Generalized-Smooth Nonconvex Optimization is As Efficient As Smooth
Nonconvex Optimization

Ziyi Chen' YiZhou' Yingbin Liang”> Zhaosong Lu?

Abstract

Various optimal gradient-based algorithms have
been developed for smooth nonconvex optimiza-
tion. However, many nonconvex machine learn-
ing problems do not belong to the class of smooth
functions and therefore the existing algorithms
are sub-optimal. Instead, these problems have
been shown to satisfy certain generalized-smooth
conditions, which have not been well understood
in the existing literature. In this paper, we propose
a notion of a-symmetric generalized-smoothness
that extends the existing notions and covers many
important functions such as high-order polyno-
mials and exponential functions. We study the
fundamental properties and establish descent lem-
mas for the functions in this class. Then, to solve
such a large class of nonconvex problems, we
design a special deterministic normalized gradi-
ent descent algorithm that achieves the optimal
iteration complexity O(¢~2), and also prove that
the popular SPIDER variance reduction algorithm
achieves the optimal sample complexity O(e~3)
in the stochastic setting. Our results show that
solving generalized-smooth nonconvex problems
is as efficient as solving smooth nonconvex prob-
lems.

1. Introduction

In many modern machine learning applications, training
machine learning model requires solving a nonconvex opti-
mization problem with big data, for which many efficient
gradient-based optimization algorithms have been devel-
oped, e.g., gradient descent (GD) (Carmon et al., 2020),
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stochastic gradient descent (SGD) (Ghadimi and Lan, 2013)
and many advanced stochastic variance reduction algorithms
(Fang et al., 2018; Wang et al., 2019). In particular, the com-
plexities of these algorithms have been extensively studied
in nonconvex optimization. Specifically, under the standard
assumption that the objective function is L-smooth (i.e., has
Lipschitz continuous gradient), it has been shown that the
basic GD algorithm (Carmon et al., 2020) and many ad-
vanced stochastic variance reduction algorithms (Fang et al.,
2018; Cutkosky and Orabona, 2019) achieve the complexity
lower bounds of finding an approximate stationary point of
deterministic nonconvex optimization and stochastic non-
convex optimization, respectively. '

Although the class of smooth nonconvex problems can be
effectively solved by the above provably optimal algorithms,
it does not include many important modern machine learn-
ing applications, e.g., distributionally robust optimization
(DRO) (Jin et al., 2021) and language model learning (Zhang
et al., 2019), etc. Specifically, for the problems involved in
these applications, they are not globally smooth but have
been shown to satisfy certain generalized-smooth condi-
tions, in which the smoothness parameters scale with the
gradient norm in various ways (see the formal definitions in
Section 2). To solve these generalized-smooth-type noncon-
vex problems, the existing works have developed various
gradient-based algorithms, but only with sub-optimal com-
plexity results for stochastic optimization. Therefore, we
are motivated to systematically build a comprehensive un-
derstanding of generalized-smooth functions and develop
algorithms with improved complexities.

To achieve this overarching goal, we need to address several
fundamental challenges. First, the existing generalized-
smooth conditions are proposed for specific application ex-
amples. Therefore, they define relatively restricted classes
of functions that do not cover many popular ones such as
high-order polynomials and exponential functions. Thus,
we are motivated to consider the following question.

e QI: How to extend the existing notion of generalized-
smoothness to cover a broad range of functions used in

'Deterministic and stochastic optimization problems are for-
mulated respectively as min,, f(w) and min.,, Ee~p fe (w).
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machine learning practice? What are the fundamental
properties of the functions in this class?

Second, for such an extended class of generalized-smooth
problems, it is expected that first-order algorithms may gen-
erally suffer from higher computation complexity (as com-
pared to solving smooth problems). On the other hand, it
is unclear how to design first-order algorithms that can effi-
ciently solve these more challenging problems. Therefore,
we aim to answer the following question.

* Q2: Can first-order algorithms solve generalized-smooth
nonconvex problems as efficiently as solving smooth non-
convex problems? In particular, what algorithms can
achieve the optimal complexities?

1.1. Our Contribution

In this paper, we provide comprehensive and affirmative
answers to the aforementioned fundamental questions. Our
contributions are summarized as follows.

* We propose a class of a-symmetric generalized-smooth
functions, denoted by L, (c), which we show strictly
contains the popular class of L-smooth functions (i.e.,
functions with Lipschitz continuous gradient), the class
of asymmetric generalized-smooth functions (Levy et al.,
2020; Jin et al., 2021) and the class of Hessian-based
generalized-smooth functions (Zhang et al., 2019) (see the
definitions in Section 2). In particular, we show that our
proposed function class L3, () includes a wide range of
popular machine learning problems and functions used
in practice, including distributionally robust optimization
(Levy et al., 2020; Jin et al., 2021), objective function of
language models (Zhang et al., 2019), high-order polyno-
mials and exponential functions.

* We study the fundamental properties of functions in the
class £, () and establish new decent lemmas for func-
tions in L, () with different values of a (See Proposi-
tion 1). These technical tools play an important role later
in designing new gradient-based algorithms and develop-

ing their corresponding convergence analysis.

* We develop a -normalized gradient descent (named
B-GD) algorithm for solving nonconvex problems in
L (), which normalizes the gradient V f (w;) with the
factor ||V f(w;)||? in each iteration. We show that 3-GD
finds an approximate stationary point E||V f(w)|| < e
with iteration complexity O(e~2) as longas a < 3 < 1,
which matches the iteration complexity lower bound for
deterministic smooth nonconvex optimization and hence
is an optimal algorithm. On the other hand, we show that
it may diverge when 0 < § < « is used.

* For nonconvex stochastic optimization, we propose a class
of expected a-symmetric generalized-smooth functions,

denoted by EL,, (), which substantially generalizes
the popular class of expected smooth functions. Inter-
estingly, we prove that the original SPIDER algorithm
still achieves the optimal sample complexity O(e~3) for

solving nonconvex stochastic problems in IE,C;*ym(oz).

In summary, our work reveals that generalized-smooth non-
convex (stochastic) optimization is as efficient as smooth
nonconvex (stochastic) optimization, and the optimal com-
plexities can be achieved by 8-GD (for deterministic case)
and SPIDER (for stochastic case), respectively.

1.2. Related Work

L-smooth Functions £: For deterministic nonconvex L-
smooth problems, it is well-known that GD achieves the
optimal iteration complexity O(e~2) (Carmon et al., 2020).
For stochastic nonconvex problems f(w) := E¢op fe(w),
SGD achieves O(e~*) sample complexity (Ghadimi and
Lan, 2013) which has been proved optimal for first-order
stochastic algorithms if only the population loss f is L-
smooth (Arjevani et al., 2022). (Fang et al., 2018) proposed
the first variance reduction algorithm named SPIDER that
achieves the optimal sample complexity O(e~3) under the
stronger expected smoothness assumption (see eq. (17) for
its definition). At the same time, several other variance
reduction algorithms have been developed for stochastic
nonconvex optimization that achieve the optimal sample
complexity. For example, SARAH (Nguyen et al., 2017)
and SpiderBoost (Wang et al., 2019) can be seen as unnor-
malized versions of SPIDER. STORM further improved
the practical efficiency of these algorithms by using single-
loop updates with adaptive learning rates (Cutkosky and
Orabona, 2019). (Zhou et al., 2020) proposed the SNVRG
algorithm by adjusting the SVRG variance reduction tech-
nique (Johnson and Zhang, 2013; Reddi et al., 2016) using
multiple nested reference points, which also converge to a
second-order stationary point.

Hessian-based Generalized-smooth Functions Lj;:
(Zhang et al., 2019) extended the L-smooth function class
to a Hessian-based generalized-smooth function class Lj
which allows the Lipschitz constant to linearly increase
with the gradient norm (see Definition 2) and thus includes
higher-order polynomials and many language models that
are not L-smooth. For objective function on Ljj, (Zhang
et al., 2019) also proposed clipped GD and normalized
GD which keep the optimal iteration complexity O(e~2),
and proposed clipped SGD which also achieves sample
complexity O(e~*). (Zhang et al., 2020) proposed a
general framework for clipped GD/SGD with momentum
acceleration and obtained the same complexities for both
deterministic and stochastic optimization. (Zhao et al.,
2021) obtained sample complexity O(e~*) for normalized
SGD with both small constant stepsize and diminishing
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stepsize. A contemporary work (Reisizadeh et al., 2023)
reduced the sample complexity to O(¢~2) by combining
SPIDER variance reduction technique with gradient

clipping.
: Vari-

Asymmetric Generalized-Smooth Functions L5,
ants of clipped/normalized GD and SGD have been pro-
posed on the asymmetric generalized-smooth function class
L ym»> Which looks like a first-order variant of Ljj (see Defi-
nition 1). For example, (Jin et al., 2021) applied mini-batch
normalized SGD with momentum proposed by (Cutkosky
and Mehta, 2020) to distributionally robust optimization
problem which has been proved equivalent to minimizing
a function in E:Sym (Levy et al., 2020; Jin et al., 2021),
and also obtained sample complexity O(e~*). (Yang et al.,
2022) made normalized and clipped SGD differentially pri-
vate by adding Gaussian noise. (Crawshaw et al., 2022)
proposed generalized signSGD with ADAM-type normaliza-
tion and obtained sample complexity O(e~*) on a smaller

coordinate-wise version of L.

*

2. Existing Notions of Generalized-Smoothness

The class of L-smooth functions, which we denote as L,
includes all continuously differentiable functions with Lips-
chitz continuous gradient. Specifically, for any f € L, there
exists Ly > 0 such that

IVf(w') = Vfw)| < Lollw —wl||, Yw,w €Re. (1)

Many useful functions fall into this class, e.g., quadratic
functions, logistic functions, etc. Nevertheless, L is a re-
stricted function class that cannot efficiently model a broad
class of functions, including higher-order polynomials, ex-
ponential functions, etc. For example, consider the one-
dimensional polynomial function f(z) = z* in the range
x € [—10,10]. According to (1), its smoothness parameter
Ly can be as large as 1200, leading to an ill-conditioned
problem that hinders optimization.

To address this issue and provide a better model for opti-
mization, previous works have introduced various notions
of generalized-smoothness, which cover a broader class of
functions that are used in machine learning applications.
For example, distributionally robust optimization (DRO)
is an important machine learning problem, and recently it
has been proved that DRO can be reformulated as another
problem whose objective function belongs to the follow-
ing asymmetric generalized-smooth function class (L)
(Levy et al., 2020; Jin et al., 2021).

Definition 1 (L, function class). The asymmetric

generalized-smooth function class L3, is the class of differ-

entiable functions f : R — R that satisfy the following con-
dition for all w,w' € R? and some constants Lq, L, > 0.

IVf(w) =V f(w)]| < (Lo+La||V f(w)]]) | —w]]. (2)

To elaborate, we name the above function class asymmet-
ric generalized-smooth as the definition in (2) takes an
asymmetric form. In particular, the smoothness parame-
ter of the functions in £, scales with the gradient norm
IV f(w")]|. This implies that the nonconvex problem can
be ill-conditioned in the initial optimization stage when the

gradient is relatively large.

On the other hand, (Zhang et al., 2019) showed that high-
order polynomials and many language models belong to the
following Hessian-based generalized-smooth function class
L.

Definition 2 (Lf; function class). The Hessian-based
generalized-smooth function class L, is the class of twice-
differentiable functions f : RY — R that satisfy the fol-
lowing condition for all w € R and some constants

Lo, Ly > 0.

IV2f(w)|| < Lo + La||V f(w)]]. )

In addition to the above notions of generalized-smoothness,
many other works have developed optimization algorithms
for minimizing the class of higher-order smooth functions,
i.e., functions with Lipschitz continuous higher-order gra-
dients (Nesterov and Polyak, 2006; Carmon et al., 2020;
2021). However, the resulting algorithms usually require
either computing higher-order gradients or solving higher-
order subproblems, which are not suitable for machine learn-
ing applications with big data. In the following subsection,
we propose a so-called a-symmetric generalized-smooth
function class, which we show substantially generalizes the
existing generalized-smooth function classes and covers a
wide range of functions used in many important machine
learning applications.

