimated to be λmax = 2π/ωγmax,
where γmax is the largest value of both γS and γP in the computational domain, and
we specify 4 to 6 points per wavelength in each direction accordingly. We remark
that because all the ingredients in the H-B ansatz are independent of frequency, one
can compute these asymptotic ingredients on much coarser meshes with the number
of points independent of frequency. Only when we construct the overall wave fields
do we need to interpolate those ingredients onto the fine meshes so as to capture
each wave accurately.
Based on the above considerations, we are ready to discretize the integral (65).
Assume that the primary point source r0 is given, and the truncated rectangular
region S̃ is discretized into a set of Ms = Mx × My uniform grid points with the
same mesh size h in both x- and y-directions so that the above sampling requirement
of four to six points per wavelength is satisfied. We apply the trapezoidal rule to
approximate the integral over S̃ and obtain

Gkj(r
′, r0) ≈ h2

Mx
′′

∑

m=1

My
′′

∑

n=1

[

λ(smn)
3
∑

m=1

(∂mGkm(r
′; smn)G3j(smn; r0)

− λ(smn)
3
∑

m=1

∂mGmj(smn; r0)Gk3(r
′; smn))
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+ µ(smn)(∂1Gk3(r
′; smn) + ∂3Gk1(r

′; smn))G1j(smn; r0)

+ µ(smn)(∂2Gk3(r
′; smn) + ∂3Gk2(r

′; smn))G2j(smn; r0)

+ µ(smn)(∂3Gk3(r
′; smn) + ∂3Gk3(r

′; smn))G3j(smn; r0)

− µ(smn)(∂1G3j(smn; r0) + ∂3G1j(smn; r0))Gk1(r
′; smn)

− µ(smn)(∂2G3j(smn; r0) + ∂3G2j(smn; r0))Gk2(r
′; smn)

− µ(smn)(∂3G3j(smn; r0) + ∂3G3j(smn; r0))Gk3(r
′; smn)

]

(72)

for k, j = 1, 2, 3, where
∑′′

denotes that the first and last term have a factor 1
2
.

We remark that here partial derivatives of G(smn; r0) are estimated by numerical
differentiation since the Green’s functions G(r; r0) are already computed and thus
available. Mx and My are the number of grid points in the x- and y-directions,
respectively; {smn} are the Ms mesh points on the source plane S̃, and are re-
enumerated as {sm}Ms

m=1.
According to the partition strategy, we are interested in evaluating (72) for all
observation points in a narrow layer which is about df distance away from the
source plane and we enumerate those mesh points as {rn}Nr

n=1. Then we obtain

gkj = Uk1f1j +Uk2f2j +Uk3f3j +Uk4f4j+

+Uk5f5j +Uk6f6j +Uk7f7j +Uk8f8j (73)

for k, j = 1, 2, 3, where

gkj =
[

Gkj(r1; r0), Gkj(r2; r0), · · · , Gkj(rNr
; r0)

]T

,

Uk1 = [
3
∑

l=1

∂lGkl(rn; sm)]1≤n≤Nr,1≤m≤Ms
,

Uk2 = [Gk3(rn; sm)]1≤n≤Nr,1≤m≤Ms
,

Uk3 = [∂1Gk3(rn; sn) + ∂3Gk1(rn; sm)]1≤n≤Nr,1≤m≤Ms
,

Uk4 = [∂2Gk3(rn; sm) + ∂3Gk2(rn; sm)]1≤n≤Nr,1≤m≤Ms
,

Uk5 = [∂3Gk3(rn; sm) + ∂3Gk3(rn; sm)]1≤n≤Nr,1≤m≤Ms
,

Uk6 = [Gk1(rn; sm)]1≤n≤Nr,1≤m≤Ms
,

Uk7 = [Gk2(rn; sm)]1≤n≤Nr,1≤m≤Ms
,

Uk8 = [Gk3(rn; sm)]1≤n≤Nr,1≤m≤Ms
,

f1j =
[

λ(s1)G3j(s1; r0), · · · , λ(sMs
)G3j(sMs

; r0)
]T

,

f2j = −[λ(s1)
3
∑

l=1

∂lGlj(s1; r0), · · · , λ(sMs
)

3
∑

l=1

∂lGlj(sMs
; r0)]

T ,

f3j = [µ(s1)G1j(s1; r0), · · ·µ(sMs
)G1j(sMs

; r0)]
T ,

f4j = [µ(s1)G2j(s1; r0), · · ·µ(sMs
)G2j(sMs

; r0)]
T ,

f5j = [µ(s1)G3j(s1; r0), · · ·µ(sMs
)G3j(sMs

; r0)]
T ,
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f6j = [−µ(s1)(∂1G3j(s1; r0) + ∂3G1j(s1; r0)), · · · ,−µ(sMs
)(∂1G3j(sMs

; r0)

+ ∂3G1j(sMs
; r0))]

T ,

f7j = [−µ(s1)(∂2G3j(s1; r0) + ∂3G2j(s1; r0)), · · · ,−µ(sMs
)(∂1G3j(sMs

; r0)

+ ∂3G1j(sMs
; r0))]

T ,

f8j = [−µ(s1)(∂3G3j(s1; r0) + ∂3G3j(s1; r0)), · · · ,−µ(sMs
)(∂1G3j(sMs

; r0)

+ ∂3G1j(sMs
; r0))]

T .

