
Journal of Machine Learning Research 23 (2022) 1-56 Submitted 8/21; Published 12/22

Lower Bounds and Accelerated Algorithms for Bilevel
Optimization

Kaiyi Ji kaiyiji@buffalo.edu
Department of Computer Science and Engineering
University at Buffalo
Buffalo, NY 14260-2500, USA

Yingbin Liang liang.889@osu.edu

Department of Electrical and Computer Engineering

The Ohio State University

Columbus, OH 98195-4322, USA

Editor: Sathiya Keerthi

Abstract

Bilevel optimization has recently attracted growing interests due to its wide applications
in modern machine learning problems. Although recent studies have characterized the
convergence rate for several such popular algorithms, it is still unclear how much fur-
ther these convergence rates can be improved. In this paper, we address this fundamen-
tal question from two perspectives. First, we provide the first-known lower complexity

bounds of Ω̃

(√
LyL̃2

xy

µxµ2
y

)
and Ω̃

(
1√
ε

min{κy, 1√
ε3
}
)

respectively for strongly-convex-strongly-

convex and convex-strongly-convex bilevel optimizations. Second, we propose an acceler-
ated bilevel optimizer named AccBiO, for which we provide the first-known complexity
bounds without the gradient boundedness assumption (which was made in existing analy-
ses) under the two aforementioned geometries. We also provide significantly tighter upper
bounds than the existing complexity when the bounded gradient assumption does hold. We
show that AccBiO achieves the optimal results (i.e., the upper and lower bounds match
up to logarithmic factors) when the inner-level problem takes a quadratic form with a
constant-level condition number. Interestingly, our lower bounds under both geometries
are larger than the corresponding optimal complexities of minimax optimization, estab-
lishing that bilevel optimization is provably more challenging than minimax optimization.
Our theoretical results are validated by numerical experiments.

Keywords: Bilevel optimization, lower bounds, accelerated algorithms, computational
complexity, convergence rate, optimality.

1. Introduction

Bilevel optimization was first introduced by Bracken and McGill (1973), and since then has
been studied for decades (Hansen et al., 1992; Shi et al., 2005; Moore, 2010). Recently,
bilevel optimization has attracted growing interests due to its important role in various
machine learning applications including meta-learning (Franceschi et al., 2018; Rajeswaran
et al., 2019), hyperparameter optimization (Franceschi et al., 2018; Feurer and Hutter,
2019), imitation learning (Arora et al., 2020), and network architecture search (Liu et al.,

c©2022 Kaiyi Ji and Yingbin Liang.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v23/21-0949.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/21-0949.html

Ji and Liang

2019; He et al., 2020). A general formulation of unconstrained bilevel optimization can be
written as follows.

min
x∈Rp

Φ(x) := f(x, y∗(x)), s.t. y∗(x) = arg min
y∈Rq

g(x, y), (1)

where f and g are continuously differentiable functions. The problem eq. (1) contains two
optimization procedures: at the inner level we search y∗(x) as the minimizer of g(x, y) with
respect to (w.r.t.) y given x, and at the outer level we minimize the objective function Φ(x)
w.r.t. x, which includes the compositional dependence on x via y∗(x).

Most theoretical studies of bilevel optimization algorithms have focused on the asymp-
totic analysis without the convergence rate characterization. For example, Franceschi et al.
(2018); Shaban et al. (2019) established the asymptotic convergence for gradient-based
approaches when there is one single solution for the inner-level problem, and Liu et al.
(2020); Li et al. (2020) extended the analysis to the setting where the inner-level problem
allows multiple solutions. The finite-time analysis that characterizes the convergence rate
of bilevel optimization algorithms is rather limited except a few studies recently. Grazzi
et al. (2020) provided the iteration complexity of two dominant types of strategies, i.e.,
approximate implicit differentiation (AID) and iterative differentiation (ITD), for approxi-
mating the hypergradient ∇Φ(x), but did not characterize the finite-time convergence for
the entire execution of algorithms. Ghadimi and Wang (2018) proposed an AID-based
bilevel approximation (BA) algorithm as well as an accelerated variant ABA, and analyzed
their finite-time complexities under different loss geometries. In particular, the complexity

upper bounds of BA and ABA are given by Õ
(
U2L̃4

xyρ
2
yy

µ2
xµ

6
y

)
and Õ

(
UL̃2

xyρyy
µxµ3

y

)
for the strongly-

convex-strongly-convex setting where Φ(·) is µx-strongly-convex and g(x, ·) is µy-strongly-

convex, O
(κ11.25

y

ε1.25

)
and O

(κ6.75
y

ε0.75

)
for the convex-strongly-convex setting, and O

(κ6.25
y

ε1.25

)
for

the nonconvex-strongly-convex setting, where U, L̃xy and ρyy are Lipschitz parameters of
objective functions (see Section 2.1). Ji et al. (2021) further improved the bound for the

nonconvex-strongly-convex setting to O
(κ4

y

ε

)
.

In this paper, we address several open and important questions about bilevel optimiza-
tion. We first observe that the existing complexity results on bilevel optimization are much
worse than those on minimax optimization, which is a special case of bilevel optimization
with f(x, y) = g(x, y). For example, for the convex-strongly-convex case, it was shown
in Lin et al. (2020) that the optimal complexity for minimax optimization is given by

Õ
(κ0.5

y

ε0.5

)
, which is much smaller than the best known Õ

(κ6.75
y

ε0.75

)
for bilevel optimization.

Similar observations hold for the strongly-convex-strongly-convex setting. Therefore, one
fundamental question arises.

1. What is the performance limit of bilevel optimization in terms of computational com-
plexity? Whether bilevel optimization is provably more challenging (i.e., requires more
computations) than minimax optimization?

Furthermore, existing analyses reply on a strong assumption on the boundedness of the
outer-level gradient ∇yf(x, ·)1 to guarantee that the smoothness parameter of Φ(·) and the

1. Grazzi et al. (2020) assume that the inner-problem solution y∗(x) is uniformly bounded for all x so that
∇yf(x, y∗(x)) is bounded.

2

Lower Bounds and Accelerated Algorithms for Bilevel Optimization

hyperparameter estimation error are bounded as the algorithm runs. Then the following
question needs to be addressed.

2. Can we design a new bilevel optimization algorithm, which provably converges with-
out the gradient boundedness? If so, whether such an algorithm achieves the optimal
computational complexity?

In addition, even when the boundedness assumption holds, existing complexity bounds
show pessimistic complexity dependences on the condition numbers, e.g., O(κ6.75

y) for the
convex-strongly-convex case. Then, the following question arises.

3. Under the bounded gradient assumption, can we provide new upper bounds with tighter
complexity dependences on the condition numbers for strongly-convex-strongly-convex
and convex-strongly-convex bilevel optimizations?

In this paper, we provide affirmative answers to the above questions.

1.1 Summary of Contributions

Our main contributions lie in developing several new results for bilevel optimization, includ-
ing the first-known lower bounds on the computational complexity, a new convergence analy-
sis without the gradient boundedness assumption, and significantly tighter upper bounds for
bilevel optimization under different geometries. Our upper bounds meet the lower bounds
in various cases, suggesting the tightness of the lower bounds and the optimality of the
proposed algorithms. We summarize our results as follows.

• We provide the first-known lower bound of Ω̃
(√

LyL̃2
xy

µxµ2
y

)
for solving the strongly-convex-

strongly-convex bilevel optimization. We then propose a new accelerated bilevel opti-
mizer named AccBiO. In contrast to existing bilevel optimizers, we show that AccBiO
converges to the ε-accurate solution without the requirement on the boundedness of the
gradient ∇yf(x, ·) for any x. In particular, Table 1 shows that AccBiO achieves an upper

complexity bound of Õ
(√

LyL̃2
xyL̃y

µxµ3
y

+

√
L̃2

xyρxyL̃y

µ4
y

Gr∗ +

√
L̃3

xyρyyLyL̃y

µxµ5
y

Fr∗
)
. When the inner-

level function g(x, y) takes the quadratic form as g(x, y) = yTHy + xTJy + bT y + h(x),

we further improve the upper bounds to Õ
(√

LyL̃2
xyL̃y

µxµ3
y

)
. For such a quadratic subclass

of bilevel problems with L̃y = Θ(µy), our upper bound matches the lower bound up to
logarithmic factors, suggesting that AccBiO is near-optimal. Technically, our analysis
of the lower bound involves careful construction of quadratic f and g functions with a
properly structured bilinear term, as well as novel characterization of subspaces of iter-
ates for updating x and y. For upper bounds, our analysis controls the finiteness of all
iterates xk, k = 0, as the algorithm runs via an induction proof to ensure that the
hypergradient estimation error will not explode after the acceleration steps.

• We next provide lower and upper bounds for solving convex-strongly-convex bilevel op-

timization. As shown in Table 1, AccBiO achieves an upper bound of Õ
(√

LyL̃2
xyL̃y

εµ3
y

+√
L̃2

xyρxyL̃y

εµ4
y

G̃r∗+

√
L̃3

xyρyyLyL̃y

εµ5
y

F̃ ∗r

)
, which is further improved to Õ

(√
LyL̃2

xyL̃y

εµ3
y

)
for the quadratic

3

Ji and Liang

Table 1: Comparison of computational complexities for finding an ε-approximate point
without the gradient boundedness assumption. All listed results are from
this paper, as all existing results were developed under the gradient bounded-
ness condition, which we compare in Table 2. The complexity is measured by
τ(nJ + nH) + nG (Theorem 3), where nG, nJ , nH are the numbers of gradients,
Jacobian- and Hessian-vector products, and τ is a universal constant. In the ‘ref-
erences’ column, quadratic g(x, y) means that g takes a quadratic form as g(x, y) =

yTHy + xTJy + bT y + h(x) for the constant matrices H,J and a constant vector b.
‘LowerB’ represents ‘lower bound’. In the ‘computational complexity’ column, Ly,

L̃y, L̃xy, ρxy and ρyy are the Lipschitz parameters of objective functions as shown

in Section 2.1. Gr∗ =
√
‖∇yf(x∗,y∗(x∗))‖

µx
, and Fr∗ =

(
2
µx

(Φ(0)−Φ(x∗))+‖x∗‖2 + ε
µx

) 1
4

,

G̃r∗ and F̃ r∗ take the same form as Gr∗ and Fr∗ but with x∗, f , Φ, µx replaced
by x̃∗, f̃ , Φ̃ and ε

R (see Section 4.3 for details). The lower bounds hold for both the
general and quadratic g(x, y) cases. By ‘Ly = Θ(µy)’, we mean that there exists
universal constants C1, C2 > 0 that is independent of µy s.t. C1µy < Ly < C2µy.

Types References Computational Complexity

Strongly-
Convex-
Strongly-
Convex

AccBiO (Theorem 9) Õ
(√

LyL̃2
xyL̃y

µxµ3
y

+

√
L̃2

xyρxyL̃y

µ4
y

Gr∗ +

√
L̃3

xyρyyLyL̃y

µxµ5
y

Fr∗
)

AccBiO (quadratic g, Coro 10) Õ
(√

LyL̃2
xyL̃y

µxµ3
y

)
LowerB (Theorem 4) Ω̃

(√
LyL̃2

xy

µxµ2
y

)

Convex-
Strongly-
Convex

AccBiO (Theorem 11) Õ
(√

LyL̃2
xyL̃y

εµ3
y

+

√
L̃2

xyρxyL̃y

εµ4
y

G̃r∗ +

√
L̃3

xyρyyLyL̃y

εµ5
y

F̃ ∗r

)
AccBiO (quadratic g, Coro 12) Õ

(√
LyL̃2

xyL̃y

εµ3
y

)
LowerB (Coro 7, L̃y = Θ(µy)) Ω̃

(√
L̃2

xyLy

µ2
yε

)
LowerB (Coro 8, L̃y = Θ(1)) Ω̃(1√

ε
min{κy, 1√

ε3
})

g(x, y). For such a quadratic case with L̃y = Θ(µy), our upper bound matches the lower
bound up to logarithmic factors, suggesting the optimality of AccBiO. Technically, the
analysis of the lower bound is different from that for the strongly-convex Φ(·), and ex-
ploits the structures of different powers of an unnormalized graph Laplacian matrix Z.

• Furthermore, when the gradient ∇yf(x, ·) is bounded, as assumed by existing studies,
we provide new upper bounds with significantly tighter dependence on the condition
numbers. For example, as shown in Table 2, our upper bounds outperform the best

known result by an order of
κ4.75
y

ε0.25 for the convex-strongly-convex case.

• To compare between bilevel optimization and minimax optimization, for the strongly-
convex-strongly-convex case, our lower bound is larger than the optimal complexity
for the same type of minimax optimization by a factor of

√
κy. Similar observation

4

Lower Bounds and Accelerated Algorithms for Bilevel Optimization

Table 2: Comparison of computational complexities for finding an ε-approximate point
with the gradient boundedness assumption. U is the gradient bound.

Types References Computational Complexity

Strongly-Convex-
Strongly-Conconvex

BA (Ghadimi and Wang, 2018) Õ
(

max
{
U2L̃4

xyρ
2
yy

µ2
xµ

6
y

,
L̃2

y

µ2
y

})
ABA (Ghadimi and Wang, 2018) Õ

(
max

{
UL̃2

xyρyy

µxµ3
y
,
L̃2

y

µ2
y

})
AccBiO-BG (this paper, Theorem 13) Õ

(√
UL̃2

xyρyyL̃y

µxµ4
y

)
Convex-

Strongly-Convex

BA (Ghadimi and Wang, 2018) Õ
(
κ11.25
y

ε1.25

)
ABA (Ghadimi and Wang, 2018) Õ

(
κ6.75
y

ε0.75

)
AccBiO-BG (this paper, Theorem 14) Õ

(√
L̃2

xyρyyL̃y

εµ4
y

)

holds for the convex-strongly-convex case. This establishes that bilevel optimization is
fundamentally more challenging than minimax optimization.

1.2 Related Works

The studies of bilevel optimization problems and algorithms can be dated back to Bracken
and McGill (1973), and since then, different types of approaches have been proposed. Earlier
approaches in Aiyoshi and Shimizu (1984); Edmunds and Bard (1991); Al-Khayyal et al.
(1992); Hansen et al. (1992); Shi et al. (2005); Lv et al. (2007); Moore (2010) reduced
the bilevel problem to a single-level optimization problem using the Karush-Kuhn-Tucker
(KKT) conditions or penalty function methods. In comparison, gradient-based approaches
are more attractive due to their efficiency and effectiveness. Such a type of approaches
estimate the hypergradient ∇Φ(x) for iterative updates, and are generally divided into
AID- and ITD-based categories. ITD-based approaches (Maclaurin et al., 2015; Franceschi
et al., 2017; Finn et al., 2017; Grazzi et al., 2020) estimate the hypergradient ∇Φ(x) in either
a reverse (automatic differentiation) or forward manner. AID-based approaches (Domke,
2012; Pedregosa, 2016; Grazzi et al., 2020; Ji et al., 2021) estimate the hypergradient via
implicit differentiation.

Theoretically, bilevel optimization has been studied via both the asymptotic and finite-
time (non-asymptotic) analysis. Franceschi et al. (2018) characterized the asymptotic con-
vergence of a backpropagation-based approach as one of ITD-based algorithms by assuming
the inner-level problem is strongly convex. Shaban et al. (2019) provided a similar analysis
for a truncated backpropagation scheme. Liu et al. (2020); Li et al. (2020); Sow et al.
(2022) analyzed the asymptotic performance of bilevel approaches when the inner-level
problem is convex. The finite-time complexity analysis for bilevel optimization has also
been explored. In particular, Ghadimi and Wang (2018) provided a finite-time conver-
gence analysis for an AID-based algorithm under two different loss geometries, where Φ(·)
is strongly convex, convex or nonconvex, and g(x, ·) is strongly convex. Ji et al. (2021,
2022) provided an improved finite-time analysis for AID- and ITD-based algorithms under

5

Ji and Liang

the nonconvex-strongly-convex geometry. In this paper, we provide the first-known lower
bounds on complexity as well as tighter upper bounds under these two geometries.

When the objective functions can be expressed in an expected or finite-time form,
Ghadimi and Wang (2018); Ji et al. (2021); Hong et al. (2020) developed stochastic bilevel
algorithms and provided the finite-time analysis. In particular, Ji et al. (2021) proposed a
SGD type of bilevel optimization algorithm named stocBiO with a sample efficient hyper-
gradient estimator. Since then, there have been a few subsequent studies on accelerating
SGD-type bilevel optimization via momentum-based variance reduction Chen et al. (2021);
Guo et al. (2021); Khanduri et al. (2021); Yang et al. (2021); Huang and Huang (2021). For
example, Guo et al. 2021 proposed a single-loop algorithm SEMA based on the momentum-
based technique introduced by Cutkosky and Orabona 2019. Chen et al. 2021 proposed a
single-loop method named STABLE by using a similar momentum scheme for the Hessian
updates. Yang et al. 2021 improved the sample complexity of stocBiO via both single-loop
and double-loop variance reduction. While the stochastic setting is not within the scope of
this paper, the accelerating algorithms and lower bounds developed here can be extended
to the stochastic setting.

Bilevel optimization has been applied to meta-learning and led to various algorithms such
as model-agnostic meta-learning (MAML) (Finn et al., 2017), implicit MAML (iMAML) (Ra-
jeswaran et al., 2019), and almost no inner loop (ANIL) (Raghu et al., 2019). Theoretically,
Rajeswaran et al. (2019) analyzed the complexity of iMAML via implicit differentiation
under the strongly-convex setting. Ji et al. (2020b); Fallah et al. (2020) characterized the
convergence of MAML under the nonconvex function geometry. Ji et al. (2020a) analyzed
the convergence and complexity of ANIL with either strongly-convex or nonconvex inner-
level geometries.

Bilevel optimization has been applied to study various machine learning problems. For
example, bilevel optimization has exhibited great effectiveness in hyperparameter opti-
mization, and received tremendous attention recently in automatic machine learning (au-
toML) (Okuno et al., 2018; Yu and Zhu, 2020; Ji and Liang, 2018). A variety of bilevel
optimization algorithms have been proposed for this area, which include but not limited to
AID-based (Pedregosa, 2016; Franceschi et al., 2018), ITD-based (Franceschi et al., 2018;
Shaban et al., 2019; Grazzi et al., 2020), self-tuning network based (Mackay et al., 2018; Bae
and Grosse, 2020), penalty-based (Mehra and Hamm, 2019; Sinha et al., 2020; Liu et al.,
2021), and proximal approximation based (Jenni and Favaro, 2018) approaches. Bilevel
optimization has also been exploited to improve the search efficiency for neural architecture
search (NAS) (Liu et al., 2019; Xie et al., 2018; He et al., 2020). For example, Liu et al.
(2019) proposed a continuous relaxation of the discrete architecture representation, and
tremendously accelerated the architecture search via a gradient-based bilevel optimization
method named DARTS. Xie et al. (2018) further proposed a new stochastic reformulation
of NAS coupled with a sampling process to address the bias issue of DARTS. He et al.
(2020) reformulated the bilevel objective function of NAS into a mixed-level optimization
procedure, and proposed an efficient MiLeNAS method with a lower validation error. We
anticipate that the proposed acceleration schemes will be useful for the aforementioned
applications.