3. The a-Symmetric Generalized-Smooth
Function Class

We propose the following class of a-symmetric generalized-
smooth functions L;“ym(a), which we show later covers
the aforementioned generalized-smooth function classes
and includes many important machine learning problems.

Throughout the whole paper, we define 00 = 1.

Definition 3 (L, () function class). For a € [0, 1], the a-

symmetric generalized-smooth function class L, () is the
class of differentiable functions f : R® — R that satisfy the
following condition for all w,w' € R? and some constants

Lo, Li>0.

IVf(w') = Vf(w)l
< (Lo + Ly [ IV7.f (wo (w, w))|*) 0" —wll, (4)

where wg(w, w') := 0w’ + (1 — 0)w.
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Remark: we use wy(w, w’) to emphasize its dependence
on w,w’. Later whenever w,w’ is given, we will use the

abbreviation wyg.

It can be seen that the above function class L, ()
covers the aforementioned function classes L (corre-
sponds to L1y = 0) and L}, (with L; > 0,a =1
and maxgeo,1) ||V f (we(w,w’))|| being replaced with the
smaller term ||V f(w)]||). In particular, compared to the
asymmetric generalized-smooth function class L5, our
proposed function class E;‘ym(a) generalizes it in two as-
pects. First, E:‘ym(a) defines generalized-smoothness in a
symmetric way with regard to the points w and w’ since
it considers the maximum gradient norm over the line seg-
ment {wy : ¢ € [0,1]}. As a comparison, L}, defines
generalized-smoothness in an asymmetric way. Second,
E;‘ym(a) covers the functions whose smoothness parameter
can scale polynomially as maxgeo,1] ||V f(wp)[|*, whereas

L ym only considers the special case a = 1.

Next, we show connections among all these generalized-
smooth function classes, and prove that our proposed func-

tion class L, (@) is substantially bigger than others.

Theorem 1 (Function class comparison). The generalized-
smooth function classes L, Ly and L3, («) satisfy the
following properties.

1L ﬁZsym c ‘C:ym(l)’

2. Ly C L3, (1). Moreover, they are equivalent when

restricted to the set of twice-differentiable functions;

3. The polynomial function f(w) = |w|f%g,w eR,ac€
(0, 1) satisfies f € L3, (o). However, f ¢ L3, (a) for
alla € (0,a)and f & L

* .
asym’

4. The exponential function f(w) = e¥ + e ¥, w € R
satisfies f € L3,,(1). However, f & L}, (a) for all
a€(0,)and f & L

asym®

Remark: The functions in items 3 & 4 can be generalized to

2—«
high-dimensional case w € R? by using f(w) = |Jwl|| ==
and f(w) = el + e~l"ll respectively.

To elaborate, items 1 & 2 show that a special case of our
proposed a-symmetric generalized-smooth function class
L, (1) includes the other existing generalized-smooth
function classes L, £f;. In particular, when f is re-
stricted to be twice-differentiable, the class Lf; is equivalent
to L3,,,(1). Moreover, items 3 & 4 show that our proposed
generalized-smooth function class L3, (@) includes a wide
range of ‘fast-growing’ functions, including high-order poly-
nomials and even exponential functions, which are not in-
cluded in £,. In summary, our proposed a-symmetric
generalized-smooth function class £, () extends the ex-
isting boundary of smooth functions in nonconvex optimiza-

tion.

Next, for the functions in L, (), we establish various
important technical tools that are leveraged later to develop

efficient algorithms and their convergence analysis.

Proposition 1 (Technical tools). The function class L3, (c)
can be equivalently defined as follows.

1. Forany o € (0,1), function f belongs to L3, (cv) if and
only if for any w,w' € R,
IVf(w') = Vi) < |lw' —w] ®)

(Ko + Ki||V f(w)[|* + K| [w' —w]| 7).

2

where K = L0(2% +1), Ky = Ly - 27-a - 3%,
Ko = LT7 .21 .3%(1 — a) ™55
2. For a =1, function f belongs to Ls*ym(l) if and only if
for any w,w' € R?,
IVf(w') = Vf(w)| < [lw = w]| (©)
(Lo + La[IV f(w)[]) exp (L1 [Jw’ — w]]).

Consequently, the following descent lemmas hold.

3. If f € L5, () for a € (0, 1), then for any w,w'" € R?,

) < £G0) + 95 ')+ Sl wl?
(Ko + K1 [V f(w)]|* + 2Kz |w’ — w|[T°=). (7)

4. Iff € L

sym

(1), then for any w,w’ € RY,

Fl) < Fl) + V7 (@ —w) + g’ —wl?
(Lo + L[V f(w)]) exp (L1 [[w” —w]]). (8)

Technical Novelty. Proving the above items 1 & 2 turns
out to be non-trivial and critical, because they directly im-
ply the items 3 & 47, which play an important role in the
convergence analysis of the algorithms proposed later in
this paper. Specifically, there are two major steps to prove
the equivalent definitions in items 1 & 2. First, we prove
another equivalent definition, i.e., f € £, () if and only

if for any w, w € R,
IV (') = Vi)
1
< (totLn [ 19 s a0 0! ]l ©)

Please refer to (25) in Lemma 2 in Appendix A for the
details. To prove this, we uniformly divide the line segment

m of Proposition 1 can be obtained by substituting
items 1 & 2 into the inequality that f(w’) — f(w)— Vf(w)T (w'—
w) < J3 IV (wp) = Vf (w)||w’ — w|de
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between w and w’ into n pieces with the end points {wy :
0= %}2:0- Then, we obtain the following bound.

n—1

w)” < Z ”vf(w(k-‘rl)/n)*vf(wk/n)”

k=0

<
||w 'U)” Z n oelk/n, (k+1)/n]h(9)

IV f(w')—

where wy, /,, and w(x41)/, denote wy with @ = k/n and 0 =
(k 4+ 1)/n respectively, and h(6) := Lo + L1 ||V f(wg)||*.
As n — 400, the summation in the above inequality con-
verges to the desired integral fol h(6)db. Second, to prove
sufficiency, i.e., (9) implies (5) & (6), we derive and solve
an ordinary differential equation (ODE) of the function

fo h(0")d#’. This ODE is obtained by substi-
tutmg w’ = wy into the above equivalent definition (9).
Then, to prove necessity, i.e., (5) & (6) imply (9), we use
a similar dividing technique so that averaging the terms
Ko + K|V f(wgm)||* and Lo + L1||V f(wyy)|| over
k=0,1,...,n — 1 yields the desired integral as n — +o0,
while at the same time the other terms vanish as [|w 41 /n—

wk/n” & —0 and eXp(Ll ||w(k+1)/n _wk/n”) — L

Next, we present some nonconvex machine learning exam-
ples that belong to the proposed function class L, ().

Example 1: Phase Retrieval. Phase retrieval is a clas-
sic nonconvex machine learning and signal processing
problem that arises in X-ray crystallography and coherent
diffraction imaging applications (Drenth, 1994; Miao et al.,
1999). In this problem, we aim to recover the structure
of a molecular object from far-field diffraction intensity
measurements when the object is illuminated by a source
light. Mathematically, denote the underlying true object as
r € R?% and suppose we take m intensity measurements,
e,y = |a 2?,r = 1,2,...,m where a,, € R% and T
denotes transpose. Then, phase retrieval proposes to recover
the signal by solving the following nonconvex problem.

. B 1 m .

min f(z) = 5~ T_l(yr |a, z[7)". (10)
The above nonconvex objective function is a high-order
polynomial in the high-dimensional space. Therefore, it
does not belong to the L-smooth function class £. In the
following result, we formally prove that the above phase re-
trieval problem can be effectively modeled by our proposed

function class L, ().

Proposition 2. The nonconvex phase retrieval objective
function f(z) in (10) belongs to L7, (3).

Example 2: Distributionally Robust Optimization. In
many practical machine learning applications, there is usu-
ally a gap between training data distribution and test data

distribution. Therefore, it is much desired to train a model
that is robust to distribution shift. Distributionally robust op-
timization (DRO) is such a popular optimization framework
for training robust models. Specifically, DRO aims to solve
the following problem

min f(2) = sup {Benqlle(@)] = Ady (@, P}, (A1)
where the -divergence term Ady(Q, P) (A > 0) penal-
izes the distribution shift between the training data distribu-
tion @ and the target distribution P, and it takes the form
dy(Q,P) == [ 1/)( )dP Under mild assumptions on
the nonconvex sample loss function /¢ (e.g., smooth and
bounded variance) and the divergence function 1), the above
DRO problem is proven to be equivalent to the following
minimization problem (Levy et al., 2020; Jin et al., 2021).

where 1* denotes the convex conjugate function of 1. In
particular, the objective function L(x,n) in the above equiv-
alent form has been shown to belong to the function class

L ym (in et al,, 2021). Therefore, by item 1 of Theorem 1,
we can make the following conclusion.

Lemma 1. Regarding the equivalent form (12) of the DRO

problem (11), its objective function L belongs to the function
class L%, (1).

sym

merér\’l}rryleR Lw,m) i= NBerupt

) +n, (12)

4. Optimal Method for Solving Nonconvex
Problems in L, (o)

sym

In this section, we develop an efficient and optimal determin-
istic gradient-based algorithm for minimizing nonconvex

functions in £, () and analyze its iteration complexity.

The challenge for optimizing the functions in L, ()
is that the generalized-smoothness parameter scales with
maxgeo,1] || V.f(we)||*. To address this issue, we need to
use a specialized gradient normalization technique, and this
motivates us to consider the S-normalized gradient descent
(5-GD) algorithm as shown in Algorithm 1. To elaborate,
(5-GD simply normalizes the gradient update by the gradient
norm term ||V f (w;)||® for some B8 > 0. Such a normalized
update is closely related to some existing gradient-type al-
gorithms, including the clipped GD algorithm that uses the
normalization term max{||V f(w;)||,C'} and the normal-
ized GD that uses the normalization term ||V f (w;)|| + C
(Zhang et al., 2019), where C' > 0 is a certain constant.
We obtain the following convergence result of S-GD on
minimizing functions in £, ().

Theorem 2 (Convergence of 3-GD). Apply the 3-GD
algorithm to minimize any function f € ,CSW( «) with

B
B € |a,1]. Choose v = 12(K0+K1+2K2)+1 Yifa € (0,1)

3See the definition of Ko, K1, K> in Proposition 1.
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Algorithm 1 5-Normalized GD
Input: Iteration number 7', initialization wy, learning rate
v, normalization parameter 3.
for t=0,1,2,...,7T—1do
_ V f(we)
Update wyy1 = wy — 7y va(wtt)”ﬁ.

end

Output: wsz where T is sampled from {0, 1,...
uniformly at random.

T — 1)

and vy = 4;()% if « = 1 (e is the target accuracy). Then,
the following convergence rate result holds.
2 \77 N |
BV I wp)l < (7)) (Flwo) =) 45 (3)

Consequently, to achieve E5||V f(wz)| < €, the required
overall iteration complexity is T = 've;l*ﬂ = 0(e7?).

Theorem 2 shows that 5-GD achieves the iteration complex-
ity O(e~?) when minimizing functions in £, (). Such
a complexity result matches the iteration complexity lower
bound for deterministic smooth nonconvex optimization and
hence is optimal. In particular, Theorem 2 shows that to min-
imize any function f € L, (), it suffices to apply 3-GD
with any 3 € [a, 1] and a proper learning rate v = O(¢?).
Intuitively, with a larger «, the gradient norm of function
f inthe class £, («) increases faster as ||w]|| — +o0, and
therefore we need to use a larger normalization parameter
(3 and a smaller learning rate O(¢?) to alleviate gradient
explosion. Interestingly, the convergence and iteration com-
plexity of 8-GD remain the same as long as § > « is used,
i.e., over-normalization does not affect the complexity order.
In practice, when o is unknown a priori for the function
class L, (), one can simply use the conservative choice
B =1 and is guaranteed to converge.

Technical Novelty. In the proof of Theorem 2, a major
challenge is that due to the S-normalization term in Al-
gorithm 1, the generalized-smoothness of functions in the
class £, () introduces additional higher-order terms to
the Taylor expansion upper bounds, as can be seen from
the descent lemmas shown in (7) (for « € (0,1)) and (8)
(for « = 1). In the convergence proof, these terms con-
tribute to certain fast-increasing terms that reduce the over-
all optimization progress. For example, when o € (0, 1),
substituting w = w; and w’ = wy ; into (7) yields that *

Flwir) — flwe) < =V f(we)||>~7

+ L(OMIVH ()22 + O() |9 £ w2+~

6
(‘2—a>(1—ﬁ))

+ O TRV f(wy)||~ 1= (14)

“4See (1) of (45) in Appendix E for the full expression of O in
eq. (14).