In numerical implementation, we will uniformly and coarsely sample the secondary
sources so that the asymptotic ingredients for those coarsely sampled sources are
efficiently precomputed. In the high-frequency regime, we need to sample enough
points on the source plane with finer meshes so as to obtain the desired accuracy.
The asymptotic ingredients on those finer meshes can be obtained by interpolation.
To evaluate equation (73), we need to carry out total 72 matrix-vector multi-
plications for 9 components of G. In practice, Ms and Nr could be extremely
large for high frequencies so that the direct evaluation of (73) with complexity
O(Ms ×Nr) is expensive and impractical. To accelerate the evaluation process, we
will use a multilevel matrix decomposition based butterfly algorithm as developed
in [7, 23, 26, 28, 29, 32, 43]; see [8] for necessity of using such a method.

4.6. A butterfly algorithm

We can reformulate equation (73) as the following,

gkj(r) =
8
∑

q=1

∑

s∈Xs

Ukq(r; s)fqj(s), r ∈ Xr ⊂ Ωr, (74)

where 1 ≤ k, j ≤ 3. Here the set of sources Xs is in the domain Ωs, and the set
of receivers Xr is in the domain Ωr. Ωs and Ωr are df apart from each other. fqj
is the representative function of fqj in the sense that fqj(sm) is the mth element of
fqj for 1 ≤ m ≤ Ms. Ukq(r; s) is the representative function of Ukq.
Since, in (73), for each secondary source sm and receiver rn, where 1 ≤ m ≤ Ms,
1 ≤ n ≤ Nr, the Green’s tensor G(rn; sm) has the decomposition

G(rn; sm) = GS(rn; sm) +GP (rn; sm).
Hence the representative function Ukq(r; s) can be decomposed as follows:

Ukq(r; s) = US
kq(r; s) + UP

kq(r; s) = AS
kq(r; s)e

iωτS(r;s) + AP
kq(r; s)e

iωτP (r;s), (75)

where the amplitude AS
kq(r; s) and the traveltime τS(r; s) for the S-wave are avail-

able from equations (68) and (69). AP
kq(r; s) and τP (r; s) for the P-wave can be

obtained in the same way. Then it is clear that we have

gkj(r) = gSkj(r) + gPkj(r) (76)
with

gSkj(r) =
8
∑

q=1

∑

s∈Xs

US
kq(r; s)fqj(s) and gPkj(r) =

8
∑

q=1

∑

s∈Xs

UP
kq(r; s)fqj(s). (77)
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Based on the decomposition in (75), we can follow [7, 23, 27, 32] to adopt the low-
rank separated-representation based butterfly algorithm to speed up the matrix-
vector multiplication for both gSkj and gPkj. In implementation, we can first use the
butterfly algorithm to compute gSkj and then gPkj. Next, we can add gSkj and gPkj
together to obtain gkj. For the sake of convenience, in the following presentation
we will suppress the superscripts S and P since the methodology works in the same
way for computing both gSkj and gPkj.
To begin with, we first introduce the multi-dimensional Lagrange basis with respect
to the Chebyshev nodes. For a given integer p > 0, the Chebyshev nodes of order p
on the standard interval [−1, 1] are

X =

{

xj = cos

(

(j − 1)π

p− 1

)}p

j=1

. (78)

The j-th Lagrange basis function at x ∈ [−1, 1] with nodes X is denoted as LX(x; xj),
which takes 1 at xj and 0 elsewhere in X for j = 1, · · · , p. Then the Chebyshev
nodes of order p on the d-dimensional box [−1, 1]d are d tensor products of X,

Xd = {x1
j1
}pj1=1 × · · · × {xd

jd
}pjd=1. (79)

Thus, letting j = (j1, · · · , jd), the j-th Lagrange basis function with nodes Xd at
x = (x1, · · · , xd)T ∈ [−1, 1]d is given as a tensor product,

Ld
Xd(x;xj) = LX(x

1; x1
j1
) · · ·LX(x

d; xd
jd
), (80)

where xj = (x1
j1
, · · · , x1

jd
)T .