6

Lower Bounds and Accelerated Algorithms for Bilevel Optimization

2. Preliminaries on Bilevel Optimization

2.1 Bilevel Problem Class

In this section, we introduce the problem class we are interested in. First, we suppose
functions f(x, y) and g(x, y) satisfy the following smoothness property.

Assumption 1 The outer-level function f satisfies, for ∀x1, x2, x ∈ Rp and y1, y2, y ∈ Rq,
there exist constants Lx, Lxy, Ly ≥ 0 such that

‖∇xf(x1, y)−∇xf(x2, y)‖ ≤Lx‖x1 − x2‖, ‖∇xf(x, y1)−∇xf(x, y2)‖ ≤ Lxy‖y1 − y2‖
‖∇yf(x1, y)−∇yf(x2, y)‖ ≤Lxy‖x1 − x2‖, ‖∇yf(x, y1)−∇yf(x, y2)‖ ≤ Ly‖y1 − y2‖. (2)

The inner-level function g satisfies that, there exist L̃xy, L̃y ≥ 0 such that

‖∇yg(x1, y)−∇yg(x2, y)‖ ≤ L̃xy‖x1 − x2‖, ‖∇yg(x, y1)−∇yg(x, y2)‖ ≤ L̃y‖y1 − y2‖. (3)

The hypergradient ∇Φ(x) plays an important role for designing bilevel optimization algo-
rithms. The computation of ∇Φ(x) involves Jacobians ∇x∇yg(x, y) and Hessians ∇2

yg(x, y).
In this paper, we are interested in the following inner-level problem with general Lipschitz
continuous Jacobians and Hessians, as adopted by Ghadimi and Wang (2018); Ji et al.
(2021); Hong et al. (2020). For notational convenience, let z := (x, y) denote both vari-
ables.

Assumption 2 There exist constants ρxy, ρyy ≥ 0 such that for any z1 ∈ Rp × Rq, z2 ∈
Rp × Rq,

‖∇x∇yg(z1)−∇x∇yg(z2)‖ ≤ ρxy‖z1 − z2‖, ‖∇2
yg(z1)−∇2

yg(z2)‖ ≤ ρyy‖z1 − z2‖. (4)

In this paper, we study the following two classes of bilevel optimization problems.

Definition 1 (Bilevel Problem Classes) Suppose f and g satisfy Assumptions 1, 2. We
define the following two classes of bilevel problems under different geometries.

• Strongly-convex-strongly-convex class Fscsc : Φ(·) is µx-strongly-convex and g(x, ·)
is µy-strongly-convex.

• Convex-strongly-convex class Fcsc : Φ(·) is convex and g(x, ·) is µy-strongly-convex.
In addition, assume that there exists a constant B > 0 such that ‖x∗‖ = B, where
x∗ ∈ arg minx∈Rp Φ(x).

A simple but important subclass of the bilevel problem class in Theorem 1 includes the
following quadratic inner-level functions g(x, y).

(Quadratic g subclass:) g(x, y) =
1

2
yTHy + xTJy + bT y + h(x), (5)

where the Hessian H and the Jacobian J satisfy H � L̃yI and J � L̃xyI for ∀x ∈ Rp and
∀y ∈ Rq. Note that the above quadratic subclass also covers a large collection of applications
such as few-shot meta-learning with shared embedding model (Bertinetto et al., 2018) and
biased regularization in hyperparameter optimization (Grazzi et al., 2020). Further note

7

Ji and Liang

that it is possible to extend the constant coupling matrix H of the quadratic subclass to the
more general matrix H(x) that is Lipschitz continuous, i.e., ‖H(x1)−H(x2)‖ ≤ LH‖x1−x2‖
for a constant LH .

Another convex-strongly-convex example of practical interest is the fair resource alloca-
tion problem over communication networks (Srikant and Ying, 2013). Consider a network
with n users/devices. Each user i is associated with a convex cost function C(xi) (or U(xi)
for utility function U), where xi is the resource (e.g., the package transmission rate). In the
network implementation, C(xi) is fabricated to be a simple function, e.g., α-fairness. Let
x = [x1, x2, ..., xn]T . Then, the lower-level strongly-convex problem is given by

x∗(λ) = arg max
x

g(x, λ) =

n∑
i=1

C(xi) +
λ

2
‖x‖2, (6)

where λ‖x‖2 is used for capacity and traffic control. However, the underlying true network
cost function can be more complicated, e.g., the aggregation loss C̃(x) =

∑n
i=1 τiC(xi).

Then, the upper-level problem is to find the best regularization constant λ that minimizes
the true cost

max
λ

C̃(x∗(λ)) =

n∑
i=1

τiC(x∗i (λ)).

We next justify that the total function C̃(x∗(λ)) is convex w.r.t. λ. Using the implicit
differentiation and the optimality condition of x∗i , it can be shown that

∇C(x∗i) + λx∗i = 0

(∇2C(x∗i) + λ)
∂x∗i
∂λ

+ x∗i = 0,

which, in conjunction with the second-order derivative of the total upper-level function
∂2C̃(x∗(λ))

∂2λ
=
∑n

i=1

(
τi∇2C(x∗i)(

∂x∗i
∂λ)2 + τi∇C(x∗i)

∂x∗i
∂λ

)
, yields

∂2C̃(x∗(λ))

∂2λ
=

n∑
i=1

(
τi∇2C(x∗i)

(∂x∗i
∂λ

)2
+

τi(∇C(x∗i))
2

λ(∇2C(x∗i) + λ)

)
≥ 0.

This implies that the total objective function C̃(x∗(λ)) is convex w.r.t. λ. Besides, there are
some quasiconvex-strongly-convex and convex-strongly-convex examples in batch selection
problems for model fairness (Roh et al., 2021).

2.2 Algorithm Class for Bilevel Optimization

Compared to minimization and minimax problems, the most different and challenging
component of bilevel optimization lies in the computation of the hypergradient ∇Φ(·).
In specific, when functions f and g are continuously twice differentiable, it has been shown
in Foo et al. (2008) that ∇Φ(·) takes the form of

∇Φ(x) =∇xf(x, y∗(x))−∇x∇yg(x, y∗(x))[∇2
yg(x, y∗(x))]−1∇yf(x, y∗(x)). (7)

8

Lower Bounds and Accelerated Algorithms for Bilevel Optimization

In practice, exactly calculating the Hessian inverse (∇2
yg(·))−1 in eq. (7) is computationally

infeasible, and hence two types of hypergradient estimation approaches named AID and
ITD have been proposed, where only efficient Hessian- and Jacobian-vector products
need to be computed. We present AID-based bilevel optimization algorithms as follows,
and the introduction of ITD-based methods can be found in Appendix A.

Example 1 (AID-based Bilevel Algorithms) (Domke, 2012; Pedregosa, 2016; Grazzi
et al., 2020; Ji et al., 2021) Such a class of algorithms use AID-based approaches for hy-
pergradient computation, and take the following updates.

For each outer iteration m = 0,, Q− 1,

• Update variable y using gradient decent (GD) or accelerated gradient descent (AGD)

(GD:) ytm = yt−1
m − η∇yg(xm, y

t−1
m), t = 1, ..., N

(AGD:) ytm = zt−1
m − η∇yg(xm, z

t−1
m),

ztm =
(

1 +

√
κy − 1
√
κy + 1

)
ytm −

√
κy − 1
√
κy + 1

yt−1
m , t = 1, ..., N (8)

where κy = L̃y/µy denotes the condition number of the inner-level function g(x, ·).

• Update x via xm+1 = xm−βGm, where Gm is constructed via AID and takes the form of

Gm = ∇xf(xm, y
N
m)−∇x∇yg(xm, y

N
m)vSm, (9)

where vector vSm is obtained by running S steps of GD (with initialization v0
m = 0) or ac-

celerated gradient methods (e.g., heavy-ball method with v0
m = v1

m = 0) to solve a quadratic
programming

min
v
Q(v) :=

1

2
vT∇2

yg(xm, y
N
m)v − vT∇yf(xm, y

N
m). (10)

We next verify that Example 1 belongs to the algorithm class defined in Theorem 2. For
the case when S-steps GD with initialization 0 is applied to solve the quadratic program
in eq. (10), simple telescoping yields

vSm = α

S−1∑
t=0

(I − α∇2
yg(xm, y

N
m))t∇yf(xm, y

N
m),

which, incorporated into eq. (9), implies that Gm falls into the span subspaces in eq. (13),
and hence all updates fall into the subspaces Hkx,Hky , k = 0, ...,K defined in Theorem 2.
For the case when heavy-ball method, i.e., vt+1

m = vtm − ηt∇Q(vtm) + θt(v
t
m − vt−1

m), with
initialization v0

m = v1
m = 0 is applied to eq. (10), expressing the updates via a dynamic

system perspective yields[
vSm
vS−1
m

]
=

S∑
s=2

S−1∏
t=s

[
(1 + θt)I − ηt∇2

yg(xm, y
N
m) −θtI

I 0

] [
ηt∇yf(xm, y

N
m)

0

]
. (11)

9

Ji and Liang

Combining vSm in eq. (11) with eq. (9), we can see that the resulting Gm falls into the span
subspaces in eq. (13), and hence this case still belongs to the algorithm class in Theorem 2.
Note that the algorithm class considered in Theorem 2 also includes single-loop bilevel
optimization algorithms, e.g., by setting N = 1 in Example 1.

We next introduce a general hypergradient-based algorithm class, which includes popular
AID-based (given above) and ITD-based (in Appendix A) bilevel optimization algorithms.

Definition 2 (Hypergradient-Based Algorithm Class) Suppose there are totally K
iterations and x is updated for Q times at iterations indexed by si, i = 1, ..., Q − 1 with
s0 < ... < sQ−1 ≤ K. Note that Q is an arbitrary positive integer in 0, ...,K and si, i =
1, ..., Q − 1 are Q arbitrary distinct integers in 0, ...,K. The iterates {(xk, yk)}k=0,...,K are
generated according to (xk, yk) ∈ Hkx,Hky , where the linear subspaces Hkx,Hky , k = 0, ...,K
with H0

x = H0
y = {0} are given as follows.

Hk+1
y = Span

{
yi,∇yg(x̃i, ỹi), ∀x̃i ∈ Hix, ∀yi, ỹi ∈ Hiy, 1 ≤ i ≤ k

}
. (12)

For x, we have, for all m = 0, ..., Q− 1,

Hsmx = Span
{
xi,∇xf(x̃i, ỹi),∇x∇yg(xti, y

t
i)

t∏
j=1

(I − α∇2
yg(xti,j , y

t
i,j))∇yf(x̂i, ŷi),

t = 0, ..., T, ∀xi, x̂i, xti, xti,j ∈ Hix, ∀ŷi, yti , yti,j ∈ Hiy, 1 ≤ i ≤ sm − 1, ∀α ∈ R, T ∈ N
}

Hnx = Hsmx , ∀sm ≤ n ≤ sm+1 − 1 with sQ = K + 1. (13)

We note that this algorithm class in Theorem 2 can be enlarged by replacing ∇yf(x, y) in
eq. (13) with Span(y1,∇yg(x2, y2),∇yf(x3, y3)), where y1, x2, y2, x3, y3 can be any points in
previous iterations.

Further note that in the algorithm class in Theorem 2, x can be updated at any iteration
due to the arbitrary choices of Q, si, i = 1, ..., Q − 1, and the hypergradient estimate can
be constructed using any combination of points in the historical search space (which holds
similarly for y). Moreover, this algorithm class allows to update x and y at the same time
or alternatively, and hence include both single- and double-loop bilevel optimization algo-
rithms. Note that the above hypergradient-based algorithm class include popular examples
such as HOAG (Pedregosa, 2016), AID-FP (Grazzi et al., 2020), reverse (Franceschi et al.,
2017), K-RMD (Shaban et al., 2019), AID-BiO and ITD-BiO (Ji et al., 2021).

2.3 Complexity Measures

We introduce the criterion for measuring the computational complexity of bilevel opti-
mization algorithms. Note that the updates of x and y of bilevel algorithms involve com-
puting gradients, Jacobian- and Hessian-vector products. In practice, it has been shown
in Griewank (1993); Rajeswaran et al. (2019) that the time and memory cost for computing
a Hessian-vector product ∇2f(·)v (similarly for a Jacobian-vector product) via automatic
differentiation (e.g., the widely-used reverse mode in PyTorch or TensorFlow) is no more
than a (universal) constant order (e.g., usually 2-5 times) over the cost for computing gra-
dient ∇f(·). For this reason, we take the following complexity measures.

10

Lower Bounds and Accelerated Algorithms for Bilevel Optimization

Definition 3 (Complexity Measure) The total complexity Cfun(A, ε) of a bilevel opti-
mization algorithm A to find a point x̄ such that the suboptimality gap f(x̄)−minx f(x) ≤ ε
is given by Cfun(A, ε) = τ(nJ + nH) + nG, where nJ , nH and nG are the total numbers of
Jacobian- and Hessian-vector product, and gradient evaluations, and τ > 0 is a universal
constant. Similarly, we define Cgrad(A, ε) = τ(nJ + nH) + nG as the complexity to find a
point x̄ such that the gradient norm ‖∇f(x̄)‖ ≤ ε.

3. Lower Bounds for Bilevel Optimization

3.1 Strongly-Convex-Strongly-Convex Bilevel Optimization

We first study the case when Φ(·) is µx-strongly-convex and the inner-level function g(x, ·)
is µy-strongly-convex. We present our lower bound result for this case as below.

Theorem 4 Let M = K + QT + Q + 2 with K,T,Q given by Theorem 2. There exists a
problem instance in Fscsc defined in Theorem 1 with dimensions p = q = d as in eq. (40)
such that for this problem, any output xK belonging to the subspace HKx , i.e., generated by
any algorithm in the hypergradient-based algorithm class defined in Theorem 2, satisfies

Φ(xK)− Φ(x∗) = Ω
(Φ(x0)− Φ(x∗)

κx
r2M

)
, (14)

where x∗ = arg minx∈Rd Φ(x) and the parameter r satisfies 1−
(

1
2 +
√
ξ + 1

4

)−1
< r < 1 with

ξ given by ξ ≥ L̃y
4µy

+ Lx
8µx

+
LyL̃2

xy

8µxµ2
y
− 3

8 . To achieve Φ(xK)− Φ(x∗) ≤ ε, the total complexity

Cfun(A, ε) satisfies

Cfun(A, ε) = Ω

(√√√√LyL̃2
xy

µxµ2
y

log
Φ(x0)− Φ(x∗)

κxε

)
,

where κx = LΦ
µx

is the condition number for the total objective function.

Note that the inner-level function g(x, y) in our constructed worst-case instance takes the
same quadratic form as in eq. (5) so that the lower bound in Theorem 4 also applies to the
quadratic g subclass. We provide a proof sketch of Theorem 4 as follows, and present the
complete proof in Appendix B.

Proof Sketch of Theorem 4

The proof of Theorem 4 is divided into four main steps: 1) constructing a worst-case instance
(f, g) ∈ Fscsc; 2) characterizing the optimal point x∗ = arg minx∈Rd Φ(x); 3) characterizing
the subspaces HKx ,HKy ; and 4) lower-bounding the convergence rate and complexity.

Step 1 (construct a worse-case instance): We first construct the following instance
functions f and g.

f(x, y) =
1

2
xT (αZ2 + µxI)x− αβ

L̃xy
xTZ3y +

L̄xy
2
xTZy +

Ly
2
‖y‖2 +

L̄xy

L̃xy
bT y,

11

Ji and Liang

g(x, y) =
1

2
yT (βZ2 + µyI)y − L̃xy

2
xTZy + bT y, (15)

where α = Lx−µx
4 , β =

L̃y−µy
4 , and the coupling matrices Z,Z2, Z4 take the forms of

Z =


1

1 −1

...
...

1 −1

 , Z2 =


1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

 , Z4 =



2 −3 1
−3 6 −4 1
1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .

1 −4 6 −4
1 −4 5


. (16)

The above matrices play an important role in developing lower bounds due to their following
zero-chain properties (Nesterov, 2003; Zhang et al., 2019). Let Rk,d = {x ∈ Rd|xi =
0 for k + 1 ≤ i ≤ d}, where xi denotes the ith coordinate of the vector x.

Lemma 5 (Zero-Chain Property) For any given vector v ∈ Rk,d, we have Z2v ∈ Rk+1,d.

Theorem 5 indicates that if a vector v has nonzero entries only at the first k coordinates,
then multiplying it with a matrix Z2 has at most one more nonzero entry at position k+ 1.
We demonstrate the validity of the constructed instance by showing that f and g in eq. (15)
satisfy Assumptions 1 and 2, and Φ(x) is µx-strongly-convex. The proof of these statements
can be found in Step 1 in Appendix B.

Step 2 (characterize the minimizer x∗): We show that the unique minimizer x∗ satisfies
the following equation

Z4x∗ + λZ2x∗ + τx∗ = γZb, (17)

where λ = Θ(1) and γ = Θ(1), τ = Θ(µxµ
2
y) (see eq. (33) for its complete form). We choose

b in eq. (17) such that (Zb)t = 0 for all t ≥ 3, which is feasible because we show that Z is
invertible. Using the structure of Z in eq. (16), we show that there exists a vector x̂ with
its ith coordinate x̂i = ri such that

‖x∗ − x̂‖ = O(rd), (18)

where 0 < r < 1 satisfies 1−r
= Θ(

LyL̃2
xy

µxµ2
y

). Then, based on the above eq. (18), we are able to

characterize x∗, e.g., its norm ‖x∗‖, using its approximate (exponentially close) x̂.

Step 3 (characterize the iterate subspaces): By exploiting the forms of the subspaces
{Hkx,Hky}Kk=1 defined in Theorem 2, we use the induction to show that

HK
x ⊆ Span{Z2(K+QT+Q)(Zb),, Z2(Zb), (Zb)}.