The above key inequality bounds the optimization progress
f(wiy1) — f(w;) using gradient norm terms with very dif-
ferent exponents. This makes it challenging to achieve the
desired level of optimization progress, as compared with the
analysis of minimizing other (generalized) smooth functions
in L, E;‘Sym and L} (Zhang et al., 2019; Jin et al., 2021). To
address this issue and homogenize the diverse exponents,
we develop a technical tool in Lemma 5 in Appendix A to
bridge polynomials with different exponents. With this tech-
nique, we further obtain the following optimization progress
bound

Flweia) = flwn) < =2V )PP +0(F), (1)

which leads to the desired result with proper telescoping.

We also obtain the following complementary result to Theo-
rem 2, which shows that 3-GD may diverge in general with
under-normalization.

Theorem 3. (Divergence of 3-GD) For the 5-GD algorithm
with B € [0, &), there always exists a convex function f €
L3, (a) with a unique minimizer such that for any learning
rate vy > 0, 3-GD diverges for all initialization ||wg|| > C
for some constant C > 0.

5. Expected o-Symmetric Generalized-Smooth
Functions in Stochastic Optimization

In this section, we propose a class of expected a-symmetric

generalized-smooth functions and study their properties in

stochastic optimization. Specifically, we consider the fol-

lowing nonconvex stochastic optimization problem
min f(w) := qup[fg(w)],

weRd

(16)

where P denotes the distribution of the data sample &.
Throughout, we adopt the following standard assumption
on the stochastic gradients (Ghadimi and Lan, 2013; Fang
et al., 2018; Jin et al., 2021; Arjevani et al., 2022).

Assumption 1. The stochastic gradient is unbiased, i.e.,
Eep[V fe(w)] = V f(w) and satisfies the following vari-
ance bound for some T'; A > 0.

Ecp||V fe(w) — Vf(w)|[* < TV f(w)|* + A% (A7)

If only the population loss f is smooth, i.e., f € L, are-
cent work has established a sample complexity lower bound
O(e~%) for first-order stochastic algorithms (Arjevani et al.,
2022), which can be achieved by the standard stochastic
gradient descent (SGD) algorithm (Ghadimi and Lan, 2013)
and its clipped and normalized versions (Zhang et al., 2019).
Therefore, one should not expect an improved sample com-
plexity when optimizing the larger class of generalized-
smooth functions L, (c). To overcome this sample com-
plexity barrier, many existing works consider the subclass of
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expected smooth functions EL, in which there exists a con-
stant Ly > 0 such that for all w,w’ € R?, all the functions
fe satisfy

Ee[|V fe(w') = V fe(w)||* < Li|lw' —w]?. (18)

Many variance-reduced algorithms, e.g., SPIDER (Fang
et al., 2018) and STORM (Cutkosky and Orabona, 2019),
have been proved to achieve the near-optimal sample com-
plexity O(e~?) for optimizing functions in EL. Therefore,
we are inspired to propose and study the following expected
a-symmetric generalized-smooth function class Eﬁg‘ym(a).
Definition 4 (ELJ,, () function class). For a € [0, 1], the
expected a-symmetric generalized-smooth function class
EL3,, () is the class of differentiable stochastic functions
f = Ee¢lfe] that satisfy the following condition for all
w,w’ € R* and some constants Ly, L1 > 0.

]EgNP||Vf§(w/) - vfﬁ(w)||2
<l — wl|*Benp (Lo+-Ly max IV fe(wo)|*)" (19)

where wy := 0w’ + (1 — O)w.

Remark: It is clear that the function class EL{,(0) is
equivalent to the function class EL. Also, a sufficient con-
dition to guarantee f € ELJ, (o) is that fe € L], () for
every sample .

Proposition 3. Both the aforementioned phase retrieval
problem and DRO problem belong to ELY,, (o) with o =
%, 1 respectively.

We further develop the following technical tools associated

with the function class EL, (o), which are used later to
analyze a stochastic algorithm.

Proposition 4 (Technical tools). Under Assumption 1, the
following statements hold.

1. For any a € (0,1), function f = E¢|fe] belongs to
EL},,,(cv) if and only if for any w,w' € RY,
Ee||V fe(w') = Vfe(w)[|* < [lw' — wlf? (20)
(Ko + KaEe |V fe(w)|* + Kol — w] 7).
where K :2%110, K, :2?:7:L1, Ky :(5L1)ﬁ;
2. For o = 1, function f = E¢[f¢] belongs to ELS,, () if
and only if for any w,w’ € R?,
Ee|[Vfe(w') = V fe(w)||* < 2[w’ - w]® 1)
(L + 2LTE||V fe(w)[|*) exp(12L] 0’ — w|?).

3. ELCy, («) C L2, ().

sym sym

Remark: Item 3 of Proposition 4 implies that we can apply
the descent lemmas (items 3 & 4 of Proposition 1) to the
population loss f = E¢[fe|. This is very useful later in the
convergence analysis of our proposed stochastic algorithm.

6. Optimal Method for Solving Nonconvex
Problems in EL}, («)

sym

In this section, we explore stochastic algorithms for solving
nonconvex problems in the function class EL,, (o) and see

if any algorithm can achieve the optimal sample complexity.

In the existing literature, many stochastic variance reduction
algorithms, e.g., SPIDER (Fang et al., 2018) and STORM
(Cutkosky and Orabona, 2019), have been developed and
proved to achieve the optimal sample complexity O(e~3)
for minimizing the class of expected-smooth stochastic non-
convex problems (i.e., EL). However, for the extended class
EL (), itis unclear what is the sample complexity lower
bound and the optimal stochastic algorithm design. Inspired
by the existing literature and the structures of functions in
]E,C;*ym(a), a good algorithm design must apply both vari-
ance reduction and a proper normalization to the stochastic
updates in order to combat the generalized-smoothness and
achieve an improved sample complexity. Interestingly, we
discover that the original SPIDER algorithm design already
well balances these two techniques and can be directly ap-
plied to solve problems in EL{ (). The original SPIDER
algorithm is summarized in Algorithm 2 below.

Algorithm 2 SPIDER (Fang et al., 2018)
Input: Iteration number 7', epoch size g, initialization wy,
learning rate -y, batchsize |.S;|.
for t=0,1,2,...,7T —1do
Sample a minibatch of data S;.
if £ mod ¢ = 0 then
| Compute v, = V fg, (w;)
else
| Compute v; = vs_1 + Vfg, (we) — Vs, (wi_1)
end
Update wyy1 = wy — VH%H'

end
Output: wz where T is sampled from {0,1,...,7 — 1}

uniformly at random..

However, establishing the convergence of SPIDER for the
extended function class ELY, () is fundamentally more
challenging. Intuitively, this is because the characterization
of variance of the stochastic update v; is largely affected by
the generalized-smoothness structure, and it takes a complex
form that needs to be treated carefully. Please refer to the

elaboration on technical novelty later for more details.

Surprisingly, by choosing proper hyper-parameters that are
adapted to the function class EL{,, (), we are able to prove
that SPIDER achieves the optimal sample complexity as
formally stated in the following theorem.

Theorem 4 (Convergence of SPIDER). Apply the SPIDER
algorithm to minimize any function f = E¢[fe] € EL],, ()
and assume Assumption 1 hold. Set |Si| = B when
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t mod ¢ = 0 and |Sy| = B’ otherwise, and let B >

Q(max{A%e2 I‘2q2}) B’ > Q(max{q, ¢*¢*}). Choose
Y= 2K0+4K2+2K1(A0+F0+1)+1 when o € (0,1) and
Y= when o = 1 (€ is the tar-

5L1 \/F2+1+8\/L3+2L2A2
get accuracy). Then, the following result holds for T = qK
iterations where K € NT,

16

| < 4e
— 5Ty

M+—= @

BV S (wg) -

= (Ef (wo) —
In particular, to achieve E||V f(wz)|| < €, we can choose
B = 0O(2), B =q = 0(!), vy = Oe) and
T = O(e2)’ so that the above conditions are satisfied.
Consequently, the overall sample complexity is O(e~3).

Theorem 4 proves that SPIDER achieves an overall sample
complexity O(e~3) when solving nonconvex problems in
EL,,(a) for any a € (0, 1]. Note that such a sample com-
plexity matches the well-known sample complexity lower
bound for the class of expected-smooth nonconvex opti-
mization problems (Fang et al., 2018), which is a subset of
Eﬁfym( «). Consequently, we can make two important ob-
servations: (i) this implies that the sample complexity lower
bound of EL{,(a) is actually O(e3); and (ii) the SPI-
DER algorithm is provably optimal for solving nonconvex

problems in such an extended function class.

Technical Novelty. Compared with the original analysis of
SPIDER for minimizing expected-smooth functions (Fang
et al., 2018), our proof of the above theorem needs to ad-
dress a major challenge on bounding the expected bias error
E||0;|| where 6; = v; — V f(x¢). To elaborate more specifi-
cally, in the original analysis of SPIDER, (Fang et al., 2018)
established the following key lemma (see their Lemma 1)
that bounds the martingale variance of the update v;.

E[l6:]I* < Elldo]* +

The above inequality only depends on the variance reduction
structure of SPIDER and hence still holds in our case. How-
ever, to further bound the term E¢||V fe (wi11)—V fe (wy) ||?
for functions in the class EL,, (o), we need to leverage
the expected generalized-smoothness properties in (20) &
(21) and the update rule ||wi41 — wel]] = v = O(e). We
then obtain that E¢ ||V fe(wiy1) — Vfe(wy)||* < O(e?) +
O(€%||V f(w;)]|?*), and consequently, the above martingale
variance bound becomes

(’)

E[|0¢]* <E[[do]|*+O€?) ). 23)

When o > 1, the term EHVf(wt)HM in (23) cannot be

upper bounded by any functional of E||V f (w;)]], so taking

3See eqs. (65)-(70) in Appendix H for the full expression of
these hyperparameters.

1 t—1
B ZEéﬂvf&(th) — V fe(wy)|?.
k=0

square root of (2%) cannot yield the desired bound E||d;|| <
O(e)+ (\9/%, S U E|| V£ (wy) | used in the original analysis

of SPIDER. To address this issue for functions in IEL’;*ym( a),

we consider the more refined conditional error recursion

2

E(I6es11[S1e) < 1802 + 5 (1+ 95 (wn) ), @24
where there is no randomness in ||V f(w;)||? since we are
conditioning on the minibatches S1.; := {S1,..., S} (see
(58) in Appendix A). Therefore, by taking square root of
(24) followed by further taking iterated expectation, we can
obtain the desired term E||V f (w;)]| in the upper bound of
E||8¢||. After that, we iterate the resulting bound over ¢ via
a non-trivial induction argument to complete the analysis
(see the proof of (60) in Lemma 58 in Appendix A).

7. Experiments®
7.1. Application to Nonconvex Phase Retrieval

In this section, we test our algorithms via solving the non-
convex phase retrieval problem in (10). We set the problem
dimension d = 100 and sample size m = 3000. The mea-
surement vector a,, € R? and the underlying true parameter
z € RY are generated entrywise using Gaussian distribution
N(0,0.5). The initialization 2o € R? is generated entry-
wise using Gaussian distribution A/(5, 0.5). Then, we gener-
ate y; = |a, 2|? +n; fori = 1,...,m, where n; ~ N(0, 4%)
is the additive Gaussian noise.

We first compare deterministic algorithms with fine-tuned
learning rate -y over 500 iterations. This includes the basic
GD with v = 8 x 10~*, clipped GD (Zhang et al., 2019)
withy = 0.9 and normalization term max (|| V f(z)||, 100),
and our B-GD with § = 3, 3, 1 and v = 0.03,0.1,0.2,
respectively. Figure 1 (top left) plots the comparison result
on objective function value v.s. iteration It can be seen that
our proposed 5-GD with g = 3, 3 converges faster than
the existing GD, normalized GD (1-GD) and clipped GD
algorithms, which shows the advantage of using a proper
normalization parameter [3.