For a generic one-dimensional interval [a, b], the Chebyshev nodes of order p satisfy

Y =

{

yj =
b− a

a
xj +

b+ a

2

}p

j=1

, (81)

so that the j-th Lagrange basis function at y ∈ [a, b] with nodes Y is denoted as
LY (y; yj) for j = 1, · · · , p. Similarly, the Chebyshev nodes of order p are d-tensor
products of the form

Y = Y1 × · · · × Yd (82)

with Yi =

{

yiji =
b− a

a
xi
ji
+

b+ a

2

}p

ji=1

. (83)

Thus, the j-th Lagrange basis function with nodes at y = (y1, · · · , yd)T ∈ [−1, 1]d

is given as
Ld
Y (y;yj) = LY1(y

1; y1j1) · · · × LYd
(yd; ydjd). (84)

In the following, we will denote by CB the set of pd d-dimensional Chebyshev nodes
in the d-dimensional box B. Following closely the butterfly algorithm in [27, 32],
we present our algorithm as follows:
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Algorithm 2. (The butterfly algorithm)
1. Construct the cluster trees for both receivers and sources. Assume that the

domain of receivers is a cube Ωr = [Lr
min,Lr

max]
3, and the domain of sources

is a square Ωs = [Ls
min,Ls

max]
2. The domains are discretized such that the

number of sampling points per wavelength is fixed, such as 4 to 6 points per
wavelength. The cluster trees for receivers and sources are an octree and a
quadtree, respectively.
At the root level (denote as level 0), the boxes for both the source and receiver
cluster trees are assigned to the corresponding domain directly. Then the tree
construction goes by dydically subdividing the boxes: for an octree (quadtree),
each box is divided into 8 (4) boxes. The construction reaches or stops at the
leaf level (denoted as level L), where the size of each box is about 2 minimum
wavelengths so that approximately O(p) sampling points are used along each
dimension with p the order of Chebyshev nodes. Hence except for the leaf
level, each box B of an octree (quadtree) has 8(4) children boxes, denoted as
Bc, and except for the root level, each box B has a parent box, denoted as Bp.
We denote the resulting two trees as Ts (the source tree) and Tr (the receiver
tree), respectively. From now on, we will use the superscript (·)B to denote the
dependence on the box B.
The butterfly algorithm traverses through the two cluster trees in the following
way: for l = L · · · , 0, visit level l in Ts and level L− l in Tr by considering each
pair {Br, Bs} with Br ∈ T r and Bs ∈ T s, l(Bs) = l and l(Br) = L − l, where
l(B) indicates the level of B in a tree.
Moreover at the root level of the receiver tree and at the leaf level of the source
tree, each pair {Br, Bs} satisfies

w(Br)w(Bs) = (Lr
max − Lr

min)O(2λmin)

= O

(

4π(Lr
max − Lr

min)

ωγmax

)

= O

(

1

ω

)

, (85)

where w(B) is the size of box B and γmax = max(γS
max, γ

P
max). γS

max and γP
max

are the maximum slowness for the S- and P-waves, respectively. As moving
downward the receiver tree by one level and simultaneously moving upward the
source tree by one level, w(Br) is divided by 2 while w(Bs) is multiplied by 2
so that the low-rank separated-representation condition w(Br)w(Bs) = O( 1

ω
) is

automatically satisfied.

2. The Upward Pass starts at the leaf level (level L) of the source tree Ts and ends
at the level (denoted as Ls), where the size of the boxes satisfies w(Bs) ≥ O( 1√

ω
).

Correspondingly, the level of the receiver tree Tr varies from the root level
(level 0) to the level Lr ≡ L− Ls.
(1) Initialization: For each pair {Br, Bs} with Br traversing all boxes at the

root level of the receiver tree and Bs traversing all boxes at the leaf level of
the source tree, we interpolate 24 equivalent densities {f̄Br,Bs

qj } for 1 ≤ q ≤ 8

and 1 ≤ j ≤ 3 at the equivalent sources CBs = {sBs
n }p2n=1 in Bs from the

given 24 densities {fqj} at all sources in Bs ∩Xs:
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f̄Br,Bs

qj (sBs

n ) =
∑

s∈Bs∩Xs

e−iωτ(rBr
c ;sBs

n )L2
CBs (s; s

Bs

n )eiωτ(r
Br
c ;s)fqj(s), (86)

where rBr
c is the center of the receiver box Br.

(2) Recursion: For l from L−1 to Ls, for each pair {Br, Bs} with Br travers-
ing all boxes at the level L − l of the receiver tree and Bs traversing all
boxes at the level l of the source tree, we interpolate 24 equivalent den-
sities {f̄Br,Bs

qj } at the equivalent sources CBs = {sBs
n }p2n=1 in Bs from the

equivalent densities {f̄Bp
r ,B

c
s

qj } at equivalent sources CBc
s = {sBc

s
m }p2m=1 of all

the children clusters of Bs and the parent cluster of Br:

f̄Br,Bs

qj (sBs

n ) =

=
∑

Bc
s

P 2
∑

m=1

e−iωτ(rBr
c ;sBs

n )L2
CBs (s

Bc
s

m ; sBs

n )eiωτ(r
Br
c ;s

Bc
s

m )f̄
Bp

r ,B
c
s

qj (sB
c
s

m ), (87)

for 1 ≤ q ≤ 8 and 1 ≤ j ≤ 3.

