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ABSTRACT

Meta-learning has arisen as a successful method for improving training perfor-
mance by training over many similar tasks, especially with deep neural networks
(DNNs). However, the theoretical understanding of when and why overparame-
terized models such as DNNs can generalize well in meta-learning is still limited.
As an initial step towards addressing this challenge, this paper studies the gener-
alization performance of overfitted meta-learning under a linear regression model
with Gaussian features. In contrast to a few recent studies along the same line,
our framework allows the number of model parameters to be arbitrarily larger
than the number of features in the ground truth signal, and hence naturally cap-
tures the overparameterized regime in practical deep meta-learning. We show that
the overfitted min ¢5-norm solution of model-agnostic meta-learning (MAML)
can be beneficial, which is similar to the recent remarkable findings on “benign
overfitting” and “double descent” phenomenon in the classical (single-task) linear
regression. However, due to the uniqueness of meta-learning such as task-specific
gradient descent inner training and the diversity/fluctuation of the ground-truth
signals among training tasks, we find new and interesting properties that do not ex-
istin single-task linear regression. We first provide a high-probability upper bound
(under reasonable tightness) on the generalization error, where certain terms de-
crease when the number of features increases. Our analysis suggests that benign
overfitting is more significant and easier to observe when the noise and the di-
versity/fluctuation of the ground truth of each training task are large. Under this
circumstance, we show that the overfitted min ¢5-norm solution can achieve an
even lower generalization error than the underparameterized solution.

1 INTRODUCTION

Meta-learning is designed to learn a task by utilizing the training samples of many similar tasks,
i.e., learning to learn (Thrun & Pratt, 1998). With deep neural networks (DNNs), the success of
meta-learning has been shown by many works using experiments, e.g., (Antoniou et al., 2018; Finn
et al., 2017). However, theoretical results on why DNNs have a good generalization performance in
meta-learning are still limited. Although DNNs have so many parameters that can completely fit all
training samples from all tasks, it is unclear why such an overfitted solution can still generalize well,
which seems to defy the classical knowledge bias-variance-tradeoff (Bishop, 2006; Hastie et al.,
2009; Stein, 1956; James & Stein, 1992; LeCun et al., 1991; Tikhonov, 1943).

The recent studies on the “benign overfitting” and “double-descent” phenomena in classical (single-
task) linear regression have brought new insights on the generalization performance of overfitted
solutions. Specifically, “benign overfitting” and “double descent” describe the phenomenon that the
test error descends again in the overparameterized regime in linear regression setup (Belkin et al.,
2018; 2019; Bartlett et al., 2020; Hastie et al., 2019; Muthukumar et al., 2019; Ju et al., 2020; Mei
& Montanari, 2019). Depending on different settings, the shape and the properties of the descent
curve of the test error can differ dramatically. For example, Ju et al. (2020) showed that the min ¢; -
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norm overfitted solution has a very different descent curve compared with the min ¢5-norm overfitted
solution. A more detailed review of this line of work can be found in Appendix A.

Compared to the classical (single-task) linear regression, model-agnostic meta-learning (MAML)
(Finn et al., 2017; Finn, 2018), which is a popular algorithm for meta-learning, differs in many
aspects. First, the training process of MAML involves task-specific gradient descent inner training
and outer training for all tasks. Second, there are some new parameters to consider in meta-training,
such as the number of tasks and the diversity/fluctuation of the ground truth of each training task.
These distinct parts imply that we cannot directly apply the existing analysis of “benign overfitting”
and “double-descent” on single-task linear regression in meta-learning. Thus, it is still unclear
whether meta-learning also has a similar “double-descent” phenomenon, and if yes, how the shape
of the descent curve of overfitted meta-learning is affected by system parameters.

A few recent works have studied the generalization performance of meta-learning. In Bernacchia
(2021), the expected value of the test error for the overfitted min ¢5-norm solution of MAML is
provided for the asymptotic regime where the number of features and the number of training samples
go to infinity. In Chen et al. (2022), a high probability upper bound on the test error of a similar
overfitted min ¢5-norm solution is given in the non-asymptotic regime. However, the eigenvalues
of weight matrices that appeared in the bound of Chen et al. (2022) are coupled with the system
parameters such as the number of tasks, samples, and features, so that their bound is not fully
expressed in terms of the scaling orders of those system parameters. This makes it hard to explicitly
characterize the shape of the double-descent or analyze the tightness of the bound. In Huang et al.
(2022), the authors focus on the generalization error during the SGD process when the training error
is not zero, which is different from our focus on the overfitted solutions that make the training error
equal to zero (i.e., the interpolators). (A more comprehensive introduction on related works can be
found in Appendix A.) All of these works let the number of model features in meta-learning equal to
the number of true features, which cannot be used to analyze the shape of the double-descent curve
that requires the number of features used in the learning model to change freely without affecting
the ground truth (just like the setup used in many works on single-task linear regression, e.g., Belkin
et al. (2020); Ju et al. (2020)).

To fill the gap, we study the generalization performance of overfitted meta-learning, especially in
quantifying how the test error changes with the number of features. As the initial step towards the
DNNs’ setup, we consider the overfitted min ¢5-norm solution of MAML using a linear model with
Gaussian features. We first quantify the error caused by the one-step gradient adaption for the test
task, with which we provide useful insights on 1) practically choosing the step size of the test task
and quantifying the gap with the optimal (but not practical) choice, and 2) how overparameterization
can affect the noise error and task diversity error in the test task. We then provide an explicit high-
probability upper bound (under reasonable tightness) on the error caused by the meta-training for
training tasks (we call this part “model error”) in the non-asymptotic regime where all parameters
are finite. With this upper bound and simulation results, we confirm the benign overfitting in meta-
learning by comparing the model error of the overfitted solution with the underfitted solution. We
further characterize some interesting properties of the descent curve. For example, we show that
the descent is easier to observe when the noise and task diversity are large, and sometimes has a
descent floor. Compared with the classical (single-task) linear regression where the double-descent
phenomenon critically depends on non-zero noise, we show that meta-learning can still have the
double-descent phenomenon even under zero noise as long as the task diversity is non-zero.

2 SYSTEM MODEL

In this section, we introduce the system model of meta-learning along with the related symbols. For
the ease of reading, we also summarize our notations in Table 2 in Appendix B.

2.1 DATA GENERATION MODEL

We adopt a meta-learning setup with linear tasks first studied in Bernacchia (2021) as well as a
few recent follow-up works Chen et al. (2022); Huang et al. (2022). However, in their formulation,
the number of features and true model parameters are the same. Such a setup fails to capture the
prominent effect of overparameterized models in practice where the number of model parameters
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is much larger than the number of actual feature parameters. Thus, in our setup, we introduce an
additional parameter s to denote the number of true features and allow s to be different and much
smaller than the number p of model parameters to capture the effect of overparameterization. In
this way, we can fix s and investigate how p affects the generalization performance. We believe this
setup is closer to reality because determining the number of features to learn is controllable, while
the number of actual features of the ground truth is fixed and not controllable.

We consider m training tasks. For the ¢-th training task (where ¢ = 1,2, - - - , m), the ground truth is
a linear model represented by y = wfwgl) + ¢, where s denotes the number of features, x, € R® is
the underlying features, e € R denotes the noise, and y € R denotes the output. When we collect the
features of data, since we do not know what are the true features, we usually choose more features
than s, i.e., choose p features where p > s to make sure that these p features include all s true
features. For analysis, without loss of generality, we let the first s features of all p features be the
true features. Therefore, although the ground truth model only has s features, we can alternatively

expressed it with p features as y = x7w?) + ¢ where the first s elements of € R” is x, and
w® = [wé”} € RP. The collected data are split into two parts with n, training data and n,
validation data. With those notations, we write the data generation model into matrix equations as

Yt = XD Ty () 4 gt() o) = o) () 4 o), )

where each column of X*(*) € RP*™ corresponds to the input of each training sample, each column
of X¥() ¢ RP*™ corresponds to the input of each validation sample, y*() € R™ denotes the
output of all training samples, y*(¥) € R™ denotes the output of all validation samples, e*(*) € R™
denotes the noise in training samples, and €”(*) denotes the noise invalidation samples.

Similarly to the training tasks, we denote the ground truth of the test task by w. € R?®, and thus

y=xlw’ Letw" = [“6;] € RP. Let n, denote the number of training samples for the test task,

and let each column of X" € RP*"™ denote the input of each training sample. Similar to Eq. (1),
we then have

y = (XT)TwT €, ?)

where € € R"" denotes the noise and each element of y” € R~ corresponds to the output of each
training sample.

In order to simplify the theoretical analysis, we adopt the following two assumptions. Assumption 1
is commonly taken in the theoretical study of the generalization performance, e.g., Ju et al. (2020);
Bernacchia (2021). Assumption 2 is less restrictive (no requirement to be any specific distribution)
and a similar one is also used in Bernacchia (2021).

Assumption 1 (Gaussian features and noise). We adopt i.i.d. Gaussian features x ~ N (0,1,)
and assume i.i.d. Gaussian noise. We use o and o, to denote the standard deviation of the noise
for training tasks and the test task, respectively. In other words, €'V ~ N (0,0°1,,), e’ ~
N(0,0°1,,) foralli=1,--- ,m, and € ~ N(0,021, ).

Assumption 2 (Diversity/fluctuation of unbiased ground truth). The ground truth w and wgi) for

alli = 1,2,--- ,m share the same mean w?, i.e., ]E[wgi)} = w? = E[w?"]. For the i-th training

task, elements of the true model parameter 'wgz) € R7? are independent, i.e.,

E[(w? — w?)T(wl?) —w?)] = Ay = diag ((),1)% (Vi 2)? o (V).6)?) -
Let vy = \/Tr(Aq)), v = /3500 V3 /m, vr = /R w] — wo >, and wy = [“(’ﬂ € Rr.

2.2 MAML PROCESS

We consider the MAML algorithm (Finn et al., 2017; Finn, 2018), the objective of which is to train a
good initial model parameter among many tasks, which can adapt quickly to reach a desirable model
parameter for a target task. MAML generally consists of inner-loop training for each individual task
and outer-loop training across multiple tasks. To differentiate the ground truth parameters w (¥, we

use (A) (e.g., w") to indicate that the parameter is the training result.
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In the inner-loop training, the model parameter for every individual task is updated from a common
meta parameter . Specifically, for the i-th training task (i = 1,...,m), its model parameter ()
is updated via a one-step gradient descent of the loss function based on its training data X*("):

3)

) map — @ e O 1 Hyt(vﬁ) _xt@ T

2
ng Ow ° inner *T ’

2 2

where a; > 0 denotes the step size.

In the outer-loop training, the meta loss £™* is calculated based on the validation samples of all
training tasks as follows:

. , 2
a._ _1 { i) .1 j DT~ (i
ﬁmeld = mn., 227;1 ‘C(()tl)tera where ‘C(()il)ter = 3 Hyv(l) - XU(Z) w(l) ‘2 . (4)
The common (i.e., meta) parameter w is then trained to minimize the meta loss £™%,
2
At the test stage, we use the test loss £] . == 1 Hyr - XTT’lf?H and adapt the meta parameter w
2
via a single gradient descent step to obtain a desirable model parameter w", i.e., W" = w— 5= %
where a,. > 0 denotes the step size. The squared test error for any input x is given by
. 12
Liest(x, w"; w") = HwT'wT - wT'w”HQ. 5)

2.3  SOLUTIONS OF MINIMIZING META LOSS

The meta loss in Eq. (4) depends on the meta parameter w via the inner-loop loss in Eq. (3). It can
be shown (see the details in Appendix C) that L™ can be expressed as:

L = oot |y = B3, (©6)

2mmny

where v € R(™")*1 and B € R(™"»)*P are respectively stacks of m vectors and matrices given
by

v ap ~v(1) Tt t v()T ap ~xet(D) et ()T
THOEETS SERE LR x( (Ip—njx M xt( )
IO 7%XU(2)TXt(2)yt(2) xv@T (Ipi%:xt@)xt(Q)T)
= ) , B:= (7N
y?(m) %Xv(m) Txt<m>yt(m) xv(m)T (Ip— %Xt(m.)xt(nL)T)

By observing Eq. (6) and the structure of B, we know that min.; £™" has a unique solution almost
surely when the learning model is underparameterized, i.e., p < mn,. However, in the real-world
application of meta learning, an overparameterized model is of more interest due to the success of
the DNNs. Therefore, in the rest of this paper, we mainly focus on the overparameterized situation,
i.e., when p > mn,, (so the meta training loss can decrease to zero). In this case, there exist (almost
surely) numerous w that make the meta loss become zero, i.e., interpolators of training samples.

Among all overfitted solutions, we are particularly interested in the min ¢>-norm solution, since it
corresponds to the solution of gradient descent that starts at zero in a linear model. Specially, the
min ¢2-norm overfitted solution Wy, is defined as

Wy, = argming |w||, subjectto Bw = 1. (8

In this paper, we focus on quantifying the generalization performance of this min ¢s-norm solution
with the metric in Eq. (5).

3 MAIN RESULTS

To analyze the generalization performance, we first decouple the overall test error into two parts: i)
the error caused by the one-step gradient adaption for the test task, and ii) the error caused by the
meta training for the training tasks. The following lemma quantifies such decomposition.
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Lemma 1. With Assumptions 1 and 2, for any learning result w (i.e., regardless how we train w),
the expected squared test error is

~ ~ 2
Xl wr Etesr(mvwr; ,wr) = fzest (”w - '1170”2) s
X" €r,

where fioq () = ((1 —a)? + ’%104%) (C+vd) + O;%paf.

Notice that in the meta-learning phase, the ideal situation is that the learned meta parameter w
perfectly matches the mean wy of true parameters. Thus, the term ||w — 'wo||§ characterizes how
well the meta-training goes. The rest of the terms in the Lemma 1 then characterize the effect
of the one-step training for the test task. The proof of Lemma 1 is in Appendix H. Note that the
expression of fis () coincides with Eq. (65) of Bernacchia (2021). However, Bernacchia (2021)
uses a different setup and does not analyze its implication as what we will do in the rest of this
section.

3.1 UNDERSTANDING THE TEST ERROR

Proposition 1. We have

p+1

L (b — w4 12) < ming, Bo,x e [Lien(@, w75 7)] < b — wol3 + 2.