We further compare stochastic algorithms with fine-tuned
learning rate + and fixed batch size b = 50 over 500 iter-
ations. This includes the basic SGD with vy = 2 x 1074,
normalized SGD with v = 2 x 103, normalized SGD with
momentum (Jin et al., 2021) with v = 3 x 10~2 and mo-
mentum coefficient 10™4, clipped SGD (Zhang et al., 2019)
with v = 0.3 and normalization term max(||V f(z)]|, 10%),
and SPIDER with v = 0.01, epoch size ¢ = 5 and batch-
sizes B = 3000, B" = 50. We generate the initialization

The code can be downloaded from https://github.c
om/changyl2/Generalized-Smooth-Nonconvex—0
ptimization-is-As-Efficient-As-Smooth-Non
convex—-Optimization
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by running %-GD with v = 0.1 for 100 iterations from z.
Figure 1 (top right) plots the comparison result on objective
function value v.s. sample complexity. It can be seen that
SPIDER uses slightly more samples at the beginning but
converges to a much better solution than the other SGD-type
algorithms. This demonstrates the advantage of applying
both variance reduction and proper normalization to solve
generalized-smooth nonconvex stochastic problems.

—— GD —— SGD

—— laD 81 —+— Normalized SGD
2 —=— Normalized SGDm
10° = 36D 80 —— Clipped SGD
—— 16D SPIDER

Clipped GD 7.9
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Figure 1: Experimental results (two subfigures above for
phase retrieval and two below for DRO).

7.2. Application to DRO

In this section, we test our algorithms via solving the non-
convex DRO problem in (12) on the life expectancy data’,
which collected the life expectancy (target) and its influenc-
ing factors (features) of 2413 people for regression anal-
ysis. We preprocess the data by filling the missing val-
ues with the median of the corresponding variables, cen-
sorizing and standardizing all the variables®, removing two
categorical variables (“country” and “status”), and adding
standard Gaussian noise to the target to ensure model ro-
bustness. We select the first 2000 samples {x;, y; } 2290
as the training samples where z; € R3* and y; € R
are feature and target respectively. In the DRO problem
(12), we set A = 0.01 and select ¢*(t) = +(t +2)2 — 1
which corresponds to x? divergence. For any sample pair
Z¢, Ye, we adopt the regularized mean square loss function
le(w) = (ye —xd w)? + 0.1 72 In (14 [w?])) with
parameter w = [w); ... ;w®] € R3*. We initialize
no = 0.1 and randomly initialize wy € R3* entrywise using
standard Gaussian distribution.

7https ://www.kaggle.com/datasets/kumaraja
rshi/life-expectancy-who?resource=download

8The detailed process of filling missing values and censoriza-
tion can be seen in https://thecleverprogrammer.co
m/2021/01/06/1ife-expectancy-analysis—-wit
h-python/

We first compare deterministic algorithms with fine-tuned
learning rate vy over 50 iterations. This includes the basic GD
with v = 1074, clipped GD (Zhang et al., 2019) with v =
0.3 and normalization term max(||VL(x, 1), 10), and
normalized GD (our 5-GD with § = 1) with v = 0.2, re-
spectively. Figure 1 (bottom left) plots the comparison result
on the objective function value ¥ (z;) := min,er L(z¢,n)
(L is defined in eq. (12)) v.s. iteration. It can be seen that
normalized GD and clipped GD converge to comparable
function values and both outperform standard GD.

We further compare stochastic algorithms with fine-tuned
learning rate - and fixed minibatch size b = 50 over 5000
iterations. This includes the basic SGD with v = 2 x 1074,
normalized SGD with v = 8 x 102, normalized SGD with
momentum with v = 8 x 1073 and momentum coefficient
10~4, clipped SGD [1] with v = 0.05 and normalization
term max(||VL(x¢, m¢)||, 100), and SPIDER with v = 4 x
1073, epoch size ¢ = 20 and batchsizes B = 2000, B’ =
50. We generate the initialization by running normalized
GD with v = 0.2 for 30 iterations from wyg, 9. Figure
1 (bottom right) plots the comparison result on objective
function value ¥(x,) v.s. sample complexity. It can be seen
that SPIDER takes slightly more samples at the beginning
but converges to a better solution than the other SGD-type
algorithms. This demonstrates the advantage of applying
both variance reduction and proper normalization to solve
generalized-smooth nonconvex stochastic problems.

8. Conclusion

In this work, we proposed a new class of generalized-smooth
functions that extends the existing ones. We developed both
deterministic and stochastic gradient-based algorithms for
solving problems in this class and obtained the optimal
complexities. Our results extend the existing boundary of
first-order nonconvex optimization and may inspire new
developments in this direction. In the future, it is interesting
to explore if other popular variance reduction algorithms
such as STORM and SpiderBoost can be normalized to
solve generalized-smooth nonconvex stochastic problems.
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A. Supporting Lemmas

Lemma 2. f € L], () if and only if for any w, w € R,

1
V() = V) < (Lo + L [ 197 (wo)]"d8) o’ = w] 3)

where wg := 0w’ + (1 — O)w.

Lemma 2 provides an equivalent definition of f € £ which is sometimes more convenient to use than Definition 3,

for example, in the proof in Section B.2.

asym( )

Proof. Eq. (25) directly implies eq. (4) (i.e., f € LX,,(«)) since

sym

1
[e3 < OL.
195 us) 0 < g 19 )

Then it remains to prove eq. (25) given eq. (4). For any n € NT, we have

IVf(w') = V()]

n—1

||vf(w(k+1)/n) - Vf(“’k/n)”
k=0

(i) =2
<Y wgerty/m — weynll (Lo + Ly Jmax ||Vf(w0(k+1)/n+(179)k/n)”a)
k=0 ’

@ |
h
” Z n oe| k:/n (k+1)/n] (

where (i) uses eq. (4) with w, w’ replaced by Wi /ns W(k+1)/n TESpectively (wy,, and w(x41)/, denote wy with 6 = k/n

and 0 = (k + 1)/n respectively) and (ii) denotes h(6) := Lo + L1 ||V f(wg)||*. Since h(-) is continuous, letting n — +o00
in the above inequality proves eq. (25) as follows.

1 1
IV (') = V)] < o - w] / W(0)do = (Lo + Ly / 191 ()] 0) [ — ]

Lemma 3. f € EL}, («) if and only if for any w,w € R¢,

1
Ee ||V fe(w') = V fe(w) || < |’ — wH2E§/O (Lo + Ly ||V fe(wo)||*)*do (26)

where wy := 0w’ + (1 — 0)w.

Lemma 3 provides an equivalent definition of f € EL which is sometimes more convenient to use than Definition 4.

asym( )
Proof. 1t sufficies to prove the equivalence between egs. (26) & (19).
Eq. (26) directly implies eq. (19) since

1
/ (Lo+ L1 ||V fe(we)]|*)?d0 < max (Lo+La ||V fe(we)||*)” = (Lo+L1 max ||V fe(wg)]|*)*.
0 0€l0,1] 0€l0,1]

Then it remains to prove eq. (26) given eq. (19). For any w, w’ € R?, denote wy := fw’ + (1 — §)w. Then for any 6 € [0, 1]
and n € NT, we have

Ee[|V fe(wp) — V fe(w)]|®

12



Generalized-Smooth Nonconvex Optimization is As Efficient As Smooth Nonconvex Optimization

n—1

= E&H D (Ve(wominym) = V fe(worn)) H2
k=0

@ "t
< nZ]EgHVfg we k41 /n) Vf&(w(?k/n)n
k=0

(i) n—1

2
< ”Z | wo(kt1)/n — Wor/nll Eg(Lo+L1 max HVfg(9 Wo(k+1)/n + (1 9’)wok/n)||a)

n—1

1
=0°|w’ — w|’Ee Z PR (Lo + L[|V fe (worok+1) nt(1—6m 0k /n) | )
pa

(zu) 9 9
0 E h
”w U/” ¢ Z n ue[k/n k+1)/n] (U)

where (i) applies Jensen’ inequality to the convex function || - ||, (ii) uses eq. (19), and (iii) denotes h(u) := (LO +

L1||V fe(wey) HQ)Q. Since h is a continuous function, letting n — 400 in the above inequality yields that

1 1
a2
BelIV ewn) = Vfe(w)| < 6%’ ~ wlEe | hlu)du <6’ = wl*Ee [ (Lo + Lal¥ felown) ) *du. (27)
0 0
Substituting § = 1 into the above inequality proves eq. (26). O

Lemma 4. Under Assumption 1, the stochastic gradient V f¢(w) and true gradient V f(w) satisfy the following inequalities
forany T €0,2],

Eenp|Vfe(w)|™ < (7 + DIVf(w)|” + AT (28)
Proof. First, when 7 = 2, Assumption 1 implies eq. (28) as follows.

Eewpl|V fe(w)|* £ Bewr|V fe(w) = V()| + [V F(w)|? < (2 + 1)V £ (w)|]? + A® (29)

where (i) uses f(w) = E¢ fe. Then, when 7 € [0, 2), we prove eq. (28) as follows.

() r/2 (iii
Eep||V fe(w)]|” < (Eenpl|V fe(w)| )T/2 < ((112 + DIV f(w)]* + A?) 2 (0 1) |V F )7+ AT,

where (i) applies Jensen’s inequality to the concave function g(s) = s7/2, (i) uses eq. (29), and (iii) uses the inequality that
(a+0)7/2 <a™/? 4+ b7/? for any a,b > 0 and 7/2 € [0, 1]. O

Note that the only randomness of Algorithm 2 comes from Sy, so we can consider the filtration F(S1.+) := F(S1,...,S)
which monotonically increases with larger ¢. Then, it can be easily seen from Algorithm 2 that

Vg, Wit 1,011 € F(S1:t)/F(S1:6=1)) (30)

B. Proof of Theorem 1
B.1. Proof of Item 1

On one hand, f € Edsym means |V f(w') = V f(w)| < (Lo + L1[|Vf(w)|)||w — w| for all w,w’, which directly implies
eq. () witha = 1,ie., f € L,,(1). On the other hand, we will prove item 4 which shows that f(w) = e* + e, w € R
belongs to L3, (1) but not L5, Therefore, £, C L3,(1).

asym* asym

13
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B.2. Proof of Item 2

Note that if a function is not twice-differentiable, it cannot belong to L but may still belong to £, (1). For example, for

the function f(w) = w|w| whose derivative f’(w) = 2|w| is not differentiable (so f ¢ Lj;), we have f € L C L,,(1)
since | f/(w") — /()| < 2| /]  ful| < 2Ju’ ~ .

Therefore, it remains to prove for twice-differentiable functions f the equivalence between eq. (31) below (definition of Lj;)
and eq. (25) with o = 1 (equivalent definition of L%, (1)).

sym

V2 f(w')|| < Lo + L1 ||V f(w)]|. 31)
Eq. (31) implies eq. (25) as proved below.
1
1V 5w) = V@)l = [ 92 ftwo)(w’ ~wds]
1
< / 192 (o) 0" — w]ld
@ !
< ' = wl [ (Lo + a9 ) ) dt
0

= ! it + 1y [ 19 )]0,

where (i) uses eq. (31). Finally, it remains prove eq. (31) given eq. (25).

Note that of the symmetric Hessian matrix V2 f (w) has eigenvalue || V2 f(w)]|| or —||V2f(w)]|. Denote s as the correspond-
ing eigenvector with ||s|| = 1, i.e., V2f(w)s = £||V2f(w)|s. In eq. (25), we adopt w’ := w + 0's (6’ € (0,1)), so
wp = 0w 4+ (1 —0)w =0(w+0's) + (1 — 6)w = w + 66’s and thus eq. (25) becomes

1
IVf(w+0's) — Vf(w)]| <0 (Lo + L / IV f(w + 99’5)“"‘039) (32)
0

The left side of eq. (32) can be rewritten as follows.

