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Invited Discussion®

Bo Lif and Lyndsay Shand*$

1 Overview

We admire the authors for developing this computationally efficient Bayesian method to
estimate the nonstationary correlation structure in large spatial data, without relying
on a restrictive parametric model. The method is presented as a nonparametric exten-
sion of the Vecchia approach (Vecchia, 1988) and is based on the ordered conditional
independence assumption that holds or approximately holds for many data sets arising
from a Gaussian random process. The conditional independence leads to a sparse pre-
cision matrix and consequently a sparse Cholesky factorization. It has been shown that
an n-variate Gaussian model can be expressed as a series of linear regression models
with the nonzero elements in the Cholesky factor matrix as the regression coefficients
(Huang et al., 2006). This enables us to estimate the Cholesky factorization and thus the
precision matrix through Bayesian regression. The authors carefully studied the proper-
ties of unknown parameters and selected independent conjugate normal-inverse-gamma
(NIG) priors that lead to closed-form posteriors and thus further improve computational
efficiency.

There have been various approaches to nonstationary or nonparametric covariance
modeling for spatial or spatiotemporal data. Kidd and Katzfuss (2022) (referred to
KK22 thereafter) has provided an excellent review of previous literature. In addition to
all methods reviewed for nonstationary covariance modeling in the Introduction, another
semiparametric approach for nonstationary covariance modeling is through dimension
expansion (Bornn et al., 2012; Shand and Li, 2017). Bornn et al. (2012) also requires
replicates to estimate the spatial model.

KK22 thoroughly discussed many aspects of their method, including the theory,
computation complexity, solutions for the presence of noise or trend, data ordering,
conditioning-set size, and how to adapt priors to allow posterior converging to a covari-
ance structure other than Matérn. We find several aspects very interesting and worth
additional discussions. In the following, we adopt all notations from KK22.
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2 Further considerations

2.1 Requirement for replicates

The KK22 method was developed for spatial data with independent replicates and
requires an ordering of spatial locations. KK22 used a maximin ordering that makes
locations in g,,(¢) all have a roughly similar distance to the location s; and this distance
decreases systematically as ¢ increases. Observing how the mean and variance of the
d; in D decrease exponentially with ¢ given an underlying isotropic Matérn covariance
structure (Shafer et al., 2021a,b), the authors developed an inverse gamma prior for d;
with an appropriate form for «; and ;. Via the same scheme, they chose the normal
prior for u; with a tailored form for the correlation matrix. These carefully chosen
conjugate priors ensure fast posterior sampling of unknown parameters, making the
proposed method computationally efficient. The posteriors hold the nice property that
the estimated covariance matrix contracts around the true covariance matrix as the
number of replicates N increases. The numerical results showed that the Kullback-
Leibler (KL) divergence of the KKK22 method is lower than other methods in comparison,
even for a very small N relative to the number of spatial locations n. In particular, the
method works more efficiently than the maximum likelihood (ML) method for small N
due to the inclusion of prior information, and then performs similarly to ML without a
surprise when N increases. This conclusion holds for large n as well.

Given that this method demonstrates reasonable performance when N is as low as
3, do we really need replicates, i.e., N > 1, for the proposed method to be valid? This
seems a rather constraining requirement. It is very common to observe spatial data
without independent replicates. For example, suppose we are interested in an annual
data of last year that can be either temperature over North America, or the county
level Midwest crop yield or zip code level human immunodeficiency virus (HIV) new
diagnoses in Philadelphia; all these spatial data likely have only one observation at
each location. KK22 proposed their method based on Vecchia (1988), who developed
a procedure with a spatial process not necessarily with replicates. We conjecture the
requirement for replicates is mainly to attain the nice posterior-contraction property
and reduce uncertainty in the parameter estimation. Is it possible to find a way to relax
the replicates requirement (i.e., N = 1) but still approximately obtain the posterior-
contraction? The authors investigated how the parameters decay with i, but is there any
other spatial structure not in the order of ¢ but on the distance between different 7’s that
can be exploited to reduce the dependence on replicates? More specifically, can d; and u;
be also modeled as spatially dependent processes in addition to their dependence on 7
Of course, modeling additional spatially dependent processes can increase computation,
so some special techniques such as those modeling dependence only on the nearest
neighbors (Datta et al., 2016) may be considered. The maximin ordering makes the
spatial dependence between i’s unclear, but it may be worth a deliberation.