Further, by letting o, = nfﬁ (which is optimal when o, = 0), we have

Ez X" er wr [Liesi(x,w"; w")] = nfi:;nl-i-l(”w - wOH; + Vrz) + %U%

The derivation of Proposition 1 is in Appendix H.1. Some insights from Proposition 1 are as follows.

1) Optimal «, does not help much when overparameterized. For meta-learning, the number of
training samples n,. for the test task is usually small (otherwise there is no need to do meta-learning).
Therefore, in Proposition 1, when overparameterized (i.e., p is relatively large), the coefficient

m’j:;il of (|| — wo||3+1/2) is close to 1. On the other hand, the upper bound |[@ — wq||3+2 can
be achieved by letting o, = 0, which implies that the effect of optimally choosing a. is limited un-
der this circumstance. Further, calculating the optimal «, requires the precise values of || — wy Hg,
v2, and o2. However, those values are usually impossible/hard to get beforehand. Hence, we next

investigate how to choose an easy-to-obtain a..

2) Choosing . = n,/(n, + p + 1) is practical and good enough when overparameterized.
Choosing a,. = n,./(n, + p + 1) is practical since n,. and p are known. By Proposition 1, the gap
between choosing v, = n,/(n, +p+ 1) and choosing optimal v, is at most %Uf < %of.
When p increases, this gap will decrease to zero. In other words, when heavily overparameterized,

choosing o, = n,./(n, + p+ 1) is good enough.
3) Overparameterization can reduce the noise error to zero but cannot diminish the task diver-

sity error to zero. In the expression of fieg (||12; — wy ||§) in Lemma 1, there are two parts related

to the test task: the noise error (the term for o,.) and the task diversity error (the term for v,.). By
Proposition 1, even if we choose the optimal ., the term of 2 will not diminish to zero when p
. . . r 2 r 2 .

1r?cr'ea.ses. In contrast, by. letting o, = n, / (n, + p+ 1), the noise term mar < %% will
diminish to zero when p increases to infinity.

3.2 CHARACTERIZATION OF MODEL ERROR

Since we already have Lemma 1, to estimate the generalization error, it only remains to estimate

|| — ong, which we refer as model error. The following Theorem 1 gives a high probability
upper bound on the model error.

Theorem 1. Under Assumptions I and 2, when min{p, n:} > 256, we must have

~ 2
Prxt(l:m)7xv(1:m) {Ew(l:m)7€t(1:m)7€v(1:m) H’wz2 — w0||2 < bw} >1—mn,

27m2n§

where by, = b, + U and 1) = e
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The value of by, and b9 are completely determined by the finite (i.e., non-asymptotic region)
system parameters p, s, M, Ty, Ny, Hong ,v2,02, and ay. The precise expression will be given in
Section 4, along with the proof sketch of Theorem 1. Notice that although b,, is only an upper
bound, we will show in Section 4 that each component of this upper bound is relatively tight.

Theorem 1 differs from the result in Bernacchia (2021) in two main aspects. First, Theorem 1 works
in the non-asymptotic region where p and n, are both finite, whereas their result holds only in the
asymptotic regime where p,n; — oo. In general, a non-asymptotic result is more powerful than
an asymptotic result in order to understand and characterize how the generalization performance
changes as the model becomes more overparameterized. Second, the nature of our bound is in high
probability with respect to the training and validation data, which is much stronger than their result
in expectation. Due to the above key differences, our derivation of the bound is very different and
much harder.

As we will show in Section 4, the detailed expressions of by, and b9 are complicated. In order to
derive some useful interpretations, we provide a simpler form by approximation' for an overparam-
eterized regime, where a;p < 1 and min{p, ns} > mn,,. In such a regime, we have

2 gideal o, __b
wolly, byt R )

b ~ P—MNy
wo D

where bs ~ mn, ((1 + %)02 +C(1+ %)ﬂ), and C; to C, are some constants. It turns out
that a number of interesting insights can be obtained from the simplified bounds above.

1) Heavier overparameterization reduces the negative effects of noise and task diversity. From
Eq. (9), we know that when p increases, bilﬂeal decreases to zero. Notice that bﬁeal is the only term
that is related to o2 and v2, i.e., bi% corresponds to the negative effect of noise and task diver-
sity/fluctuation. Therefore, we can conclude that using more features/parameters can reduce the
negative effect of noise and task diversity/fluctuation.

Interestingly, biﬂeal can be interpreted as the model error for the ideal interpolator Wwige, defined as
Wieal = argmin, ||w — ong subject to  Bw = 7.

Differently from the min /5-norm overfitted solution in Eq. (8) that minimizes the norm of w, the
ideal interpolator minimizes the distance between w and wy, i.e., the model error (this is why we
define it as the ideal interpolator). The following proposition states that /%4 corresponds to the
model error of Wjgeq.

Proposition 2. When min{p, n;} > 256, we must have
26m2n?

P —
> min{p, n; 01

{ E H/U}ideal - wO”g S b%eal} 2 1-—
Xv(l:m)7Xt(l:m) w(l;m)7€t(l:m)7€v(1:m)

2) Overfitting is beneficial to reduce model error for the ideal interpolator. Although calculating
Wjgeql 18 NOt practical since it needs to know the value of wy, we can still use it as a benchmark that
describes the best performance among all overfitted solutions. From the previous analysis, we have
already shown that bﬁeal — 0 when p — o0, i.e., the model error of the ideal interpolator decreases
to 0 when the number of features grows. Thus, we can conclude that overfitting is beneficial to
reduce the model error for the ideal interpolator. This can be viewed as evidence that overfitting
itself should not always be viewed negatively, which is consistent with the success of DNNs in
meta-learning.

3) The descent curve is easier to observe under large noise and task diversity, and the curve
sometimes has a descent floor. In Eq. (9), when p increases, b,,, increases but bilgeal decreases.
When o and v becomes larger, b9 becomes larger while by, does not change, so that the descent
of %! contributes more to the trend of by, = by, + bi% (i.e., the overall model error). By further
calculating the derivative of b,, with respect to p (see details in Appendix D), we observe that, if

g > 1, then b, always decreases for p > Cymn,. If g = W < 1, then b,, decreases
N z

!The approximation considers only the dominating terms and treats logarithm terms as constants (since they
change slowly). Notice that our approximation here is different from an asymptotic result, since the precision
of such approximation in the finite regime can be precisely quantified, whereas an asymptotic result can only
estimate the precision in the order of magnitude in the infinite regime as typically denoted by O(-) notations.
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Figure 1: The model error w.r.t. different values of v and o, where m = 10, n; = 50, n, = 3,
s = b, ||w0||§ = 100, and ay = %. Subfigure (b) is a copy of subfigure (a) that zooms in the
descent floor. Every point is the average of 100 random simulations. The markers in subfigure (b)

indicate the descent floor for each curve.

when p € (Cymn,, 147"} ), and increases when p > C;ﬂi\/"g Thus, the minimal value (i.e., the
2
floor value) of b, is equal to ||w0||§ 1- %) which is achieved at p = C4m\/”£ This implies

that the descent curve of the model error has a floor only when bs is small, i.e., when the noise and

2
task diversity are small. Notice that the threshold C“m\/"i’ and the floor value ||wq ||§ (1 - %)

increase as g increases. Therefore, we anticipate that as v and ¢ increase, the descent floor value
and its location both increase.

In Fig. 1, we draw the curve of the model error with respect to p for the min ¢5-norm solution. In
subfigure (a), the blue curve (with the marker “+") and the yellow curve (with the marker “x”) have
relatively large v and/or 0. These two curves always decrease in the overparameterized region p >
mn,, and have no descent floor. In contrast, the rest three curves (purple, red, green) in subfigure (a)
have descent floor since they have relatively small v and o. Subfigure (b) shows the location and the
value of the descent floor. As we can see, when v and o increase, the descent floor becomes higher
and locates at larger p. These observations are consistent with our theoretical analysis.

In Appendix E.2, we provide a further experiment where we train a two-layer fully connected neural
network over the MNIST data set. We observe that a descent floor still occurs. Readers can find
more details about the experiment in Appendix E.2.

4) Task diversity yields double descent under zero noise. For a single-task classical linear regres-
sion model y = xTwy + e, the authors of Belkin et al. (2020) study the overfitted min ¢5-norm
solutions wy, single learned by interpolating n training samples with p > n + 2 i.i.d. Gaussian
features. The result in Belkin et al. (2020) shows that its expected model error is
2 _p—n 2 n
E [[we, single — woll; = > lwolly + mf”Q-

We find that both meta-learning and the single-task regression have similar bias terms 2=

lwo ||2
and 227wy |3, respectively. When p — oo, these bias terms increase to ||wy |5, which corresponds
to the null risk (the error of a model that always predicts zero). For the single-task regression, the
remaining term ——— 102 ~ fa when p > n, which contributes to the descent of generalization
error when p 1ncreases On the other hand, if there is no noise (¢ = 0), then the benign overfit-
ting/double descent will disappear for the single-task regression. In contrast, for meta-learning, the
term that contributes to benign overfitting is 594!, As we can see in the expression of b9 in Eq. (9),
even if the noise is zero, as long as there exists task diversity/fluctuation (i.e., ¥ > 0), the descent
of the model error with respect to p should still exist. This is also confirmed by Fig. 1(a) with the
descent blue curve (with marker “+”) of v = 60 and o = 0.

5) Overfitted solution can generalize better than underfitted solution. Let w =1 denote the
solution when p = s = 1. We have

2 2.2 2
pr ) H2 e otap o

~

~

2 m m (1 —ay)?mn,
The derivation is in Appendix O. Notice that p = s means that all features are true features, which is
ideal for an underparameterized solution. Compared to the model error of overfitted solution, there
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is no bias term of wy, but the terms of v2 and o2 are only discounted by m and n,. In contrast,
for the overfitted solution when p > mn,, the terms of v and o2 are discounted by p. Since the
value of m and the value of n,, are usually fixed or limited, while p can be chosen freely and made
arbitrarily large, the overfitted solution can do much better to mitigate the negative effect caused
by noise and task divergence. This provides us a new insight that when o, v are large and ||wyll,
is small, the overfitted /5-norm solution can have a much better overall generalization performance
than the underparameterized solution. This is further verified in Fig. 1(a) by the descent blue curve
(with marker “+”), where the first point of this curve with p = 5 = s (in the underparameterized
regime) has a larger test error than its last point with p = 1000 (in the overparameterized regime).

4 TIGHTNESS OF THE BOUND AND ITS PROOF SKETCH

We now present the main ideas of proving Theorem 1 and theoretically explain why the bound in
Theorem 1 is reasonably tight by showing each part of the bound is tight. (Numerical verification
of the tightness is provided in Appendix E.1.) The expressions of by, and b4 (along with other
related quantities) in Theorem 1 will be defined progressively as we sketch our proof. Readers can
also refer to the beginning of Appendix I for a full list of the definitions of these quantities.

We first re-write ||wo — Wy, ||§ into terms related to B. When B is full row-rank (which holds almost
surely when p > mn,,), we have
1

g, =BT (BB") 1. (10)
Define -y as
o = v — Bwy. (11
Doing some algebra transformations (details in Appendix F), we have
lwo —tie, 3 = || (1, — BT (BBT)™'B) wy[; + || BT (BBT) 4] (12)
Term 1 Term 2

To estimate the model error, we take a divide-and-conquer strategy and provide a set of propositions
as follows to estimate Term 1 and Term 2 in Eq. (12).

Proposition 3. Define
(p— mn,) +2/(p— mn,) lup + 2Inp

R 2,

: vt Jewoll

= (p—mny) —2y/(p—mn,)Inp 2

b, o2
p+2vplnp+2lnp

When p > mn,, and p > 16, We then have
Pr[Term 1 of Eq. (12) < by,] > 1—2/p, Pr[Term 1 of Eq. (12) > by,] > 1—2/p,
D — MMy

E [Term 1 of Eq. (12)] =
Xt(l:‘ln)7Xv(1:7n.)

ol -

Proposition 3 gives three estimates on Term 1 of Eq. (12): the upper bound b,,,,, lower bound b,,,,
and the mean value. If we omit all logarithm terms, then these three estimates are the same, which
implies that our estimation on Term 1 of Eq. (12) is fairly precise. (Proof of Proposition 3 is in
Appendix J.) It then remains to estimate Term 2 in Eq. (12). Indeed, this term is also the model error
of the ideal interpolator. To see this, since Bw = -, we have B(w — wg) = v — Bwg = 6. Thus,
to get min || — wq ||§ as the ideal interpolator, we have Wigea —wo = BT (BBT)~14~. Therefore,
we have

. _ 2
|| Widear — w0||§ = HBT(BBT) 157H2~ (13)
Now we focus on HBT(BBT)_lész. By Lemma 6 in Appendix G.2, we have

(5 2 _ 2 6 2
S < |BT(BBT) ey < Ll (14)

We have the following results about the eigenvalues of BB



Published as a conference paper at ICLR 2023

Proposition 4. Define oy == 2t (\/p + /7y +In Jm)? and
beig,min =p + (max{0,1 — a}}* — 1) ny — ((ny, + 1) max{a},1 — o} }* + 6mn,) /plnp,
beig,max =P + (max{a;, 1—a}}? - 1) ng + ((nv + 1) max{a},1 —a}}? + 6mnv) Vvplnp.
When p > ny > 256, we must have
Pr {beigmin < Amin(BB”) < Apax(BBT) < beigmax } > 1 — 23m*n2 /nf*.
Proposition 5. Define

Ceig.min = max{0,1 — o} }%p — 2mn, max{a}, 1 — o/ }?\/plnp,
Ceig.max = max{aj, 1 — a}}? (p + (2mn, + 1)\/171711]9) :
When ny > p > 256, we have
Pr {Ceigmin < Amin(BB”) < Apax(BB”) < ceigmax | > 1 — 16m*n2 /p°4.