Then, noting that (Zb)t = 0 for all t ≥ 3 and using the zero-chain property of Z2, we have
the tth coordinate of the output xK to be zero, i.e., (xK)t = 0, for all t ≥M + 1.

Step 4 (combine Steps 1, 2, 3 and characterize the complexity): By choosing d >
max

{
2M,M + 1 + logr

(
τ

4(7+λ)

)}
, and based on Steps 2 and 3, we have ‖xK − x∗‖ ≥

12

Lower Bounds and Accelerated Algorithms for Bilevel Optimization

‖x∗−x0‖
3
√

2
rM which, in conjunction with the form of Φ(x), yields the result in eq. (14). The

complexity result then follows because 1
1−r = Θ(

LyL̃2
xy

µxµ2
y

) and from the definition of the

complexity measure in Theorem 3.

Remark. We note that the introduction of the term αβ

L̃xy
xTZ3y in f is necessary to obtain

the lower bound Ω̃(
LyL̃2

xy

µxµ2
y

). Without such a term, there will be an additional high-order

term Ω(A6x) at the left hand side of eq. (17). Then, following the same steps as in Step 2,
we would obtain a result similar to eq. (18), but with a parameter r satisfying 0 < 1

1−r =

Θ
(LyL̃xy
µxµy

)
. Then, following the same steps as in Steps 3 and 4, the final overall complexity

Cfun(A, ε) = Ω
(LyL̃xy
µxµy

)
, which is not as tight as Ω

(LyL̃2
xy

µxµ2
y

)
obtained under the selection in

eq. (15).

3.2 Convex-Strongly-Convex Bilevel Optimization

We next characterize the lower complexity bound for the convex-strongly-convex setting,
where Φ(·) is convex and the inner-level function g(x, ·) is µy-strongly-convex. We state
our main result for this case in the following theorem.

Theorem 6 Let M = K +QT −Q+ 3 with K,T,Q given by Theorem 2, and let xK be an
output belonging to the subspace HKx , i.e., generated by any algorithm in the hypergradient-
based algorithm class defined in Theorem 2. There exists an instance in Fcsc defined in The-
orem 1 with dimensions p = q = d such that in order to achieve ‖∇Φ(xK)‖ ≤ ε, it requires
M ≥ br∗c − 3, where r∗ is the solution of the equation

r4 + r
(2β4

µ4
y

+
4β3

µ3
y

+
4β2

µ2
y

)
=
B2(L̃2

xyLy + Lxµ
2
y)

2

128µ4
yε

2
, (19)

where β =
L̃y−µy

4 and B is given in Theorem 1. The complexity satisfies Cgrad(A, ε) = Ω(r∗).

Note that Theorem 6 uses the gradient norm ‖∇Φ(x)‖ ≤ ε rather than the suboptimality gap
Φ(xK)− Φ(x∗) as the convergence criteria. This is because for the convex-strongly-convex
case, lower-bounding the suboptimality gap requires the Hessian matrix A in the worst-case
construction of the total objective function Φ(x) to have a nice structure, e.g., the solution
of A′x = e1 (e1 has a single non-zero value 1 at the first coordinate) is explicit, where A′

is derived by removing last k columns and rows of A. However, in bilevel optimization,
A often contains different powers of the zero-chain matrix Z, and does not have such a
structure. We will leave the lower bound under the suboptimality criteria for the future
study. Note that r∗ in Theorem 6 has a complicated form. The following two corollaries
simplify the complexity results by considering specific parameter regimes.

Corollary 7 Under the same setting of Theorem 6, consider the case when β = Θ(µy).

Then, we have Cgrad(A, ε) = Ω
(B 1

2 (L̃2
xyLy+Lxµ2

y)
1
2

µyε
1
2

)
.

Corollary 8 Under the same setting of Theorem 6, consider the case when β = Θ(1), i.e.,
at a constant level. Then, we have Cgrad(A, ε) = Ω̃(1√

ε
min{κy, 1√

ε3
}).

13

Ji and Liang

The proof sketch of Theorem 6 is provided as follows. The complete proof is provided in
Appendix C.

Proof Sketch of Theorem 6

Step 1(construct the worst-case instance): We construct the instance functions f and
g as follows.

f(x, y) =
Lx
8
xTZ2x+

Ly
2
‖y‖2,

g(x, y) =
1

2
yT (βZ2 + µyI)y − L̃xy

2
xTZy + bT y, (20)

where β =
L̃y−µy

4 . Here, the coupling matrix Z is different from that eq. (16) for the
strongly-convex-strongly-convex case, which takes the form of

Z :=


1 −1

1 −1
...

...

−1

 , Z2 :=


2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1

 . (21)

It can be verified that Z is invertible and Z2 in eq. (21) also satisfies the zero-chain prop-
erty, i.e., Theorem 5. We can further verify that Φ(x) is convex and functions f, g satisfy
Assumptions 1 and 2.

Step 2 (characterize the minimizer x∗): Recall that x∗ ∈ arg minx∈Rd Φ(x). We then
show that x∗ satisfies the equation

(Lxβ2

4
Z6 +

Lxβ
2βµy
2

Z4 +
(LyL̃2

xy

4
+
Lxµ

2
y

4

)
Z2
)
x∗ =

LyL̃xy
2

Zb.

Let b̃ =
LyL̃xy

2 Zb and choose b such that b̃t = 0 for all t ≥ 4. Then, by choosing b̃1, b̃2, b̃3
properly, we derive that x∗ = B√

d
1, where 1 is the all-one vector, and hence ‖x∗‖ = B.

Step 3 (characterize the gradient norm): In this step, we show that for any x whose
last three coordinates are zeros, the gradient norm of ∇Φ(x) is lower-bounded. Namely, we
prove that

min
x∈Rd: xd−2=xd−1=xd=0

‖∇Φ(x)‖2 ≥
B2
(
L̃2
xyLy
4 +

Lxµ2
y

4

)2

8µ4
yd

4 + 16dβ4 + 32dβ3µy + 32dβ2µ2
y

. (22)

Step 4 (characterize the iterate subspaces): By exploiting the forms of the subspaces
{Hkx,Hky}Kk=1 defined in Theorem 2 and by induction, we show that

HK
x ⊆ Span{Z2(K+QT−Q)(Zb),, Z2(Zb), (Zb)}.

14

Lower Bounds and Accelerated Algorithms for Bilevel Optimization

Since (Zb)t = 0 for all t ≥ 4 and using the zero-chain property of Z2, we have the tth

coordinate of the output xK is zero, i.e., (xK)t = 0, for all t ≥ M + 1, where M =
K +QT −Q+ 3.

Step 5 (combine Steps 1, 2, 3, 4 and characterize the complexity): Choose d such
that the right hand side of eq. (22) equals ε by solving eq. (19). Then, using the results
in Steps 3 and 4, it follows that for any M ≤ d − 3, ‖∇Φ(xK)‖ ≥ ε. Thus, to achieve
‖∇Φ(x)‖ ≤ ε , it requires M > d−3 and the complexity result follows as Cgrad(A, ε) = Ω(M).

4. Accelerated Gradient Method and Upper Bounds for Bilevel
Optimization

In this section, we propose a new bilevel optimization algorithm, and characterize its com-
putational complexity, which serves as new upper bounds for bilevel optimization.

4.1 Accelerated Bilevel Optimization Algorithm: AccBiO

As shown in Algorithm 1, we propose a new accelerated algorithm named AccBiO for
bilevel optimization. At the beginning of each outer iteration, we run N steps of accel-
erated gradient descent (AGD) to get yNk as an approximate of y∗k = arg miny g(xk, y).

Then, based on the inner-level output yNk , we construct a hypergradient estimate via
Gk := ∇xf(xk, y

N
k) −∇x∇yg(xk, y

N
k)vMk , where vMk is the output of an M -step heavy ball

method with stepsizes η and θ for solving a quadratic problem as shown in line 7. Finally, as
shown in lines 8-9, we update the variables zk and xk using Nesterov’s momentum accelera-
tion scheme (Nesterov et al., 2018) over the estimated hypergradient Gk. Next, we analyze
the convergence and complexity performance of AccBiO for the two bilevel optimization
classes Fscsc and Fcsc described in Theorem 1.

4.2 Strongly-Convex-Strongly-Convex Bilevel Optimization

In this setting, Φ(x) is µx-strongly-convex and g(x, ·) is µy-strongly-convex. The following
theorem provides a performance guarantee for AccBiO. Recall x∗ = arg minx Φ(x).

Theorem 9 Suppose that (f, g) belong to the strongly-convex-strongly-convex class Fscsc in

Theorem 1. Choose the inner iteration number N = Θ̃(κy). Choose stepsizes λ = 4

(
√
L̃y+

√
µy)2

and θ = max
{(

1 −
√
λµy

)2
,
(
1 −

√
λL̃y

)2}
and M = Θ̃(κy) for the heavy-ball method. Let

κy =
L̃y

µy
be the condition number for the inner-level function g(x, ·) and LΦ = Θ

(
Lx +

LyL̃
2
xy

µ2
y

+

L̃2
xyρxy

µ3
y
‖∇yf(x∗, y∗(x∗))‖+ L̃3

xyρyyLy

µ4
y

√
2
µx

(Φ(0)− Φ(x∗)) + ‖x∗‖2 + ε
µx

)
be the smoothness parameter

of the objective Φ(·). Then, we have

Φ(zK)− Φ(x∗) ≤
(

1− 1
√
κx

)K
(Φ(0)− Φ(x∗) +

µx
2
‖x∗‖2) +

ε

2
,

15

Ji and Liang

Algorithm 1 Accelerated Bilevel Optimization (AccBiO) Algorithm

1: Input: Initialization z0 = x0 = y0 = 0, parameters λ and θ
2: for k = 0, 1, ...,K do
3: Set y0

k = 0 as initialization
4: for t = 1,, N do5:

ytk = st−1
k − 1

L̃y
∇yg(xk, s

t−1
k), stk =

2
√
κy

√
κy + 1

ytk −
√
κy − 1
√
κy + 1

yt−1
k .

6: end for
7: Hypergradient computation :

1) Get vMk after running M steps of heavy-ball method vt+1
k = vtk−λ∇Q(vtk)+θ(vtk−v

t−1
k)

with initialization v0
k = v1

k = 0 over

min
v
Q(v) :=

1

2
vT∇2

yg(xk, y
N
k)v − vT∇yf(xk, y

N
k)

2) Compute ∇x∇yg(xk, y
N
k)vMk via automatic differentiation;

3) compute Gk := ∇xf(xk, y
N
k)−∇x∇yg(xk, y

N
k)vMk .

8: Update zk+1 = xk − 1
LΦ
Gk

9: Update xk+1 =
(

1 +
√
κx−1√
κx+1

)
zk+1 −

√
κx−1√
κx+1zk

10: end for

where κx = LΦ

µx
is the condition number for Φ(·). To achieve Φ(zK) − Φ(x∗) < ε, the complexity

satisfies

Cfun(A, ε) = O
(√LxL̃y

µxµy
+

√√√√LyL̃2
xyL̃y

µxµ3
y

+

√√√√ L̃2
xyρxyL̃y

µ4
y

√
‖∇yf(x∗, y∗(x∗))‖

µx

+

√√√√ L̃3
xyρyyLyL̃y

µxµ5
y

(2

µx
(Φ(0)− Φ(x∗)) + ‖x∗‖2 +

ε

µx

) 1
4
)
, (23)

To the best of our knowledge, our result in Theorem 9 is the first-known upper bound
on the computational complexity for strongly-convex bilevel optimization under only mild
assumptions on the Lipschitz continuity of the first- and second-order derivatives of the
outer- and inner-level functions f, g. As a comparison, existing results in Ghadimi and
Wang (2018); Ji et al. (2021) for bilevel optimization further make a strong assumption
that the gradient norm ‖∇yf(x, y)‖ is bounded for all (x, y) ∈ Rp × Rq to upper-bound
the smoothness parameter LΦk of Φ(xk) and the hypergradient estimation error ‖Gk −
∇Φ(xk)‖ at the kth iteration. This is because LΦk and ‖Gk − ∇Φ(xk)‖ turn out to be
increasing with the gradient norm ‖∇yf(xk, y

∗(xk))‖, for which it is challenging to prove
the boundedness given the theoretical frameworks in Ghadimi and Wang (2018); Ji et al.
(2021) where no results on bounded iterates are established. Our analysis does not require
such a restrictive assumption because we show by induction that the optimality gap ‖xk−x∗‖
is well bounded as the algorithm runs. As a result, we can guarantee the boundedness of
the smoothness parameter LΦk and the error ‖Gk−∇Φ(xk)‖ during the entire optimization
process. In Section 5, we further develop tighter upper bounds than existing results under
this additional bounded gradient assumption.

16

Lower Bounds and Accelerated Algorithms for Bilevel Optimization

Based on Theorem 9, we next study the quadratic g subclass, where the inner-level
function g(x, y) takes a quadratic form as in eq. (5). The following corollary provides upper
bounds on the convergence rate and complexity of AccBiO under this case.

Corollary 10 (Quadratic g subclass) Under the same setting of Theorem 9, consider
the quadratic inner-level function g(x, y) in eq. (5), where ∇x∇yg(·, ·) and ∇2

yg(·, ·) are con-

stant. To achieve Φ(zK)− Φ(x∗) < ε, the complexity satisfies Cfun(A, ε) = Õ
(√

LyL̃2
xyL̃y

µxµ3
y

)
.

Theorem 10 shows that for the quadratic g subclass, the complexity upper bound in Theo-

rem 9 specializes to Õ
(√

LyL̃2
xyL̃y

µxµ3
y

)
. This improvement over the complexity for the general

case in eq. (23) comes from tighter upper bounds on the smoothness parameter LΦ of the
objective function Φ(x) and a smaller hypergradient estimation error ‖Gk − ∇Φ(xk)‖. In
addition, it can be seen that when the inner-level problem is easy to solve, i.e., L̃y = Cµy

for any constant C ≥ 1 that is independent of µy, the complexity becomes Õ
(√LyL̃2

xy

µxµ2
y

)
,

which matches the lower bound established by Theorem 4 up to logarithmic factors.

4.3 Convex-Strongly-Convex Bilevel Optimization

We next provide an upper bound for convex-strongly-convex bilevel optimization, where
the function Φ(x) is convex. Recall from Theorem 1 that ‖x∗‖ = B for some constant
B > 0, where x∗ is one minimizer of Φ(·). For this case, we construct a strongly-convex-
strongly-convex function Φ̃(·) = f̃(x, y∗(x)) by adding a small quadratic regularization to
the outer-level function f(x, y), i.e.,

f̃(x, y) = f(x, y) +
ε

2R
‖x‖2. (24)

Then, we can apply the results in Theorem 9 to Φ̃(x), and obtain the following theorem.

Theorem 11 Suppose that (f, g) belong to the convex-strongly-convex class Fcsc in Theo-
rem 1. Let L

Φ̃
be the smoothness parameter of function Φ̃(·), which takes the same form

as LΦ in Theorem 9 except that Lx, f, x
∗ and Φ become Lx + ε

R , f̃ , x̃
∗ and Φ̃, respectively.

Choose M = Θ̃(κy) for the heavy-ball method. We consider two widely-used convergence
criterions as follows.

• (Suboptimality gap) Choose R = B2 in eq. (24), and choose the same parameters
as in Theorem 9 with ε and µx being replaced by ε/2 and ε

R , respectively. To achieve
Φ(zK)− Φ(x∗) ≤ ε, the required complexity is at most

Cfun(A, ε) ≤Õ
(√√√√B2LyL̃2

xyL̃y

εµ3
y

+

√√√√B2L̃2
xyρxyL̃y

εµ4
y

√
‖∇yf̃(x̃∗, y∗(x̃∗))‖

+

√√√√B2L̃3
xyρyyLyL̃y

εµ5
y

(2B2

ε
(Φ̃(0)− Φ̃(x̃∗)) + ‖x̃∗‖2 +B2

) 1
4
)
.

17

Ji and Liang

• (Gradient norm) Choose R = B in eq. (24), and choose the same parameters as in
Theorem 9 with ε and µx being replaced by ε2/(4L

Φ̃
+ 8ε

R) and ε
R , respectively. To achieve

‖∇Φ(zk)‖ ≤ 5ε, the required complexity is at most

Cgrad(A, ε) ≤Õ
(√√√√BLyL̃2

xyL̃y

εµ3
y

+

√√√√BL̃2
xyρxyL̃y

εµ4
y

√
‖∇yf̃(x̃∗, y∗(x̃∗))‖

+

√√√√BL̃3
xyρyyLyL̃y

εµ5
y

(2B

ε
(Φ̃(0)− Φ̃(x̃∗)) + ‖x̃∗‖2 +B

) 1
4
)
.

As far as we know, Theorem 11 is the first convergence result for convex-strongly-convex
bilevel optimization without the bounded gradient assumption. Then, similarly to Theo-
rem 10, we also study the quadratic g(x, y) case where the inner-level functiong(x, y) takes
the quadratic form as given in eq. (5).

Corollary 12 (Quadratic g subclass) Under the same setting of Theorem 11, consider
the quadratic g(x, y) where ∇x∇yg(·, ·) and ∇2

yg(·, ·) are constant. Then, we have

• (Suboptimality gap) To achieve Φ(zK)− Φ(x∗) ≤ ε, Cfun(A, ε) = Õ
(
B

√
LyL̃2

xyL̃y
εµ3
y

)
.

• (Gradient norm) To achieve ‖∇Φ(zk)‖ ≤ ε, we have Cgrad(A, ε) = Õ
(√

BLyL̃2
xyL̃y

εµ3
y

)
.

It can be seen from Theorem 12 that for the quadratic g subclass, AccBiO achieves a

computational complexity of Õ
(√

BLyL̃2
xyL̃y

εµ3
y

)
in term of the gradient norm. For the case

where L̃y = Θ(µy), the complexity becomes Õ
(√

BLyL̃2
xy

εµ2
y

)
, which matches the lower bound

in Theorem 7 up to logarithmic factors.

4.4 Optimality of Bilevel Optimization and Discussion

We compare the lower and upper bounds and make the following remarks on the optimality
of bilevel optimization and its comparison to minimax optimization.