2.2 Choice of m

The choice of m is a trade-off between estimation accuracy and computation. KK22
suggested to set m as the largest j such that exp(—#63j) > 0.001, where j denotes the
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neighbor number. We wonder whether it is better to set m as adaptive for different 7.
With the maximin ordering, the distance between the conditioning-set to s; decreases as
1 increases, but the size of the pool, ygl:)i_l, is always increasing. So it seems reasonable
to have m as an increasing function of ¢ to better approximate the full conditional

distribution with the conditional distribution given a few neighbors.

2.3 Spatiotemporal data

Spatial data often have temporally correlated “replicates”, i.e., spatiotemporal data.
The temperatures of North America, the Midwest crop yield, and the disease data in
our early examples can all become spatiotemporal if we now collect the annual data for
the last 10 years. For spatiotemporal data, the temporal correlation and its interaction
with spatial correlation need to be considered. This brings an additional challenge as
the observations in the temporal dimension rapidly inflate the size of the covariance
matrix 3 unless some simplified assumption such as space-time separability is assumed.
If the KK22 method can be extended to this wealth of data, it would certainly expand
its applicability. There is more impetus to relax the replication requirement in this case
though, as independent replicates for spatiotemporal data are rarely available.

Similar to KK22, the nonstationary covariance modeling method in Bornn et al.
(2012) also requires independent replicates of spatial data. Shand and Li (2017) ex-
tends Bornn et al.’s idea to model nonstationary covariance in both space and time for
spatiotemporal data, and discusses the scalability of the method by taking random sam-
ples for latent dimension estimation. In Shand and Li (2017), observations in space and
time are treated somewhat as independent replicates when estimating temporal and
spatial correlation, respectively. Those intermediate results are then taken as inputs
when dependency in all different forms is considered holistically. This strategy helps
us estimate both space-time separable and nonseparable covariance structures while
eliminating the dependence on replicates.

In the context of KK22, the ordering of space-time observations can be a chal-
lenge because both spatial and temporal distances are involved and the maximin or-
dering cannot be directly applicable. However, KK22 also mentioned other ordering
strategies such as the ordering based on correlation distance which would more nat-
urally extend to space-time data. Once the space-time observations are ordered, the
KK22 method can readily apply to such data. Regarding the inflated size of 3, Sec-
tion 2.2 in KK22 already discussed how to deal with a very large covariance ma-
trix. If we can assume space-time separability, the precision matrix will be a Kro-
necker product of the precision matrices in space and time. In that case, we won-
der if the ordering can be calculated for each dimension separately, and then u; in
space and time can be estimated separately as well. On the other hand, if we as-
sume a simple temporal correlation structure such as an autoregressive model of or-
der 1 (AR(1)), we wonder whether the estimates of u; in the spatial dimension can
approximately attain the posterior-contraction property, because the observations in
time may act as dependent replicates for spatial correlation estimation. All these dis-
cussions for spatiotemporal data can be generalized to multivariate spatial data mod-
eling.
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3 Miscellaneous discussion

The smoothness of random fields is difficult to capture for nonparametric modeling.
Im et al. (2007) proposes a semiparametric method that models the spectral density
as a linear combination of B-splines up to a certain frequency threshold wy and then
an algebraic power function with a smoothness parameter similar to Matérn model
for high frequencies beyond wy. However, many other nonparametric models, including
Choi et al. (2013) that constructs the spatial or space-time covariance function using
completely monotone functions do not directly consider the smoothness of covariance
models. It is inspiring that KK22 has a smoothness parameter in their priors. We are
curious how 83 explicitly relates to the smoothness of random fields.

There are different measures to evaluate covariance structure estimation. For ex-
ample, mean squared prediction error is common for comparing different covariance
estimates as prediction is a typical task for spatial data analysis. We think it would be
informative if the authors could briefly comment on whether KL divergence relates to
the prediction performance measure in general.

Spatial random effects and multi-resolution models (e.g. Nychka et al., 2014) are
very popular for capturing either stationary or nonstationary spatial structures of mas-
sive datasets. KK22 also included the resolution adaptive fixed rank kriging approach
by Tzeng and Huang (2018) (autoFRK), as one of the competitive methods. The au-
thor Katzfuss published a very high-impact paper on multi-resolution approximation
(Katzfuss, 2017). We would like to learn how the authors view the connection, the
discrepancies and the comparison between the KK22 and multi-resolution models.