To see how the upper and lower bounds of the eigenvalues of BB” match, consider ayp < 1,
which implies o} < 1, and the fact that /P and In p are lower order terms than p, then each of
beig, min ; Deig,max Ceig,min, Ceig,max €an be approximated by p & C'mn,, for some constant C'. Further,
when p > mn,, all beig min, Deig, max Ceig,min Ceig,max €an be approximated by p, i.e., the upper
and lower bounds of the eigenvalues of BBT match. Therefore, our estimation on )\maX(BBT)
and Apin(BBT) in Proposition 4 and Proposition 5 are fairly tight. (Proposition 4 is proved in
Appendix L, and Proposition 5 is proved in Appendix M.) From Eq. (14), it remains to estimate

)

Proposition 6. Define
6.25(1n(spnt))2> .

ng — 2¢/ng In(sny)
t

b

7 <maX{ 1- atnt + 2y/ne In(sme) + 2In(sme)
ny

bs = mn,o> (1 +

aZp(lnng)?Inp of(p—1)

> + mnyv? - 21In(sny) - (D +
T

N

When min{p, n;} > 256, we must have

2 5mmn, 2mn,
Prxt(l:m,)7xv(1:nz) {]Ew(lrm))Ef,(l:m))ev(l:"n) H5’y||2 < ba} >1-— T T oA

2 2
We also have E ||5’y||§ = mn,o? (1 + %tp) + v2mn, ((1 —a)? + %ﬁl)), where the expecta-
tion is on all random variables.

Proposition 6 provides an upper bound bs on ||67H§ and an explicit form for E HMH; By comparing
bs and E \|6fy||§, the differences are only some coefficients and logarithm terms. Thus, the estimation
on ||57||§ in Proposition 6 is fairly tight. Proposition 6 is proved in Appendix N.

Combining Eq. (13), Eq. (14), Proposition 4, Proposition 5, and Proposition 6, we can get the result

. . i b
of Proposition 2 by the union bound, where bideal = s . The
p y ’ w max{beig, minl {p>n;} +Ceig,minl {p<n;}> O}

detailed proof is in Appendix K. Then, by Eq. (13), Proposition 2, Proposition 3, and Eq. (12),
we can get a high probability upper bound on ||wy — Wy, ||§, i.e., Theorem 1. The detailed proof
of Theorem 1 is in Appendix I. Notice that we can easily plug our estimation of the model error
(Proposition 2 and Theorem 1) into Lemma 1 to get an estimation of the overall test error defined in
Eq. (5), which is omitted in this paper by the limit of space.

5 CONCLUSION

We study the generalization performance of overfitted meta-learning under a linear model with Gaus-
sian features. We characterize the descent curve of the model error for the overfitted min /5-norm
solution and show the differences compared with the underfitted meta-learning and overfitted clas-
sical (single-task) linear regression. Possible future directions include relaxing the assumptions and
extending the result to other models related to DNNSs (e.g., neural tangent kernel (NTK) models).
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A RELATED WORK

Our work is related to recent studies on characterizing the double-descent phenomenon for overfitted
solutions of single-task linear regression. Some works study the min ¢2-norm solutions for linear
regression with simple features such as Gaussian or Fourier features (Belkin et al., 2018; 2019;
Bartlett et al., 2020; Hastie et al., 2019; Muthukumar et al., 2019), where they show the existence
of the double-descent phenomenon. Some others (Mitra, 2019; Ju et al., 2020) study the min ¢;-
norm overfitted solution and show it also has the double-descent phenomenon, but with a descent
curve whose shape is very different from that of the min /2-norm solution. Some recent works study
the generalization performance when overparameterization in random feature (RF) models (Mei
& Montanari, 2019), two-layer neural tangent kernel (NTK) models (Arora et al., 2019; Satpathi
& Srikant, 2021; Ju et al., 2021), and three-layer NTK models (Ju et al., 2022). (RF and NTK
models are linear approximations of shallow but wide neural networks.) These works show the
benign overfitting for a certain set of learnable ground truth functions that depends on the network
structure and which layer to train. However, all those works are on single-task learning, which
cannot be directly used to characterize the generalization performance of meta-learning due to their
differences in many aspects mentioned in the introduction.

Our work is related to a few recent works on the generalization performance of meta-learning. In
Bernacchia (2021), the expected value of the test error for the overfitted min ¢3-norm solution of
MAML is provided. However, the result only works in the asymptotic regime where the number
of features and the number of training samples go to infinity, which is different from ours where
all quantities are finite. In Chen et al. (2022), a high probability upper bound on the test error
of a similar overfitted min ¢5-norm solution is given in the non-asymptotic regime. A significant
difference between ours and Chen et al. (2022) is that our theoretical bound describes the shape of
double descent in a straightforward manner (i.e., our theoretical bound consists of decoupled system
parameters). In contrast, the bound in Chen et al. (2022) contains coupled parts (e.g., eigenvalues
of weight matrices are affected by the number of tasks, samples, and features), which may not
be directly used to analyze the shape of double descent. Besides, we also explain and verify the
tightness of the bound, while Chen et al. (2022) does not®. In Huang et al. (2022), the authors focus
on the generalization error during the SGD process when the training error is not zero, which is
different from our focus on the overfitted solutions that make the training error equal to zero (i.e.,
the interpolators). Our work also differs from Bernacchia (2021); Chen et al. (2022); Huang et al.
(2022) in the data generation model for the purpose of quantifying how the number of features
affects the test error, which has been explained in detail at the beginning of Section 2.1.

Type of meta-learnin Overparameterization .
R}c;lf))s. Nested £ Per—tzli)sk Meta Method Focus of analysis
Bai et al. (2021) v v iMAML Train-validation split
Chen & Chen (2022) v v MAML, BMAML Test risk
Saunshi et al. (2021) v v MAML Optimal step size
Bernacchia (2021) v v - Train-validation split
Sun et al. (2021) v v - Optimal representation
Zou et al. (2021) v v MAML Optimal step size
Chen et al. (2022) v v MAML,iIMAML Benign overfitting
] Ours [ [ v [ [ v [ MAML [ Descent curve shape’

Table 1: Positioning our work in Table 1 of Chen et al. (2022) (which is shown here by the part

above the last row).

B NOTATION TABLE

We summarize the important notations in Table 2.

2We use a more specific setup (such as Gaussian features) than that in Chen et al. (2022), which allows us
to provide a more specific bound and verify its tightness.
3E.g., how the generalization performance of overfitted solutions changes with respect to the number of

features.
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Symbol Meaning Type
S sparsity (the number of non-zero true parameters) integer
D the number of chosen parameters/features integer
m the number of training tasks integer
x the (general) input vector vector RP
w® the true parameters of the ¢-th task vector RP
€ the noise scalar
Ts the input vector corresponding to the true parameters vector R®
wgz) the true parameters of the i-th task vector R®
w® the true parameters of the i-th task (padding with zeros) vector R?
w;, the true parameters of the test task vector R®
w” the true parameters of the test task (padding with zeros) vector RP
w? mean value of w!” vector R?
wy mean value of w® vector R?
w the (general) meta training result (before one-step gradient adaptation) vector R?
w” the solution for the test task after one-step gradient adaptation on w vector RP
w® the solution for the i-th task after one-step gradient adaptation on w vector RP
Wy, the overfitted min ¢5-norm solution vector RP
Wideal the ideal overfitted solution vector RP
w” the solution for the test task after one-step adaptation on w vector RP
ng the number of the training samples for each training task integer
Ty the number of the validation samples for each training task integer
Ny the number of the training samples for the test task integer
X0 the matrix formed by n; training inputs of the i-th task matrix RP*"™
y'@ | the output vector corresponding to X () vector Rt
€' the noise in ¢ vector R™t
X0 the matrix formed by n,, validation inputs of the i-th task matrix RP*™»
v(D | the output vector corresponding to X *(?) vector R"™
€@ | the noise in y*@ vector R™»
X" the matrix of n, training samples for the test task matrix RP*""
y" the output corresponding to X" vector R"™"
€’ the noise in y” vector R™"
o standard deviation of the noise in the training samples scalar
oy standard deviation of the noise in the validation samples scalar
220, fluctuation of the ground truth for the training tasks scalar
Uy fluctuation of the ground truth for the target task scalar
[,i(rfr)ler the inner loss (on the training samples of the i-th training task) loss function
E((,fl)m the error for the validation samples after one-step gradient on the i-th task | loss function
Lmeta the meta loss (average of Ci(rfzer) loss function
Liest the squared test error for the test task loss function
o step size of the one-step gradient on each training task scalar
Qy step size of the one-step gradient on the target task scalar

Table 2: Table of the notations.
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C THE CALCULATION OF META LOSS

By the definition of £9 in Eq. (3), we have

mner

oct) 0 (3@ =X %) oL [y - xt"

inner __

ow ow o (yt(z _xt@®T )
— _xt@) (,yt(i) _ Xt(i)T’lD)

=X DXt T gy _ Xt gyt

Plugging it into Eq. (3), we thus have
w® = (Ip _ O"ﬁ(t(i)xt(i)T) + Xt( i) f(z) (15)
g

Plugging Eq. (15) into Eq. (4), we thus have

a1 , T2
o =3 y* ) — XD 50 i
2
Ly _xe@T (1, — xrOxi0 T gy 4 FLKH) )
2 i ng 2
1
2

2
00— 2 x0Tt ) _ xo@ T (Ip _ O%Xt(nxt(i)T) "
nt

Ty 2

By the definition of B in Eq. (7) and the definition of v in Eq. (7), we thus have

1 1 )
Lmeta _ —_Bwl?.
S~ 2, 17~ Bl
Eq. (6) thus follows.
D CALCULATION OF DESCENT FLOOR
Define (p) :== E=1 l|woll3 + % where p > Cymn,,. We have

Oh(p) _mn,

2
= woll; — —m——
op p? I 0”2 (p — Cymny)?

__mny flwolly (- C4m“v)2 b
(p — Cymny)? p MmNy HwOHg
mny ||w0||3 ( C4mn1; > < C’4mnv )
(p — Cymn,)? p Vo P v
bs

(recall that g := ———).
mny [lwol|;

Notice that when p > Cymn,, and wy # 0, the first and the second factors are positive. Thus, we
only need to consider the sign of A = (1 — % — \/g) If g > 1, then A < 0, which implies
that 2 (p) is monotone decreasing. If g < 1, then we have

A {< 0, whenp e <C4mnq,7 C{‘*_mjgv) ,

C. v
>0, whenp> 147’7'\%,
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Figure 2: Comparison between the experimental values and the theoretical values of the model error.

which implies that h(p) is monotone decreasing when p € (C4mnv, %ﬁ) , and is monotone

increasing when p > C;‘*_L\Z»;’. This suggests a descent floor at p = C;“_m\}’; , where at this point
1-/g gmn
2
an = llwoll} [ 1- =5 + :
p= 014_m\/7%1; C’4mnv (ﬁ — 1)
1-Vg g
= flwoll3 {1- 52+

“al2s-1)
~ (1 - (1‘@) -

E ADDITIONAL EXPERIMENTS

E.1 SIMULATIONS TO VERIFY THE TIGHTNESS OF THEORY 1

In Fig. 2, we plot both the experimental values (denoted by separated markers) and the theoretical
values (denoted by the continuous curve) of the model error. The simulation setup and (conse-
quently) the experimental values are the same as those in Fig. 1 (note that we only show the points
in the overparameterized region, i.e., p > mn,,). The theoretical value is calculated by Theorem 1
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Figure 3: The test error for a two-layer fully connected neural network. The x-axis denotes the
neural network width (i.e., the number of neurons in the hidden layer).

and the approximation Eq. (9) with constants* C; = C3 = 0.001 and Cy = C; = 0.99995. As we
can see in Fig. 2, the experimental value points closely match the theoretical curves, which suggests
that Theorem | and Eq. (9) are fairly tight.

E.2 EXPERIMENTS OF META-LEARNING WITH NEURAL NETWORK ON REAL-WORLD DATA

In this section, we further verify our theoretical findings by an experiment over a two-layer fully-
connected neural network on the MNIST data set.

Neural network structure: The input dimension of the neural network is 49 (i.e., 7 x 7 gray-scale
image shrunk from the original 28 x 28 gray-scale image). The input is multiplied by the first-
layer weights and fully connected to the hidden layer that consists of ReLUs (rectified linear units
max{0, -}) with bias. The output of these ReLUs is then multiplied by the second layer weights and
then goes to the output layer. The output layer is a sigmoid activation function with bias.

Experimental setup: There are 4 training tasks and 1 test task. The objective of each task is to
identify whether the input image belongs to a set of 5 different digits. Specifically, the sets for 4
training tasks are {1,2,3,7,9}, {0,2,3,6,9}, {0,1,4,6,8}, {1,2,3,5,7}, respectively. The set
for the test task is {0, 2, 3,6,8}. For each training task, there are 1000 training samples and 100
validation samples. All samples (except the ones to calculate the test error) are corrupted by i.i.d.
Gaussian noise in each pixel with zero mean and standard deviation 0.3. The number of samples for
the one-step gradient is 1000 for these 4 training tasks and is 500 for the test task, i.e., n, = 1000
and n,, = 500. The number of validation samples is n,, = 100 for each of these 4 training tasks.
The initial weights are uniformly randomly chosen in the range [0, 1].

Training process: We use gradient descent to train the neural network. The step size in the outer-
loop training is 0.3 and the step size of the one-step gradient adaptation is a; = o, = 0.05. After
training 500 epochs, the meta-training error for each simulation is lower than 0.025 (the range of the
meta-training error is [0, 1]), which means that the trained model almost completely fits all validation
samples.

*These constants are manually calibrated to fit the experimental values better.
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Simulation results and interpretation: We run the simulation 30 times with different random
seeds. In Fig. 3, we draw a box plot showing the test error for the test task, where the blue curve
denotes the average value of these 30 runs. We can see that the overall trend of the test curve
is decreasing, which suggests that more parameters help to enhance the overfitted generalization
performance. Another interesting phenomenon we find from Fig. 3 is that the curve is not strictly
monotonically decreasing and there exist some decent floors (e.g., when the network width is 80).

F DETAILS OF DERIVING EQ. (12)

Notice that
(I, - B"(BB")"'B) wy, B"(BB") 'év) =(67)"(BB")'B (I, - B"(BB”) 'B) wy
=(7)" (BBT)"'B — (BB") 'B) wo
=0. (16)
We thus have
lwo — g, |3 = [|wo — B (BBT) 14|, (by Eq. (10))
— |1, - BT(BB”)"'B) wy — B (BB”)"'5+|> (by Eq. (11))
= ||(x, - B(BBY)"'B) wo|; + |B"(BB) " 'év]|> (by Eq. (16)).