Optimality of results for quadratic g subclass. We compare the developed lower and
upper bounds and make a few remarks on the optimality of the proposed AccBiO algorithms.
Let us first focus on the quadratic g subclass where g(x, y) takes the quadratic form as in
eq. (5). For the strongly-convex-strongly-convex setting, comparison of Theorem 4 and
Theorem 10 implies that AccBiO achieves the optimal complexity for L̃y = Θ(µy), i.e., the
inner-level problem is easy to solve. For the general case, there is still a gap of

√
κy between

lower and upper bounds. For the convex-strongly-convex setting, comparison of Theorem 6
and Theorem 12 shows that AccBiO is optimal for L̃y = Θ(µy), and there is a gap for the
general case. Such a gap is mainly due to the large smoothness parameter LΦ of Φ(·). We
note that a similar issue also occurs for minimax optimization, which has been addressed
by Lin et al. (2020) using an accelerated proximal point method for the inner-level problem

18

Lower Bounds and Accelerated Algorithms for Bilevel Optimization

and exploiting Sion’s minimax theorem minx maxy f(x, y) = maxy minx f(x, y). However,
such an approach is not applicable for bilevel optimization due to the asymmetry of x and
y, e.g., minx f(x, y∗(x)) 6= miny g(x∗(y), y). This gap between lower and upper bounds
deserves future efforts.

Optimality of results for general g. We now discuss the optimality of our results
for a more general g whose second-order derivatives are Lipschitz continuous. For the
strongly-convex-strongly-convex setting, it can be seen from the comparison of Theorem 4
and Theorem 9 that there is a gap between the lower and upper bounds. This gap is
because the lower bounds construct the bilinearly coupled worst-case g(x, y) whose Hessians
and Jacobians are constant, rather than generally ρyy- and ρxy-Lipschitz continuous as
considered in the upper bounds. Hence, tighter lower bounds need to be provided for this
setting, which requires more sophisticated worst-case instances with Lipschitz continuous
Hessians ∇2

yg(x, y) and Jacobians ∇x∇yg(x, y). For example, it is possible to construct

g(x, y) as g(x, y) = σ(y)yTZy − xTZy + bT y, where σ(·) : Rd → R satisfies a certain
Lipschitz property. For example, if σ is Lipchitz continuous, simple calculation shows that
LΦ scales at an order of κ3

y. However, it still requires significant efforts to determine the form
of σ such that the optimal point of Φ(·) and the subspaces Hx,Hy are easy to characterize
and satisfy the properties outlined in the proof of Theorem 9.

Comparison to minimax optimization. We compare the optimality between minimax
optimization and bilevel optimization. For the strongly-convex-strongly-convex minimax
optimization, Zhang et al. (2019) developed a lower bound of Ω̃(

√
κxκy) for minimax opti-

mization, which is achieved by the accelerated proximal point method proposed by Lin et al.
(2020) up to logarithmic factors. For the same type of bilevel optimization, we provide a
lower bound of Ω̃

(√
κxκy

)
in Theorem 4, which is larger than that of minimax optimization

by a factor of
√
κy. A similar comparison is also observed for the convex-strongly-convex

bilevel optimization. This establishes that bilevel optimization is fundamentally more chal-
lenging than minimax optimization. This is because bilevel optimization needs to handle
the different structures of the outer- and inner-level functions f and g (e.g., second-order
derivatives in the hypergradient), whereas for minimax optimization, the fact of f = g sim-
plifies the problem (e.g., no second-order derivatives) and allows more efficient algorithm
designs.

5. Upper Bounds with Gradient Boundedness Assumption

Our study in Section 4 does not make the bounded gradient assumption, which has been
commonly taken in the existing studies (Ghadimi and Wang, 2018; Ji et al., 2021; Hong
et al., 2020; Ji et al., 2020a). In this section, we establish tighter upper bounds than
those in existing works (Ghadimi and Wang, 2018; Ji et al., 2021) under such an additional
assumption.

Assumption 3 (Bounded gradient) There exists a constant U such that for any (x′, y′) ∈
Rp × Rq, ‖∇yf(x′, y′)‖ ≤ U .

19

Ji and Liang

Algorithm 2 Accelerated Bilevel Optimization Method under Bounded Gradient Assump-
tion (AccBiO-BG)

1: Input: Initialization z0 = x0 = y0 = 0, parameters ηk, τk.αk, βk, λ and θ
2: for k = 0, ...,K do
3: Set x̃k = ηkxk + (1− ηk)zk
4: Set y0

k = yNk−1 if k > 0 and y0 otherwise (warm start)
5: for t = 1,, N do6:

(AGD:) ytk = st−1
k − 1

L̃y
∇yg(x̃k, s

t−1
k), stk =

2
√
κy

√
κy + 1

ytk −
√
κy − 1
√
κy + 1

yt−1
k .

7: end for
8: Hypergradient computation :

1) Get vMk after running M steps of heavy-ball method vt+1
k = vtk−λ∇Q(vtk)+θ(vtk−v

t−1
k)

with initialization v0
k = v1

k = 0 over

(Quadratic programming:) min
v
Q(v) :=

1

2
vT∇2

yg(x̃k, y
N
k)v − vT∇yf(x̃k, y

N
k);

2) Compute Jacobian-vector product ∇x∇yg(x̃k, y
N
k)vMk via automatic differentiation;

3) compute hypergradient estimate Gk := ∇xf(x̃k, y
N
k)−∇x∇yg(x̃k, y

N
k)vMk .

9: Update xk+1 = τkx̃k + (1− τk)xk − βkGk
10: Update zk+1 = x̃k − αkGk
11: end for

5.1 Accelerated Bilevel Optimization Algorithm: AccBiO-BG

We propose an accelerated algorithm named AccBiO-BG in Algorithm 2 for bilevel optimiza-
tion under the additional bounded gradient assumption. Similarly to AccBiO, AccBiO-BG
first runs N steps of accelerated gradient descent (AGD) at each outer iteration. Note
that AccBiO-BG here adopts a warm start strategy with y0

k = yNk−1 so that our analy-
sis does not require the boundedness of y∗(xk), k = 0...,K and reduces the total com-
putational complexity. Then, AccBiO-BG constructs the hypergradient estimate Gk :=
∇xf(x̃k, y

N
k)−∇x∇yg(x̃k, y

N
k)vMk following the same steps as in AccBiO. Finally, we update

variables xk, zk via two accelerated gradient steps, where we incorporate a variant (Ghadimi
and Lan, 2016) of Nesterov’s momentum. We use this variant instead of vanilla Nesterov’s
momentum (Nesterov et al., 2018) in Algorithm 1, because the resulting analysis is easier
to handle the warm start strategy, which backpropagates the tracking error ‖yNk − y∗(xk)‖
to previous loops.

5.2 Strongly-Convex-Strongly-Convex Bilevel Optimization

The following theorem provides a theoretical performance guarantee for AccBiO-BG.

Theorem 13 Suppose that (f, g) belong to the strongly-convex-strongly-convex class Fscsc
in Theorem 1 and further suppose Assumption 3 is satisfied. Choose αk = α ≤ 1

2LΦ
, ηk =

√
αµx√
αµx+2 , τk =

√
αµx
2 , βk =

√
α
µx

and N = Θ̃(κy), where LΦ is the smoothness parameter of

Φ(x). Choose stepsizes λ = 4

(
√
L̃y+

√
µy)2

, θ = max
{(

1−
√
λµy

)2
,
(
1−
√
λL̃y

)2}
and M = Θ̃(κy)

for the heavy-ball method. Then, to achieve Φ(zK) − Φ(x∗) ≤ ε, the required complexity

20

Lower Bounds and Accelerated Algorithms for Bilevel Optimization

Cfun(A, ε) is at most

Cfun(A, ε) = Õ
(√√√√UL̃2

xyρyyL̃y

µxµ4
y

)
,

The proof of Theorem 13 is provided in Appendix J. Theorem 13 shows that the upper bound

achieved by our proposed AccBiO-BG algorithm is Õ(

√
UL̃2

xyρyyL̃y

µxµ4
y

). This bound improves

the best known Õ
(

max
{UL̃2

xyρyy
µxµ3

y
,
L̃2
y

µ2
y

})
(see eq. (2.10) and (2.60) therein) achieved by the

accelerated bilevel approximation algorithm (ABA) in Ghadimi and Wang (2018) by a factor

of O(

√
UL̃2

xyρyy

L̃yµxµ2
y

).

5.3 Convex-Strongly-Convex Bilevel Optimization

Similarly to Theorem 11, we consider a strongly-convex-strongly-convex function Φ̃(·) =
f̃(x, y∗(x)) with f̃(x, y) = f(x, y) + ε

2B2 ‖x‖2, where B = ‖x∗‖ as defined in Theorem 1.
Then, we have the following theorem.

Theorem 14 Suppose that (f, g) belong to the convex-strongly-convex class Fcsc in Theo-
rem 1 and further suppose Assumption 3 is satisfied. Let L

Φ̃
be the smoothness parameter of

Φ̃(·), which takes the same form as LΦ in Theorem 13 but with Lx being replaced by Lx+ ε
B2 .

Choose the same parameter as in Theorem 13 with α = 1
2L

Φ̃
, N = Θ̃(κy),M = Θ̃(κy) and

µx = ε
B2 . Then, to achieve Φ(zK)−Φ(x∗) ≤ ε, the required complexity Cfun(A, ε) is at most

Cfun(A, ε) = Õ
(
B

√√√√ L̃2
xyρyyL̃y

εµ4
y

)
.

As shown in Theorem 14, our proposed AccBiO-BG algorithm achieves a complexity of

Õ
(√ L̃2

xyρyyL̃y
εµ4
y

)
, which significantly improves the best known result achieved by the ABA

algorithm in Ghadimi and Wang (2018) (see Table 2).

Extension to nonconvex-strongly-convex case. By applying the acceleration scheme
in Algorithm 2 with τk = 0, αk = Θ(1

LΦ
), βk = k

4LΦ
and ηk = 2

k+1 (following the ABA
method in Ghadimi and Wang (2018)), we can also improve the complexity by a factor
of O(

√
κy). In this case, we need the bounded gradient assumption because we cannot

guarantee the boundedness of the iterates under the nonconvex geometry unlike the convex
case.

6. Numerical Experiments

n this section, we conduct experiments to validate our theoretical results. We consider the
following bilevel optimization problem, where the upper and lower functions are given by

f(x, y) =
1

2
xTU2x+

1

2
‖y‖2

21

Ji and Liang

0 5 10 15 20 25 30 35 40
running time /s

10 4

10 3

10 2

10 1

100

101

102

103

gr
ad

ie
nt

 n
or

m

Bilevel Optimization
AID
ITD
AccBiO

0 10 20 30 40 50 60
running time /s

10 5

10 4

10 3

10 2

10 1

100

101

102

103

gr
ad

ie
nt

 n
or

m

Bilevel Optimization
AID
ITD
AccBiO

Figure 1: Gradient norm ‖∇Φ(x̂)‖ v.s. running time (in seconds). Left plot: dimension
d = 30; right plot: dimension d = 50.

g(x, y) =
1

2
yT (H2 + I)y − 1

2
xTV y + bT y, (25)

where U,H and V are random matrices with each entry sampled from [0, 1) uniformly at
random. We compare the proposed AccBiO method with two widely-used bilevel benchmark
algorithms AID and ITD in Grazzi et al. (2020); Ji et al. (2021).

Hyperparameter setting. For AID and ITD, we choose their best inner- and outer-loop
learning rates from {10i, i = −6,−5,−4,−3,−2,−1, 0, 1, 2, ..., 6}. For AccBiO, we choose
the coefficients α and β in the inner-loop acceleration updates ytk = st−1

k −α∇yg(xk, s
t−1
k), stk =

(1 + β)ytk − βy
t−1
k from {10i, i = −5, ..., 4, 5}. Similarly, we choose the coefficients in the

outer-loop acceleration updates (i.e., line 8-9 in Algorithm 2) from {10i, i = −7,−6, ..., 6, 7}.
For ITD, we choose the number N of inner-loop iterations from {5, 10, 15, 20}. For AID and
our AccBiO method, we choose N from {5, 10, 15, 20} and the number M of the iterations
for solving the linear system from {5, 10, 15}.

In Figure 1, we plot the gradient norm ‖∇Φ(x̂)‖ v.s. running time (in seconds) over
the problem dimension d = 30 and d = 50, where x̂ is the output of the algorithm. It can
be seen that our proposed AccBiO has the fastest convergence rate, and AID achieves a
convergence performance similarly to ITD. This validates our theoretical result that AccBiO
achieves a lower computational complexity than non-acceleration methods of ITD and AID.

7. Conclusion and Discussion

In this paper, we provide the first-known lower bounds and new upper bounds with relaxed
assumptions and tighter characterizations for bilevel optimization under various function
geometries. We here discuss the extensions and applications of our results as follows.

Other loss geometries. In this paper, we study two typical loss geometries, i.e., the
strongly-convex-strongly-convex and convex-strongly-convex geometries. It will be inter-
esting to investigate other types of loss landscapes. For example, when the total objective
function Φ(x) involves neural networks and is generally nonconvex, new efforts are needed
to address the boundedness of iterates xk as the algorithm runs, e.g., by adding a pro-
jection onto a bounded domain or a regularizer to force such a boundedness. Moreover,
existing convergence rate analysis relies on the strong convexity of the inner problem to

22

Lower Bounds and Accelerated Algorithms for Bilevel Optimization

better capture the inner-level convergence behavior. It is interesting to extend to more gen-
eral geometries that allows more than one unique solution, e.g., convexity or star-convexity,
which, however, requires us to revise the hypergradient form in eq. (7) or explore the con-
vergence under other criterions such as stationarity based on the Moreau envelope (Davis
and Drusvyatskiy, 2019) due to the nonsmoothness of the inner-level solution y∗(x) and the
objective function Φ(x).

Applications of results. We note that some of our analysis can be applied to other prob-
lem domains such as minimax optimization. For example, our lower-bounding technique
for Theorem 6 can be extended to convex-concave or convex-strongly-concave min-
imax optimization, where the objective function f(x, y) satisfies the general smoothness
property as in eq. (2) with the general smoothness parameters Lx, Lxy, Ly ≥ 0. The result-
ing lower bound will be different from that in Ouyang and Xu (2019), which considered a
special case with Ly = 0 and the convergence is measured in terms of the suboptimality gap
O(Φ(x) − Φ(x∗)) rather than the gradient norm ‖∇Φ(x)‖ considered in this paper. Thus,
such an extension will serve as a new contribution to lower complexity bounds for minimax
optimization.

23

Ji and Liang

Appendix

Table of Contents

A ITD-Based Bilevel Algorithms 24

B Proof of Theorem 4 25

C Proof of Theorem 6 30

D Proof of Theorem 7 33

E Proof of Theorem 8 33

F Proof of Theorem 9 33

G Proof of Theorem 10 43

H Proof of Theorem 11 44

I Proof of Theorem 12 46

J Proof of Theorem 13 46

K Proof of Theorem 14 52

Appendix A. ITD-Based Bilevel Algorithms

In this section, we present existing ITD-based bilevel optimization algorithms, and show
that they belong to the hypergradient-based algorithm class we consider in Theorem 2.

Example 2 (ITD-based Bilevel Algorithms) (Maclaurin et al., 2015; Franceschi et al.,
2017; Ji et al., 2021; Grazzi et al., 2020) Such type of algorithms use ITD-based approaches
for hypergradient computation, and take the following updates.

For each outer iteration m = 0,, Q− 1,

• Update variable y for N times via iterative algorithms (e.g., gradient descent, accelerated
gradient methods).

(Gradient descent:) ytm = yt−1
m − η∇yg(xm, y

t−1
m), t = 1, ..., N. (26)

24

Lower Bounds and Accelerated Algorithms for Bilevel Optimization

• Compute the hypergradient estimate Gm = ∂f(xm,yNm(xm))
∂xm

via backpropagation. Under the
gradient updates in eq. (26), Gm takes the form of

Gm = ∇xf(xm, y
N
m)− η

N−1∑
t=0

∇x∇yg(xm, y
t
m)

N−1∏
j=t+1

(I − η∇2
yg(xm, y

j
m))∇yf(xm, y

N
m). (27)

A similar form holds for case when updating y with accelerated gradient methods.

• Update x based on Gm via gradient-based iterative methods.

It can be seen from eq. (27) that only Hessian-vector products ∇2
yg(xm, y

j
m)vj , j = 1, ..., N

and Jacobian-vector products ∇x∇yg(xm, y
j
m)vj , j = 1, ..., N are computed, where each vj

is obtained recursively via

vj−1 = (I − α∇2
yg(xm, y

j
m))vj︸ ︷︷ ︸

Hessian-vector product

with vN = ∇yf(xm, y
N
m).

Appendix B. Proof of Theorem 4

In this section, we provide a complete proof of Theorem 4 under the strongly-convex-
strongly-convex geometry. Note that our construction sets the dimensions of variables x
and y to be the same, i.e., p = q = d. The main proofs are divided into four steps: 1)
constructing the worst-case instance that belongs to the problem class Fscsc defined in
Theorem 1; 2) characterizing the optimal point x∗ = arg minx∈Rd Φ(x); 3) characterizing
the subspaces Hkx,Hky ; and 4) developing lower bounds on the convergence and complexity.

Step 1: Constructing the worst-case instance that satisfies Theorem 1.

In this step, we show that the constructed f, g in eq. (15) satisfy Assumptions 1 and 2,
and Φ(x) is µx-strongly-convex. It can be seen from eq. (15) that f, g satisfy eq. (2) (3) and
(4) in Assumptions 1 and 2 with arbitrary constants Lx, Ly, L̃y, L̃xy and ρxy = ρyy = 0 but

requires Lxy ≥ (Lx−µx)(L̃y−µy)

2L̃xy
(which is still at a constant level) due to the introduction

of the term αβ

L̃xy
xTZ3y in f . We note that such a term introduces necessary connection

between f and g, and yields a tighter lower bound, as pointed out in the remark at the end
of Section 3.1.

We next show that the overall objective function Φ(x) = f(x, y∗(x)) is µx-strongly-
convex. According to eq. (15), we have g(x, ·) to be µy-strongly-convex with a single min-

imizer y∗(x) = (βZ2 + µyI)−1
(L̃xy

2 Zx − b
)
, and hence we obtain from eq. (1) that Φ(x) is

given by

Φ(x) =
1

2
xT (αZ2 + µxI)x− αβ

L̃xy
xTZ3(βZ2 + µyI)−1

(L̃xy
2
Zx− b

)
+
L̄xy
2
xTZ(βZ2 + µyI)−1

(L̃xy
2
Zx− b

)
+
L̄xy

L̃xy
bT (βZ2 + µyI)−1

(L̃xy
2
Zx− b

)
+
Ly
2

(L̃xy
2
Zx− b

)T
(βZ2 + µyI)−1(βZ2 + µyI)−1

(L̃xy
2
Zx− b

)
. (28)

25

Ji and Liang

Note that Z is symmetric and invertible with Z−1 given by

Z−1 =


1 1 1 1
...