3. Switch at the level where the upward pass has ended (Level Ls of the source
tree and level Lr of the receiver tree). For each pair {Br, Bs} with Br traversing
all boxes at the level Lr of the receiver tree and Bs traversing all boxes at the
level Ls of the source tree, compute 9 equivalent fields {ḡBr,Bs

kj } at equivalent
points CBr = {rBr

m }p3m=1 from equivalent densities {f̄Br,Bs

qj } at equivalent sources
CBs = {sBs

n }p2n=1:

ḡBr,Bs

qj (rBs

m ) =
8
∑

q=1

P 2
∑

n=1

Ukq(r
Br

m , sBs

n )f̄Br,Bs

qj (sBs

n ), (88)

for 1 ≤ k, j ≤ 3.

4. The Downward Pass starts at the level Lr of the receiver tree Tr where the
Upward Pass has ended and ends at level L of the receiver tree. Meanwhile,
the level of the source tree varies from Ls to 0.
(1) For l from Lr to L− 2, for each pair {Br, Bs} with Br traversing all boxes

at the level l+1 of the receiver tree and Bs traversing all boxes at the level
L− l− 1 of the source tree, interpolate the equivalent fields {ḡBr,Bs

kj } at the
equivalent sources CBr = {rBr

m }p3m=1 from the equivalent densities {ḡB
p
r ,B

c
s

kj }
at equivalent sources CBp

r = {rBp
r

n }p3n=1 of all the children clusters of Bs and
the parent cluster of Br:

ḡBr,Bs

kj (rBr

m ) =

=
∑

Bc
s

P 3
∑

n=1

eiωτ(r
Br
m ;s

Bc
s

c )LCBr (rBr

m ; rBp
r

n )e−iωτ(r
B
p
r

n ;s
Bc
s

c )ḡ
Bp

r ,B
c
s

kj (rBp
r

n ), (89)

for 1 ≤ k, j ≤ 3, where s
Bc

s
c is the center of the receiver box Bc

s.
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(2) For each pair {Br, Bs} with Br traversing all boxes at the leaf level of the
receiver tree and Bs traversing all boxes at the root level of the source tree,
interpolate equivalent fields {ḡBr,Bs

kj } at r ∈ Br ∩ Xr from the equivalent
fields {ḡB

p
r ,B

c
s

kj } at equivalent sources CBp
r = {rBp

r
n }p3n=1 of all the children

level 1 of the source tree and the parent level L− 1 of the receiver tree:

ḡBr,Bs

kj (r) =
∑

Bc
s

P 3
∑

n=1

eiωτ(r;s
Bc
s

c )LCBr (r; rBp
r

n )e−iωτ(r
B
p
r

n ;s
Bc
s

c )ḡ
Bp

r ,B
c
s

kj (rBp
r

n ), (90)

for 1 ≤ k, j ≤ 3.

5. Termination. For each box Br at the leaf level of the receiver tree, sum up
the equivalent fields over all the boxes of the source tree at the root level, and
compute the representative functions gkj at r ∈ Br ∩Xr according to equation
(73):

gkj(r) =
∑

Bs

ḡBr,Bs

kj (r), for 1 ≤ k, j ≤ 3. (91)

To analyze the complexity of the butterfly algorithm, we follow closely the com-
plexity analysis of the butterfly algorithm in [32]. Assume that p Chebyshev nodes
are chosen in each dimension and also O(n) = O(2L) points are sampled in each
dimension. Then the total complexity of Algorithm 2 is

O(24p4n5/2 + 72p5n5/2 + 9p4n3 + n3 log n).

4.7. Complexity analysis of overall algorithm

In Section 5.3, we see that the overall algorithm consists of two stages. The first stage
is preprocessing in which the asymptotic ingredients, such as phase functions, H-B
coefficients, and take-off directions for both the S- and P-waves, are computed, and
they are further encoded into a set of tables of Chebyshev coefficients. The second
stage is post-processing in which globally valid Green’s functions are constructed
for a given primary source r0 and an arbitrary frequency ω. Since the two stages
can be done on different meshes and are independent of each other, we analyze the
computational complexities of the two stages separately.
In the following analysis, we will assume that the computational domain is parti-
tioned into P + 1 layers and P secondary-source planes are set up. In the layer
containing the primary source, we just need to compute asymptotic ingredients
once. Hence we focus on analyzing the computational complexity of layers in which
we need to compute asymptotic ingredients for all the secondary sources on the
secondary-source plane and carry out matrix-vector products.