Term 1 Term 2

G SoME USEFUL LEMMAS

G.1 ESTIMATION ON LOGARITHM

Lemma 2. Forany x > 0, we must have Ilnx > 1 — %

Proof. This can be derived by examining the monotonicity of Inz — (1 — %) The complete proof
can be found, e.g., in Lemma 33 of Ju et al. (2020).

Lemma 3. When k > 16, we must have 2 % <1

Proof. We only need to prove that the function g(k) := 4lnk — k < 0 when k£ > 16. To that end,
when k£ > 16, we have

dg(k) 4
——=-—-1<0.
ok k -
Thus, g(k) is monotone decreasing when k& > 16. Also notice that g(16) =4In16 —16 ~ —4.91 <
0. The result of this lemma thus follows. O

G.2 ESTIMATION ON NORM AND EIGENVALUES

Let Apin(+) and Apin(+) denote the minimum and maximum singular value of a matrix.

Lemma 4. Consider an orthonormal basis matrix U € R*** and any vector a € R¥*1. Then we
must have

Uall, = llall, -

Proof. We have

k
Ua = Z a;U;, A7)
=1
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where Uj; is the i-th column of U and a; is the i-th element of a. Because U is an orthonormal
basis matrix, we know that U; are orthogonal to each other. In other words,

0, ifi#j
TY7. — ’ )
Uiy {1, ifi = j. (18)
Thus, we have

IUall,

k T /g
= <Z aqu',) (Z aiUi> (by Eq. (17))
i=1 i=1

k
=\|Y_ a? (by Eq. (18))

i=1

=llall, -
The result of this lemma thus follows. O
Lemma 5. Consider a diagonal matrix D = diag(dy, ds, - - - ,dy) € R¥*¥ where min; d; > 0. For

any vector a, we must have

IDall, € [mind; |lall,, maxd; |lall,)

Proof. We have

k k k

IDall, = | d?a? € |mind;, | 3 a2, maxd;, |3 a2 e[m}ndi||a||2,m?xdi|\a|\2}.
i=1 j=1 j=1 )

The result of this lemma thus follows. O

Lemma 6. For any A € R7** and a € R¥*!, we must have
2 2 2
|Aal} € [Aumin(ATA) [al, Anax(ATA) [all3] -
Proof. Do singular value decomposition of A as A = UDVT. Here D € R?** is a diagonal

matrix that consists of all singular values, U € R9%? and V € R*** (and their transpose) are
orthonormal basis matrices. We have

|Aal; = a’ATAa =a"VDTDV”a
2

- ‘\/DTDVTaH
2

e [Amm(DTD) [V7al

>+ Amax(DTD) ||V al3] (by Lemma 5)

= Puin(ATA) [VT ][}, Anax(ATA) [V7al}] by A =UDVT)

Awin(ATA) [a]3, Amex(ATA) all3] (by Lemma 4).

The result of this lemma thus follows. O

The following lemma is useful to estimate the eigenvalues of a matrix whose off-diagonal elements
are relatively small.

Lemma 7 (Gershgorin’s Circle Theorem (Marquis et al., 2016)). If A is an nxn matrix with complex
entries a;j then r;(A) = 3., |a; ;| is defined as the sum of the magnitudes of the non-diagonal
entries of the i-th row. Then a Gershgorin disc is the disc D(a; ;,r;(A)) centered at a;; on the

complex plane with radius r;(A). Theorem: Every eigenvalue of a matrix lies within at least one
Gershgorin disc.
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G.3 ESTIMATION ON RANDOM VARIABLES OF CERTAIN DISTRIBUTIONS

Lemma 8 (Corollary 5.35 of Vershynin (2010)). Let A be an N1 x Ny matrix (N7 X N3) whose
entries are independent standard normal random variables. Then for every t > 0, with probability
at least 1 — 2 exp(—t2/2) one has

V Nl Y/ N2 —t S Armn(-A) S Amax(iA) S V Nl + V N2+t

Lemma 9 (stated on pp. 1325 of Laurent & Massart (2000)). Let U follow x? distribution with D
degrees of freedom. For any positive x, we have

Pr{U—D22@+2x}§e—“’,
Pr{D—UzNE} <e?.

Lemma 10 (Lemma 31 of Ju et al. (2020)). Let uy,us, - ,ur and uy,us, - - - ,ux denote 2k ran-
dom variables that follow i.i.d. standard normal distribution. For any a > 0, we must have

k
Pr >@ §2exp<k (at+1n2t>),
p 2 2 a

g U3 V4

where
14+ V1+a?
= ” .
Lemma 11. For any k > 16, let uy,us, -+ ,ug and uy, us, - - ,uy denote 2k random variables

that follows 1.1.d. standard normal distribution. For any q < k and ¢ > 0, we must have

k
2
Pr{ Zuwi >C'm} < m
=1

Further, by letting c = 1 and g = k > 16, we have

V| > VkInk —
{ ZU Vi n } k
By letting q = e, we have
{ z:uzvZ >c\f} S odce
Proof. Recall the definition of ¢ in Lemma 10, we first want to prove at + In 2 2> o0 x/1+7+ ok To
that end, we have
2t -1 \/1 2
at+ln—:—1+\/1+a2+l i + ) (by the definition of ¢ in Lemma 10)
a
a2
_—1+\/1+a2+1— (by Lemma 2)
—1+v1+a?) Y
a? 1+ \/1 +a?
= 41— ——"——— (sincea’® = (=1 +V14+a2)(1+V1+a2)
1+ V14 a? 2 (
a2
= (19)
2(vV1+a2+1)

lnq . Thus, we have

%:c-\/klnq. (20)

Now we let a = 2¢ -
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‘We have

[Inq
—9¢ 1] —2
a=2c 3
/In k

<2c- IlT(sincqulﬂ)

<c (by Lemma 3). 2D

Because ¢ > 1, we have

I+vVi+e2<c+vVeE+e2=c(1+V2). (22)

We thus have

a2

2t
at +In — >————=——— (by Eq. (19
« S irary

a2
—— (21
Z2(1+\/1+7c2) (by Bq. 21

a2
Zm (by Eq. (22))

dcl 1
2?% (since a = 2¢ - ,/% and V2 ~ 1.414 < %). (23)

k 2t
2 exp <— (at +In )>
2 a

<2exp (—2 . > (by Eq. (23))
=2exp (—0.4clng). (24)

Thus, we have

Plugging Eq. (20) and Eq. (24) into Lemma 10, the result of this lemma thus follows. O

Lemma 12 (Isserlis’ theorem (Michalowicz et al., 2009)). If (z1, 22, , &, ) is a zero-mean mul-
tivariate normal random vector, then

Elzize - 2n) = Z H E[z;x;],
AcA? (i,j)€A

where A denotes a partition of 1,2,--- ,n into pairs, and A2 denotes all such partitions. For
example,

Elz12ow324] = E[r122] E[r324] + E[r123] E[r224] + E[2124] El2273].

The following lemma is mentioned in Bernacchia (2021) without a detailed proof. For the ease of
readers, we provide a detailed proof of this lemma here.

Lemma 13. Consider a random matrix X € RP*™ whose each element follows ii.d. standard
Gaussian distribution (i.e., i.i.d. N'(0,1)). We mush have

E[XTX] = pIn7
E[XXT] = nl,,
EXXTXXT] =n(n+p+ I,

Proof. Since each row of X are i.i.d., we immediately have E[X XT| = nI, and E[ X7 X] = pL,.
It remains to prove E[X X7 X XT] = n(n + p + 1)I,. To that end, we have

i,

(XX = X, X' = in,kxj,k, (25)
k=1
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where X; denotes the i-th row of X, and []” denotes the element in the ¢-th row, j-th column of
the matrix. Thus, we have

NE

(XXTXXT] =

(2]

(XX, (XX
k

I
=

Il
ol
-
i

(Z Xi,le,l> <Z Xj,ka,l/) (by Eq. (25)). (26)
=1

=1
Now we examine the value of E X; ; X}, ;X 1» Xy, ;v by Isserlis” theorem (Lemma 12).
E X1 Xu1 X0 Xk
,  wheni #£ j,
, wheni=jandk #iandl #1,
when ¢ = j and k # i and | = I’ (there are n(p — 1) such terms for each 1),

when ¢ = j = kand [ # I’ (there are n(n — 1) such terms for each 7),
,  wheni=j=kand!l =1 (there are n such terms for each 7).

I
W~ = O O

By Eq. (26), we thus have
EXXTXXT] = (n(p—1) +n(n—1)+3n)L, =n(n+p+ 1)1,
The result of this lemma thus follows. O

Lemma 14 (Lemma 24 of Ju et al. (2020)). Considering a standard Gaussian distribution a ~
N(0,1), when t > 0, we have

V2fre <Pr{a>t} < V2fre "
Ee—— rqa —_—
t2—|—\/t2+4_ - _t+ /t2+%

Notice that t + /1% + % > 2\/2 whent > 0. We thus have

1
Pr{a >t} < §€7t2/2.
By the symmetry of the standard Gaussian distribution, we thus have

Prija| >t} < e /2,

H PROOF OF LEMMA 1

Proof. Similar to Eq. (15), we have

T

W = (Ip - O"”)UX”“) W+ Xy 27)

By Eq. (27), we can express the learned result for the test task as

W = <1p - O”XTX”) W+ Xy
n"’ T
Or < p~rrT ~ Or <y rT _ r T
:(Ip—nx X )w+X (X w +e) (by Eq. (2)). (28)

ny

T

Considering a new input « for the test task, the ground-truth is " w”. The distance between the

ground-truth and the output of the learned model is

HwTwr —zTw"

>
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Taking the expectation on x for the square of the distance, we have
R o A o
xT xT

:E(wr o wT)Ta:a:T(wT o ’uA)T)
x

:(wr _ uA]r)T ImE[wa](wf _ ’LZJT)

=||lw" — 11;7'||§ (since E[zz”] = I, by Assumption 1).
x

Notice that

T
Then, taking the expectation on €”, we have

2

+ E
2 X, er

2
Qrxrer

w' — W' =
B - o

E
X7 er X er

‘ (Ip - (;;TXTXTT> (w — w")

T

2
(since € is independent of other random variables)

T
= (w — w")" E l(lp - ZTXTXTT> <I,, - Z’“XTXTTﬂ (1 — w")

Oé% A 2 a%p 2
=(1-20,+—(n,+p+1) | ||w—w"|;+ oy (by Lemma 13).
n Ny

T

(29)
Notice that
E [l = w3 = E |l — wo — (" = wo)];
=||w — ong + 12 (by Assumption 2, (w" — wy) has zero mean). (30)
The result of this proposition thus follows by plugging Eq. (30) into Eq. (29). O
H.1 PROOF OF PROPOSITION 1
Proof. For ease of notation, we let K = [ — woll5 + v2. From Lemma 1, we can see that

Srest <||IIJ — wy ||§) is a quadratic function of «,:

. +1 2
Jrest (llw - wolIi) = ((pn + 1) K+ pa) o? —2Ka, + K.

r

Thus, to minimize the test loss shown by Lemma 1, we can calculate the optimal choice of . as
K

1+p+1>K+ﬂ

[Olr]opti = (

(Thus, we have [, ]opi = when o, = 0.)

uzs
n,+p+1
Plugging [t |opi iNtO fiest (||1i; — w0||§), we thus have

po?
=l + o2’
ar=[ar]opi (1 pTl>K+pag ’rLT—"—p_i_l_"_pT

fes (Il = wo 3) (31)
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The right-hand side of Eq. (31) increases when o2 increases. Therefore, by letting o, = 0 and
o, = 00, we can get the lower and upper bound of Eq. (31), i.e.,

s (Il = wol 3)

1
= KL7
n.+p+1

op=[atr|opti

The result of this lemma thus follows.

I PROOF OF THEOREM 1

We summarize the definition of the quantities related to the definition of b,, as follows:

a

ay = n—z (VP++vni+n \/nt)Q ,

beig,min = p + (max{0,1 — a}}* — 1) ny — ((ny + 1) max{aj, 1 — o} }> + 6mn,) \/plnp,
Ceig.min = max{0, 1 — a},}?p — 2mn, max{a}, 1 — o}, }*y/pInp,

ng — 2¢/ng In(sny)
Qi

2

Do (maxd 11— ng + 2¢/n In(sny) + 21n(sny) 1

- t Ny ’ ny ’
9 a?p(lnng)?Inp 9 a?(p—1) 9

bs == mn,o” | 1+ R +mn,v* - 2ln(sny) - | D+ ’T6.25(ln(spnt)) ,

¢ ¢
(p —mn,) +2¢/(p—mn,) Inp+2Inp 2
bu, = Jwollz ,
p—2yplnp

pideal . bs

w max{beigmin ]l{p>nt} + Ceig,min]l{pgnt}7 O}’

by = by, + 09 (32)

Proof. Define the event in Proposition 2 as

. A 2 ideal
-Alarget = { E ||wideal - w0||2 < bw } .
w(l:nL)vet(lnn)yev(lwn)

Define the event in Proposition 3 as
Aarger,3 = {Term 1 of Eq. (12) < by, } -
By the definition of b,, in Eq. (32) and the definition of Apger,3 and Ayarger, We have Aareer,3 N
Aarger = || Wy, — ong < b, Thus, we have
Pr {”11\)/2 - ong < bw} >Pr {Atarget,3 N Atargel}
=1-Pr {Atcarget,fi U Afarget
>1- Pr[AtCarget,S] - PI‘[.AC

target

] (by the union bound)

2 26m2n?
>1——-— % (by Proposition 3 and Proposition 2)
p  min{n, p}%
27 2,2
> 2y (33)

min{n,, p}04”

The last inequality is because % < pO% since pO'6 > 25696 &~ 27.86 > 2. The result of this theorem
thus follows. ]
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J PROOF OF PROPOSITION 3

Define P := B”(BB”)"'B. In this section, we focus on estimating ||(I, — P)wol|5. Since
P2 = P, we know P is indeed a projection from R? to the subspace spanned by the columns of B”
(i.e., the rows of B). The following Lemma 15 shows that the subspace spanned by the columns of
B7 has rotational symmetry. Then, we will use Lemma 16 to show how the rotational symmetry
helps in estimating the expected value of the squared norm of the projected vector. We then prove
Proposition 3 by utilizing Lemma 15 and Lemma 16.