... 1

1
...

1

 , (29)

and hence the eigenvalue decomposition of Z can be written as Z = U Diag{λ1, ..., λd}UT ,
where λi 6= 0, i = 1, ..., d and U is an orthonormal matrix. Then, for any integers i, j > 0,
simple calculation yields

Zi(βZ2 + µyI)−j = UDiag

{
λi1

(βλ2
1 + µy)j

, ...,
λid

(βλ2
d + µy)j

}
UT = (βZ2 + µyI)−jZi. (30)

Using the relationship in eq. (30), we have

1

2
xTαZ2x =

αβ

2
xTZ4(βZ2 + µyI)−1x+

αµy
2
xTZ2(βZ2 + µyI)−1x,

which, in conjunction with eq. (28) and eq. (30), yields

Φ(x) =
1

2
µx‖x‖2 +

2αµy + L̄xyL̃xy
4

xTZ2(βZ2 + µyI)−1x− L̄xy

L̃xy
bT (βZ2 + µyI)−1b

+
Ly
2

(L̃xy
2
Zx− b

)T
(βZ2 + µyI)−2

(L̃xy
2
Zx− b

)
+

2αβ

L̃2
xy

bTZ2(βZ2 + µyI)−1b, (31)

which is µx-strongly-convex.

Step 2: Characterizing x∗ = arg minx∈Rd Φ(·).

Based on the form of Φ(·), we have

∇Φ(x) =(βZ2 + µyI)2µxx+
(
αµy +

L̄xyL̃xy
2

)
(βZ2 + µyI)Z2x+

LyL̃xy
2

(L̃xy
2
Z2x− Zb

)
=
(
β2µx + αβµy +

βL̄xyL̃xy
2

)
Z4x+ (2βµxµy + αµ2

y +
µyL̄xyL̃xy

2
+
LyL̃

2
xy

4
)Z2x

+ µxµ
2
yx−

LyL̃xy
2

Zb. (32)

By setting ∇Φ(x∗) = 0, we have

Z4x∗+
2βµxµy + αµ2

y +
µyL̄xyL̃xy

2 +
LyL̃2

xy

4

β2µx + αβµy +
βL̄xyL̃xy

2︸ ︷︷ ︸
λ

Z2x∗

+
µxµ

2
y

β2µx + αβµy +
βL̄xyL̃xy

2︸ ︷︷ ︸
τ

x∗ =
LyL̃xyZb

2(β2µx + αβµy +
βL̄xyL̃xy

2)︸ ︷︷ ︸
b̃

, (33)

26

Lower Bounds and Accelerated Algorithms for Bilevel Optimization

where we define λ, τ, b̃ for notational convenience. The following lemma establishes useful
properties of x∗ under a specific selection of b̃.

Lemma 15 Let b be chosen such that b̃ as defined in eq. (33) satisfies b̃1 = (2 + λ+ τ)r −
(3 + λ)r2 + r3, b̃2 = r − 1 and b̃t = 0, t = 3, ..., d, where 0 < r < 1 is a solution of equation

1− (4 + λ)r + (6 + 2λ+ τ)r2 − (4 + λ)r3 + r4 = 0. (34)

Let x̂ be a vector with each coordinate x̂i = ri. Then, we have

‖x̂− x∗‖ ≤ (7 + λ)

τ
rd. (35)

Proof Note that the choice of b is achievable because Z is invertible with Z−1 given by

Z−1 =


1 1 1 1
...

... 1

1
...

1

 .

Then, define a vector b̂ with b̂t = b̃t for t = 1, ..., d− 2 and

b̂d−1 =rd−3 − (4 + λ)rd−2 + (6 + 2λ+ τ)rd−1 − (4 + λ)rd
(34)
= −rd+1

b̂d =rd−2 − (4 + λ)rd−1 + (5 + 2λ+ τ)rd
(34)
= −rd + (4 + λ)rd+1 − rd+2. (36)

Then, it can be verified that x̂ satisfies the following equations

(2 + λ+ τ)x̂1 − (̂3 + λ)x2 + x̂3 = b̂1

−(3 + λ)x̂1 + (6 + 2λ+ τ)x̂2 − (4 + λ)x̂3 + x̂4 = b̂2

x̂t − (4 + λ)x̂t+1 + (6 + 2λ+ τ)x̂t+2 − (4 + λ)x̂t+3 + x̂t+4 = b̂t+2, for 1 ≤ t ≤ d− 4

x̂d−3 − (4 + λ)x̂d−2 + (6 + 2λ+ τ)x̂d−1 − (4 + λ)x̂d = b̂d−1

x̂d−2 − (4 + λ)x̂d−1 + (5 + 2λ+ τ)x̂d = b̂d,

which, in conjunction with the forms of Z2 and Z4 in eq. (16), yields

Z4x̂+ λZ2x̂+ τ x̂ = b̂.

Noting that Z4x∗ + λZ2x∗ + τx∗ = b̃, we have

τ‖x∗ − x̂‖ ≤ ‖(Z4 + λZ2 + τI)(x∗ − x̂)‖ = ‖b̃− b̂‖
(i)

≤ (7 + λ)rd

where (i) follows from the definition of b̂ in eq. (36).

Step 3: Characterizing subspaces HKx and HKy .

27

Ji and Liang

In this step, we characterize the forms of the subspaces HKx and HKy for bilevel optimiza-
tion algorithms considered in Theorem 2. Based on the constructions of f, g in eq. (15), we
have

∇xf(x, y) = (αZ2 + µxI)x− αβ

L̃xy
Z3y +

L̄xy
2
Zy

∇yf(x, y) = − αβ
L̃xy

Z3x+
L̄xy
2
Zx+ Lyy +

L̄xy

L̃xy
b− 2αβ

L̃2
xy

Z2b

∇x∇yg(x, y) = − L̃xy
2
Z, ∇2

yg(x, y) = βZ2 + µyI, ∇yg(x, y) = (βZ2 + µyI)y − L̃xy
2
Zx+ b,

which, in conjunction with eq. (12) and eq. (13), yields

H0
y = Span{0},,Hs0y = Span{Z2(s0−1)b, ..., Z2b, b}

H0
x =Hs0−1

x = Span{0},Hs0x ⊆ Span{Z2(T+s0)(Zb),, Z2(Zb), (Zb)}. (37)

Repeating the same steps as in eq. (37), it can be verified that

H
sQ−1
x ⊆ Span{Z2(sQ−1+QT+Q)(Zb), ..., Z2j(Zb), ..., Z2(Zb), (Zb)}. (38)

Recall eq. (13) that HKx = HsQ−1
x and sQ−1 ≤ K. Then, we obtain from eq. (38) that HK

x

satisfies

HK
x ⊆ Span{Z2(K+QT+Q)(Zb),, Z2(Zb), (Zb)}. (39)

Step 4: Characterizing convergence and complexity.

Based on the results in Steps 1 and 2, we are now ready to provide a lower bound on the
convergence rate and complexity of bilevel optimization algorithms. Let M = K+QT+Q+2
and x0 = 0, and let the dimension d satisfy

d > max
{

2M,M + 1 + logr

(τ

4(7 + λ)

)}
. (40)

Recall Theorem 15 that Zb has zeros at all coordinates with t = 3, ..., d. Then, based on
the form of subspaces HKx in eq. (39) and using the zero-chain property in Theorem 5, we
have xK has zeros at the coordinates with t = M + 1, ..., d, and hence

‖xK − x̂‖ ≥

√√√√ d∑
i=M+1

‖x̂i‖ = rM
√
r2 + ...+ r2(d−M)

(i)

≥ rM√
2
‖x̂− x0‖, (41)

where (i) follows from eq. (40). Then, based on Theorem 15 and eq. (40), we have

‖x̂− x∗‖ ≤ 7 + λ

τ
<

rM

2
√

2
r

(i)

≤ rM

2
√

2
‖x̂− x0‖, (42)

where (i) follows from the fact that ‖x̂ − x0‖ = ‖x̂‖ ≥ r. Combining eq. (41) and eq. (42)
further yields

‖xK − x∗‖ ≥ ‖xK − x̂‖ − ‖x̂− x∗‖ ≥ rM√
2
‖x̂− x0‖ −

rM

2
√

2
‖x̂− x0‖ =

rM

2
√

2
‖x̂− x0‖. (43)

28

Lower Bounds and Accelerated Algorithms for Bilevel Optimization

In addition, note that

‖x∗ − x̂‖ ≤ 7 + λ

τ
rd

(40)

≤ 1

4
r ≤ 1

4
‖x̂‖ ≤ 1

4
‖x̂− x∗‖+

1

4
‖x∗‖,

which, in conjunction with ‖x0 − x̂‖ ≥ ‖x∗ − x0‖ − ‖x∗ − x̂‖, yields

‖x0 − x̂‖ ≥
2

3
‖x∗ − x0‖. (44)

Combining eq. (43) and eq. (44) yields

‖xK − x∗‖ ≥ ‖x
∗ − x0‖
3
√

2
rM . (45)

Then, since the objective function Φ(x) is µx-strongly-convex, we have Φ(xK) − Φ(x∗) ≥
µx
2 ‖x

K − x∗‖2 and ‖x0 − x∗‖2 ≥ 2
LΦ

(Φ(x0)− Φ(x∗)), and hence eq. (45) yields

Φ(xK)− Φ(x∗) = Ω
(Φ(x0)− Φ(x∗)

36κx
r2M

)
. (46)

Recall that r is the solution of the equation 1− (4+λ)r+(6+2λ+τ)r2− (4+λ)r3 +r4 = 0.
Based on Lemma 4.2 in Zhang et al. (2019), we have

1− 1

1
2 +

√
λ
2τ + 1

4

< r < 1, (47)

which, in conjunction with the definitions of λ and τ in eq. (33) and the fact L̄xy ≥ 0, yields
the first result eq. (14) in Theorem 4. Then, in order to achieve an ε-accurate solution, i.e.,
Φ(xK)− Φ(x∗) ≤ ε, it requires

M = K +QT +Q+ 2 = Ω
(log Φ(x0)−Φ(x∗)

κxε

2 log 1
r

)
(i)
= Ω

(√ λ

2τ
log

Φ(x0)− Φ(x∗)

εκx

)
= Ω

(√√√√LyL̃2
xy

µxµ2
y

log
Φ(x0)− Φ(x∗)

κxε

)
, (48)

where (i) follows from eq. (47). Recall that the complexity measure is given by Cfun(A, ε) =
Ω(nJ + nH + nG), where the numbers nJ , nH of Jacobian- and Hessian-vector products are
given by nJ = Q and nH = QT and the number nG of gradient evaluations is given by
nG = K. Then, the total complexity Cfun(A, ε) = Ω(Q + QT + K), which combined with
eq. (48) implies

Cfun(A, ε) = Ω

(√√√√LyL̃2
xy

µxµ2
y

log
Φ(x0)− Φ(x∗)

κxε

)
.

Then, the proof is complete.

29

Ji and Liang

Appendix C. Proof of Theorem 6

In this section, we provide the proof for Theorem 6 under the convex-strongly-convex geom-
etry. The proof is divided into the following steps: 1) constructing the worst-case instance
that belongs to the convex-strongly-convex problem class Fcsc defined in Theorem 1; 2)
characterizing x∗ ∈ arg minx∈Rd Φ(x); 3) developing the lower bound on the gradient norm
‖∇Φ(x)‖ when the last several coordinates of x are zeros; 4) characterizing the subspaces
Hkx and Hkx; and 5) characterizing the convergence and complexity.

Step 1: Constructing the worst-case instance that satisfies Theorem 1.

It can be verified that the constructed f, g in eq. (20) satisfy eq. (2) (3) and (4) in
Assumptions 1 and 2. Then, similarly to the proof of Theorem 4, we have y∗(x) = (βZ2 +

µyI)−1(
L̃xy

2 Zx− b) and hence Φ(x) = f(x, y∗(x)) takes the form of

Φ(x) =
Lx
8
xTZ2x+

Ly
2

(L̃xy
2
Zx− b

)T
(βZ2 + µyI)−2

(L̃xy
2
Zx− b

)
,

which can be verified to be convex.

Step 2: Characterizing x∗.

Note that the gradient ∇Φ(x) is given by

∇Φ(x) =
Lx
4
Z2x+

LyL̃xy
2

Z(βZ2 + µyI)−2
(L̃xy

2
Zx− b

)
. (49)

Then, setting ∇Φ(x∗) = 0 and using eq. (30), we have

(Lxβ2

4
Z6 +

Lxβ
2βµy
2

Z4 +
(LyL̃2

xy

4
+
Lxµ

2
y

4

)
Z2
)
x∗ =

LyL̃xy
2

Zb. (50)

Let b̃ =
LyL̃xy

2 Zb, and we choose b such that b̃t = 0 for t = 4, ..., d and

b̃1 =
B√
d

(5

4
Lxβ

2 + Lxβµy +
L̃2
xyLy

4
+
Lx
4
µ2
y

)
,

b̃2 =
B√
d

(−Lxβ2 − Lxβ

2
µy), b̃3 =

B√
d

Lxβ
2

4
, (51)

where the selection of b is achievable because Z is invertible with Z−1 given by

Z−1 =


−1

−1 −1
...

...
...

−1 −1 −1 −1

 .

30

Lower Bounds and Accelerated Algorithms for Bilevel Optimization

Based on the form of Z2 in eq. (21) and the forms of Z4, Z6 given by

Z4 =



5 −4 1
−4 6 −4 1
1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .

1 −4 6 −3
1 −3 2


, Z6 =



14 −14 6 −1
−14 20 −15 6 −1

6 −15 20 −15 6 −1
−1 6 −15 20 −15 6 −1

. . .
. . .

. . .
. . .

. . .
. . .

. . .

−1 6 −15 20 −15 5
−1 6 −15 19 −9

−1 5 −9 5


, (52)

it can be checked from eq. (50) that x∗ = B√
d
1, where 1 denotes the all-one vector and thus

‖x∗‖ = B.

Step 3: Characterizing lower bound on ‖∇Φ(x)‖.

Next, we characterize a lower bound on ‖∇Φ(x)‖ when the last three coordinates of x
are zeros, i.e., xd−2 = xd−1 = xd = 0. Let Ω = [Id−3,0]T and define x̃ ∈ Rd−3 such that
x̃i = xi for i = 1, ..., d − 3. Then for any matrix H, HΩ is equivalent to removing the last
three columns of H. Then, based on the form of ∇Φ(x) in eq. (49), we have

min
x∈Rd:xd−2=xd−1=xd=0

‖∇Φ(x)‖2 = min
x̃∈Rd−3

‖HΩx̃− (βZ2 + µyI)−2b̃‖2 (53)

where the matrix H is given by

H = (βZ2 + µyI)−2
(Lxβ2

4
Z6 +

Lxβ
2βµy
2

Z4 +
(LyL̃2

xy

4
+
Lxµ

2
y

4

)
Z2
)

︸ ︷︷ ︸
H̃

. (54)

Then using an approach similar to (7) in Carmon et al. (2019), we have

min
x̃∈Rd−3

‖HΩx̃− (βZ2 + µyI)−2b̃‖2 =
(
b̃T (βZ2 + µyI)−2z

)2
, (55)

where z is the normalized (i.e., ‖z‖ = 1) solution of equation (HΩ)T z = 0. Next we
characterize the solution z. Since H = (βZ2 + µyI)−2H̃, we have

(HΩ)T z = (H̃Ω)T (βZ2 + µyI)−2z = 0. (56)

Based on the definition of H̃ in eq. (54) and the forms of Z2, Z4, Z6 in eq. (21) and eq. (52),
we have that the solution z takes the form of z = λ(βZ2 + µyI)2h, where λ is a factor such
that ‖z‖ = 1 and h is a vector satisfying ht = t for t = 1, ..., d. Based on the definition of
Z2 in eq. (21), we have

1 = ‖z‖ =λ

√√√√d−2∑
i=1

(iµ2
y)

2 + ((d− 1)µ2
y − β2)2 + (dµ2

y + β2 + 2βµy)2

≤λ

√√√√d−2∑
i=1

(iµ2
y)

2 + 2(d− 1)2µ4
y + 2β4 + 2d2µ4

y + 2(β2 + 2βµy)2

31

Ji and Liang

<λ

√
2

3
µ4
y(d+ 1)3 + 4β4 + 8β3µy + 8β2µ2

y,

which further implies that

λ >
1√

2
3µ

4
y(d+ 1)3 + 4β4 + 8β3µy + 8β2µ2

y

. (57)

Then, combining eq. (53), eq. (55) and eq. (57) yields

min
x:xd−2=xd−1=xd=0

‖∇Φ(x)‖2 =
(
b̃T (βZ2 + µyI)−2z

)2
= (λb̃Th)2 = λ2(̃b1 + 2b̃2 + 3b̃3)2

(i)
=λ2B

2

4d

(L̃2
xyLy

4
+
Lxµ

2
y

4

)2

≥
B2
(
L̃2
xyLy
4 +

Lxµ2
y

4

)2

8
3µ

4
yd(d+ 1)3 + 16dβ4 + 32dβ3µy + 32dβ2µ2

y

(ii)

≥
B2
(
L̃2
xyLy
4 +

Lxµ2
y

4

)2

8µ4
yd

4 + 16dβ4 + 32dβ3µy + 32dβ2µ2
y

(58)

where (i) follows from the definition of b̃ in eq. (51), and (ii) follows because d ≥ 3.

Step 4: Characterizing subspaces Hkx and Hkx .

Based on the constructions of f, g in eq. (20), we have

∇xf(x, y) =
Lx
4
Z2x, ∇yf(x, y) = Lyy, ∇x∇yg(x, y) = − L̃xy

2
Z

∇2
yg(x, y) = βZ2 + µyI, ∇yg(x, y) = (βZ2 + µyI)y − L̃xy

2
Zx+ b,

which, in conjunction with eq. (12) and eq. (13), yields

H0
y = Span{0},,Hs0y = Span{Z2(s0−1)b, ..., Z2b, b}

H0
x =Hs0−1

x = Span{0},Hs0x = Span{Z2(T+s0−2)(Zb),, Z2(Zb), (Zb)}.

Repeating the above procedure and noting that sQ−1 ≤ K yield

HKx = HsQ−1
x = Span{Z2(sQ−1+QT−Q−1)(Zb),, Z2(Zb), (Zb)}

⊆ Span{Z2(K+QT−Q)(Zb),, Z2(Zb), (Zb)}. (59)

Step 5: Characterizing convergence and complexity.