4.7.1. Preprocessing: compute asymptotic ingredients

Since asymptotic ingredients are independent of the frequency ω, we can compute
them on very coarse meshes. Moreover, these ingredients are not only continuous
away from the source but also continuous with respect to the source itself. There-
fore, interpolation not only can be used later to generate asymptotic ingredients on a
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finer mesh of observation points, but it also can be applied to compute asymptotic
ingredients for densely sampled secondary sources.
Assume that the computational domain in the three dimension is uniformly and
coarsely discretized by m3 grid point, which amounts to m sampling points in each
dimension. Since the computational domain is partitioned into P + 1 layers, there
are roughly O( m3

P+1
) for each layer. And for each plane of the P secondary source

planes, m2 source points are evenly sampled. Then for each secondary source on
that plane, we have to compute the asymptotic ingredients in the corresponding
layer. According to [32], we can apply higher-order LxF-WENO sweeping methods
to compute these asymptotic ingredients for both the S- and P-waves. Thus the
computational cost for those asymptotic ingredients at each secondary-source plane
is O( m3

P+1
logm). Totally, there are P secondary-source planes with m2 sampled

points on each plane. Therefore, the overall computational complexity at the total
number of m2P secondary sources is

O

(

m3

P + 1
logm ·m2P

)

= O(m5 logm).

Although this computational complexity seems to be high, these computed asymp-
totic ingredients can be stored and reused for different frequencies and different
primary sources. And in fact, it is this feature that makes our method appealing to
many applications. Also, since the asymptotic ingredients for each secondary source
are independent of each other, we can use parallel computing to compute differ-
ent groups of secondary sources simultaneously. This is analogous to the slowness
matching method in [40].
On the other hand, to construct the Green’s functions, the whole computational
domain is uniformly discretized by n points in each direction. Thus, we need to
recover the tables of asymptotic ingredients on roughly O( n3

P+1
) points in each layer

for some specified secondary sources. And this requires complexity of O( n3

P+1
) for

each layer and each secondary source; see details in [32].

4.7.2. Postprocessing: construct global Green’s tensors

Given a primary source r0 and a frequency parameter ω, a fine mesh is required to
capture highly oscillatory Green’s functions. To estimate the needed mesh points
in each direction, first we need to approximate the minimum wavelength for both
S- and P-waves according to the given slownesses and frequency so that the total
number of waves can be estimated. Then we need to sample 4-6 points per wave
in order to capture the oscillations. Certainly, it does not hurt to take more points
per wavelength. Hence the total number of mesh points can be chosen to satisfy
the above consideration, and it is assumed to be N = n3 with n points in each
direction. Correspondingly, the number of points on each secondary-source plane
can be chosen to be roughly n2 with n points in each direction.
Once those asymptotic ingredients are available on this specified mesh inside each
layer, the Green’s functions can be constructed by the butterfly algorithm. Given the
accuracy ϵ > 0, according to [7], we may choose p = pϵ < O(log2(1

ϵ
)) for the order of

the one-dimension Chebyshev nodes in the butterfly algorithm so that the algorithm
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for computing the summation achieves the accuracy ϵ in O( N
P+1

logN) in each layer,
where the prefactor depends only on ϵ and is independent of ω. Therefore, the
overall complexity of constructing the Green’s function by the butterfly algorithm
in P layers is O( P

P+1
N logN) = O(N logN) for a given primary source and a given

frequency. To speed up the construction, we use the “build-in” parfor (parallel for)
loop in our MATLAB implementation; see details in [32].

5. Numerical examples

In the following examples, we first compute the asymptotic ingredients, phase func-
tions, H-B coefficients, and take-off directions for both S- and P-waves on a coarse
mesh of the region enclosing the primary source. When the corresponding mesh size
is used for computing the asymptotic ingredients at secondary sources, the coarse
mesh will be restricted to a neighborhood of each secondary source. The asymptotic
ingredients are compressed into tables of Chebyshev coefficients. Thus for all nu-
merical experiments, the asymptotic ingredients are given as compressed data, and
they are recovered onto the finer mesh by the Chebyshev partial summation when
needed. The computational domain for constructing wave fields is discretized into
mesh points with roughly 5 points per wavelength in each direction.
Unless otherwise stated, all computations were executed in a 20-core Intel Xeon
processor with 377 GBytes of RAM associated with a bi-processor Intel Xeon Gold
6148 node at the High Performance Computing Center (HPCC) of MSU. All the
computations in Stage 1 were carried out in parallel for all secondary sources, while
the butterfly algorithm in Stage 2 was carried out in parallel in 10 cores as well.
When the elastic parameters are not constants, the exact solutions of the Green’s
functions are not available. Thus, to validate our method, we obtain reference so-
lutions by applying the FDTD method [41] directly to time-domain elastic wave
equations. However, due to limited computing resources, we are only able to com-
pute the FDTD-based solutions at low frequencies, so that the related comparisons
will be only carried out at these low frequencies.
Example 1: A constant model. In this example, we take ρ = 1, λ = 1, and
µ = 1. The computational setup for our asymptotic method is the following.
• The computational domain is [0, 2]× [0, 2]× [0, 2].
• The coarse mesh size is 51× 51× 51 with grid size h = 0.04.
• The source point is (1.0, 1.0, 0.2)T .
• The computational domain is partitioned in the following way: the first layer

containing the primary source is Ω1 = [0, 2]× [0, 2]× [0, 1.4], and one secondary
source plane is placed at z = 1.2. We coarsely sample 51 × 51 equally spaced
secondary sources on the truncated source domain S1 = [0, 2]×[0, 2]×{z = 1.2};
then the corresponding receiver domain is Ω2 = [0, 2]× [0, 2]× [1.4, 2], which is
df = 0.2 vertically away from the secondary source plane S1.