4 Summary

We congratulate the authors on developing a very useful method for large spatial data.
This method would find many applications for modeling the complex dependency struc-
ture of global climate data, e.g., the teleconnection of climate variables (Choi et al.,
2015). Studies for spatial extremes often approximate the block maxima as independent
replicates (e.g. Cao and Li, 2018), so the KK22 method can be naturally used to model
dependence in spatial extremes by combining with the copula technique that takes care
of the marginal extreme value distribution, among many other exciting applications.

References

Bornn, L., Shaddick, G., and Zidek, J. V. (2012). “Modeling nonstationary processes
through dimension expansion.” Journal of the American Statistical Association,
107(497): 281-289. MR2949359. doi: https://doi.org/10.1080/01621459.2011.
646919. 313, 315

Cao, Y. and Li, B. (2018). “Assessing models for spatial extremes and methods for
uncertainty quantification on return level estimation.” Environmetrics. MR3919899.
doi: https://doi.org/10.1002/env.2508. 316



B. Li and L. Shand 317

Choi, I., Li, B., and Wang, X. (2013). “Nonparametric estimation of spatial and
space-time covariance function.” Journal of Agricultural, Biological, and Environ-
mental Statistics, 18(4): 611-630. MR3142603. doi: https://doi.org/10.1007/
s13253-013-0152-z. 316

Choi, I., Li, B., Zhang, H., and Li, Y. (2015). “Modelling space-time varying ENSO
teleconnections to droughts in North America.” Stat, 4(1): 140-156. MR3405397.
doi: https://doi.org/10.1002/sta4.85. 316

Datta, A., Banerjee, S., Finley, A. O., and Gelfand, A. E. (2016). “Hierarchical Nearest-
Neighbor Gaussian Process Models for Large Geostatistical Datasets.” Journal of the
American Statistical Association, 111(514): 800-812. PMID: 29720777. MR3538706.
doi: https://doi.org/10.1080/01621459.2015.1044091. 314

Huang, J. Z., Liu, N., Pourahmadi, M., and Liu, L. (2006). “Covariance matrix se-
lection and estimation via penalised normal likelihood.” Biometrika, 93(1): 85-98.
MR2277742. doi: https://doi.org/10.1093/biomet/93.1.85. 313

Im, H. K., Stein, M. L., and Zhu, Z. (2007). “Semiparametric estimation of
spectral density with irregular observations.” Journal of the American Statisti-
cal Association, 102(478): 726-735. MR2381049. doi: https://doi.org/10.1198/
016214507000000220. 316

Katzfuss, M. (2017). “A multi-resolution approximation for massive spatial datasets.”
Journal of the American Statistical Association, 112(517): 201-214. MR3646566.
doi: https://doi.org/10.1080/01621459.2015.1123632. 316

Kidd, B. and Katzfuss, M. (2022). “Bayesian nonstationary and nonparametric covari-
ance estimation for large spatial data.” Bayesian Analysis, 1(1): 1-22. 313

Nychka, D., Bandyopadhyay, S., Hammerling, D., Lindgren, F., and Sain, S. (2014).
“A Multiresolution Gaussian Process Model for the Analysis of Large Spatial
Datasets.” Journal of Computational and Graphical Statistics, 24. MR3357396.
doi: https://doi.org/10.1080/10618600.2014.914946. 316

Shéfer, F., Katzfuss, M., and Owhadi, H. (2021a). “Sparse Cholesky Factorization
by Kullback-Leibler Minimization.” SIAM Journal on Scientific Computing, 43(3):
A2019-A2046. MR4267493. doi: https://doi.org/10.1137/20M1336254. 314

Shéfer, F., Sullivan, T. J., and Owhadi, H. (2021b). “Compression, inversion, and ap-
proximate PCA of dense kernel matrices at near-linear computational complexity.”
Multiscale modeling & Simulation, 19(2): 688-730. MR4243658. doi: https://doi.
org/10.1137/19M129526X. 314

Shand, L. and Li, B. (2017). “Modeling nonstationarity in space and time.” Biometrics,
73(3): 759-768. MR3713110. doi: https://doi.org/10.1111/biom.12656. 313,315

Tzeng, S. and Huang, H. (2018). “Resolution Adaptive Fixed Rank Kriging.” Techno-
metrics, 60: 1-11. doi: https://doi.org/10.1080/00401706.2017.1345701. 316

Vecchia, A. V. (1988). “Estimation and model identification for continuous spatial pro-
cesses.” Journal of the Royal Statistical Society: Series B (Methodological), 50(2):
297-312. MR0964183. 313, 314