Let M = K +QT −Q+ 3 and consider the following equation

r4 + r
(2β4

µ4
y

+
4β3

µ3
y

+
4β2

µ2
y

)
=
B2
(
L̃2
xyLy + Lxµ

2
y

)2

128µ4
yε

2
, (60)

32

Lower Bounds and Accelerated Algorithms for Bilevel Optimization

which has a solution denoted as r∗. We choose d = br∗c. Then, based on eq. (58), we have

min
x:xd−2=xd−1=xd=0

‖∇Φ(x)‖2 ≥
B2
(
L̃2
xyLy
4 +

Lxµ2
y

4

)2

8µ4
y(r
∗)4 + 16r∗β4 + 32r∗β3µy + 32r∗β2µ2

y

= ε2. (61)

Then, to achieve ‖∇Φ(xK)‖ < ε, it requires that M > d− 3. Otherwise (i.e., if M ≤ d− 3),
based on eq. (59) and the fact that Zb has nonzeros only at the first three coordinates, we
have xK has zeros at the last three coordinates, and hence eq. (61) yields ‖∇Φ(xK)‖ ≥ ε,
which leads to a contradiction. Therefore, we have M > br∗c − 3.

To characterize the total complexity, using the metric in Theorem 3, we have

Cgrad(A, ε) = Ω(Q+QT +K) = Ω(M) = Ω(r∗).

Then, the proof is complete.

Appendix D. Proof of Theorem 7

In this case, the condition number κy satisfies κy =
L̃y
µy

= Θ(1). Then, it can be verified

that r∗ satisfies (r∗)3 = Ω(2β4

µ4
y

+ 4β3

µ3
y

+ 4β2

µ2
y

), and hence it follows from eq. (19) that

Cgrad(A, ε) ≥ r∗ = Ω
(B 1

2 (L̃2
xyLy + Lxµ

2
y)

1
2

µyε
1
2

)
.

Appendix E. Proof of Theorem 8

In this case, L̃y = Θ(1). Then, we consider two cases 1
κy

= Ω(ε
3
2) and 1

κy
= O(ε

3
2) separately.

Case 1: 1
κy

= Ω(ε
3
2). For this case, we have

(2β4

µ4
y

+ 4β3

µ3
y

+ 4β2

µ2
y

)
= O

(κ3
y

ε3/2

)
. Then, it

follows from eq. (19) that Cgrad(A, ε) ≥ r∗ = Ω
(κy
ε1/2

)
.

Case 2: 1
κy

= O(ε
3
2). For this case, first suppose (r∗)3 = O

(2β4

µ4
y

+ 4β3

µ3
y

+ 4β2

µ2
y

)
, and then it

follows from eq. (19) that r∗ = Ω(1
ε2

). On the other hand, if (r∗)3 = Ω
(2β4

µ4
y

+ 4β3

µ3
y

+ 4β2

µ2
y

)
, then

we obtain from eq. (19) that r∗ = Ω(
κy
ε1/2

) = Ω(1
ε2

), which yields Cgrad(A, ε) ≥ r∗ = Ω(1
ε2

).
Then, combining these two cases finishes the proof.

Appendix F. Proof of Theorem 9

To simplify the notations, we define the following quantities.

Mk =‖y∗(x∗)‖+
L̃xy
µy
‖xk − x∗‖, Nk = ‖∇yf(x∗, y∗(x∗))‖+

(
Lxy +

LyL̃xy
µy

)
‖xk − x∗‖

M∗ =‖y∗(x∗)‖+
3L̃xy
µy

√
2

µx
(Φ(0)− Φ(x∗)) + ‖x∗‖2 +

ε

µx

N∗ =‖∇yf(x∗, y∗(x∗))‖+ 3
(
Lxy +

LyL̃xy
µy

)√ 2

µx
(Φ(0)− Φ(x∗)) + ‖x∗‖2 +

ε

µx
, (62)

33

Ji and Liang

whereMk andNk change with the optimality gap ‖xk−x∗‖ at the kth iteration, andM∗ and
N∗ are two positive constants depending on the information of the objective function at the
optimal point x∗. We first establish the following lemma to upper-bound the hypergradient
estimation error ‖∇Φ(xk)−Gk‖.

Lemma 16 Let Gk be the hypergradient estimator used in Algorithm 1 at iteration k. Then,
we have

‖Gk −∇Φ(xk)‖ ≤

√
L̃y + µy
µy

(
Ly +

2L̃xyLy
µy

+
(ρxy
µy

+
L̃xyρyy
µ2
y

)
Nk
)
Mk exp

(
− N

2
√
κy

)
+
L̃xy
µy

(√κy − 1
√
κy + 1

)M
Nk, (63)

where the quantities Mk and Nk are defined in eq. (62).

Theorem 16 shows that the estimation error ‖∇Φ(xk) − Gk‖ is bounded given that the
optimality gap ‖xk−x∗‖ is bounded. We will show in the proof of Theorem 9 that ‖xk−x∗‖ is
bounded as the algorithm runs due to the strongly-convex geometry of the objective function
Φ(x). In addition, it can be seen that this error decays exponentially with respect to the
number N of inner-level steps and the number M of steps of the heavy-ball method for
solving the linear system in Algorithm 1. Then, to prove the convergence of Algorithm 1,
we set N = M = c

√
κy log(κy) in the proof of Theorem 9, where c is a constant independent

of κy.

Proof Recall line 7 of Algorithm 1 that

Gk := ∇xf(xk, y
N
k)−∇x∇yg(xk, y

N
k)vMk , (64)

where vMk is the M th step output of the heavy-ball method for solving

min
v
Q(v) :=

1

2
vT∇2

yg(xk, y
N
k)v − vT∇yf(xk, y

N
k).

Recall the smoothness parameter L̃y of g(x, ·) defined in Assumption 1. Then, based on the
convergence result of the heavy-ball method in Badithela and Seiler (2019) with stepsizes

λ = 4

(
√
L̃y+
√
µy)2

and θ = max
{(

1 −
√
λµy

)2
,
(
1 −

√
λL̃y

)2}
and noting that v0

k = v1
k = 0,

we have

‖vMk −∇2
yg(xk, y

N
k)−1∇yf(xk, y

N
k)‖

≤
(√κy − 1
√
κy + 1

)M∥∥∥(∇2
yg(xk, y

N
k)
)−1∇yf(xk, y

N
k)
∥∥∥

≤Ly
µy

(√κy − 1
√
κy + 1

)M
‖y∗(xk)− yNk ‖+

‖∇yf(xk, y
∗(xk))‖

µy

(√κy − 1
√
κy + 1

)M
(i)

≤Ly
µy
‖y∗(xk)− yNk ‖+

‖∇yf(xk, y
∗(xk))‖

µy

(√κy − 1
√
κy + 1

)M
(65)

34

Lower Bounds and Accelerated Algorithms for Bilevel Optimization

where y∗(xk) = arg miny∈Rq g(xk, y) and (i) follows because
√
κy−1√
κy+1 ≤ 1. Then, based on the

forms of Gk and ∇Φ(x) in eq. (64) and eq. (7), and using Assumptions 1 and 2, we have

‖Gk −∇Φ(xk)‖
(i)

≤‖∇xf(xk, y
N
k)−∇xf(xk, y

∗(xk))‖+ L̃xy‖vMk −∇2
yg(xk, y

∗(xk))
−1∇yf(xk, y

∗(xk))‖

+
‖∇yf(xk, y

∗(xk))‖
µy

‖∇x∇yg(xk, y
N
k)−∇x∇yg(xk, y

∗(xk))‖

≤Ly‖y∗(xk)− yNk ‖+ L̃xy‖vMk −∇2
yg(xk, y

N
k)−1∇yf(xk, y

N
k)‖

+ L̃xy
∥∥∇2

yg(xk, y
N
k)−1∇yf(xk, y

N
k)−∇2

yg(xk, y
∗(xk))

−1∇yf(xk, y
∗(xk))

∥∥
+
ρxy
µy
‖yNk − y∗(xk)‖‖∇yf(xk, y

∗(xk))‖

≤
(
Ly +

L̃xyLy
µy

+
ρxy
µy
‖∇yf(xk, y

∗(xk))‖
)
‖yNk − y∗(xk)‖

+
L̃xyρyy‖yNk − y∗(xk)‖

µ2
y

‖∇yf(xk, y
∗(xk))‖+ L̃xy‖vMk −∇2

yg(xk, y
N
k)−1∇yf(xk, y

N
k)‖

(ii)

≤
(
Ly +

2L̃xyLy
µy

+
(ρxy
µy

+
L̃xyρyy
µ2
y

)
‖∇yf(xk, y

∗(xk))‖
)
‖yNk − y∗(xk)‖

+
L̃xy
µy

(√
κy − 1
√
κy + 1

)M
‖∇yf(xk, y

∗(xk))‖, (66)

where (i) follows from Assumption 1 that ‖∇x∇yg(·, ·)‖ ≤ L̃xy and ‖(∇2
yg(·, ·))−1‖ ≤ 1

µy

and (ii) follows from eq. (65). Note that yNk is obtained as the N -step output of AGD for
minimizing the inner-level loss function g(xk, ·) and recall y∗(xk) = arg miny∈Rq g(xk, y).
Then, based on the analysis in Nesterov (2003) for AGD, we have

‖yNk − y∗(xk)‖ ≤

√
L̃y + µy
µy

‖y0
k − y∗(xk)‖ exp

(
− N

2
√
κy

)
≤

√
L̃y + µy
µy

(
‖y∗(x∗)‖+

L̃xy
µy
‖xk − x∗‖

)
exp

(
− N

2
√
κy

)
, (67)

where x∗ = arg minx∈Rp Φ(x). Moreover, based on Lemma 2.2 in Ghadimi and Wang (2018),

we have ‖y∗(x1)− y∗(x2)‖ ≤ L̃xy
µy
‖x1 − x2‖ for any x1, x2 ∈ Rp, and hence

‖∇yf(xk, y
∗(xk))‖ ≤ ‖∇yf(x∗, y∗(x∗))‖+

(
Lxy +

LyL̃xy
µy

)
‖xk − x∗‖. (68)

Substituting eq. (67) and eq. (68) into eq. (66), and using the definition of Mk and Nk in
eq. (62), we have

‖Gk −∇Φ(xk)‖ ≤

√
L̃y + µy
µy

(
Ly +

2L̃xyLy
µy

+
(ρxy
µy

+
L̃xyρyy
µ2
y

)
Nk
)
Mk exp

(
− N

2
√
κy

)
35

Ji and Liang

+
L̃xy
µy

(√κy − 1
√
κy + 1

)M
Nk,

which completes the proof.

We then establish the following lemma to characterize the smoothness parameter of the
objective function Φ(x) around the iterate xk. Recall eq. (7) that ∇Φ(x) is given by

∇Φ(x) = ∇xf(x, y∗(x))−∇x∇yg(x, y∗(x))[∇2
yg(x, y∗(x))]−1∇yf(x, y∗(x)), (69)

where y∗(x) = arg miny g(x, ·) denotes the minimizer of the inner-level function g(x, ·).

Lemma 17 Consider the hypergradient ∇Φ(x) given by eq. (69). For any x ∈ Rp, we have

‖∇Φ(x)−∇Φ(xk)‖

≤
(
Lx +

2LxyL̃xy
µy

+
LyL̃

2
xy

µ2
y

+
(L̃xyρyy

µ2
y

+
ρxy
µy

)(
1 +

L̃xy
µy

)
Nk︸ ︷︷ ︸

LΦk

)
‖x− xk‖, (70)

where Nk is defined in eq. (62). Furthermore, eq. (70) implies that, for any x ∈ Rp,

Φ(x) ≤ Φ(xk) + 〈∇Φ(xk), x− xk〉+
LΦk

2
‖x− xk‖2. (71)

Theorem 17 shows that ∇Φ(x) is Lipschitz continuous around the iterate xk, i.e., Φ(x) is
smooth, where the smoothness parameter LΦk contains a term proportional to ‖xk − x∗‖.
We will show in the proof of Theorem 9 that the optimality distance ‖xk−x∗‖ is bounded as
the algorithm runs, and hence the smoothness parameter LΦk is bounded by O(1

µ3
y
) during

the entire process.
Proof Based on the form of ∇Φ(x) in eq. (69), we have

‖∇Φ(x)−∇Φ(xk)‖

≤‖∇xf(x, y∗(x))−∇xf(xk, y
∗(xk))‖+

L̃xy
µy
‖∇yf(x, y∗(x))−∇yf(xk, y

∗(xk))‖

+ ‖∇x∇yg(x, y∗(x))∇2
yg(x, y∗(x))−1 −∇x∇yg(xk, y

∗(xk))∇2
yg(xk, y

∗(xk))−1‖︸ ︷︷ ︸
P

‖∇yf(xk, y
∗(xk))‖,

which, in conjunction with the inequality

P ≤ L̃xyρyy
µ2
y

(‖x− xk‖+ ‖y∗(x)− y∗(xk)‖) +
ρxy
µy

(‖x− xk‖+ ‖y∗(x)− y∗(xk)‖)

(i)

≤
(L̃xyρyy

µ2
y

+
ρxy
µy

)(
1 +

L̃xy
µy

)
‖x− xk‖,

and using Assumption 1, yields

‖∇Φ(x)−∇Φ(xk)‖ ≤
(
Lx +

2LxyL̃xy
µy

+
LyL̃

2
xy

µ2
y

)
‖x− xk‖

36

Lower Bounds and Accelerated Algorithms for Bilevel Optimization

+
(L̃xyρyy

µ2
y

+
ρxy
µy

)(
1 +

L̃xy
µy

)
‖∇yf(xk, y

∗(xk))‖‖x− xk‖, (72)

where (i) follows from the
L̃xy
µy

-smoothness of y∗(·). Substituting eq. (68) into eq. (72) and

using the definition of Nk in eq. (62), we have

‖∇Φ(x)−∇Φ(xk)‖

≤
(
Lx +

2LxyL̃xy
µy

+
LyL̃

2
xy

µ2
y

+
(L̃xyρyy

µ2
y

+
ρxy
µy

)(
1 +

L̃xy
µy

)
Nk︸ ︷︷ ︸

LΦk

)
‖x− xk‖. (73)

Based on eq. (73), we further obtain

|Φ(x)− Φ(xk)−〈∇Φ(xk), x− xk〉|

=
∣∣∣ ∫ 1

0
〈∇Φ(xk + t(x− xk)), x− xk〉dt− 〈∇Φ(xk), x− xk〉

∣∣∣
≤
∣∣∣ ∫ 1

0
〈∇Φ(xk + t(x− xk))−∇Φ(xk), x− xk〉dt

∣∣∣
≤
∣∣∣ ∫ 1

0
‖∇Φ(xk + t(x− xk))−∇Φ(xk)‖‖x− xk‖dt

∣∣∣
≤
∣∣∣ ∫ 1

0
LΦk‖(x− xk)‖

2tdt
∣∣∣ =

LΦk

2
‖x− xk‖2.

Then, the proof is now complete.

Based on Theorem 16 and Theorem 17, we are ready to prove Theorem 9.
Proof [Proof of Theorem 9] Algorithm 1 conducts the following updates

zk+1 =xk −
1

LΦ
Gk,

xk+1 =
(

1 +

√
κx − 1
√
κx + 1

)
zk+1 −

√
κx − 1
√
κx + 1

zk, (74)

where the smoothness parameter LΦ takes the form of

LΦ =Lx +
2LxyL̃xy
µy

+
LyL̃

2
xy

µ2
y

+
(L̃xyρyy

µ2
y

+
ρxy
µy

)(
1 +

L̃xy
µy

)
‖∇yf(x∗, y∗(x∗))‖

+ 3
(L̃xyρyy

µ2
y

+
ρxy
µy

)(
1 +

L̃xy
µy

)(
Lxy +

LyL̃xy
µy

)√ 2

µx
(Φ(0)− Φ(x∗)) + ‖x∗‖2 +

ε

µx

=Θ
(
Lx +

LyL̃
2
xy

µ2
y

+
L̃2
xyρxy

µ3
y

‖∇yf(x∗, y∗(x∗))‖

+
L̃3
xyρyyLy

µ4
y

√
2

µx
(Φ(0)− Φ(x∗)) + ‖x∗‖2 +

ε

µx

)
, (75)

37

Ji and Liang

and κx = LΦ
µx

is the condition number of the objective function Φ(x).
The remaining proof adapts the results in Section 2.2.5 of Nesterov et al. (2018), but with

two key differences: we need to (a) prove the boundedness of the iterates as the algorithm
runs, and (b) carefully handle the hypergradient estimation error in the convergence analysis
for accelerated gradient methods. In specific, we first construct the estimate sequences as
follows.

S0(x) =Φ(x0) +
µx
2
‖x− x0‖2

Sk+1(x) =
(

1− 1
√
κx

)
Sk(x) +

1
√
κx

(
Φ(xk) + 〈Gk, x− xk〉+

µx
2
‖x− xk‖2 +

ε

4

)
. (76)

Note that ∇2S0(x) = µxI and ∇2Sk+1(x) =
(
1− 1√

κx

)
∇2Sk(x)+ µx√

κx
I. Then, by induction,

it can be verified that ∇2Sk(x) = µxI for all k = 0, ...,K. This implies that Sk(x) can be
written as Sk(x) = S∗k + µx

2 ‖x − vk‖
2, where vk = arg minx∈Rp Sk(x). Next, we show by

induction that

1. ‖zk − x∗‖ ≤
√

2

µx
(Φ(0)− Φ(x∗)) + ‖x∗‖2 +

ε

µx
for all k = 0, ...,K. (77)

2. S∗k ≥ Φ(zk) for all k = 0, ...,K. (78)

Combining the first item in eq. (77) with the updates in eq. (74) also implies the boundedness
of the sequence xk, k = 0, ...,K by noting that

‖xk − x∗‖ ≤
(

1 +

√
κx − 1
√
κx + 1

)
‖zk − x∗‖+

√
κx − 1
√
κx + 1

‖zk−1 − x∗‖

≤3

√
2

µx
(Φ(0)− Φ(x∗)) + ‖x∗‖2 +

ε

µx
. (79)

Next, we prove the above two items given in eq. (77) and eq. (78) by induction. First, it
can be verified that they hold for k = 0 by noting that ‖z0 − x∗‖ = ‖x∗‖ and S∗0 = Φ(x0).
Then, we suppose that they hold for all k = 0, ..., k′ and prove the k′ + 1 case.