Lemma 15. The subspace spanned by the columns of BT has rotational symmetry (with respect to
the randomness of X*™) and X)) Specifically, for any rotation S € SO(p) where SO(p) C
RPXP denotes the set of all rotations in p-dimensional space, the rotated random matrix SB™ shares
the same probability distribution with the original BT .

Proof. Notice that forany ¢ =1,2,--- ,m,
xv@T (1 _ Ytxtixt@T ) g7
P,
:X'U(i)TsT o %Xv(i)TS_lth(i)Xt(i)TST
Uz
AT oy T ) T L -
= (SX”(”) - = (SX“(”)) (SX“Z)) (SX"‘(‘)) (since S™! = ST because S is a rotation)
Uz
= (SXU(i))T <I _ & (Sxt(i)> (Sxt(i))T>
» .
n¢
We thus have

[ Xv(l)T I, - ﬂxt(l)Xt(l)T g7

)T

Xv(2 Ip _ %Xt(Q)Xt(Q)T ST

SB” =

xv(m)T (Ip _ %Xt(m)xt(m)T> g7

[ (sx°™)7 (I, — 2 (sx1W) (sx:M)”
(sxv®@)7 (T, — & (SX!®@) (8X1@)"

| (sxm)" (1, - 2 (sx10) (8x1) ")

Because of the rotational symmetry of Gaussian distribution, we know that the rotated random ma-
trices SXV(*) and SX*(*) have the same probability distribution with the original random matrices
X?() and X4 respectively. Therefore, by Eq. (34), we can conclude that SB” has the same
probability distribution as B”. The result of this lemma thus follows. O

The following lemma shows how to use rotational symmetry to calculate the expected value of the
squared norm of the projected vector. Such a result has also been used in literature (e.g., (Belkin
et al., 2020)).

Lemma 16. Considering any random projection Py € RP*P to a k-dim subspace where the sub-
space has rotational symmetry, then for any given v € RP*1 we must have

k

2 2
E [|Povll5 = — ||v]5 .
: | Il vl

Proof. Since the subspace has rotational symmetry, to calculate the expected value, we can fix a
subspace and integral over all rotations. Specifically, consider any fixed projection A that projects
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to k-dim subspace that is spanned by a set of orthogonal vectors a1, as, - ,a; € RP. Therefore,
after projecting v with A, the squared norm of the projected vector is equal to

k

1Av]5 =) (ai,v)*.

i=1

Noticing that applying a rotation in the projected space of A is equivalent to applying the rotation
toay,asq,- - ,ar, we then have

E Povl?
E [Povl]

k
:/ S (Sa;, v)2dS
so(p) i=1

k
:/ S (S~'Sa,, S~ v)2dS
so(p) j—1

(since making a rotation S™1 on both vectors does not change the inner product value)

k

:/ S (i, S v)2dS
so(p) i=1
k

:/ S (a;, Sv)2ds
so(p) i=1
vl z
1702 a;,v)2do
Spfl /‘;pfl ;<

:E”Q Z/Spﬂ(ai,ﬁfdﬁ, (33)

where SP~! denotes the unit sphere in R” and S,_; denotes its area. Since A can be any fixed
projection to k-dim subspace, without loss of generality, we can simply let a; be the i-th standard
basis in R? (i.e., only the i-th element is nonzero and is equal to 1). (Note that there are p standard
bases although A is spanned by only the first £ standard bases.) In this situation, we have

/ (a;,®)?dv :/ (a;,v)?dv, foralli,j € {1,2,--- ,p},
Spr—1 Sp—1

and

p p
Z/ (a;,D)2dv :/ > (i, b)*dv :/ |o]2do =S, ;.
i=17/S5771 SPTion spt

Therefore, we have

By Eq. (35), we thus have

E [Pool} = = .
The result of this lemma thus follows. O
Now we are ready to prove Proposition 3.
Proof of Proposition 3. Define
6 := arccos (wo, Puwo) € [0,7/2].

2
|wolls
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Thus, we have
1T = P)wy |5 = sin” 0 - [|wy[3 - (36)

By Lemma 15, we know that the distribution of the hyper-plane spanned by the rows of B has
rotational symmetry (which is a mn,,-dimensional space). Therefore, 6 follows the same distribution
of the angle between a uniformly distributed random vector @ € RP and a fixed mn,,-dimensional
hyper-plane. To characterize such distribution of 6 (or equivalently, sin ), without loss of generality,
we let a ~ N(0,1,) and the hyper-plane be spanned by the first mn,, standard bases of R”. Thus,
we have

lagmnall, . 2 9t c1nlls

cos? 6 ~ , 5
lall; lall

(37)

Notice that ||a[mnv+1:p] ||§ and ||a||§ follow x? distribution with p — mn,, degrees and p degrees of
freedom, respectively. By Lemma 9 and letting * = In p in Lemma 9, we have

1
Pr{flal; < p—2vplap} < . (38)
1
Pr{llal; > p+2Vplp+2lp} <, (39)

Pr{Ha[mnqul:p]Hz (p —mn, +2\/m+2lnp}§
Pr{||amn, + 1[5 < (0 = mny) + 2/ (= mn, ) lup} <

Because p > 16, by Lemma 3, we have

L (40)
p

<L @1)
p

lnp

2

<l = 2—<1 = p—2y/plnp>0. (42)

Vplnp
b
We define
Aarget,3 = {Term 1 of Eq. (12) < by, }»
Aturger3 = {Term 1 of Eq. (12) > Bwo} .
We thus have
Pr {Af;m:el 3}

0> (p—mny) +2/(p—mn,)Inp+2Inp
sin?

—2vplnp
(by Eq. (36) and the definition of P)

Hamnu+1p||2 > p mnv +2\/m+21np
lall3 p—2Vphyp

SPr{||a||2 <p—2v/plp}
+PI‘{Ha’mnu+1pH2 (p — mn, +2\/m+2lnp}

(by Eq. (42) and the union bound)

} (by Eq. (37))

§% (by Eq. (38) and Eq. (40)). 43)

By Eq. (36) and Eq. (43), we thus have
2

PI.A. 3 21—7.
[ target,] p
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Similarly, using Eq. (39) and Eq. (41) (also by the union bound), we can prove

~ 2
Pr[Alarget,B] >1- 5

By Lemma 16, we have E[HPwOH;] = 2l H'wo||§. Thus, we have
— mny
F[Term 1 of Eq. (12)] = 2" Jlawo||? .
The result of this lemma thus follows. O

K PROOF OF PROPOSITION 2

Proof. Define the event in Proposition 2 as

. A~ 2 ideal
Alarget = E ||wideal - w0||2 < b1wea .
w(lim) gt(lim) gv(1im)

Define
Atarget,l = {/\maX(BBT) > beig,min]l{p>m} + Cei&min]l{PSnt}}
Combining Proposition 4 and Proposition 5 with the union bound, we have

23m?n?2

p arge 2 1- T " Yo4° 44
r[At g t,l] mln{p, nt}0‘4 ( )
We adopt the event in Proposition 6 as
2
= < .
Amgel’Q {w(lzm)7€t(1:7n)7€v(1:7n) ||6’Y||2 - bé}
By Eq. (14), we have ﬂ?:l Atarget;i = Atarger- Thus, we have
2
Pr[-Atarget] >Pr { ﬂ -Atarget,i }
i=1
2
=1-Pr { U Alcarget,i}
i=1
2
>1— Z Pr[Afyee ;] (by the union bound)
i=1
23m?n? Smn,  2mn, iy
- — My oMy 2R (by Eq. (44) and Proposition 6)
min{p, n; }04 ny p0-4
26m?n?
min{p,n; }*4’
The last inequality is because m > 1, n,, > 1, and
5
ny > 256 = n% >256°0 ~27.86 = —5 < 1.
ny
The result of this proposition thus follows. O

L  PROOF OF PROPOSITION 4

We prove Proposition 4 by estimating every element of BB”. We split BB” into m x m blocks
(each block is of size n, X n,). Recalling the definition of B in Eq. (7), we identify three types
of elements in BB?' as diagonal elements (type 1), off-diagonal elements of diagonal block (type
2), and other elements (type 3). Fig. 4 illustrates these three types of elements when m = 2 and
n, = 3. In the rest of this part, we will first define and estimate each type of elements separately in
Appendices L.1, L.2, and L.3. Using these results, we will then estimate the eigenvalues of BBT
and finish the proof of Proposition 4.
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type2 | | type2 |'| type 3 type 3 type 3

type 2 | '] type 3 type 3 type 3

type 3 type 3 type 3 type 2 | | type 2

type3 | | type3 | | type 3 || type 2

Figure 4: Tllustration of three types of the elements in BB” when m = 2 and n,, = 3. In this case
BB7 is a 6 x 6 matrix (i.e., R(m"v)x(m”v)). There are 4 (i.e., m?) blocks (divided by the dashed
red line) and each block is of size 3 x 3 (i.e., N, X 1y).

TYPE 1: DIAGONAL ELEMENTS
Type 1 elements are the diagonal elements of BB?', which can be denoted as

BB (i~ 1)n, 1, (i—1)no+

T
X7 (Ip _ %Xtmxt(i)T) (Ip _ %Xta)Xt(i)T) X0, 43)
T T

where ¢ € {1,2,--- ,m} corresponds to the i-th training task, j € {1,2,--- ,n,} corresponds to
the input vector of the j-th validation sample (of the i-th training task). To estimate Eq. (45), we
have the following lemma.

Lemma 17. Foranyi € {1,2,--- ;m}and any j € {1,2,--- ,n,}, when p > n; > 256, we must
have

Pr{[BB”](;_1)n,+j, (i—1)nu+j € by, b1]} > 1—

Bl

where

b, =max{0, 1— (Jc;}2 (nt —/2ny lnnt) +p—ns—+/2(p—n¢) Inny,
by = max{a}, 1 — 0‘2}2 (nt + 4/ 2n; Inng + lnnt) +p—nt++2(p—n) Inng + Inn,.

Proof. See Appendix L.1. O
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TYPE 2: OFF-DIAGONAL ELEMENTS OF DIAGONAL BLOCKS

Type 2 elements are the off-diagonal elements of diagonal blocks. Similar to Eq. (45), Type 2
elements can be denoted by

BB (- 1)+, (i—1)no-+k

T
(X O)T (Ip _ O‘txtu‘)xt(z')T) (I,, _ atxtu)xt(i)T) X0, 46)
Nt T

where j # k. We have the following lemma.
Lemma 18. Foranyi € {1,2,--- ,m} and any j, k € {1,2,--- ,n,} that j # k, whenp > n; >
256, we must have

- 5
Pr{[[BB )1y, 1), (i-no+k| S b2} 21— 7,
i
where
by = max{a}, 1 — a}}2\/ns Inng + /pnp.
Proof. See Appendix L.2. O

TYPE 3: OTHER ELEMENTS (ELEMENTS OF OFF-DIAGONAL BLOCKS)

Type 3 elements are other elements that are not Type 1 or Type 2. In other words, Type 3 elements
belong to off-diagonal blocks. Similar to Eq. (45) and Eq. (46), Type 3 elements can be denoted by

BB (i—1)n, 4. (1-1)n,+k

T
x0T (Ip _ O‘tXtu)Xt(i)T) (Ip _ O%Xt(th(l)T) X0,
Tt

Ny
_ < <I,, B zxt(i)xt(i)T> X1, <I,, B szt(l)xt(l)T) [X'u(l)]k> @7

where 7 # [. We have the following lemma.

Lemma 19. Foranyi,l € {1,2,--- ,m}and any j, k € {1,2,--- n,} thati # 1, whenp > n; >
256, we must have

- 13
Pr{|[BB” (- 1)n,+j, (—1)no+k| <bsp >1— o
t
where
bs := 6+/plnp.
Proof. See Appendix L.3. O

Now we are ready to prove Proposition 4.

Proof of Proposition 4. Define a few events as follows:
Ay = {all type 1 elements of BB” arein [b,, b1},
Ag = {all type 2 elements of BB” are in [—bs, Bg]} ,
Ajs := {all type 3 elements of BB” are in [—b3, bs]} .

Notice that there are mn,, type 1 elements, mn,(n, — 1) type 2 elements, and m(m — 1)n?2 type 3
elements. By the union bound, Lemmas 17, 18, and 19, we have

5 )

Pr{A} < -2 ., < — . 4

r{Al} = \/TTt mny > n?_4 My, (43)

5

Pr{As} < 01 ~mny(ny, — 1), (49)
t

c 13 2

Pr{A5} < 0 -m(m — 1)n;. (50)

t

29



Published as a conference paper at ICLR 2023

We first prove that ﬂf’zl A; = Aurger,1.- To that end, recall the definition of disc D(a; ;,7;(A))
and the radius of the disc 7;(A) for a matrix A in Lemma 7. We now apply Lemma 7 on BB”.
Because of As and As, forany ¢ € {1,2,--- ,mn,}, we have

r;(BBT) = > BB, ;| < (ny — 1)bo + (m — 1)n,bs.
J€{1,2,--- ;mn,}, j#£i

Because of ﬂ?:1 A; and Lemma 7, we have all eigenvalues of BB7 isin
[@1 - ((nv —1)by + (m — 1)7%53) by + ((nv —1)by + (m — 1)nU53)] .
Since p > ny > 256, we have
\/2(p —ng)lnn, < \/2p1np < \/%lnp, and \/nt Inn; < \/plnp <./plnp. (@28

Since n; > 256, by Eq. (60) of Lemma 20, we have Inn; < 4—1571,5. Thus, we have

/1
Inn; = +/InngInn; < E\/nt Inny. 52)

Recalling the values of by, by, by, and bs in Lemmas 17, 18, and 19, we have
by — ((ny — 1)bg + (m — 1)nybs)
=max {0, 1 — a}}’ (nt - \/M) +p—nt—/2(p—n¢) Inny
—(ny — 1) (max{ozg7 1—a}}2/nyInng + \/ﬁlnp)
— (m—1)n, -6y/plnp
>p + (max{0,1 — a}}*> — 1) n
— (V24 (ny = D)) max{al, 1 = af}? + V2 + (my = 1) + 6m — Dy ) plnp
(by Eq. (51) and max{0, 1 — o}}* < max{a},1 — o}}?)
>p + (max{0,1 — oy }* — 1) ny — ((ny + 1) max{ey, 1 — a}}* 4+ 6mn,) /plnp
=Dbeig,min
and
b1 + ((ny — 1)by + (m — 1)nybs)
=max{a}, 1 — a}}? (nt + \/m—&—lnnt) +p—n+2(p —n) Inng + Inn,
+ (ny, — 1) (max{ag, 1— o)}/ ngInn, + \/ﬁlnp)
+ (m —1)n, - 64/plnp

<p+ (max{aj,1 —a}}* — 1) ny

+ ((\@Jr (ny — 1)) max{ay, 1 — oy} + \/% +V2+ (ny, — 1) +6(m — 1)nv> Vplnp

(by Eq. (51) and max{0,1 — a}}? < max{a},1 — a}}?)
<p+ (max{oy, 1 —a;}* — 1) ny + ((ny + 1) max{ey, 1 — a;}* 4 6mn,,) \/pInp
:beig,max~

Define
AI(I)Z’I’Lt) = {beig,min S )\min(BBT) S )\max(BBT) S beig,max} 3

arget,1

Therefore, we have proven that (?_, A; —> Al(fﬁgze:fj).
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It remains to estimate the probability of Atzﬁgeﬁ) To that end, we have

3
Pr{ALZIV} > Pr { N “‘“} Ginee (VA = AL
i=1 =1
3
i=1

3
>1 - Z Pr{Af} (by the union bound)

i=1
23m?2n?
>1- T (by Egs. (48)(49)(50)).
Ny
The result of this proposition thus follows. O

L.1 PROOF OF LEMMA 17

Since all training inputs are independent with each other, without loss of generality, we let ¢ = 1
and replace [X"(V]; by a random vector @ ~ N(0,I,) € RP*! which is independent of X*(V). In
other words, estimating Eq. (45) is equivalent to estimate

().