In this example, since all elastic parameters are constants, we use the exact solutions
to check the accuracy of our numerical solutions. Five points per wavelength are
chosen in the butterfly algorithm in Stage 2 to capture highly oscillatory waves.
In Table 5.1, we compute the L∞ error between the numerical solutions of our
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method, denoted as Gnum, and the exact solutions, denoted as Gexa, for the total
nine elements of G(r; r0) in Ω2,

E∞ = ||Gnum −Gexa||∞. (92)

Mesh in Ω2 31× 31× 11 61× 61× 21 121× 121× 41 241× 241× 81

ω 6π 12π 24π 48π
NPW 5 5 5 5

E∞ (p = 9) 3.18E-2 2.87E-2 3.46E-2 5.34E-2
E∞ (p = 11) 3.18E-2 2.52E-2 1.48E-2 2.75E-2
E∞ (p = 13) 3.19E-2 2.47E-2 1.18E-2 9.1E-3

Table 5.1: Example 1 with constant elastic parameters. L∞-norm errors between
the numerical solutions of our fast Huygens sweeping method and the exact solu-
tions. ω: the frequency parameter; NPW: the number of points per wavelength; p:
the number of Chebyshev order used in each dimension; E∞: the L∞-norm errors
between solutions by the two different approaches.

Mesh in Ω2 31× 31× 11 61× 61× 21 121× 121× 41 241× 241× 81

ω 6π 12π 24π 48π
NPW 5 5 5 5

TM(p = 9) 57.71 129.35 551.73 3393.2
TM(p = 11) 74.36 195.0 927.02 5452.7
TM(p = 13) 75.47 219.62 1414.6 8206.6

Table 5.2: Example 1 with constant elastic parameters. Computational time using
the butterfly algorithm. ω: the frequency parameter; NPW: the number of points per
wavelength; TM (unit: s): the CPU time for the construction of total nine elements
of the Green’s function for the S-wave in the receiver domain Ω2 by the butterfly
algorithm; p: the Chebyshev order used in each dimension; E∞: the L∞-norm errors
between solutions by two different approaches.

The errors are obtained for different frequency ω and different Chebyshev order p
used in each dimension. Our numerical solutions are of accuracy O(1/ω) as ex-
pected. Table 5.2 lists running times of the butterfly algorithm for computing all
nine elements of G(r; r0) in Ω2. The computational time is consistent with the com-
putational complexity O(N logN) as analyzed above, where N is the total number
of mesh points in Ω2.
Figures 5.1, 5.2 and 5.3 show the comparison between the numerical solution by our
Huygens sweeping method with the Chebyshev order p = 13 and the exact solution
at frequency ω = 24π. We can see that our solutions match with the exact solutions
very well.

Example 2: A Gaussian model. We take λ = 1 and µ = 1 but variable ρ:

ρ = 9.0

(

3.0− 1.75e−
(x−1)2+(y−1)2+(z−1)2

0.64

)−2

.

In this case, the exact solution is not available, so we compute the FDTD-based
solutions as reference solutions to check the accuracy of our method.
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(a) (b)

(c) (d)

Figure 5.1: Example 1 with r0 = (1.0, 1.0, 0.2)T and ω = 24π. The real part of
the xx-component of G(r; r0) at y = 1.0 computed via (a) the Huygens sweeping
method with p = 13; (b) the exact solution. The detailed comparison of the real
part of the xx-component of G(r; r0) at (c): line x = 1.0 and y = 1.0 and (d): line
x = 0.8 and y = 1.0. Red solid line: the exact solution. Black circle: the Huygens
sweeping solution. Mesh: 121× 121× 121.
The computational setup for our asymptotic method is as follows.

• The computational domain is Ω = [0, 2]× [0, 2]× [0, 2].
• The coarse mesh size is 51× 51× 51 with grid size h = 0.04.
• The source point is (1.0, 1.0, 0.2)T .
• The computational domain is partitioned as follows: the first layer containing

the primary source is Ω1 = [0, 2] × [0, 2] × [0, 1.4], and one secondary source
plane is placed at z = 1.2. We coarsely sample 51×51 equally spaced secondary
sources on the truncated source domain S1 = [0, 2]× [0, 2]×{z = 1.2}; then the
corresponding receiver domain is Ω2 = [0, 2]× [0, 2]× [1.4, 2], which is df = 0.2
vertically away from the secondary source plane S1.