Based on Theorem 17, we have, for all k = 0, ..., k′,

Φ(zk+1) ≤Φ(xk) + 〈∇Φ(xk), zk+1 − xk〉+
LΦk

2
‖zk+1 − xk‖2

(i)
=Φ(xk)−

1

LΦ
〈∇Φ(xk), Gk〉+

LΦk

2L2
Φ

‖Gk‖2, (80)

where (i) follows from the updates in eq. (74). Note that for k = 0, ..., k′, it is seen from

eq. (79) that the optimality gap ‖xk − x∗‖ ≤ 3
√

2
µx

(Φ(0)− Φ(x∗)) + ‖x∗‖2 + ε
µx

, which,

combined with the definition of LΦk in eq. (70), yields LΦk ≤ LΦ for all k = 0, ..., k′, where
LΦ is given by eq. (75). Then, we obtain from eq. (80) that for all k = 0, ..., k′,

Φ(zk+1) ≤Φ(xk)−
1

LΦ
〈∇Φ(xk), Gk〉+

1

2LΦ
‖Gk‖2

=Φ(xk)−
1

LΦ
‖∇Φ(xk)‖2 −

1

LΦ
〈∇Φ(xk), Gk −∇Φ(xk)〉+

1

2LΦ
‖Gk‖2

38

Lower Bounds and Accelerated Algorithms for Bilevel Optimization

=Φ(xk)−
1

LΦ
‖∇Φ(xk)‖2 +

1

2LΦ
‖∇Φ(xk)‖2 +

1

2LΦ
‖Gk −∇Φ(xk)‖2

=Φ(xk)−
1

2LΦ
‖∇Φ(xk)‖2 +

1

2LΦ
‖Gk −∇Φ(xk)‖2, (81)

which, in conjunction with the strong convexity of Φ(·), yields

Φ(zk+1) ≤
(

1− 1
√
κx

)
Φ(zk) +

(
1− 1
√
κx

)
〈∇Φ(xk), xk − zk〉+

1
√
κx

Φ(xk)

− 1

2LΦ
‖∇Φ(xk)‖2 +

1

2LΦ
‖Gk −∇Φ(xk)‖2

(i)

≤
(

1− 1
√
κx

)
S∗k +

(
1− 1
√
κx

)
〈∇Φ(xk), xk − zk〉+

1
√
κx

Φ(xk)

− 1

2LΦ
‖∇Φ(xk)‖2 +

1

2LΦ
‖Gk −∇Φ(xk)‖2, (82)

where (i) follows because S∗k ≥ Φ(zk) for k = 0, ..., k′. Next, based on the definition of Sk(x)
in eq. (76) and taking derivative w.r.t. x on both sides of eq. (76), we have

∇Sk+1(x)
(i)
=
(

1− 1
√
κx

)
∇Sk(x) +

1
√
κx
Gk +

µx√
κx

(x− xk)

= µx

(
1− 1
√
κx

)
(x− vk) +

1
√
κx
Gk +

µx√
κx

(x− xk), (83)

where (i) follows because Sk(x) = S∗k + µx
2 ‖x − vk‖

2. Noting that ∇Sk+1(vk+1) = 0, we
obtain from eq. (83) that

µx

(
1− 1
√
κx

)
(vk+1 − vk) +

1
√
κx
Gk +

µx√
κx

(vk+1 − xk) = 0,

which yields

vk+1 =
(

1− 1
√
κx

)
vk +

1
√
κx
xk −

1

µx
√
κx
Gk. (84)

Based on eq. (76) and using Sk(x) = S∗k + µx
2 ‖x− vk‖

2, we have

S∗k+1 +
µx
2
‖xk − vk+1‖2 =

(
1− 1
√
κx

)(
S∗k +

µx
2
‖xk − vk‖2

)
+

1
√
κx

Φ(xk) +
ε

4
√
κx
,

which, in conjunction with eq. (84), yields

S∗k+1 =
(

1− 1
√
κx

)
S∗k +

(
1− 1
√
κx

)µx
2
‖xk − vk‖2 +

1
√
κx

Φ(xk) +
ε

4
√
κx

−
(

1− 1
√
κx

)2µx
2
‖xk − vk‖2 −

1

2µxκx
‖Gk‖2 +

(
1− 1
√
κx

) 1
√
κx
〈vk − xk, Gk〉

=
(

1− 1
√
κx

)
S∗k +

(
1− 1
√
κx

) 1
√
κx

µx
2
‖xk − vk‖2 +

1
√
κx

Φ(xk) +
ε

4
√
κx

39

Ji and Liang

− 1

2µxκx
‖Gk‖2 +

(
1− 1
√
κx

) 1
√
κx
〈vk − xk, Gk〉. (85)

Based on the definition of κx, we simplify eq. (85) to

S∗k+1 ≥
(

1− 1
√
κx

)
S∗k +

1
√
κx

Φ(xk) +
ε

4
√
κx
− 1

2LΦ
‖Gk‖2

+
(

1− 1
√
κx

) 1
√
κx
〈vk − xk, Gk〉. (86)

Next, we prove vk − xk =
√
κx(xk − zk) by induction. First note that this equality holds

for k = 0 based on the fact that v0 − x0 =
√
κx(x0 − z0) = 0. Then, suppose that it holds

for iteration k, and for iteration k + 1, we obtain from eq. (84) that

vk+1 − xk+1 =
(

1− 1
√
κx

)
vk +

1
√
κx
xk − xk+1 −

1

µx
√
κx
Gk

(i)
=
(

1− 1
√
κx

)(
1 +
√
κx

)
xk −

(
1− 1
√
κx

)√
κxzk +

1
√
κx
xk − xk+1 −

1

µx
√
κx
Gk

=
√
κx

(
xk −

1

LΦ
Gk

)
− (
√
κx − 1)zk − xk+1

(ii)
=
√
κx(xk+1 − zk+1), (87)

where (i) follows because vk−xk =
√
κx(xk− zk) and (ii) follows from the updating step in

eq. (74). Then, by induction, we have that vk − xk =
√
κx(xk − zk) holds for all iterations.

Combining this equality with eq. (86), we have

S∗k+1 ≥
(

1− 1
√
κx

)
S∗k +

1
√
κx

Φ(xk) +
ε

4
√
κx
− 1

2LΦ
‖Gk‖2 +

(
1− 1
√
κx

)
〈xk − zk, Gk〉

=
(

1− 1
√
κx

)
S∗k +

1
√
κx

Φ(xk) +
ε

4
√
κx
− 1

2LΦ
‖∇Φ(xk)‖2 +

(
1− 1
√
κx

)
〈xk − zk,∇Φ(xk)〉

+
(

1− 1
√
κx

)
〈xk − zk, Gk −∇Φ(xk)〉 − 1

2LΦ
‖Gk −∇Φ(xk)‖2 − 1

LΦ
〈Gk −∇Φ(xk),∇Φ(xk)〉

(i)

≥
(

1− 1
√
κx

)
S∗k +

1
√
κx

Φ(xk)− 1

2LΦ
‖∇Φ(xk)‖2 +

(
1− 1
√
κx

)
〈xk − zk,∇Φ(xk)〉+

ε

4
√
κx

−
(

1− 1
√
κx

)
‖xk − zk‖‖Gk −∇Φ(xk)‖ − 1

2LΦ
‖Gk −∇Φ(xk)‖2

− ‖Gk −∇Φ(xk)‖‖xk − x∗‖ (88)

where (i) follows from Theorem 17 with LΦk ≤ LΦ for k = 0, ..., k′. Based on ‖zk − x∗‖ ≤√
2
µx

(Φ(0)− Φ(x∗)) + ‖x∗‖2 + ε
µx

and ‖xk − x∗‖ < 3
√

2
µx

(Φ(0)− Φ(x∗)) + ‖x∗‖2 + ε
µx

for

k = 0, ..., k′, and using ‖xk − zk‖ ≤ ‖zk − x∗‖+ ‖xk − x∗‖, we obtain from eq. (88) that

S∗k+1 ≥
(

1− 1
√
κx

)
S∗k +

1
√
κx

Φ(xk)−
1

2LΦ
‖∇Φ(xk)‖2 +

(
1− 1
√
κx

)
〈xk − zk,∇Φ(xk)〉

+
ε

4
√
κx
−
(

7− 4
√
κx

)√ 2

µx
(Φ(0)− Φ(x∗)) + ‖x∗‖2 +

ε

µx
‖Gk −∇Φ(xk)‖

40

Lower Bounds and Accelerated Algorithms for Bilevel Optimization

− 1

2LΦ
‖Gk −∇Φ(xk)‖2. (89)

Next, we upper-bound the hypergradient estimation error ‖Gk−∇Φ(xk)‖ in eq. (89). Based
on Theorem 16, we have

‖Gk −∇Φ(xk)‖ ≤

√
L̃y + µy
µy

(
Ly +

2L̃xyLy
µy

+
(ρxy
µy

+
L̃xyρyy
µ2
y

)
Nk
)
Mk exp

(
− N

2
√
κy

)
+
L̃xy
µy

(√κy − 1
√
κy + 1

)M
Nk,

which, combined with ‖xk − x∗‖ ≤ 3
√

2
µx

(Φ(0)− Φ(x∗)) + ‖x∗‖2 + ε
µx

for k = 0, ..., k′ and

the definitions of Mk,Nk in eq. (62), yields

‖Gk −∇Φ(xk)‖ ≤

√
L̃y + µy
µy

(
Ly +

2L̃xyLy
µy

+
(ρxy
µy

+
L̃xyρyy
µ2
y

)
N∗
)
M∗ exp

(
− N

2
√
κy

)
+
L̃xy
µy

(√κy − 1
√
κy + 1

)M
N∗,

where the constants M∗ and N∗ are defined in eq. (62). We choose sufficiently large

N = Θ
(√

κy log
(
κx, κy, ‖x∗‖, ‖y∗(x∗)‖,Φ(0)− Φ(x∗), ε

))
,

M = Θ
(√

κy log
(
κx, κy, ‖x∗‖, ‖y∗(x∗)‖,Φ(0)− Φ(x∗), ε

))
, (90)

such that

‖Gk −∇Φ(xk)‖ ≤
√
εLΦ

2
√

2κ
1/4
x(

7− 4
√
κx

)√ 2

µx
(Φ(0)− Φ(x∗)) + ‖x∗‖2 +

ε

µx
‖Gk −∇Φ(xk)‖ ≤

ε

8
√
κx
.

Substituting these two inequalities into eq. (89) yields, for any k = 0, ..., k′,

S∗k+1 ≥
(

1− 1
√
κx

)
S∗k +

1
√
κx

Φ(xk)−
1

2LΦ
‖∇Φ(xk)‖2

+
(

1− 1
√
κx

)
〈xk − zk,∇Φ(xk)〉+

ε

16
√
κx

(i)

≥Φ(zk+1), (91)

where (i) follows from ‖Gk −∇Φ(xk)‖ ≤
√
εLΦ

2
√

2κ
1/4
x

in eq. (82), which, by induction, finishes

the proof of the second item eq. (78). To prove the first item eq. (77), letting x = x∗ in
eq. (76) yields, for x = 0, ..., k′,

Sk+1(x∗) =
(

1− 1
√
κx

)
Sk(x

∗) +
1
√
κx

(
Φ(xk) + 〈∇Φ(xk), x

∗ − xk〉+
µx
2
‖x∗ − xk‖2 +

ε

4

)
41

Ji and Liang

+
1
√
κx
〈Gk −∇Φ(xk), x

∗ − xk〉

≤
(

1− 1
√
κx

)
Sk(x

∗) +
1
√
κx

Φ(x∗) +
ε

4
√
κx

+
1
√
κx
‖xk − x∗‖‖Gk −∇Φ(xk)‖

(i)

≤
(

1− 1
√
κx

)
Sk(x

∗) +
1
√
κx

Φ(x∗) +
ε

2
√
κx
, (92)

where (i) follows because ‖xk − x∗‖‖Gk − ∇Φ(xk)‖ ≤ ε
8
√
κx
/(7 − 4√

κx
) < ε

24
√
κx

< ε
4 .

Subtracting both sides of eq. (92) by Φ(x∗) yields, for all k = 0, ..., k′,

Sk+1(x∗)− Φ(x∗) ≤
(

1− 1
√
κx

)
(Sk(x

∗)− Φ(x∗)) +
ε

2
√
κx
. (93)

Telescoping eq. (93) over k from 0 to k′ and using S0(x∗) = Φ(0) + µx
2 ‖x

∗‖2, we have

Sk′+1(x∗)− Φ(x∗) ≤
(

1− 1
√
κx

)k′+1
(Φ(0)− Φ(x∗) +

µx
2
‖x∗‖2) +

ε

2

≤ Φ(0)− Φ(x∗) +
µx
2
‖x∗‖2 +

ε

2
,

which, in conjunction with Sk′+1(x∗) ≥ S∗k′+1 ≥ Φ(zk′+1) and Φ(zk′+1)−Φ(x∗) ≥ µx
2 ‖zk′+1−

x∗‖2, yields

‖zk′+1 − x∗‖ ≤
√

2

µx
(Φ(0)− Φ(x∗)) + ‖x∗‖2 +

ε

µx
.

Then, by induction, we finish the proof of the first item eq. (77). Therefore, based on
eq. (77) and eq. (78) and using an approach similar to eq. (93), we have

Φ(zK)− Φ(x∗) ≤ SK(x∗)− Φ(x∗) ≤
(

1− 1
√
κx

)K
(Φ(0)− Φ(x∗) +

µx
2
‖x∗‖2) +

ε

2
. (94)

In order to achieve Φ(zK)− Φ(x∗) ≤ SK(x∗)− Φ(x∗) ≤ ε, it requires at most

K = O
(√LΦ

µx
log
(Φ(0)− Φ(x∗) + µx

2 ‖x
∗‖2

ε

))

= O
(√Lx

µx
+

√√√√LyL̃2
xy

µxµ2
y

+

√√√√ L̃2
xyρxy

µ3
y

√
‖∇yf(x∗, y∗(x∗))‖

µx

+

√√√√ L̃3
xyρyyLy

µxµ4
y

(2

µx
(Φ(0)− Φ(x∗)) + ‖x∗‖2 +

ε

µx

) 1
4
)
, (95)

Following from the choice of M = N = Θ̃(
√
κy), the complexity of Algorithm 1 is given by

Cfun(A, ε) = O(nJ + nH + nG) = O(K +KM +KN)

42

Lower Bounds and Accelerated Algorithms for Bilevel Optimization

= O
(√LxL̃y

µxµy
+

√√√√LyL̃2
xyL̃y

µxµ3
y

+

√√√√ L̃2
xyρxyL̃y

µ4
y

√
‖∇yf(x∗, y∗(x∗))‖

µx

+

√√√√ L̃3
xyρyyLyL̃y

µxµ5
y

(2

µx
(Φ(0)− Φ(x∗)) + ‖x∗‖2 +

ε

µx

) 1
4
)
,

which finishes the proof.

Appendix G. Proof of Theorem 10

The proof follows a procedure similar to that for Theorem 9 except that the smoothness
parameter of Φ(·) at iterate xk and the hypergradient estimation error ‖Gk − ∇Φ(xk)‖
are different. In specific, for the quadratic inner problem, we have that ∇2

yg(x, y) ≡
H,∇x∇yg(x, y) ≡ J, ∀x ∈ Rp, y ∈ Rq. Then, based on the form of ∇Φ(x) in eq. (69),
we have

‖∇Φ(x1)−∇Φ(x2)‖
≤‖∇xf(x1, y

∗(x1))−∇xf(x2, y
∗(x2))‖

+ ‖JH−1∇yf(x1, y
∗(x1))− JH−1∇yf(x2, y

∗(x2))‖

≤Lx‖x1 − x2‖+ Lxy‖y∗(x1)− y∗(x2)‖+
L̃xy
µy

(Lxy‖x1 − x2‖+ Ly‖y∗(x1)− y∗(x2)‖)

which, in conjunction with ‖y∗(x1)− y∗(x2)‖ ≤ L̃xy
µy
‖x1 − x2‖, yields

‖∇Φ(x1)−∇Φ(x2)‖ ≤
(
Lx +

2L̃xyLxy
µy

+
LyL̃

2
xy

µ2
y︸ ︷︷ ︸

LΦ

)
‖x1 − x2‖. (96)

Note that eq. (96) shows that the objective function Φ(·) is globally smooth, i.e., the smooth-
ness parameter is bounded at all x ∈ Rp. This is different from the proof in Theorem 9,
where the smoothness parameter is unbounded over x ∈ Rp, but can be bounded at all
iterates xk, k = 0, ...,K along the optimization path of the algorithm. Therefore, the proof
for such a quadratic special case is simpler.

We next upper-bound the hypergradient estimation error ‖Gk − ∇Φ(xk)‖. Using an
approach similar to eq. (66), we have

‖Gk −∇Φ(xk)‖

≤Ly‖y∗(xk)− yNk ‖+ L̃xy‖vMk −H−1∇yf(xk, y
N
k)‖

+ L̃xy
∥∥H−1∇yf(xk, y

N
k)−H−1∇yf(xk, y

∗(xk))
∥∥

≤
(
Ly +

L̃xyLy
µy

)
‖yNk − y∗(xk)‖+ L̃xy‖vMk −H−1∇yf(xk, y

N
k)‖

43

Ji and Liang

≤
(
Ly +

L̃xyLy
µy

)
‖yNk − y∗(xk)‖+

L̃xy
µy

(√
κy − 1
√
κy + 1

)M
‖∇yf(xk, y

∗(xk))‖

≤

√
L̃y + µy
µy

(
Ly +

L̃xyLy
µy

)
M∗ exp

(
− N

2
√
κy

)
+
L̃xy
µy

(√κy − 1
√
κy + 1

)M
N∗, (97)

where M∗ and N∗ are given by eq. (62). Based on eq. (96), eq. (97), we choose N =

Θ̃(
√
κy),M = Θ̃(

√
κy). Then, using an approach similar to eq. (94) with ρxy = ρyy = 0, we

have

Φ(zK)− Φ(x∗) ≤
(

1−
√
µx
LΦ

)K
(Φ(0)− Φ(x∗) +

µx
2
‖x∗‖2) +

ε

2
, (98)

where LΦ is given in eq. (96). Then, in order to achieve Φ(zK) − Φ(x∗) ≤ ε, it requires at
most

Cfun(A, ε) =O(nJ + nH + nG) = O(K +KM +KN) = Õ
(√√√√LyL̃2

xyL̃y

µxµ3
y

)
,

which finishes the proof.