We further introduce some extra notations as follows. Since p > n;, we can define the singular
values of X*(1) € RP*"t ag

2

2

0 <A <A <), (53)
Define
AT o= diag (A N0, XD ) € R,
Do singular value decomposition of X*(1), we have
Xt — gtOptytm? (54)
Notice that U*(") € RP* is an orthogonal matrix, D) = [Agl)} € RP*™t, and V(D) ¢ Rmexme

is an orthogonal matrix. Using these notations, we thus have

I, - —Xt( xtwt gt (Ip - ZZD“UD“UT) Ut (by Eq. (54))
_ o At(1)2
—ut {Im %A . 0 } U™ (by the definition of D*M). (55)
pP—nyg

The following two lemmas will be useful in the proof of Lemma 17.
Lemma 20. [fx > 16, then

3
1—630 > Inx, (56)
r+vV2zxlnz +Inx < 2z, 67
—V2zlnx > %, (58)
6
r+Inx < ?ﬂm 59)
Further, if x > 256, then
1
Em >Inz. (60)
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Proof. We prove each equation sequentially as follows.

Proof of Eq. (56): When = > 16, we have

8(%36—1](1:}5)_3 1
— % 15 00

Thus, 1—3633 — In x is monotone increasing when > 16. Thus, in order to prove 13—695 > Inx for
all z > 16, we only need to prove 1—36 -16 > In 16. Notice that In(16) ~ 2.7726 < 3. Therefore,
Eq. (56) holds.

Proof of Eq. (57): Using Eq. (56), we have

3 3
V2zlnz +lnx < <\/;—|— 16) T~ 0.7999z < z.

Eq. (57) thus follows.

Proof of Eq. (58): Doing square root on both sides of %x > In x, we thus have

V3
4

ﬁﬁ.xzm

1 1
—x—V2rlnz > (1 — \/i) T > gx(sincel — \/gz0.3876 > 5)'

Eq. (58) thus follows.
Proof of Eq. (59): We have

vz > Vinz

3
z+Inz <z + 1—61‘ (by Eq. (56))

19
—7\/5110
16v2
6 19 6
<—+/2z (since ~ 0.8397 < -).
< ( 16v3 < 7)

Eq. (59) thus follows.
Proof of Eq. (60): When x > 256, we have

8(4—159:—1nx) 1 1

=——-——>0.
or 45 =z
Thus, %az — In z is monotone increasing when x > 256. Thus, in order to prove %x > In x for all
x > 256, we only need to prove 4—15 - 256 > In256. Notice that 256/45 — In 256 ~ 0.1437 > 0.
Therefore, Eq. (60) holds. ]
Now we are ready to prove Lemma 17.
Proof of Lemma 17. Recalling U*(™) in Eq. (54), we define
o =Uut'g e RP*L (61)
e p
2 2
Xit = Za; , X;nym = Z a,”. (62)
=1 i=p—mni+1
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We then have

H ( Xtu)Xt(l) )
2

_a pAt(1D)?
—aTUt® l(ln meAK ) 0 ]U“l)Ta (by Eq. (55))

2

0 IP*nt
ap At(1
o (=22 0 ) gy g oy
0 Ip—nt
> 2 u 2
(1) e 3
=1 i=ns+1
i) s 2, e
€ min 1—t/\t.1> al” + a.”,
@ m) N 2 N2
max 1t/\t-1) a,” + a;

2
o 2
= [max {0, 1-— EAZ(S) } Xit + X?Fﬂt’

(max{‘l — %)\;(3)2
T

b

5\ 2
1— %/\i(l) ‘}) Xit + Xf}nt} (by Eq. (62) and Eq. (53)).
t
(63)

Because of rotational symmetry of normal distribution of @, we know that x2 ... q:, and x>,

follows x? distribution of p and p — n; degrees of freedom, respectively’. We define several events
as follows:

Alz{x“>nt+2m+2m\/ﬁt},
A2={x oy > PN+ 24/ (p - nt)ln\/ﬁ+21n\/17t}7
Agz{x oy <P —2 (—nt)ln\/th},
A4={)\(})>\f+f+ln t}

As = {X < Vb= Vi ~In /i }
Agz{xt<nt—2 ntlnﬂ}.

SX@ and X are independent, so a and U are also independent. The calculation of x2 , (or X%—n )

can utilize the. rotati(;n_al symmetry of a (or a') is because X2 , (or xf,_n ,) represents the squared norm of the
result that projects a’ into a n-dim (or (p — n)-dim) subspace.
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‘We have

xwa{mAc} _1_xr(1)a{UA}

>1— Z Pr{A;} — Pr {A4 UAs} — PI’{A@} (by the union bound)

=1
_ e~ InvVr _ 9p=(lnymi)*/2 (by Lemma 9 and Lemma 8)

4 2
:1 — —
Ve exp (3 1ny/ng - Iny/ng)
4 2
>1— — i 1 > 2 wh > 256
> N (ln \/th) (since In \/n; > 2 when ny > )
6
=1 —. (64)
N

Define the target event

2
{H( B Xt(l)xt(l) ) € by, bl]}~
2

It remains to prove that ﬂi_l Af = A. To that end, when n?:1 AS, we have

-z
2

2
> max {o, 1- A;@Q} X2, +x2_,, (by Eq. (63))

>max {0, 1 — a2}2 (nt —\/2ny lnnt> +p—n;—+2(p—n)Inng
(by A5 and Ag)
:bh

(1, 2

< (max{‘l — %A%f1)2
¢ :

and

2

2
1— Sl
Tt

)

2
}) X2, + Xa_n, (by Eq. (63))

2
(max{‘l—(\f Ve —Iny/mg)? 1—2%(\/13+\/77t+1n\/717)2‘})
t
. (nt—i— v 2n; Inny —|—lnnt) +p—n:++2(p—n¢) Inng + lnng
(by A5, A3, A and A7)

<max{aj, 1 —a}}?- (nt ++2nyInny + lnnt) +p—ni++/2(p—mn)Inny +1Inn,

=b;.

L.2 PROOF OF LEMMA 18

Since all samples are independent with each other, without loss of generality, we let ¢ = 1 and re-
place [X"@];, [XV®)], by two i.i.d. random vector a, b ~ N'(0,1,) € RP*! which are independent
of X*()_ In other words, estimating Eq. (46) is equivalent to estimate

T
o (Ip _ %Xal)Xt(l)T) <Ip _ atxt(nxt(lﬂ“) b
Nt Uz
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Proof of Lemma 18. Recalling U*(Y) in Eq. (54), we define

F— Ut g e R, b o= U e RPX, (65)
p
On, = Zazbg, Gpn, = Y, ajb, (66)
i=p—n+1

‘We then have

2
a” (Ip - atxt“)xt(l)T) b
N

2
—_ aTUt(l) (Int — %At(l)z) 0 Ut(l
0 IP*TH

=T l( ne = EAD ) 0 1 v
Nt

0 I,
= nZ( - t(1)> alb, + i alb,

1=n¢+1
Ot 4(1)2 ’
<max{’1 — n—t)\l( ) }) |G| + |Pp—n,|

(by Eq. (65) and Eq. (53)). (67)

Because of the rotational symmetry of normal distribution, we know that ¢,,, and ¢,_,,, have the
same probability distribution if a’ and b’ follow i.i.d. N'(0,1,)°. Define several events as follows:

Ay = {|¢>m\ > \/ntlnnt},
Az = {|¢p—n.| > pInp},
As = { NP > Vo Vi In g
Ay = {)\i(l) <D - \/nj—ln\/nj}.

b| (by Eq. (55))

(by Eq. (65))

IN

)

¢\ 1(1)2
1—n—t)\n(t)

We have

Xf“)ab{ﬂAc} 1X’(1>ab{UA}

>1—Pr{A;} —Pr{As} — Pr {A3U A} (by the union bound)
a,b a,b X t(1)

>l - 43— - — 2¢~(In Vie)®/2 (by Lemma 11 and Lemma 8)
ng: p
t
3 2
>1— 57 — T (since p > ny and n?'G > 2 when n; > 256)
ng' exp (3 Iny/n; - In\/ny)
3 2 .
>1— W — m (since In /n; > 2 when n; > 256)
5
-2 68
=1 = oa (63)

Define the target event

2
[e% T -
A= { a’ <Ip — 2t ) b| < bg} .
i
SWe can utilize the rotational symmetry because ¢n, (Or ¢pp_n,) can be viewed as the result of the following

steps: 1) project @’ and b’ into a fixed subspace that is spanned by the first n; (or last p — n;) standard basis
vectors in R?; 2) calculate the inner product of these two projected vectors.
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It remains to show that ();_, A5 == A. To that end, when (;_, A¢, we have

2
aT <Ip _ a’fxt(l)Xt(l)T) b

g

= bl
T

2
< (max{’l _ Qeyum? }) |6, | + [$p—n.| (by Eq. (67))

1— Zpm?
T

)

2
S(max{’l—Zt(\/f)—\/nit—ln\/77t)2 1—?(\/ﬁ+\/n7t+ln\/nit)2‘}) v/ ngInng
t t
+ /pInp (by A7, A3, A5, and AJ)
<max{a}, 1 — a}}*v/nsInn; + Vplnp. (69)

By Egq. (69) (which implies ﬂ?zl A{ = A) and Eq. (68), the result of this lemma thus follows.
O

L.3 PROOF OF LEMMA 19

Because all inputs are i.i.d., Eq. (47) is the inner product of two independent vectors, where each
vector follows the same distribution as the vector

p = (Ip — z:Xt(l)Xt(l)T> a € RP, (70)

where a ~ N(0,1,) and is independent of Xt In other words, it is equivalent to estimate ot p,
where p; and p» follow the i.i.d. shown in (70). If we can characterize the probability distribution of
p, then we can estimate Eq. (47). The following lemma shows the rotational symmetry of Eq. (70).

Lemma 21. The probability distribution of p has rotational symmetry. In other words, for any
rotation S € SO(p) where SO(p) C RP*P denotes the set of all rotations in p dimension, the
rotated random vector Sp shares the same probability distribution with the original vector p.

Proof. By Eq. (70), we have

Qtgxt)xtm T,
t

Sp =Sa — a
n

—Sa — Yextxt) g-1g4
z

—Sa — Yextxt)TgTg,

ez

(because S~ = ST, as a rotation is an orthogonal matrix)

=Sa — %(sxtU))(sxt(l))T(sa).
t

Notice that Sa and SX*(1) are the rotated vectors of a and X*(1), respectively. Since a and X*(1)
are independent Gaussian vector/matrix, by rotational symmetry, we know their distribution and
independence do not affected by a common rotation S. Thus, Sa — %(SXt(l))(SXt(l))T(Sa) has
the same probability distribution as p. The result of this lemma thus follows. O

The following lemma characterize the distribution of the angle between two independent random
vectors where both vectors have rotational symmetry.

Lemma 22. Consider two i.i.d. random vector ¢1, co € RP that have rotational symmetry. We then
have

—p pot

- el e o _Vphnp <2 N 2
leilly lleall, — p—2vpInp
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Proof. Notice that W denotes the angle between c¢; and c;. By rotational symmetry, it

is equivalent to prove that the angle between two independent random vectors that have rotational
symmetry. To that end, consider two i.i.d. random vectors &1, 2 ~ N(0,1,). The distribution of
the angle between x; and x2 should be the same as the angle between c; and c¢». In other words,
we have

T
’wl w2| ’C1 c2|
~y

. 71
lzlly 2]y lledlls [leally

By Lemma 11, we have

2
Pr{|:c1Tw2| > \/plnp} < W. (72)

Noticing that ||x1]|, and ||z2|, follow chi-square distribution with p degrees of freedom, by
Lemma 9, we have

1
Pr{jai]} <p—2y/plap} <e P = 73)
p
1
Pr{jas|} < p—2v/plap) < e P = . (74)
p
By Eqgs. (72)(73)(74) and the union bound, we thus have
T
ped l#l@l Vil <242
@1y [[@2]ly, — p—2vpInp '
By Eq. (71), the result of this lemma thus follows. O

Now we are ready to prove Lemma 19.