IVf(w+0's) = Vfw)] =06

/01 V2f (0w +6's) + (1 — 9)w)d9H

1
_ H / V2 f(w + 09’3)9’d0H
0
W [
= ‘/ VQf(w—i—us),s:du}7 (33)
0
where (i) uses change of variables u = 6'6. The right side of eq. (32) can be rewritten as follows.
! (@ v
o' (Lo + Ll/ 17w+ 00's)|"a0) 2 Loo" + Ll/ IV £ (w + us) || d, (34)
0 0

where (i) also uses change of variables u = 6. Substituting egs. (33) & (34) into eq. (32) and multiplying both sides by
1/0" > 0, we obtain that

Letting 8 — +0 in the above inequality, we obtain eq. (31) as follows.

1 L "
5 [ s < o+ 5 [ 1V us)
0 0

IV2 f ()l = V2 f (w)s]| < Lo + La [V f (w)[|*.

14
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B.3. Proof of Item 3
The polynomial function f(w) = |w| = ,w € R is twice-differentiable with first and second order derivatives below.

) = TSl e sen), () = ol

Therefore, for any w, w’ € R, we have

[ (') = f/(w)] < Jw’ —w| max [f"(wp)]

0€0,1]
< e lw' — w| max |we| ™= -1
_ x =
~ (1-a)? oclon] ©
_ 2-a l-a, o
= 0o [w" — wl x5 o/ (wo)
2 — )l
= El _agz_alw’ —wl max [£'(wp)|* (35)

where wy := 0w’ + (1 — @)w. This verifies eq. (4) and thus proves that f € Lyym(c).

Next, we prove that f ¢ L, (a) for all & € (0,). Suppose f € LJ,,(a), i.e., the following inequality holds for all
w,w € RY

/) = £ ()] < ' = (Lo -+ Ly x| (ug) ),

where wy := Ow’ + (1 — §)w. Substituting w’ = 0 into the above inequality, we obtain the following inequality for all
w € R

2—«

1 2 —« 1 a
T—a < ( 17a) )
1 a|w| < \w|<l)0 + 14 1 a|w|

As |w| — 400, the left side of the above inequality is O(|w\ﬁ) whereas the right side has strictly smaller order

O(|wl e ). Hence, the above inequality cannot hold for sufficiently large |w|, which means the assumption that
f € Ln(a) does not hold.

Finally, we prove that f ¢ L3 .. Suppose f € L, i.., the following inequality holds for all w, w’ € R
[/ (w') = f'(w)] < [w' = w|(Lo + Ly | f'(w)]).

Substituting w = 0 into the above inequality, we obtain the following inequality for all w’ € R<.

2 —

(&7 1
2|7 < Lolw]

l—a

which implies that |w’| < (w) ® < 4o00. Hence, the above inequality cannot for all sufficiently large |w’|, which

means the assumption that f € L, does not hold.

B.4. Proof of Item 4

The exponential function f(w) = e¢* + e~ ", w € R is twice-differentiable with first and second order derivatives below.

f(w)=¢e" —e™™ = sgn(w) (elwl — ef‘w‘), f'(w) = e + e = elvl 4 emlvl,

When |w| < 1, |f"(w)| < e+e™ < 4; When |w| > 1, | f/(w)|+4 = el*l eIl —2e= 1wl 4 > | £ (w)]| — 27 +4 >
|f”(w)|. Combining the two cases yields that |f”(w)| < |f'(w)| + 4, which implies that f € £, . Since f is twice-

sym*
differentiable, we have f € L, (1) based on item 2 of Theorem 1.

15
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Next, we prove that f ¢ L, (a) for all @ € (0,1). Suppose f € L, (@), i.e., the following inequality holds for all
w,w € RY

/) = /)| < o'~ wl(Lo + Ly max. | (1) ).

where wy := 6w’ + (1 — 6)w. Substituting w’ = 0 into the above inequality, we obtain the following inequality.
elvl — vl < lw|(Lo + Ly(el*! — ef‘wl)a),‘dw € RY,
which implies that

(elwl — e_|’“j‘)1_az LO + Ll(elw‘ — e_‘wl)&

| C (el —eua

Yw € R?/{0}.

As |w| — 400, the left side of the above inequality goes to +oo while the right sides converges to L; < +o00. Hence, the
above inequality cannot hold for sufficiently large |w|, which means the assumption that f € L, (&) does not hold.

Finally, we prove that f ¢ L3 . Suppose f € Ly, i.e., the following inequality holds for all w, w" € R

asym>
[f'(w') = f'(w)| < [’ —w|(Lo + Li| f'(w)]).
Substituting w = 0 into the above inequality and rearranging it, we obtain the following inequality for all w’ € R%/{0}.

e‘w/‘ — e_lw/l
T S L07

As |w| — 400, the left side of the above inequality goes to +00, so the above inequality cannot for all sufficiently large

|w'[, which means the assumption that f € L., does not hold.

C. Proof of Proposition 1
C.1. Proof of Item 1

First, we prove eq. (5) for f € LJ,, () with o € (0,1). Note that eq. (25) holds for all w,w’ € R<. Hence, for
any 6’ € [0,1], we can replace w’ with wyg := 0w’ 4+ (1 — §')w in eq. (25), so wy becomes O'wy + (1 — Aw =
00w’ + (1 — 0'0)w = weprg. Therefore, eq. (25) becomes

1
IV f(wor) = Vf @)l < (Lo + In / IV (woro) 0 ooy — w]

1
(%0+L{/HVﬂmMM%ﬂ@Wd7wH
0

i

D @) |w' — w| (36)

—
=

where (i) denotes H(0') := Lo0’ + Ly fol |V f(wgre)||*0'd0 = Lot + Ly foel |V f(wy)]|“du. Then its derivative H'(6)
can be bounded as follows,
H'(0') = Lo + L1 ||V f (wer) |
< Lo+ L1[[V f(we) = VF(w)[|* + L[|V f (w)[|*

(@)

< Lo+ Lillw’ —wl[H@)" + L[| V£ ()| G
1

(i1) 1 1 Lo\«

< - l_ ! - 0 .

< 8L (gl = wllH(E) + gIVI@)+ )

1

16
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where (i) uses eq. (36) and (ii) applies Jensen’s inequality to the concave function g(z) = x®. Rearranging the above
inequality yields that

1
0

L) H )

1
a
Ll

L
3L (1 - a)w’ —w] = (1 - a)w’ — wl| (Ilw' —wl|HO) + [V f(w)] +

d Lo\ 1-
=~ (v = wl[H®) + |V f (w)] + =5

Integrating the above inequality over 8" € [0, 0] yields that

1
o

1

(I’ — wllE2(6) + |V 7wy + Z5)

1

Y Loy1l-a
<37 Ly (1= )’ — wlf + (o’ — w|H(O) + [V F(w)] + =% )

-

where (i) uses H(0) = 0 and applies Jensen’s inequality to the concave function g(x) = z1~<. Therefore,

1

a

1

Op‘,_‘

290 (3(Lu1 - e’ - wl6) ™ + V()] + 2

™~
=0

' — w]F(0) < 275 1

3(Li (1 — )|’ — w]0) =% + [V F(w)] + 28

1

0) 19wy - H

1 Ly
Substituting the above inequality into eq. (36), we obtain that

IV (wo) | < [V (w)]| + [V f(we) =V f(w)]l
< V)l + o’ = wl| H(6)

1

< 215 (3(Lu(1 - )’ — wl8) 7 + [V + 25,

a
0
1

o

1
Then, substituting the above inequality into eq. (4), we obtain that
IVf(w') = Vf(w)l
< (Lo + Ly Jmax IVf (we) %) Il — wl|

IN

w2 o Li\e
(Lo + L1 - 2757 (3(Li(1 = a)llu’ = wl)) ™% + | Vf(w)] + - )l = wl
) 2 (30 = o, L
(ot Ly 2755 (3 (La(1 = o) —w]) ™% 4 V@) + 7))’ ]
o’ = wl| (Ko + K[|V £ (w)]|+ Ka [ — w]| %)

INS
-

where (i) uses the inequality that (a + b + ¢)* < a® 4 b* + ¢® for any a,b,c > 0 and a € [0, 1], and (ii) denotes that
2 a? = a? a

KO = LQ(QE + 1), K1 = L1 - 2T-a . 304’ KQ = Lll_a - 2T-a . 304(1 — Oé)E
Next, we prove f € L

sym

() given eq. (5). For any w, w’ € R? and n € N*, we have

IVf(w) = Vf(w)ll

(i) 2
<Y IV F@rrym) = VI (wign)|
k=0

17
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(34) n—1 o
<Y wger1y/m — el (Ko + K11V £ (i) | * + Kallwi1) o — wignl T )
k=0
n—1
(i) 1 rk 1 K o
- () 1 )

n
k=0

n—1
Ky , o 1 (k))
= — T-a E —h(— ,
frsy o’ = w + —no\n

= Jlw’ — wll(
n

where (i) denotes wy := fw’ + (1 — O)w, (ii) uses eq. (5) with w, w’ replaced by wy, /n> W(k+1)/n respectively and (iii)
denotes h(0) := Ko + K1||V f(wg)||*. Since h(-) is continuous, letting n — o0 in the above inequality proves eq. (25)
as follows, which implies f € £, () by Lemma 2.

sym
1 1
IV (w) = Vi) < [0’ =l [ b©)d8 = (Lo+ Ly [ 19 Fwn)]"a8) - w]
0 0
C.2. Proof of Item 2
Note that eq. (37) holds for any function f € L, («) with a € [0, 1]. Substituting o = 1 into eq. (37), we obtain that
H'(0) < Lo + Li[lw" — w[[H(6) + L[|V f (w)]],

where H(0') := Lot + Ly foe/ IV f (wy,)||du. Rearranging the above inequality yields that

L - H' (6 d
tljw’ — wl A7) = (Lo + Ll — 0l HO) + LV F@)]).

Liflw —wll =
=l = L T — W H @) + LV 7 )] a0

Integrating the above inequality over 6’ € [0, 0] yields that (note that H(0) = 0)
I (Lo + Lo’ — w|[H) + L[V F(w)]) < In (Lo + Lo [VF(@)]) + L’ — w]|
which implies that
Lyflw" = w|H(0) < (Lo + L[|V f(w)[]) exp (L0’ = wll) = Lo = Ly [V f (w)]].
Substituting the above inequality and o = 1 into eq. (36), we obtain that

19 (wo) | < IVF ()| + IV fwo) =V f(w)]
< IV f()] + o — wl|H(O)
< V@) + 7 ((Fo + LIV A@) ) exp (B’ = wll) = Lo = L9 F(w)])
Lo

LO /
(7 1)) exp (Laffu’ —w]) = 7°

Then, substituting the above inequality and o = 1 into eq. (4), we prove eq. (6) as follows.

[Vf(w') =V f(w)]
< (Lo+ I Jnax IV f (wo)l) [w" — wl|

< (Lo + Lu| T F@)]]) exp (L1 o — w]) ' — w]
Next, we prove f € L, (a) given eq. (6). For any w,w' € R? and n € N*, we have
[Vf(w') =V f(w)l

18



Generalized-Smooth Nonconvex Optimization is As Efficient As Smooth Nonconvex Optimization

N\ n—1

(1)
< Z IV f(wig1)/n) — Vi (wim)ll
k=0

(i) "1

< Z lwkt1)/n — We/nll (Lo + L1 |V f (win)|]) €xp (L1 |0 ikt1) /n — Wiy ll)

k=0
n—1
CONE 1(@) <L1 r )
Dl = w37 () exp (S — wl
k=0
1k 1k L
_ o - n o - 7 =1 o B
=l =l 32 2h(5) + ' =l 32 m(5) [exe (Sl = wl) 1]
k=0 k=0
n—1
1. /k L,
<=t 20(5) o g 0 o (S ) 1]
< ! =] 35 2 5) + b’ =l e 16) [exp (S’ —

where (i) denotes wy := w’ + (1 — 0)w, (ii) uses eq. (6) with w,w’ replaced by wy, /., W(i11)/, respectively and (iii)
denotes h(0) := Lo + L1||V f(wg)]|. Since h(-) is continuous, letting n — o0 in the above inequality proves eq. (25)
with o = 1 as follows, which implies f € £ (1) by Lemma 2.

sym
1 1
AN I 9 9: 9 I
IV ) = 1) < [’ =l [ 1000 = (Lo + L |19 $w0)1d0) ' =]

C.3. Proof of Item 3

Since f € L{,,(a) for a € (0,1), eq. (5) holds based on item 1 of Proposition 1. Hence, for any w, w’ € R?, we prove eq.
(7) as follows.

f@') = f(w) = Vf(w) " (w —w)
1
:/ (Vf(wg) — Vf(w)) (w' —w)do
0
1
< / IV £ (we) = VF ()l = w]|dd
(l) 1 o < /
< [ o = wl (Ko + Ky [V 5"+ Kallwo — w] %) [’ — wi|dp
0
1
- / Bllw’ — w]|? (Ko + K1 ||V f(w)]|*+ 2075 o’ — w]| ™) do
0
1 2—« 1 1
= gl —wlP (Ko + K|V f(@)*) + Kaljw' - w] 2 [ 67was
0
1 _a
< Sl —wlP (Ko + Ka V£ (w)[[* + 2Ka |’ — w] ),
where (i) uses eq. (5) with w’ replaced by wy := 6w’ + (1 — 0)w.