We use roughly 5 points per wavelength in Stage 2. Table 5.3 records the running
times for constructing the Green’s functions G(r, r0) in Ω2 using the fast Huygens
sweeping method. Different Chebyshev orders are used in each dimension. We can
see that as the mesh points are doubled in each dimension, the running time increases
by about six times. Figure 5.4 shows the comparison of numerical solutions of the
real part of the xx-component of the Green’s function computed by two different
methods at frequency ω = 10π: the butterfly-algorithm based Huygens sweeping
method with order p = 13 and the FDTD method. The comparisons of numerical
solutions for the zz-components of the Green’s functions by these two methods are
shown in Figure 5.5.
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(a) (b)

(c) (d)

Figure 5.2: Example 1 with r0 = (1.0, 1.0, 0.2)T and ω = 24π. The real part of
the zz-component of G(r; r0) at y = 1.0 computed via (a) the Huygens sweeping
method with p = 13; (b) the exact solution. The detailed comparison of the real
part of the zz-component of G(r; r0) at (c): line x = 1.0 and y = 1.0 and (d): line
x = 0.8 and y = 1.0. Red solid line: the exact solution; black circle: the Huygens
sweeping solution. Mesh: 121× 121× 121.

In addition, we construct the Green’s functions at ω = 20π as shown in Figure
5.6 by the fast Huygens sweeping method. At this frequency, the FDTD method
requires very fine meshes so that it is very time-consuming and resource-demanding
for the FDTD to compute a numerical solution, and thus we are not able to show
the corresponding FDTD result here.

Mesh in Ω2 61× 61× 21 121× 121× 41 241× 241× 81 337× 337× 105

ω 5π 10π 20π 80/3π
NPW 5 5 5 5

TM(p = 9) 176.89 649.35 3716.7 4058.7
TM(p = 11) 264.23 1205.3 6168.0 7460.5
TM(p = 13) 220.84 1369.0 7931.5 8174.2

Table 5.3: Example 2: the Gaussian model. Computational times using the butterfly
algorithm. ω: the frequency parameter; NPW: the number of points per wavelength;
TM (unit: s): the CPU time for the construction of the nine elements of the Green’s
function for the S-wave in the receiver domain Ω2 by the butterfly algorithm; p:
the Chebyshev order used in each dimension; E∞: the L∞-norm errors between
solutions by two different approaches.
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(a) (b)

(c) (d)

Figure 5.3: Example 1 with r0 = (1.0, 1.0, 0.2)T and ω = 24π. The real part of
the xz-component of G(r; r0) at y = 1.0 computed via (a) the Huygens sweeping
method with p = 13; (b) the exact solution. The detailed comparison of the real
part of the xz-component of G(r; r0) at (c): line x = 1.0 and y = 1.0 and (d): line
x = 0.8 and y = 1.0. Red solid line: the exact solution. Black circle: the Huygens
sweeping solution. Mesh: 121× 121× 121.

Example 3: A Gaussian model. We take ρ = 9 but variable λ and µ. Here we
set λ = µ and

µ = (3.0− 1.75e−
(x−1.0)2+(y−1)2+(z−1)2

0.64 )2.

In this example, we compute the FDTD-based solution to check the accuracy of our
method.
The computational setup for our asymptotic method is as the following.

• The computational domain is Ω = [0, 2]× [0, 2]× [0, 2].
• The coarse mesh size is 51× 51× 51 with grid size h = 0.04.
• The source point is (0.8, 1.0, 0.2)T .
• The computational domain is partitioned as follows: the first layer containing

the primary source is Ω1 = [0, 2] × [0, 2] × [0, 1.4], and one secondary source
plane is placed at z = 1.2. We coarsely sample 51×51 equally spaced secondary
sources on the truncated source domain S1 = [0, 2]× [0, 2]×{z = 1.2}; then the
corresponding receiver domain is Ω2 = [0, 2]× [0, 2]× [1.4, 2], which is df = 0.2
vertically away from the secondary source plane S1.

We use four points per wavelength to capture the wave in the butterfly algorithm.
Figure 5.7, 5.8, and 5.9 show the comparisons of numerical solutions of the real
part of the xx-, zz-, and xz- components of the Green’s functions computed by two



J. Qian et al. / Truncated Hadamard-Babich Ansatz ... 33

different methods at frequency ω = 12π: the Huygens sweeping method with order
p = 13 and the FDTD method. The numerical solutions of the Huygens sweeping
method are consistent with the FDTD solutions.

(a) (b)

(c) (d)

Figure 5.4: Example 2 with r0 = (1.0, 1.0, 0.2)T and ω = 10π. The real part of
the xx-component of G(r; r0) at y = 1.0 computed via (a) the Huygens sweeping
method with p = 13; (b) the FDTD method. The detailed comparison of the real
part of the xx-component of G(r; r0) at (c): line x = 1.0 and y = 1.0 and (d): line
x = 0.8 and y = 1.0. Red solid line: the FDTD solution. Black circled line: the
solution by the Huygens sweeping method. Mesh in (a): 121 × 121 × 121; mesh in
(b): 401× 401× 401.

Example 4: A waveguide model. We take ρ = 1 but variable λ and µ. Here we
set λ = µ and

µ = (1.0− 0.5e−6((x−1)2+(y−1)2))
2
.

In this example, we have the following setup.