Proof of Lemma 19. Since p > n; > 256, by Eq. (60) of Lemma 20, we have

1 1 2
p—2yplnp > (1—2\/;>p2 <1—\/5\/:5>p:3p. (75)

We define some events as follows:

lpall3 =i

v
2= {llpal; 2 b1}
|

|pT p2| . Vplnp }

lpallzllo2ll; — p—2vpInp
A= {|pip2| < b}

By Lemma 17, we have

5
Pr{A;} < — Pr{.AQ} — (76)
By Lemma 22, we have
2 2

Since n; > 256, by letting x = n, in Eq. (57) of Lemma 20, we have

ne + v/ 2n: Inn; + Inng < 2ny. (78)
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We also have

p—ny+/2(p—ny) Inng +Inng

/ 1 1
<p—ns+1/2p- Ent + 4—5nt (by Eq. (60) in Lemma 20)
< + 1/ 2 + ! (si > ny)
-n — — since
>p t 45p 457lt p=nyt

[ 2 44

Therefore, we have
= 2 44
by <max{aj, 1 —a;}? - 2n + (1 oV 45) P

<max{a}, 1} -4p (since p > ny). (80)

First, we want to show ()}_, AS = A. To that end, when ()>_, A¢, we have

T
T |P1 P2|
p1p2| =llpilsllp2lly
o1 pe| 22 oy ezl
3
_ Ul
<b; - _VPAP (by ﬂ A and Lemma 17)
p=2Vplp |
I
<4p- \/21? (by Eq. (75) and Eq. (80))
P

=6+/plnp.

Thus, we have proven that ﬂ?:l A¢ = A, which implies that

Pr{A} >Pr { N Af}

i=1

n{ie

3
>1— Z Pr{A;} (by the union bound)

=1
0 2 2
>1— — — 2~ = (byEq. (76) and Eq. (77))
i p pod OvEd q
1

3
>1— 1 (by p°-® > 2 since p > ny > 256).
t

The result of this lemma thus follows. O

M PROOF OF PROPOSITION 5

Lemma 23. Foranyi € {1,2,--- ;m}andany j € {1,2,--- n,}, when ny > p > 256, we must
have
Pr{[BB”](i_1)n,+j, (i—1)nutj € lc1, 1]} > 1— 2 i,
v D, v 1] = - P \/777

where

¢ = max{0,1 —a}}?- (p—2y/plnp),
¢ = max{a},1 — o} }? <p+ 2¢/plnp + 21np) .
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Proof. See Appendix M.1 O

Lemma 24. Foranyi € {1,2,--- ,m} and any j, k € {1,2,--- ,n,} that j # k, whenn; > p >
256 and oy < 0.2, we must have

2 2
T —
Pr{|[BB")(i_1)n,+j, (i—1)no+k| < T2} =1 - e T
where
Gy = max{a},1 —a,}? - /plnp.
Proof. See Appendix M.2. O

Lemma 25. For any i,l € {1,2,--- ,m} that i # | and for any j, k € {1,2,--- ,n,}, when
ng > p > 256 and oy < 0.2, we must have

6 4 2
Pr{|[BBT i 1yn.+i (1—1)n <Egl>1——— — — ,
{IBB)i—1)n, +5, (1), +x| < T} PR i x
where
@3 = 2max{a},1 —a,}? - /plnp.
Proof. See Appendix M.3. O

Now we are ready to prove Proposition 5

Proof of Proposition 5. Define a few events as follows:
Ay = {all type 1 elements of BB” arein [c,, 7]},
Ay = {all type 2 elements of BB are in [—¢, 62]} ,
Az = {all type 3 elements of BB are in [—¢s, 63]} .
Because n; > p > 256, we have
1 1 1 2
ViSSP
Since p > 256, by Eq. (60) in Lemma 20, we have

1
Inp = \/m < \/@ (82)

Notice that there are mn,, type 1 elements, mn,, (n, — 1) type 2 elements, and m(m — 1)n? type 3
elements. By the union bound, Lemmas 17, 18, 19, and Eq. (81), we have

81

3mny,
4
0

dmng, (n, —
P04

9m(m — 1)n?

PrAS] < PrAg] < Y prag) < (83)

p0-4
By ﬂle A; and Lemma 7, we have all eigenvalues of BB” in
[c; — ((ny — 1)é2 4+ (m — 1)nyc3) , 1 + ((ny, — 1)é2 + (m — 1)n,c3)).
Recalling the values of c;, ¢z, and ¢3 in Lemmas 23, 24, 25, we have
¢ — ((ny — 1) + (m — 1)n,c3)
=max{0,1 — o} }*p
— (2max{0,1 — o}}* + (n, — 1+ 2(m — 1)n,) max{e},1 — o }?) \/plnp
>max{0,1 — o} }*p — 2mn, max{ca},1 — o, }*y/plnp
(noticing that max{a}, 1 — o} }? > max{0,1 — o} }?)

=Ceig,min-
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and
¢+ ((ny — 1)& + (m — 1)n,c3)
=max{a}, 1 — a}}*(p + 2Inp)
+ (ny 4+ 14 2(m — 1)n,) max{a}, 1 — o/, }2\/pInp
<max{af, 1 - af}? (p+ (2mn, + 1)y/plup) (by Eq. (82)
=Ceig, max-

Define the event
A(pgnt) = {ceig min S Amin(B:BT) S Amax(:BlgT) S Ceig,max} )

target, 1

(p<ny)
target,1 *

Pr[A‘(a’;;Zi)] >Pr { ﬂ .AZ}
i=1

:1_Pr{OA§}

>1— Z Pr[A4;] (by th union bound)

Therefore, we have proven ﬂZ 1A = A Thus, we have

>1— 6;” (by Eq. (83)).

The result of this proposition thus follows. O

M.1 PROOF OF LEMMA 23

Proof. When p < n,, we define the singular values of X*(1) € RP*"t as
t(1 (1
OS)‘l( ) §>‘2( ) < ...)\Itj(l)_
Define
A o= diag (AP0, D) € R,

We can still do the singular value decomposition as Eq. (54), but here D*(Y) = [At(l) O] € Rpxm
since p < n;. Using these notations, we thus have

I _ Yyt _go <1 N O‘tAtu)?) Ut
L L '
t t
Similar to Eq. (63), we have

L

2 2
Xty 1(1)2 2
€ 0,1 ——\ ,
, [max{ o X

2
2
<max{‘l =Py S }) xi] RER
nt nt
2
where x2 = HUt(l)TaH = ||a||§ follows 2 distribution with p degrees of freedom. We define
2

several events as follows:

A11={X§<p—2m}7

{xp>p+2\/ﬁ+21np}
3= {A0 > i+ vy}
o= A < v - vp -y}
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‘We have

fid i

2

>1 — Z Pr{.A } - Pr {.Ag U A4} (by the union bound)

i=1

2
>1— - —2exp (f(ln \/717)2/2) (by Lemma 9 and Lemma 8)
p

2

>1 — — — — (since In y/n; > 2 when n; > 256).

, S [Ql, Cl]} .

It remains to prove that ﬂ?zl Af = A. To that end, when ﬂ?:l AS, we have

p Ve
Define the target event

-

(Ip - ZIXM)XM)T> a

2

‘ <1p - zxf“)x“l)T) a

2
> max {0, 1- O“*A;“)Q} X2 (by Eq. (84))
N

2

2
ZmaX{O,l—Zt(\/ﬁ—i—\/ﬁ—Fln\/TTt)Q} (p—2 plnp) (by A§ and AS)
t

=max{0,1 — a}}?- (p — 2y/pInp).
When (_, A¢, we also have

()

< <max{‘l — %At(l)Q

ntp

2

2

2
o 2
L= oA ’}) X2 (by Eq. (84))
t

)

<max {1 2 (77 - V5 - vy,
nt
: (p—i—?\/plnp—i-?lnp) (by AS, AS and AS)
<max{a},1 - a}}? (er 2v/plnp + 2111p) )

M.2 PROOF OF LEMMA 24

Proof. Similar to Eq. (67), we have

2
o’ (Ip - O“Xt(UXt(l)T) b
Uz

< (max{‘l — %)\i(l)
Uz
Define several events as follows:
= {16, > VpInp},

A
Ay = {)\;(1) >\/n>t+\/§+ln\/n>t},
Ay = (X0 < Vi -y}

1——/\t

41
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When (?_, A¢, we have

2
o’ (Ip - atXt(l)Xt(l)T> b
Uz

i

2

<max{‘1—f‘lt(\/a—\/;3—1n\/@2 1—2“(m+¢73+1n\/n7)2‘}
t t

-v/plnp (by Eq. (85), Af, A3, and AS)

<max{a},1—a}}?-\/plnp.

Thus, we have

I
—_
|
g
s
S
w
N
&
——

>1— Pr[A;] — Xft’(rl ) [A2 U Aj3] (by the union bound)

>1— o 2exp (—(Iny/n¢)?/2) (by Lemma 11 and Lemma 8)
2 2

>1 — W — N (since In \/n; > 2 when ny > 256).
O
M.3 PROOF OF LEMMA 25
Proof. Define several events as follows:
Avi={llel =7}
Ar = {llpaly > a1}
Ay e { lpiee| vplnp }
o1l llp2lly — p—2vpInp
A= {|pip2| <7}
By Lemma 23, we have
PriAy] < % + jﬁt Prldy] < % + \/% (86)
By Lemma 22, we have
Prldy] < % T ]%. (87)

When p > 256, by Eq. (60) of Lemma 20, we have

1 /1
Inp < —p, /plnp < 1/ —n.
np < o Vplnp sy /oep (88)
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First, we want to show ()_, A5 = A. To that end, when ()._, A¢, we have

T
Pi P2
!P{P2|=|VHH2H92H2”pl”|“iﬂ|
2 2
3
vVpln
<max{aj,1 - o}? - (p+2¢/plnp +2lnp) - % (by [ A9
=1
1+2/&+2
<max{aj,1 - aj}? - ————=/plnp (by Eq. (8)
1-2\/3%
1+2/ £ +2
<2max{al,1—al}?- /plop (because — > ~ 191 < 9).
1-2¢/&
45

=1
6 4 2
>1 — o \/77 — —1 (by Eq. (86) and Eq. (87)).

The result of this lemma thus follows.

N PROOF OF PROPOSITION 6

Plugging Eq. (1) into Eq. (7), we have
XvWT (T, — 2o xt XM 4p(1)  2exvMTXUD t1) 4 go(1)
Xv@T (I, — XU XUDT) 4p(2) — e xv@T XU h2) 4 ev(2)

xvm)T (1,, _ %Xt(mxt(m)T) w™ %me)TXt(m)et(m) 1 ev(m)
By Eq. (11), we thus have

xvmT

Xv(2

I,— %Xtu)Xt(l)T (w® — wy) — %Xvu)TXt(l)et(l) 4 ev(D)

(1, — XX (10 — ) — 2 X@TXUDt?) 4 ev(2)

oy =

Xv(m)T (Ip _ %Xt(m)xt(m)T) (w(m) _ ’wo> _ %:Xv(m)Txt(m)et(m) + €v(m)

43
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In Eq. (89), since terms et(m) and €v(1:™) have zero mean and are independent of each other, we

have
2
a3

et(lim) gu(iim

m AT o , AT ;
_ Xv(z) I — ixt(l)Xt(l) > (1) _
6“1HH§ZUU”H);§; (“ < P o (w® — wy)
2
2

o7 (Ip _ :txt(oxt(i)T) (w0 — wy)
t

)T v

X100 ¢t 00)

At s
Uz

m
=1MNy, o2 + E

i=1

2
N 4]
2

2

2

2

m

-1 €

At xev(i) Tyt () gt (i)

N

2

Notice that
2

At o) Tyt () gt (i)
T

E

et (i)

2
~% g (Xvu)TXt(i)et(i))T (Xvu)TXt(i)et(i))
ng et

2

Q
Ny et

2 2
=27 7y [XU“)TXW)X“”TX“(”} Gince E [eWe®] = 521,,.).
ny et(i)

Plugging Eq. (91) into Eq. (90), we thus have
2
RSt

et(lim) gu(Lim

m
=1NTy o2 + E

=1

o7 (Ip _ tht(i)xt(i)T> (w0 — )
t

Term A

" o202 @) Tt (1)~ (1) T v (i
Y ;L? T [X o TxtixtnTx ()} (by Eq. (91)).
=1

Term B

The following two lemmas estimate Term A and Term B.

Lemma 26. When n; > 16, we have

Pr { E [Term A of Eq. (92)] < mn,v? - 21n(sn;)
Xt,(lnn)’xv(l:m,) w(,‘,)

Tt

and

[Term A of Eq. (92)] = v*mn, | (1 — a;)? +
Xt(Lim) Xv(lim) qp(Lim)

Proof. See Appendix N.1.

44

. (D(at,nt, s) + o —1). 6.25(1n(spnt))2>} >1-

5mmn,

T

2
Tr [Xv(i)TXt(i)Et(i)Gt(i)TXt(i)TXU(i)} (by trace trick Tr[IW Z] = Tr[ZW))

)

2 a?(P‘f‘l))'

(90)

(€29

92)
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Lemma 27. We have

2 2
v 2 v
Pr {TermB in Eg. (92) < Mo b Inp- (lnnt)z} >1-— %, (93)
Xq;(l:nt)’xt(lznt) [ p .
2 2
[Term B in Eq. (92)] = ot 1wl (94)
X"’(1:7‘t)7xt(1:nt,) Ty
Proof. See Appendix N.2. O

Now we are ready to prove Proposition 6.

Proof of Proposition 6. By Eq. (92), Lemma 26, and Lemma 27, the result of Proposition 6 thus
follows. Notice that the probability is estimated by the union bound. O

N.1 PROOF OF LEMMA 26

Proof. We have

2
E |xT (Ip _ O‘txtu)Xt(i)T) (w® — wp)
w(®) Uz 2
T
_E KXU@T (Ip _ zxt@)Xt(i)T) () — wo))

(Xm‘)T (I,, _ f‘ltxt(i)xt“)T) (w — wo))]
t

=ETr <Xv<i>T (Ip - j:tXt(i)Xt(i)T> (w — wy)
t

(w(i) —aw)” (Ip - O%Xt(i)Xt(i)T) X“(i)) (by the trace trick)
ny

—Tv (X”(i)T (1p - Z“XW)X“”T) E [(w(i) — wp)(w® — wO)T}
t
I — “xtixt@T ) xo)
P ng

—qy (xe07T (1, - “xtixdT) [A O (p St xrixe ™) xo)
P T 0 0 P 2

(by Assumption 2). (95)
Define

_ VA 0 Ot (i) et ()T ) sew(i n,
Ay = [ o ol (I Ext( IXHDT ) XU ¢ Rpxne,
Plugging A ;) into Eq. (95), we thus have

2
E

w(i)

xv®T (Ip _ O"fxlf(i)xt(i)T> (w(i) — wy)

Ty

T
- Tr (A(i)A(i)) . (96)
Here [-]; 1 denotes the element at the j-th row, k-th column of the matrix, [-]; . denotes the [-th row
(vector) of the matrix, []. 5 denotes the k-th column (vector) of the matrix. Notice that only the first
s rows of A ;) is non-zero. Define

Qi gk = X" (1 -

Tt

Xt

75

2 _ o . .