C.4. Proof of Item 4

Since f € L],,(a) for a € (0, 1), eq. (6) holds based on item 2 of Proposition 1. Hence, for any w, w'" € R?, we prove eq.
(7) as follows.

fw') = f(w) = Vf(w)" (v —w)
1
:/0 (Vf(wg) — Vf(w) (' — w)dd

1
< / IV £ (wg) — V f ()|l — w]|d6
0
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< /01 lwy — wl| (Lo + L1V f(w)]]) exp (L1 [we — wl])||w’ — w]|do
< /01 Ollw’ —wl*(Lo + L1 ||V f (w)|]) exp (L1 [Jw" — w]|)dd
= Sl = wlP (Lo + L)) exp (L’ = wl]),

where (i) uses eq. (6) with w’ replaced by wy := 6w’ + (1 — )w.

D. Proof of Proposition 2 and Proposition 3
D.1. Proof for Phase Retrieval Problem

The objective function (10) of phase retrieval problem can be rewritten in the stochastic form f(z) = E¢ f¢(z) where £ is
obtained from {1, 2, ..., m} uniformly at random and

fe(2) = 5 e — lad =)

To prove that f € Lﬁ;‘ym(%) and f € ]Eﬁ;kym(%) respectively required by Proposition 2 and Proposition 3, it suffices to prove
that fe € L7,,(3) for every sample £.
For any z € R? and sample &, the gradient V f¢(2) = 5 (|a{ 2|* — ye¢)(aga )z satisfies

2

1 2
IV £} = o[l 2 = ye)laea] |
> L1l 22 - yelag 21) Flacl)?

= 2 g yé' a§ z aé'

i1 2 2
> 5(\G§TZ|2 = lyellag z[3)|l|ael|3
(i)

3 2
> 3 (lag 21” = lyel?) [llae]® (38)

—_

where (i) applies Jensen’s inequality, (ii) uses the inequality that |a — b|3 > |a|3 — |b|3 for any a,b € R, (iii) uses
|y5|a% < ta?+ §|y5|% for any a > 0 based on Young’s inequality.

For any z, 2’ € RY, we obtain the following inequality which proves that f¢ € L (%) as desired.

sym

IVfe(z") = Ve(2)ll

= 2110l 71 ~ ye)agad 2" — (1o 7 ~ ye)(aeal )2|

< ed 2P + lad = = 2ye)(agad (&' = 2) + (i 7 ~ la %) (agad (= + )|
< Lagh? (1o 717 + lag o + 2lue) 12 — 21+ Slael(lag =/ + la 2D
< L~ 2llagl* (3lag 12 + 31ag =+ 2lye]

< 112 — =l ol (3lad = + 3lad = — Bluel — 3luel + Slyel)

- A Cadad VI + Labas VI + et

o ,
< 1" = 2l (oo o [976(02" + (1= 02)[F + 2pnanc ) >
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2

s

where (i) uses trianagular inequality, ||ag az | = |lae

ye| < 1 and the following inequality, (ii) uses (\agz’ | + |agz|)2 <
2\ag—z’|2 + 2\ag—z|2, (ii) uses eq. (38) and denotes that ymax := Maxi<r<m |yr| and that amay == maxi<r<m ||ar||.

|lag 2’12 = lag 2*| = (la¢ 2’| +lag 2)(lag 2’| ~lag 2|) < (lag '|+]ag 2])llag (" = 2)| <llag [|(lag 2’| +ag 2])[|2"~=].

D.2. Proof for DRO Problem

We adopt the following assumptions from (Jin et al., 2021):

* /{¢ is G-Lipschitz continuous and L-smooth.
o E(le(x) — 6(1:))2 < 02 where {(z) := El¢ ()

* 1) is a non-negative convex function with ¢)(1) = 0 and 1(¢) = +oo for all £ < 0, and ¢)* is M-smooth.

Then we rewrite the objective function (12) as L(z,n) = EL¢(x,n) where
o [ Le(z) —
Lg(w,m) = M (W) + 1. (40)

The gradient VL¢ = [V, Lg; %Lg] can be computed as follows.

To prove that L € EL, (1) required by Proposition 3, it suffices to prove that L¢ € L, (1) for every sample &.

sym
,(Lelw) =
9 Letem = (2L

”)veg(x), (41)
0 _ K/ £5($) -1
g L) = 1= 07 (FF5=). 42)

Hence, for any (2/,7), (z,n) € R x R, VL¢(2',n') — VL¢(z,n) = A+ B where

A

B = [ (=Y o (Sl Y] ooy 1),

A= [w*’(w) (Vee(a') - Wg(m));o}

*
sym

Therefore, we can prove that Le € £, (1) as follows.

IV L' ') = VLe ()]
<A+ 18]

w*/(Lx; — "))ngm — Vig(x)]|| + ]w(%) fw*’(ieg(xi_ ’7)\ IV Le()]|2 + 1

0 M
L= g LeCem L’ = 2l + S [ee) =o' = (te(e) =) [VGZ 41

<
@)
<

(i1) 0 M

< (B4 rfg Lo )l = ol + TVE 1[Gl ~ ol + ' ]
xzs 2
@ (L+ 2M(G +1)

T+ LIVLe(@ ) @ — a0 =)l 3)

where (i) uses eq. (42), and the above assumptions that {¢ is G-Lipschitz, L-smooth and that ¢* is M -smooth, (ii)
uses the above assumptions that £ is G-Lipschitz, and (iii) uses ||z’ — z|| + ||’ — 7| < V2||(z — 2,1 — 1) and

2 Le(w,n)| < IV Le(w, )]l
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E. Proof of Theorem 2

We will first prove the following lemma which will be used in the proof of Theorem 2.

Lemma 5. Foranyx > 0,C € [0,1], A > 0and 0 < w < w' such that A > w' — w, the following inequality holds
Ca® < ¥ + C“Kl (44)
Proof of Lemma 5. We consider three cases: w = 0, w’ = w > 0and w’ > w > 0.

(Case I) Whenw = 0, A > w’ and A > 0 imply that % €10,1],s0 Ca* =C < CMK/, which implies eq. (44).
(Case II) Whenw' =w > 0, Ca¥ < g% = 2+, which implies eq. (44).

(Case IIT) When w’ > w > 0, by applying Young’s inequality with p = % >landg = w,{w > 1 which satisfy % + % =1,
we prove eq. (44) as follows.
pw Cq , w! , !
Cx” < x——i—— <z¥ +Cv'-w <zg¥ +(C~x.
p q

O

Now we will prove Theorem 2. We omit the well-known case of 8 = o = 0 where GD is applied to L-smooth function
f € L. Hence, we focus on the case of 3 > 0. We first bound f(w;y1) — f(w;) in two cases: « € (0,1) and @ = 1.

(Case I) When « € (0,1), eq. (7) holds for f € L («). Hence, we have

sym
f(werr) = fwy)

1 2-a
< Vf(wy) (g1 — we) + §(K0 + K[|V f (we) [|*) lwesr — well® + Kallwgr — we| ==

—

i)

— - a— 1 2-)1=p)
2 V£ )P + T (38Koy - [VF ()P + 8Ky - [V F (wn) 772 4+ 6 Koy ™a - [V f(wn)| =)

€)) 2 2 2_
< AV F(w) PP + %(3“Vf(wt)||2_ﬁ + (3Koy)? "+ (3K17)7 " + (6K27y)7 )

(444)
< —%\\Vf(wt)ll2‘5 +4E (3K + 3K, + 6K,)5 !

(iv)
< —2IVF)|P7 + e

where (i) uses the update rule wy 1 = wy — 7% of Algorithm 1 (5-GD), (ii) uses vﬁ < 1 and applies Lemma
5 three times respectively with z = ||V f(w:)]|, C = 3Ko7v,3K17,6K3y (C € [0,1] since v = 12(K0+K61ﬁ+2Kz)+1 and
e€(0,1),A=8w=2-28,2+a—-2p0, W,w’ = 2— (3, (iii) uses the inequality that a™ +b" +¢” < (a+b+c)”

. B
% —1>1andanya,b,c >0, and (iv) uses 7 = 12(K0+K€1+2K2)+1.

form =

(Case IT) When av = 1, we have 8 = 1 and eq. (8) holds for f € £, (1). Hence, we have

sym
flwigr) — flwy)
< Vf(we) " (weg1 — we) + %”wﬂrl —wi|* (Lo + L[V f (we) ) exp (L1 [|wegr — we]])

) 2
= VIl + 7 (o + LV ol exp(L)

(@)~

< =5 IV F@)l + Loy

@0

< —2IVF )P + e (45)
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where (i) uses the update rule wyy) = wy — W’vagztin of Algorithm 1 (8-GD with § = 1) and (ii) and (iii) use
V= Lo = < 5 L . Note that eq. (45) holds in both cases. Therefore, by telescoping eq. (45) and rearranging it, we obtain
that

T
B IV wp)|P = 2 37 IV A w)
t=1

2

< 7o () = £7) + %62—5,

where (i) uses v = 12(K0+K€f+21<2)+1 and f(wr) > f* := min,epra f(w). By applying Lyapunov inequality, the above

inequality implies convergence rate (13) as follows.

BV wpl < (B2IVF(wg)|*~#) =
< (2 () - 1) +377) 77,
()7 ) 1)+ (5) e
< (%) T (flwn) — 1) 4 e

where (i) uses (a +b)™ < a” + b7 for 7 = 515 € [0,1] and any a,b > 0.

Then, substituting T = 1nto the above convergence rate, we obtain that Ex||V f(ws)|| < e.

F. Proof of Theorem 3
We consider the following two cases.

(Case I) When « € (0,1), consider the convex function f(w) := \wﬁ:*z with unique minimizer w = 0 and derivative
fl(w) = 2=2 |w|ﬁsgn( ). Based on item 3 of Proposition 1, f € L, («). Applying 3-GD to this function yields that

\ —a\1-8 1-p
gy =2 (20) o

W41 = Wt —
1—a

3(170‘))7[3 > 0, we have 'y?:—g|wt|% > 3wy

1(2-a)
and thus |wyy1| > 2|w;|. Therefore, if |wo| > C, by induction we obtain that |w;| > 2'C for any ¢, and thus | f'(w;)| >

3 (2—a) —a . .
9= Cﬁ, flwe) > P C?fa, which means 8-GD diverges.