• The computational domain is Ω = [0, 2]× [0, 2]× [0, 1.6].
• The coarse mesh size is 51× 51× 41 with grid size h = 0.04.
• The source point is (1.0, 1.0, 0.2)T or (0.8, 1.0, 0.12)T .
• The computational domain is partitioned as follows: the first layer containing

the primary source is Ω1 = [0, 2] × [0, 2] × [0, 0.8], and two secondary source
planes are placed at z = 0.6 and z = 1.0, respectively. We coarsely sample
51× 51 equally spaced secondary sources on the truncated source domains

S1 = [0, 2]× [0, 2]× {z = 0.6} and S2 = [0, 2]× [0, 2]× {z = 1.0};
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(a) (b)

(c) (d)

Figure 5.5: Example 2 with r0 = (1.0, 1.0, 0.2)T and ω = 10π. The real part of
the zz-component of G(r; r0) at y = 1.0 computed via (a) the Huygens sweeping
method with p = 13; (b) the FDTD solution. The detailed comparison of the real
part of the zz-component of G(r; r0) at (c): line x = 1.0 and y = 1.0 and (d):
line x = 0.8 and y = 1.0. Red solid line: FDTD solution. Black circled line: the
solution by the Huygens sweeping method. Mesh in (a): 121 × 121 × 121; mesh in
(b): 401× 401× 401.

then the corresponding receiver domains are

Ω2 = [0, 2]× [0, 2]× [0.8, 1.2] and Ω3 = [0, 2]× [0, 2]× [1.2, 1.6]

which are df = 0.2 vertically away from the secondary source planes S1 and S2,
respectively.

The exact solution for this example is not available, so we use the FDTD method
to obtain a reference solution. Approximately 5 points per wavelength is used in
the butterfly algorithm. First, we construct the numerical solutions of the Green’s
function at the source (1.0, 1.0, 0.2)T and at frequency ω = 10π by the fast Huygens
sweeping method with order p = 13. The comparisons with the FDTD solutions of
the xx- and zz- components of the Green’s functions are shown in Figures 5.10 and
5.11, respectively.
Next, we use the same data tables for all secondary sources to compute the Green’s
functions in the receiver domain Ω2 and Ω3 for a different source (0.8, 1.0, 0.2)T and
different frequency ω = 12π. The comparisons between the solution of our method
and the FDTD solution are given in Figure 6.1. The numerical solutions of our
method are consistent with the FDTD solutions.
In addition, we construct the Green’s functions at higher frequency ω = 20π as
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(a) (b)

Figure 5.6: Example 2 with r0 = (1.0, 1.0, 0.2)T and ω = 20π. The real part of
the (a) xx- and (b) zz-component of G(r; r0) at y = 1.0 computed by the Huygens
sweeping method with p = 13. Mesh: 241× 241× 241.

shown in Figure 6.2 by the Huygens sweeping method.

6. Conclusion

Starting from the truncated Hadamard-Babich ansatz, we have developed a new fast
Huygens sweeping method for computing the globally valid asymptotic Green’s func-
tions of elastic wave equations in an inhomogeneous medium in the high frequency
regime and in the presence of caustics. The new method uses the Huygens-Kirchhoff
integral to integrate many locally valid asymptotic Green’s functions into a globally
valid asymptotic Green’s function so that caustics can be treated automatically. To
accelerate matrix-vector products induced by the Huygens-Kirchhoff integral, we
have used the butterfly algorithm to speed up the multiplication process with opti-
mal complexity. Numerical examples demonstrate the performance, efficiency, and
accuracy of our new method.
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Figure 5.10: Example 4 with r0 = (1.0, 1.0, 0.2)T and ω = 10π. The real part of
the xx-component of G(r; r0) at y = 1.0 computed via (a) the Huygens sweeping
method with p = 13 and (b) the FDTD method. The detailed comparison of the
real part of the xx-component of G(r; r0) at (c): line x = 1.0 and y = 1.0 and (d):
line x = 0.8 and y = 1.0. Red solid line: the FDTD solution. Black circled line: the
solution of the Huygens sweeping method. Mesh in (a): 101 × 101 × 81; mesh in
(b): 401× 401× 321.
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Figure 5.11: Example 4 with r0 = (1.0, 1.0, 0.2)T and ω = 10π. The real part of
the zz-component of G(r; r0) at y = 1.0 computed via (a) the Huygens sweeping
method with p = 13 and (b) the FDTD method. The detailed comparisons of the
real part of the zz-component of G(r; r0) at (c): line x = 1.0 and y = 1.0 an (d):
line x = 0.8 and y = 1.0. Red solid line: FDTD solution. Black circled line: the
solution of the Huygens sweeping method. Mesh in (a): 101 × 101 × 81; mesh in
(b): 401× 401× 321.
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401× 401× 321.
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Figure 6.2: Example 4 with r0 = (1.0, 1.0, 0.2)T and ω = 20π. The real part of
G(r; r0) at y = 1.0 computed by the Huygens sweeping method with p = 13: (a)
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