_xv() QO xet(i) b))y

‘2) + > | Lk (X5, X0
1={1,2, pH\{j}
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‘We thus have

o _arxct(d) unT) (i) S
[A(z)]j,k — V(i),j <(IP ntX X ji: ’ X .,k> 3 When] ]-7 »Ss
whenj=s+1,---,p,

)

_ {I/(i)ﬂ-@m’k, whenj=1,---,s,

0, whenj=s+1,---,p
Therefore, for any k € {1,2,--- ,n,}, we have
p s
AGAG ke = [AGTT  [Aplk =D [AGL =D V0. °QF - 97)
j=1 j=1
By Eq. (96) and Eq. (97), we thus have
Term A in Eq. (92) = Z Z Z Vi), Q2 ke (98)
i=1 k=1 j=1
Part 1: calculate the expected value of ()? ik
By Assumption 1 and Lemma 13, we have
2 4
E fo“)j,:H —n,, and E th@)j,:H = ny(ng + 2). (99)
2 2

We also have
2
]E(Xt( 0. X, ) 2_R (Z Xt@) Xt(i)m)

= ZE (X4, XD, )2 (by Assumption 1)

qg=1
_ Z E Xt( Xt(z)l q}
— (100)

If we fix Xt and only consider the randomness in X since each element of XV .k are L.id.
standard Gaussian random variables, then we have

Qijk ~ N0, Uggw,k)

where ‘762% P (

H) 3 <nt<xt@> X, >)2. (101)

= {1a27'” 717}\{]}

Thus, we have
2
E Qijk
X (i) Xt
Q2
1,5,k

=E E
Xt(i) Xv(i)
= E o2  (byEq. (101

E 0., (by Eq. (101))

2 2

ey e, X,
? nt l:{1727“'7p}\{j}

+7

H2 o
"l n? Xf()

—1 9% E th(i)J
TNy Xt(i)

X,

QA +2)  adp-1)

=1-—204 + nt nt (by Eq. (99) and Eq. (100))
2
1
:(1_at)2+%_ (102)
t
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By Eq. (102) and Eq. (97), we thus have

- a?(p+1
E[Tr(Af Aw)] = | D v ° (ﬂ—a0”+tgl)>.
j=1

Thus, we have

2
E[Term A] = v*mn,, ((1 —aoy)* + O‘t(p—'_l)) .
nt

m 2
Notice that we use the definition of v and v(;) in Assumption 2 that v? = %

Zj’:l V(i),jQ'
Part 2: derive high probability upper bound

2 _
and Vi =

By Assumption 1 and Lemma 11 (where ¢ = 2.5ln(spn;) and ¢ = e), for any given ¢ €
{1,2,--- ,m},je€{1,2,--- ,s},andl € {1,2,--- ,p} \ {4}, we must have

Pr{‘(Xt(i)j’;,Xt(i)l’)‘ > 2.51n(spnt)1/nt} < . (103)
spn
AL i
By Assumption 1 and Lemma 9, for any giveni € {1,2,--- ;m}and j € {1,2,--- , s}, we have

2 2
Pr {th(l)j,: ‘2 ¢ [nt — 2y/ngIn(snyg), ng + 24/n In(sny) + 21n(snt)} } < e (104)
t

A2, (i,5)

By Eq. (101) and Lemma 14, for any X*(*), we have

P(r_){ Qi > \/2ln(snt)} < —
X s

0Qi, .k nt
Pr
X)Xt

Thus, we have

Qi gk

UQi,j,k

> \/21n(5nt)} < i (105)

SNt

A3, (i,3.0)

We define A; (; j1), A2 (i,5), and A3 (; j ) as shown in Eq. (103), Eq. (104), and Eq. (105), respec-
tively. Then, we define the event A as

A ‘Ai(i,j,l)"Ag,(i,j)’Agz(i,j,k) hold foralli € {1,2,--- ,m}, j € {1,2,---,s},
le{1,2,---,p}\{s}, and k € {1,2,--- ,n,} ’

Applying the union bound, we then have

When A happens, we have

2 2
« . 2 « . .
a&$k:(1—7; meﬁt) + > <n%xmymxﬂ%g> (by Eq. (101))
¢ I={1,2, pN\{i}
ai(p—1)

<D(ov,ny,8) + -6.25(In(spn))? (by Af (; ;) and A5 (; . for all d, j, ).

(106)

ny
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Thus, we have

m o Ny

Term A = Z Z Z V(i) Q2 ; 1, (by Eq. (98))

’leljl

m. Moy

< Z Z Z V(i) 00, L 2In(sng) (by A3 () forall i, j, k)
i=1 k=1 j=1
2

-1
<mn,v? - 21n(sny) - (D(at,nt, s) + ailp=1) -6.25(1n(spnt))2>
N

(by Eq. (106) and the definition of »? in Assumption 2).
The result of this lemma thus follows by combining Part 1 and Part 2. [

N.2 PROOF OF LEMMA 27

Proof. In order to show Eq. (93), it suffices to show that

) ) ) L 2mmn.,
Pr{ max Ir [X“(’)TXt(z)Xt(Z)TX”(”} < ny,n(ln nt)sp} >1— %7 (107)
i€{1,2,--- ,;m} ng
and in order to show Eq. (94), it suffices to show that for any ¢ € {1,2,--- ,m},
ETr [X““)Txt(“xt(i)TX”(“] = nynep. (108)

We first prove Eq. (107). To that end, we notice that X”(i)TXt(i) is a n, X n; matrix. For any
t=1,2,--- ;mand j =1,2,--- ,n,, we have

[Xvu)TXt(i) Xt(z')TXvu)} x0T X0 H2

|y

J»J ‘

-

|:X’U(Z)Txt(z)i|
Ji.k

=
S
N

(XD 5, (X)) 5)2

Eol
Sl
N

2
t P
(Z[X“(“]z,ﬂx““]z,k> : (109)
k=1 \i=1

Thus, we have

max Tr |:X1)(7)Txf(l)Xf(?)Tx1)(1):|
i€{1,2,--- ,m}

= _ max i:[X“i)Txf(i)xt(i)Txv(i)}

(1o .
i€{1,2,---,m} = 3,3

Ny Nt p 2

=  max SO X)X D) k| (by Eq. (109))
i€{1,2,--- ,m} 4
j=1k=1|1=1
2
p . .
<mom | max S XX (110)
Je{1.2, my} =1

ke{1,2,+ mi}

Notice that training input X*(*) and validation input X"(*) are independence with each other and
each element follows i.i.d. standard Gaussian distribution. Therefore, by applying Lemma 11 (where
¢ =Inn, k = p, and ¢ = p), for any given i, j, and k, we have

P
2 2
Pr{ >1nnt«/plnp} < <

xv(@®7, xt@® :
;[ Jujl Juk exp(lnn; - 0.41np) ng - pOd
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The last inequality we use the fact that Inn; - 0.4Inp > Inn; + 0.41n p when min{n, p} > 256.
By the union bound, we thus have

p

Pr max
i€{1,2,--- ,;m}
jEf1,2, my}
ke{12, ni)

By Eq. (110) and Eq. (111), we have proven Eq. (107). The result Eq. (93) of this lemma thus
follows.

2mn,
> Inngy/plup S;’%. (111)

X’U( ) Xt(z ]l X
1

It remains to prove Eq. (108). To that end, by Eq. (109), we have

Ny Nt 2
Tr {Xvu)TXt(i)Xt(i)TXv(i)} ZZ(Z X0, [Xt(i)}z,k> _

j=1k=1 \I=1

Thus, by Assumption 1, we have

Ny Nt Ny Nt 2
EZ Z (i Xv(t) Xt(l) > Z E (i XU(Z) Xt(l)] )
j=1

j=1k=1 =1

>

k=1
ZXP:E(X““ (X2 )
k=11=1

5

Ny
j=1

Moy p
=D D D EXYREXOL,
j=1k=11=1

=NyTuP,

i.e., we have proven Eq. (108) (and therefore Eq. (94) holds). The result of this lemma thus follows.
O

O UNDERPARAMETERIZED SITUATION

In this case, we have p < mn,,. The solution that minimize the meta loss is

= arg min L™,
W

Wy,

When B is full column-rank, we have
g, = (BTB)'BT.
Thus, we have
. _ 2
lwo — e, |[3 = [|wo — (BTB) "B+,

— |(B"B)"'BTs~||> (by Eq. (11)). (112)

Define

2
4 Qg
o Vias (1 — Ztag o2az [ aza;\? (1 - F“Q)
bP=V (a1, a2, a3, a4) = - + ( i ) L
(20
nt
7
(1 — %CLl) a4

"Notice that Inn; > In256 ~ 5.5 > 2 and 0.4Ilnp > 0.4In256 ~ 0.4 x 5.5 > 2. Thus, we have
(Inny —1)(0.4lnp — 1) > (2 —1) x (2 — 1) = 1, which implies that Inn; - 0.4Inp > Inn; + 0.4Inp.
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Lemma 28. Consider the case p = s = 1. If there exist g, g, h € R such that

t(i)T 2 _ .
X € lg,g)foralliec {1,2,--- ,m},

2
iixv(z
177?205

ny
then we must have

~ 2 — — T
||w0 - w@2H2 Zbg’ D(&Qa 17h)'

w(lim) et(lim) gv(lim)

Further, if

Ty

S OXUOP € [r, 7l foralli € {1,2, -+ ,m},
j=1

we then have

lwo — e, I3 < 8= (g, g, (7/r)?, mr).

w(l:m) ,et(lﬂn) ,61!(1:771)

Proof. Since p = s = 1, B becomes a vector and B” B is a scalar that equals to

BTB = Z(l— H) 1[X”()]

By Eq. (112), we have

(B"d7)

~ 2
[ wo — Wsz = W

In this case, BT 6 is also a scalar that equals to
' =323 (1- 2
=1 j=1
_%@_%
nt ng

T ) (2
+(1 8 e H) X0, [zu)]j}

By the independence and zero mean of w® — wy, €/(?), and €*(*), we have

B764)?
w(m) t(tm) gv(iim) ( 'y)
2
m 4 Ny
—ﬁ}:( Xm>m>. KO
=1
Term 1

2

(G &0

Xt<>TH> PO - (w0 — awy)

xm‘)THZ) X2 (X0 )
2

2 72 Ty
) e e

Term 2
+0’BTB.
N —

Term 3
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By Cauchy-Schwarz inequality, we have

mz va(z)Z
— j=1

‘We then have

Term 1 of Eq. (118)

4 m Ny 4
oy _ o(i)2 2<0‘t)
elvi(1 X i A
( m)§;§[]] "y

(i)y Eq. (113) and Eq. (114))

4
1
(1 _ Oftg> ks
Ty m

(i)y Eq. (119))

and

Term 2 of Eq. (118)

2
2 2 m Ny
oog o .
€ =) (1-— X2
( i ) ( ”tg) ; j:l[ ]
(by Eq. (113) and Eq. (114))
B 2
2 2 m Ny _
ooy oy 1 . oaLg
€ =) (1-—g) = xvnz | < )
(m)(n@nl;ﬂ[b o
(by Eq. (119))
[ 2 2 2
oo 1 mo Ny ‘ —
c ( tg) <1Oétg> 1 Z X2 ’<O'thg)
T Tt m =1 j—1 ¢
Similarly, we have
2
m 2 Ny
1B = [ 3 (1 ;) Sooe
=1 j=1
n 2
o (X0 ot
e (1_ng) Y ,(1_ng)
t i=1 j=1 t
4 mo Ny
| (1-27) . (1-20) (LS
i=1 j=1

(119)
2
Z [Xv( )]
i=1 \j=1
2
4 m Ny
) S S
i=1 \j=1
m72| (by Eq. (115)),
2

(by Eq. (116))

m Ny

DL

i=1 j=1

2

(by Eq. (115)).

Plugging the above equations into Eq. (117), the result of this lemma thus follows.

51
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Proposition 7. Define

J'G‘

single — b(pzl)(g §7 1 E)
single — b(p 1)(9 9, (T/T) )

ne + 24/ng logng + 2logng,

=l

g=
g =n¢ — 2y/nglogng,

h = mn, log(mn,) + 2log(mn,),
T =n,+ 2\/angnv+ 2logn,,

T =Ny — 24/ Ny log ny,.

When p = s = 1 and oy is relatively small such that 1 — %ﬁ? > 0, we must have

— 2 2m 1
Pr wgp Y wOH 2 bsmgle 21— - )
Xt(1m) Xo(m) | 4p(1im) gt(1im) gv(1im) 2 ng mny
 (p=1 - 2m  2m
Pr ’wép ) wOH < bsingle >1- - )
Xt(1:m) Xv(l:m) w(1:m) et(1im) gv(l:m) 2 2 Ty Ny

Proof. Notice that ||Xt(i)H2 follows x? distribution with n, degrees of freedom,

and

POy Z [X”( )] follows x? distribution with mn, degrees of freedom. Given any fixed

i€ {1, 2, C My, by Lemma 9 (letting x = log n;), we have

1
{2}
nt

e <o <
J ng

By Lemma 9 (letting « = log(mn,)), we have
A3 S weopsnl< L

=1 j=1

By the union bound, we thus have

Pr{HXt(i) ‘e
2
Pr{HX”@

The result thus follows by Lemma 28.

g, foralli e {1,2,--- ,m}} < —

lg

Similarly, we have

2
€ [r, 7], foralli e {1,2,--- ,m}} < —.
2

O

We interpret the meaning of Proposition 7 as follows. We first approximate each part by the highest

order term. Then we have g ~ g = n;, 7 =~ r =~ n,, and h = mn,, = mr. Thus, we have

b¢=(g,9,1,R) = b=V (g, g, (7/1)*, mr).

Therefore, we can conclude that our estimation on the model error ||w,, — ong in this case is
relatively tight. In other words, we know that (with high probability when n, and n; is relatively

large, and oy is relatively small)

2 020@ 0.2
+ +

A (p=1) _ v .
m m (1 — ay)?mn,

2
™
’ £ 2
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