Note that 0 < 8 < o < 1. Hence, if |w| > C with constant C' := (

(Case IT) When « = 1, consider the convex function f(w) := e* 4+ ¢~* with unique minimizer w = 0 and derivative
fl(w) == e® — e = (el*l — e~1*l)sgn(w). Based on item 4 of Proposition 1, f € Lm(1). Applying 5-GD to this
function yields that

nf' (we)

Flwnl? = wy — (e —e*‘w”)l_ﬁsgn(wt). (46)

W41 = Wt —

. 1- .
Since B < a = 1, |wy| 7 (elwel — e=hwel) ’ 5 tooas |w¢] — 4o00. Hence, there exists a constant C' > 1 such that

(elwel — e*lﬂ)tl)lfﬁ > 3|wy| for |w| > C. Therefore,
lwe| > 2¢C for any ¢, and thus f(w;) > |f'(w;)| = elwt| — e~ lwtl > Lelwil > Lexp(2!C), which means 3-GD diverges.
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G. Proof of Proposition 4
G.1. Proof of Item 1

First, we will prove eq. (20) given f € ELY  («). Note that eq. (27) holds for f € ELY . («), i.e.,

sym sym

1
a\2
E¢||V fe(w) — V fe(w)]|? §92||w/—w||2]E5/ (Lo + LIV fe(wou)|*) " du
0
. 0
ol — wlEe [ (Eo-+ LV felwa) )
0

(i)
< G(O)|Jw' — w|? (47)

where (i) uses change of variables v’ = fu and (ii) denotes G(6) := E¢ fo‘g (Lo + L1||V fe (wu/)||“)2du’ and uses 0 < 1.
Then

G'(0) = Be (Lo + ||V fe(ws) ]| )
< 913 4 2L3E|V fe (o) >
22+ ALZR |V e (w)[2 ALY feg) — ¥ fe(w)] P
"L LB ALZE Y ()P + AL (B felwn) — ¥ fe(w) ?)°
" 212 + ALZEV fe(w) P + AL3G(0)° [ — ]
Y304+ BGO)" (48)

where (i) use the inequality that (a + b)? < 2a? + 2b* for any a,b > 0, (ii) uses the inequality that |[v/ + v||** <
2/|v")|%* + 2||v||?>* for any v,v" € R? and a € [0, 1], (iii) uses Jensen’s inequality that E(X®) < (EX)® where X =
|V fe(we) — V fe(w)||?, (iv) uses eq. (47), and (v) uses Jensen’s inequality that a® + b® + ¢® < 3(a + b + ¢)® for
any a,b,c¢ > 0 and denotes that A := (2L3)s + (4L3E¢||V fe(w)||?**)a, B := (4L3)% ||w’ — w||®. When o € (0,1),
rearranging the above inequality yields that

3B(1—a) > B = 0)G'() _ d (A+BG(6)'

(A+ BG(0)"  do
Integrating the above inequality over 6 € [0, 1] yields that
(A+BG(1)) ™" <3B(1—a)+ (A+ BG(0))' ™ <3B+ A" <2((3B)T= + A) "
where (i) applies Jensen’s inequality to the concave function x'~“. Rearranging the above inequality yields that
BG(1) <274 ((3B)™a 4+ A) — A
< 6T =BT = + A(2T%)

1

< 677 (4L2)50 |0’ — w||Tw + 277 (2L2) % + 275 (4L3E¢ ||V fe(w)[|**) =

Substituting the above inequality into eq. (47), we obtain that
Ee ||V fe(wo) = V fe(w)[|* < G(O)[lw' — wl|?
< (4L3)7=BG(1)

-

1 2 o L3N= 1 a1
< (AL T o —w]| E 427 () 427 B Vie(w)|*)F @9)
1

Therefore,
(1)
E(|V fe(we)|** < 2E||V fe(wp) — V fe(w)[|** + 2E[|V fe (w) | **
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(@) 2\« 2c0
< 2(E[[V fe(w) — Ve(w)|*)" + 2E[[V fe(w)]|

iit)

< 2(24L) T || — w|[TF + 27T LGLT? + (27F + 2)Ee |V fe(w)|* (50)

where (i) uses the inequality that |[v 4 v[|?% < 2[]v’||2* + 2[jv||2® for any v,v" € R? and a € (0, 1), (ii) uses Jensen’s
inequality that E(X®) < (EX)* where X = ||V fe(wg) — V fe(w)]|?, and (iii) uses eq. (49) and the inequality that
(a+b+4+c)* <a®+b* + ¢ forany a,b,c > 0 and « € [0, 1]. Note that (26) holds for f € ELZ,, so we have

sym>
Ee||V fe(w') = V fe(w)|?

1
<o’ ~ 0B | (Lo + Ll fetun)|) s
0
1
< 2w’ — wl? / L2 + L3Ec |V fe(wp)|*d8
0

(@) —_2 2 —2 20
< lw' — w|*Ee (Ko + K[|V fe(w)[]** + Kyllw' — w]|7=+)

(%) _ — o | = _a (2
< Jw' = wl|PEe (Ko + K1 Vfe(w)|[* + Ka[lw' — w]|7==)

4—2c 4—2c

where (i) uses eq. (50) and denotes that K, := 2= L2 > 2[2(27% + 1), K, = 2= L2 > 2[2(27% + 2),

F; = (25L2) 7% > 4L2(24L2)7°% , and (ii) uses the inequality that a2 + b2 + ¢ < (a + b+ c)? for any a, b, ¢ > 0. This
proves eq. (20).

Then, it remains to prove that f € ELZ(c) given eq. (20). Then for any w,w’ € R? and n € NT, we have

sym

Ee||V fe(w') — V fe(w)]?

= Es” ”2*21 (Ve(Wierryn) = Vfe(wiyn)) H2
k=0

() =
<n Z]Eg’|Vf5(w(k+1)/n) - Vf&(wk/n)HZ
k=0

(i) — &7 k73 k73 —a_\2
<Y Wity — wiynl*Ee (Ko + K1 ||V fe(wiea)|* + Kallwiiit)n — wiynl )
k=0

n—1

1 ,— — . — _ _a _a \2

= o~ wl?Ee 3~ (Ko + K|V feCwnya) | + Fan™ 555 [’ — ]} %)%,
k=0

where (i) applies Jensen’ inequality to the convex function || - ||? and (ii) uses eq. (20). For any € > 0, there exists ng > 0
such that Kon™ 7=+ ||w’ — w|| 7= < € for any n > ng. Therefore, taking limit superior of both sides of the above inequality,

we obtain that

Ee||V fe(w') = V fe(w)]?

n—1
. 1, 7 a | T — e —a _\2
< |’ —w|limsupEe Y (Ko + K|V felwpa) |+ Kon™ % [u —w] =)
n—-+oo k=0
(Z) . ) . n—1 1 - L "2
< [lw" = w|["Ee hmiupzE(Ko+e+K1||st(wk/n)ll )

1
= ||w/—w||2]E5/ (Ko+e+K1||Vf5(wg)Ha)2d0
0

where (i) uses Fatou’s lemma. Letting ¢ — +0 in the above inequality, we obtain the following inequality, which proves that
f e ELY,,(a) based on Lemma 3

sym

1
Ee ||V fe(w') = Vfe(w)[|* < [lw’ - wHQEs/O (Ko + K[|V fe(wo)|~)"do (51)
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G.2. Proof of Item 2

First, we will prove eq. (21) given f € EL{,,(1). Note that eq. (48) holds for any f € EL, (o) with a € [0, 1].
Substituting @ = 1 into eq. (48), i.e.,

G'(0) <3A+3BG(9)

where G(0) := E¢ foe (Lo + L1||Vf5(wu)||)2du, wy = ww’ + (1 —w)w, A := 2L% + 4L3E¢||V fe(w)||* and B :=
4L2||lw" — w||?. Rearranging the above inequality yields that

B !
3p > BE0) d

Integrating the above inequality over 6 € [0, 1], we obtain that
In (A+ BG(1)) <In(A+ BG(0)) + 3B =In A+ 3B.
Hence, we have BG(0) < BG(1) < A(e3B — 1). Substituting this inequality into eq. (47), we obtain that

Ee||V fe(wo) = V fe(w)[|* < G(0)[lw' — w|?

A
<a;@’ -
1
L3 2 21w’ 2
< (55 + BV fe()?) (128’ ~w]?) ~1). 2
1

Therefore,

(@)
E||V fe(wo)||* < 2E||V fe(wo) — V fe(w)||* + 2E[|V fe(w)

(i) /L2
< (T3 + 28 VAew)”) (exp2L8 ' = wl) = 1) + 28]V fe(w) (53)

where (i) uses the inequality that [|v" 4+ v||2 < 2|[v’||? + 2]||v||? for any v, v" € R? and (ii) uses eq. (52). Note that (26) holds
for f € ELZ,,(1). Hence, we prove eq. (21) as follows.

sym

Ee|[V fe(w) = V fe(w)]?
1
<o’ = wlBe | (Lo + LallV felwn) )t
0
1
<2~ wl? [ L + LBV elwn) Pt
0
(@)
< 2w’ —wll? (L + (L3 + 2L3Eel|V fe(w)]|?) (exp(12L}|w’ — w]?) — 1) + 2L3E]|V fe(w)]?)
= 2w’ — wl (L3 + 2L3Ee |V f () |2) exp(12L3 |0’ — w]?),
where (i) uses eq. (53). This proves eq. (21).

*
sym

Finally, it remains to prove that f € ELY () given eq. (21). Then for any w, w’ € R? and n € N*, we have

Ee||Vfe(w') = V fe(w)]*

= EsH ”2*:1 (Ve(wgerny/m) = Ve(win)) H2
k=0

() 2
<0 S B |V fe(winym) — Vhelwns)|
k=0
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() Tl
<2 [y /n — Wiynll* (LG + 2LTEE |V fe (W) I17) exp(12LF |w it 1) /m — Wi ynll)
k=0

n—1
1 _
= [’ —w[* ) g(L?) + 2L3E |V fe(wr ) 1?) exp(12n 2 LY [0 — w||?),
k=0

where (i) applies Jensen’ inequality to the convex function || - ||? and (ii) uses eq. (21). For any € > 0, there exists ng > 0

such that exp(12n 2L} ||w’ — w||?) < 1+ € for any n > ng. Therefore, letting n — +oc in the above inequality, we obtain
that

E¢||V fe(w') = V fe(w)]|?
n—1

< 1+l - wlf? lim sup D (L8 + 2LTE |V fe(wiyn) )
n >~ 1

1
=1 +efuw - w|\2/0 (L§ + 2LiE ||V fe (wo)||*)d0),

where (i) uses Fatou’s lemma. Letting e — +0 in the above inequality, we obtain the following inequality, which proves that
[ € ELy,,(1) based on Lemma 3

1

Ee[|V fe(w') = V fe(w)||* < [Jw’ — wHZEf/ (LG + 2LiEe ||V fe (wp)||)d0. (54)
0

G.3. Proof of Item 3

Forany f € ELy,, (), we will prove that f € £, () in two cases: a € (0,1) and @ = 1.
(Case I) When « € (0,1), eq. (20) holds, so we have

IV (') = VI(w)|l = |[Ee(Vfe(w') = Vfe(w)|

< Rl V fe(w') = V fe(w)2

< Jw' = w]| (Ko + KiEe ||V fe(w)[[* + Ka|w' —w]|[ ™)

(i) - o B )
< ' = wl| (Ko + K1 A" + Ky (0% + DV £(w)|* + Kafluw’ = w]7%),

where (i) uses Lemma 4. The above inequality implies that f € L,,(«) based on item 1 of Proposition 1.

(Case II) When o = 1, eq. (21) holds, so we have

IVF ') = V()] = [Be(Vfelw) = T fe(w))]
< EellV fe(w') = V fe(w) 2

< ' — w]|\/2L3 + AL3Ee |V fe(w) |2 exp(6L3 |’ — w]?)

()

< Jlw' - wll\/2L8 +ALTA? +4L3 (12 + 1) ||V f(w)|[? exp(6LT w’ — w|*)
(i)

< Jlw’ = wl|(2Lo + 2L1 A + 2Ly (T + 1)||V f (w)]]) exp(6 L3 [|w’ — wl|?)

where (i) uses Lemma 4, (ii) uses the inequality that v/a + b < v/a + Vb for any a,b > 0. The above inequality implies
that f € L,,(«) based on item 2 of Proposition 1.

H. Proof of Theorem 4

We will first prove the following lemmas which will be used in the proof of Theorem 4.
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Lemma 6. Apply SPIDER algorithm (Algorithm 2) to f € L3, (cv) with stepsize v < — —E +2K€ (when
0 2

L(Ae4To41)+1
a€ (0,1))ory < (when a = 1) (e € (0,1) is the target accuracy). Then we have,

3L1\/1“2+1+3\/Lg+2L§A2

Eenp (| V fe(wir1) — V fe(we)I[S1:e) < E(1+ IV F(we)]?), (55)

where & ~ P is independent from the minibatches S1.;.

Proof of Lemma 6. Given S1.;, wy, w41 are non-random based on eq. (30). Hence, eq. (20) or (21) holds respectively
when a € (0,1) or @ = 1.

If « € (0,1), eq. (55) can be proved as follows

Eep (|IV fe(wir1) — V fe(wy)]?[S:e)
(4) . _ .
< [lwesr = wt||2(K0 + KlE&(Hfo(wt)Ha’Sm) + Kallwesr — wt”m)Q

(i7) - _ _

< ’YZ(K0+K1Aa+K1(FaJrl)HVf(wt)HaJer)Q

(i) —

< 29 (Ko + Ko + K1A%)? + 29" K (T + 1)% - |V f (wy)||**

< 22K+ Ko + K1A%)? + 202K (T + 1) (|V f (wy)]|> + 1)
(iv)
< E(1+[IVF(w)]?),

where (i) uses eq. (20), (ii) uses eq. (28) and ||w; 41 — wy|| = v < 1 based on Algorithm 2, (iii) uses the inequality that
1
(a+b)? < 2a%+2b? forany a, b > 0, (iv) uses vy < Ko+ Ko+ K A%+ (Fa+1)2) z,

€
2K0+2Ko+2K 1 (A“+To+1) — 2((

If o =1, eq. (55) can be proved as follows
Eenp (|[V fe(wis) = V fe(wy)|1?[S1ie)
(@)
< 2fwepr — wyl? - (L§ + 2LTEe ||V fe (w)|[?) exp(12LF [we 1 — wy][?)

D 292 exp(120292) (L3 + 2L2A% + 2L2(T2 + 1)[|V £ (w,) %)

(ii7)
< E(L+[IVF(w)?),

where (i) uses eq. (21), (ii) uses eq. (28) and lwirr — wel]| = v < 1 based on Algorithm 2, (iii) uses 7 <

< min O
3L1VTZ+1+34/L3+2L3A2 —

3Ly 31, VTP +3\/L2+2L2A2

Lemma 7. Apply SPIDER algorithm (Algorithm 2) to f € L3, () with stepsize «y given by Lemma 6 batchsize |S;| = B
whent mod q = 0and|S;| = B’ otherwise. Then the approximation error 0y := vy — V f(w;) has the following properties
conditional on minibatches Sy.t := {S1,...,St}.

E(0¢41]S1:¢) = 04 V(t + 1) mod g # 0 (56)
1

E([10s41%wer) < E(F2||Vf(wt+1)H2 +A?);¥(t + 1) mod g =0 (57)

(||5t+1H ’Su < ||5t||2 (1 + ||Vf(wt)” ) (58)

Therefore, for any k € Nand s =0,1,...,q — 1, we have

qg—1

Blowesl < 5+ e/ 5+ (G + ) 2 BV el 59)

Proof of Lemma 7. We will first prove eq. (57) when (t+1) mod ¢ = 0 and then prove egs. (56) & (58) when (¢+1) mod g #
0.

28



Generalized-Smooth Nonconvex Optimization is As Efficient As Smooth Nonconvex Optimization

If (t + 1) mod ¢ = 0, then v;1 = V fs,, (w41) based on Algorithm 2. Hence, eq. (57) can be proved as follows.

E (1641 117[S1:) =E(IV 505 (weg1) — V f (wig1)[|?[S1:e)

:ﬁE&P(Her(th) — Vf(wip1) ][ S1)

(1) 1
SE(F2||Vf(wt+1)H2 +A?),

where (i) uses Assumption 1.

If (t4 1) mod g # 0, then vy 1 = vy + V fs,., (wes1) — V fs,,, (w;) based on Algorithm 2. Hence, eq. (56) can be proved
as follows.
(5t+1’51 t = (Ut+1 - Vf(wt+1)|51:t)
= E(vt + stt+1 (thrl) - vf5t+1 (wt> - vf(wt+1)|‘91:t)

(2 Ve — Vf(wt) = (St,

where (i) uses eq. (30). Then eq. (58) can be proved as follows.

E([16e411%[S1:¢)
D 164112 + E(6e+1 — 8:[1%] S1ze)
= 161> + E(llvir1 — ve — VF(wes1) + Vf(we)[|*[S1:)
= ||5tH2 + E(vast+1(wt+1) - sttﬂ(wt) — Vf(wegr) + Vf(wt)||2|51:t)

D160 + T Eenr (17 felwrsn) = V) = Vi) + V()] *[S10)

(4i4)
< |61 + WE@P(HVJ%(WH) — Vfe(we)|?|S1:4)

||6t||2 (1 IV F(we)l?),

where (i) uses eq. (56), (ii) uses eq. (30) which implies that conditional on S7.;, S¢41 obtained from i.i.d. sampling is the
only source of randomness in V f¢(wi41) — V fe(wy) — V f(wig1) + V f(wy), both (ii) and (iii) use E([|V fe(wi1) —
V fe(wy) — V f(wig1) + Vf(wt)\|2|51;t) =0, and (iv) uses Lemma 6 and |S; 1| = B’ (since t + 1 mod g # 0).

Next, to prove eq. (59), we will first prove the following relation for any s, s’, k € N such that s’ < s < ¢ — 1.

€2(s — s’) =
El|dgr+s|l < E\/||5qk+8’||2 + B \/E Z BV f(wgr+u)|l- (60)

u=s’

We prove eq. (60) via backward induction on s’ = s,s — 1,...,1,0. Note that eq. (60) holds trivially for s' = s. Then,
assume that eq. (60) holds for a certain value of s’ € [1, s] and we prove eq. (60) for s’ — 1 as follows.

s—1
€
Elldgktsll — —= Z BV f (wgk+u)]|
B u=s’
() e2(s— s
< IE:IE(\/||5qk+s’||2 + % Sl:qk+s’1>

€2(s—s')

(i)
<E E<||5qk+s,||2+ 5

Sl:qk+s’—1>

ltl)
\/”(quJrS’l2 (1 + ”vf(quJrS’ 1)” )

(s = &)
B’
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(i) e(s—s +1) €
< IE\v/”(qu'i‘S'—lP + B’ + \/EEva(qu-‘rS/—l)”v

where (i) uses eq. (60) for s’, (ii) applies Jensen’s inequality to the concave function +/-, (iii) uses eq. (58), and (iv) uses the
inequality that v/a + b < \/a + v/b for any a, b > 0. Substituting s' = 0 into eq. (60), we prove eq. (59) as follows.

EH(qu+SH < E\/ ”(qu”2 + 7 ‘|' \/ﬁ ZEHVf qu—&-u)”
(i .«
2RIl + [ + m;mvjquwu

(i4)
< %(FHVf(qu)H +A) + 6\/7 \/ﬁ Z]EHVf W) |

<7+6

5+ (7 \f) Z E||V (w10
where (i) uses the inequality that v/a + b < \/a + /b for any a, b > 0 and then applies Lyapunov inequality, and (ii) uses
eq. (57) and then uses v/a + b < \/a + /b for any a,b > 0. O

Lemma 8. Apply SPIDER algorithm (Algorithm 2) to f € L3, (o) with batchsize |S;| = B whent mod q = 0 and

|S:| = B’ otherwise, and stepsize stepsize v < m (when « € (0,1)) or v < m (when o = 1)

(e € (0, 1) is the target accuracy). Then the decrease of the function f has the following bound.

flwigr) = fw) < % - *H el = *IIVf(wt)II + *Ilvt Vf(w)]- 61)

Proof of Lemma 8. We consider two cases: « € (0,1) and o = 1.

(Case I) When v € (0,1), eq. (7) holds for f € L, (a). Hence,

flwirr) — flwy)

1 — — —_— _a
< Vf(w) T (wipr — wy) + *||wt+1 —we|* (Ko + K1[|V f(wp)[|* + 2K o[[wis1 — we]| == )

T
(71) 'U/—v w vy + v 2 K )
< _V( t f( HtZ)H ¢+ |vel] %(K + K1+ 2K3) + ;7 1V £ (w)|
t

(id)
< e = V@)l = Sl = 5 (19 £l = lloe = Vi) + %+ G N9

(uz) ve

3
< L Dl — 2095wl + o~ 9 fwol, ()

where (i) uses |V f(w;)||* < ||Vf(w)||? +1 and v < 1, (ii) uses Cauchy-Schwartz inequality, ||v¢|| > ||V f (wy)| — ||ve —
Vf(wt)H and Yy S m, (111) uses € S 1.

(Case IT) When o = 1, we have 3 = 1 and eq. (8) holds for f € LJ,,(1). Hence,
flwigr) = f(wr)
1
<V f(we) " (wir —wi) + g lwes = wil[*(Lo + L[|V f (wi)||) exp (La [fwer — wel])

<~ V() T 57 (Lo + LV A (o)) exp(Lr)
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-
@ ~(vy — Vf(w v + y||ve||?
S _ ( t ( ”23” t ” t” +L0’72 =+ %”vf(wt)n

(i) €
< v = VI @) = Sl = 3 IV £l = llon = VF@@ol) + %+ 21wl

3 3
2 = 2l = Vol + o = T ()l (63)

where (i) uses v < i (i) uses Cauchy-Schwartz inequality,

ol Z (IVF(wi) || = llve = Vf(we)[[ and y < 5= O

Now we will prove Theorem 4. First, it can be easily verified that the choice of stepsize v and batchsize |S;| satisfies the
requirements of Lemmas 7 & 8. Therefore, eq. (61) in Lemma 8 holds. Taking expectation of eq. (61) and telescoping over
t=0,1,...,T — 1 where T' = qK, we obtain that

Ef(wr) — Ef(wo)
qK—1 QK 1 qK 1

Te
< T3S Ed = 3 EITAwl+ FY El = s
t=0
Tye 7= 37K71q . 37K =
<53 2 D Bl = 5 D0 DRIV (o)l 5 D0 Dl
k=0 s=0 k=0 s=0 k=0 s=0
(i) Tye ~ ided 3y =
< % — % E|lvgkts|| — ; E[IV f(wgk+s) |l
k=0 s=0 k=0 s=0
K—1
3¢y A q € r
+ T2 (7t (gt E)ZEHW W) |
(D) Tye 5y KLt
<r-2 E(V f (wgis)|. ©4)

where (i) uses eq. (59) and (ii) uses the following condition satisfied by the hyperparamter choices B >
max(576A%e2,2304I%¢2), B’ > max(576q, 2304¢%€?).

+r<1
VB~ 24q

, we can prove eq. (22) as follows

A . q
N
By rearranging eq. (64) and using f(wr) > f*

= mi DyeRrd f(

de

E[V f(wz)]l Z IV f(w) < (Ef(wo) )45

It can be easily verified that the following hyperparameter choices satisfy the condition that B > max (576 A%¢ 2, 230412¢?)
and that B’ > max(576q, 2304¢%€?) since € € (0, 1).

g=¢l= 0(671) 65)
B = max(576A%,2304T%)e 2 = O(e %) (66)
B'= 2304 = O(c™") (67)
€
T 0Ky + 4K + 2K =0(e); ifae(0,1 68
0 2K0+4K2+2K1(A0¢+F0¢+1>+1 (E) 1« ( ) (68)
€
! 5L1vVT2 +1+84/L3 +2L?A2 (e) @ (69)
16e . B
h= 5Ty (B (wo) = §7) = O(™) (70)
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T =K = 0= (Bf (wo) = 1) = O(™?)

Substituting the choice of 7" given by eq. (71) into eq. (61), we obtain that E[|V f(wz)|| < e.
Under the above hyperparameter choices, the sample complexity is

qgK—1

> 1S =K((g—1)B'+B) =0(e®).
t=0

32

(71)



	Introduction
	Our Contribution
	Related Work

	Existing Notions of Generalized-Smoothness
	The -Symmetric Generalized-Smooth Function Class
	Optimal Method for Solving Nonconvex Problems in Lsym*()
	Expected -Symmetric Generalized-Smooth Functions in Stochastic Optimization
	Optimal Method for Solving Nonconvex Problems in ELsym*()
	title
	Application to Nonconvex Phase Retrieval
	Application to DRO

	Conclusion
	Appendix
	 Appendix
	Supporting Lemmas
	Proof of Theorem 1
	Proof of Item 1
	Proof of Item 2
	Proof of Item 3
	Proof of Item 4

	Proof of Proposition 1
	Proof of Item 1
	Proof of Item 2
	Proof of Item 3
	Proof of Item 4

	Proof of Proposition 2 and Proposition 3
	Proof for Phase Retrieval Problem
	Proof for DRO Problem

	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Proposition 4
	Proof of Item 1
	Proof of Item 2
	Proof of Item 3

	Proof of Theorem 4