Appendix H. Proof of Theorem 11

Recall that Φ̃(·) = f̃(x, y∗(x)) with f̃(x, y) = f(x, y) + ε
2R‖x‖

2. Then, we have Φ̃(x) =
Φ(x) + ε

2R‖x‖
2 is strongly-convex with parameter µx = ε

R . Note that the smoothness

parameters of f̃(x, y) are the same as those of f(x, y) except that Lx in eq. (2) becomes
Lx + ε

R for f̃(x, y). Let x∗ ∈ arg minx∈Rp Φ(x) be one minimizer of the original objective

function Φ(·) and let x̃∗ = arg minx∈Rp Φ̃(x) be the minimizer of the regularized objective

function Φ̃(·). We next characterize some useful inequalities between x∗ and x̃∗. Based on
the definition of x∗ and x̃∗, we have∇Φ̃(x̃∗) = 0 and∇Φ̃(x∗) = ∇Φ(x∗)+ ε

Rx
∗ = ε

Rx
∗, which,

combined with the strong convexity of Φ̃(·), implies that ε
R‖x

∗−x̃∗‖ ≤ ‖∇Φ̃(x̃∗)−∇Φ̃(x∗)‖ =
ε
R‖x

∗‖ and hence ‖x̃∗‖ ≤ 2‖x∗‖. Similarly, the following (in)equalities hold:

‖y∗(x̃∗)‖ ≤ ‖y∗(x∗)‖+
3L̃xy
µy
‖x∗‖,

‖∇yf̃(x̃∗, y∗(x̃∗))‖ ≤ ‖∇yf(x̃∗, y∗(x̃∗))‖+
ε

R
‖x̃∗‖

≤ ‖∇yf(x∗, y∗(x∗))‖+
(

3Lxy +
3LyL̃xy
µy

+
2ε

R

)
‖x∗‖

Φ̃(0)− Φ̃(x̃∗) = Φ(0)− Φ(x̃∗)− ε

2R
‖x̃∗‖2

(i)

≤ Φ(0)− Φ(x∗), (99)

where (i) follows from the definition of x∗ ∈ arg minx Φ(x).
Let L

Φ̃
be one smoothness parameter of the function Φ̃(·), which takes the same form as

LΦ in eq. (75) except that Lx, f, x
∗ , µx and Φ become Lx + ε

R , f̃ , x̃
∗, ε

R and Φ̃ in eq. (75),
respectively. Similarly to eq. (90), we choose

N =Θ(
√
κy log(poly(ε, R, κy, ‖x̃∗‖, ‖y∗(x̃∗)‖, ‖∇yf̃(x̃∗, y∗(x̃∗))‖, Φ̃(0)− Φ̃(x̃∗)))),

44

Lower Bounds and Accelerated Algorithms for Bilevel Optimization

M =Θ(
√
κy log(poly(ε, R, κy, ‖x̃∗‖, ‖y∗(x̃∗)‖, ‖∇yf̃(x̃∗, y∗(x̃∗))‖, Φ̃(0)− Φ̃(x̃∗)))). (100)

We first prove the case when the convergence is measured in term of the suboptimality
gap. Note that in this case we choose R = B2. Using an approach similar to eq. (94) in the
proof of Theorem 9 with ε and µx being replaced by ε/2 and ε

B2 , respectively, we have

Φ̃(zK)− Φ̃(x̃∗) ≤
(

1−
√

ε

B2L
Φ̃

)K
(Φ̃(0)− Φ̃(x̃∗) +

ε

2B2
‖x̃∗‖2) +

ε

4
,

which, in conjunction with Φ̃(zK) ≥ Φ(zK) and Φ̃(x̃∗) ≤ Φ̃(x∗) = Φ(x∗) + ε
2B2 ‖x∗‖2, yields

Φ(zK)− Φ(x∗) ≤
(

1−
√

ε

B2L
Φ̃

)K
(Φ̃(0)− Φ̃(x̃∗) +

ε

2B2
‖x̃∗‖2) +

ε

4
+

ε

2B2
‖x∗‖2. (101)

Recall ‖x∗‖ = B. Similarly to eq. (95), we choose

K =Θ
(√B2LΦ̃

ε
log
(Φ̃(0)− Φ̃(x̃∗) + ε

2B2 ‖x̃∗‖2

ε

))
=Θ̃
(√B2LyL̃2

xy

εµ2
y

+

√
B2L̃2

xyρxy

εµ3
y

√
‖∇y f̃(x̃∗, y∗(x̃∗))‖

+

√
B2L̃3

xyρyyLy

εµ4
y

(2B2

ε
(Φ̃(0)− Φ̃(x̃∗)) + ‖x̃∗‖2 +B2

) 1
4
)
, (102)

Then, we obtain from eq. (101) that Φ(zK)−Φ(x∗) ≤ ε, and the complexity Cfun(A, ε) after
substituting eq. (99) into eq. (100) and eq. (102) is given by

Cfun(A, ε) = O(nJ + nH + nG) = O(K +KM +KN)

=Õ
(√√√√B2LyL̃2

xyL̃y

εµ3
y

+

√√√√B2L̃2
xyρxyL̃y

εµ4
y

√
‖∇yf̃(x̃∗, y∗(x̃∗))‖

+

√√√√B2L̃3
xyρyyLyL̃y

εµ5
y

(2B2

ε
(Φ̃(0)− Φ̃(x̃∗)) + ‖x̃∗‖2 +B2

) 1
4
)

(103)

Next, we characterize the convergence rate and complexity under the gradient norm metric.
Note that in this case we choose R = B. Using eq. (9.14) in Boyd et al. (2004), we have
‖∇Φ̃(zk)‖2 ≤ 2L

Φ̃
(Φ̃(zK) − Φ̃(x̃∗)), which, combined with ‖∇Φ̃(zk)‖2 ≥ 1

2‖∇Φ(zk)‖2 −
ε2

B2 ‖zk‖2 ≥ 1
2‖∇Φ(zk)‖2 − ε2

B2 (2‖zk − x̃∗‖2 + 2‖x̃∗‖2) yields

‖∇Φ(zk)‖2 ≤4L
Φ̃

(Φ̃(zK)− Φ̃(x̃∗)) +
4ε2

B2
‖zk − x̃∗‖2 +

4ε2

B2
‖x̃∗‖2

(i)

≤4L
Φ̃

(Φ̃(zK)− Φ̃(x̃∗)) +
8ε

B
(Φ̃(zK)− Φ̃(x̃∗)) +

16ε2

B2
‖x∗‖2

=
(

4L
Φ̃

+
8ε

B

)
(Φ̃(zK)− Φ̃(x̃∗)) +

16ε2

B2
‖x∗‖2, (104)

where (i) follows from the strong convexity of Φ̃(·) and ‖x̃∗‖ ≤ 2‖x∗‖, and L
Φ̃

takes the

same form as LΦ in eq. (75) except that Lx, f, x
∗ and Φ become Lx + ε

B , f̃ , x̃
∗ and Φ̃ in

45

Ji and Liang

eq. (75), respectively. Then, using an approach similar to eq. (94) in the proof of Theorem 9
with ε and µx being replaced by ε2/(4L

Φ̃
+ 8ε

B) and ε
B , respectively, we have

Φ̃(zK)− Φ̃(x̃∗) ≤
(

1−
√

ε

BL
Φ̃

)K
(Φ̃(0)− Φ̃(x̃∗) +

ε

2B
‖x̃∗‖2) +

ε2

2(4L
Φ̃

+ 8ε
B)
,

which, in conjunction with eq. (90) and eq. (104), yields

‖∇Φ(zk)‖2 ≤
(

1−
√

ε

BL
Φ̃

)K(
Φ̃(0)− Φ̃(x̃∗) +

ε

2B
‖x̃∗‖2

)(
4L

Φ̃
+

8ε

B

)
+
ε2

2
+

16ε2

B2
‖x∗‖2.

Note that ‖x∗‖ = B. Then, to achieve ‖∇Φ(zk)‖ ≤ 5ε, it suffices to choose M,N similarly
to eq. (100), and choose

K =Θ
(√BL

Φ̃

ε
log
((Φ̃(0)− Φ̃(x̃∗) + ε

2B‖x̃
∗‖2)(4L

Φ̃
+ 8ε

B)

ε

))
.

This in conjunction with eq. (99) yields

Cgrad(A, ε) =O(nJ + nH + nG) = O(K +KM +KN)

=Õ
(√√√√BLyL̃2

xyL̃y

εµ3
y

+

√√√√BL̃2
xyρxyL̃y

εµ4
y

√
‖∇yf̃(x̃∗, y∗(x̃∗))‖

+

√√√√BL̃3
xyρyyLyL̃y

εµ5
y

(2B

ε
(Φ̃(0)− Φ̃(x̃∗)) + ‖x̃∗‖2 +B

) 1
4
)

which finishes the proof.

Appendix I. Proof of Theorem 12

Note that for the quadratic inner problem, the Jacobians∇x∇yg(x, y) and Hessians∇2
yg(x, y)

are constant matrices, which imply that the parameters ρxx = ρxy = 0 in Assumption 2.
Then, letting ρxx = ρxy = 0 in the results of Theorem 11 finishes the proof.

Appendix J. Proof of Theorem 13

Based on the update in line 9 of Algorithm 2, we have, for any x ∈ Rp

〈βkGk, xk+1 − x〉 = τk 〈x− xk+1, xk+1 − x̃k〉︸ ︷︷ ︸
P

+(1− τk) 〈x− xk+1, xk+1 − xk〉︸ ︷︷ ︸
Q

. (105)

Note that P in the above eq. (105) satisfies

P = 〈x̃k − xk+1, x− x̃k〉+ ‖x− x̃k‖2 − ‖x− xk+1‖2

= −P + ‖x− x̃k‖2 − ‖x̃k − xk+1‖2 − ‖x− xk+1‖2,

46

Lower Bounds and Accelerated Algorithms for Bilevel Optimization

which yields P = 1
2(‖x− x̃k‖2−‖x̃k−xk+1‖2−‖x−xk+1‖2). Taking an approach similar to

the derivation of P , we can obtain Q = 1
2(‖x− xk‖2 − ‖x− xk+1‖2 − ‖xk − xk+1‖2). Then,

substituting the forms of P,Q to eq. (105) and using the choices of τk and βk, we have

〈
Gk,

√
αµx

2
(xk+1 − x)

〉
=

√
αµxµx

8
(‖x− x̃k‖2 − ‖x̃k − xk+1‖2 − ‖x− xk+1‖2)

+
2µx −

√
αµxµx

8
(‖x− xk‖2 − ‖x− xk+1‖2 − ‖xk − xk+1‖2). (106)

Based on the update zk+1 = x̃k −αkGk and the choice of αk = α, we have, for any x′ ∈ Rp,

〈zk+1 − x′, Gk〉 =
1

α
〈x′ − zk+1, zk+1 − x̃k〉

=
1

2α
(‖x′ − x̃k‖ − ‖x′ − zk+1‖2 − ‖zk+1 − x̃k‖2). (107)

Let x′ = (1−
√
αµx
2)zk +

√
αµx
2 and recall x̃k = ηkxk + (1− ηk)zk. Then, we have

‖x′ − x̃k‖2 =
∥∥∥√αµx

2
(xk+1 − zk) +

√
αµx√

αµx + 2
(zk − xk)

∥∥∥2

=
∥∥∥√αµx

2
(xk+1 − xk) +

αµx
2(
√
αµx + 2)

(zk − xk)
∥∥∥2

(i)
=
αµx

4

∥∥∥(1−
√
αµx

2
)(xk+1 − xk) +

√
αµx

2
(xk+1 − x̃k)

∥∥∥2

≤αµx
4

(
1−
√
αµx

2

)
‖xk+1 − xk‖2 +

αµx
√
αµx

8
‖xk+1 − x̃k‖2, (108)

where (i) follows because x̃k − xk = 2
2+
√
αµx

(zk − xk). Then, substituting eq. (108) into

eq. (107), adding eq. (106) and eq. (107), and cancelling out several negative terms, we have

〈
Gk,

√
αµx

2
(zk+1 − x) + (1−

√
αµx

2
)(zk+1 − zk)

〉
≤
√
αµxµx

8
‖x− x̃k‖2 −

1

2α
‖zk+1 − x̃k‖2 −

µx
√
αµx

16
‖xk+1 − x̃k‖2

− µx
4
‖x− xk+1‖2 −

2µx −
√
αµxµx

16
‖xk − xk+1‖2. (109)

Next, we characterize the smoothness property of Φ(x). Using the form of ∇Φ(x) in eq. (7),
and based on Assumptions 1, 2 and Assumption 3 that ‖∇yf(·, ·)‖ ≤ U , we have, for any
x1, x2 ∈ Rp,

‖∇Φ(x1)−∇Φ(x2)‖
≤‖∇xf(x1, y

∗(x1))−∇xf(x2, y
∗(x2))‖

+ ‖∇x∇yg(x1, y
∗(x1))∇2

yg(x1, y
∗(x1))−1∇yf(x1, y

∗(x1))

−∇x∇yg(x2, y
∗(x2))∇2

yg(x2, y
∗(x2))−1∇yf(x2, y

∗(x2))‖

≤Lx‖x1 − x2‖+ Lxy‖y∗(x1)− y∗(x2)‖+
L̃xy
µy

(Lxy‖x1 − x2‖+ Ly‖y∗(x1)− y∗(x2)‖)

47

Ji and Liang

+
(Uρxy
µy

+
L̃xyUρyy

µ2
y

)
(‖x1 − x2‖+ ‖y∗(x1)− y∗(x2)‖),

which, combined with Lemma 2.2 in Ghadimi and Wang (2018) that ‖y∗(x1) − y∗(x2)‖ ≤
L̃xy
µy
‖x1 − x2‖, yields

‖∇Φ(x1)−∇Φ(x2)‖

≤
(
Lx +

2LxyL̃xy
µy

+
(Uρxy
µy

+
UL̃xyρyy

µ2
y

)(
1 +

L̃xy
µy

)
+
L̃2
xyLy

µ2
y︸ ︷︷ ︸

LΦ

)
‖x1 − x2‖. (110)

Then, based on the above LΦ-smoothness of Φ(·), we have

Φ(zk+1) ≤Φ(x̃k) + 〈∇Φ(x̃k), zk+1 − x̃k〉+
LΦ

2
‖zk+1 − x̃k‖2

=
(
1−
√
αµx

2

)
(Φ(x̃k) + 〈∇Φ(x̃k), zk+1 − x̃k〉)

+

√
αµx

2
(Φ(x̃k) + 〈∇Φ(x̃k), zk+1 − x̃k〉) +

LΦ

2
‖zk+1 − x̃k‖2. (111)

Adding eq. (109) and eq. (111) yields

Φ(zk+1) ≤
(
1−
√
αµx

2

)
(Φ(x̃k) + 〈∇Φ(x̃k), zk − x̃k〉) +

√
αµx

2
(Φ(x̃k) + 〈∇Φ(x̃k), x− x̃k〉)

+
〈
∇Φ(x̃k)−Gk,

√
αµx

2
(zk+1 − x) + (1−

√
αµx

2
)(zk+1 − zk)

〉
+

√
αµxµx

8
‖x− x̃k‖2 −

1

2α
(1− αLΦ)‖zk+1 − x̃k‖2 −

µx
√
αµx

16
‖xk+1 − x̃k‖2

− µx
4
‖x− xk+1‖2 −

2µx −
√
αµxµx

16
‖xk − xk+1‖2,

which, in conjunction with the strong-convexity of Φ(·), √αµx ≤ 1 and α ≤ 1
2LΦ

, yields

Φ(zk+1) ≤
(
1−
√
αµx

2

)(
Φ(zk)−

µx
2
‖zk − x̃k‖2

)
+

√
αµx

2

(
Φ(x)− µx

2
‖x− x̃k‖2

)
+
〈
∇Φ(x̃k)−Gk,

√
αµx

2
(zk+1 − x) + (1−

√
αµx

2
)(zk+1 − zk)

〉
+

√
αµxµx

8
‖x− x̃k‖2 −

1

4α
‖zk+1 − x̃k‖2 −

µx
√
αµx

16
‖xk+1 − x̃k‖2. (112)

Note that we have the equality that

√
αµx

2
(zk+1 − x)+(1−

√
αµx

2
)(zk+1 − zk)

= (zk+1 − x̃k) +

√
αµx

2
(x̃k − x) + (1−

√
αµx

2
)(x̃k − zk). (113)

48

Lower Bounds and Accelerated Algorithms for Bilevel Optimization

Then, using eq. (113) and the Cauchy-Schwarz inequality, we have

〈
∇Φ(x̃k)−Gk,

√
αµx

2
(zk+1 − x) + (1−

√
αµx

2
)(zk+1 − zk)

〉
≤
(

2α+
1

2µx
+

√
αµx

4µx

)
‖∇Φ(x̃k)−Gk‖2 +

1

8α
‖zk+1 − x̃k‖2 +

√
αµxµx

8
‖x̃k − x‖

+ (1−
√
αµx

2
)
µx
2
‖zk − x̃k‖2. (114)

Substituting eq. (114) into eq. (112) and cancelling out negative terms, we have

Φ(zk+1) ≤
(
1−
√
αµx

2

)
Φ(zk) +

√
αµx

2
Φ(x)− 1

8α
‖zk+1 − x̃k‖2 −

µx
√
αµx

16
‖xk+1 − x̃k‖2

+
(

2α+
1

2µx
+

√
αµx

4µx

)
‖∇Φ(x̃k)−Gk‖2. (115)

We next upper-bound the hypergradient estimation error ‖∇Φ(x̃k)−Gk‖2. Recall that

Gk := ∇xf(x̃k, y
N
k)−∇x∇yg(x̃k, y

N
k)vMk , (116)

where vMk is the M th step output of the heavy-ball method for solving

min
v
Q(v) :=

1

2
vT∇2

yg(x̃k, y
N
k)v − vT∇yf(x̃k, y

N
k)

Then, based on the convergence result of the heavy-ball method in Badithela and Seiler

(2019) with the stepsizes λ = 4

(
√
L̃y+
√
µy)2

and θ = max
{(

1 −
√
λµy

)2
,
(
1 −

√
λL̃y

)2}
, we

have

‖vMk −∇2
yg(x̃k, y

N
k)−1∇yf(x̃k, y

N
k)‖ ≤

(√κy − 1
√
κy + 1

)M∥∥∥∇2
yg(x̃k, y

N
k)−1∇yf(x̃k, y

N
k)
∥∥∥

(i)

≤ U

µy

(√κy − 1
√
κy + 1

)M
, (117)

where (i) follows from Assumption 3 that ‖∇yf(·, ·)‖ ≤ U . Let y∗k = arg miny g(x̃k, y).
Then, based on the form of ∇Φ(x) in eq. (7), we have

‖Gk−∇Φ(x̃k)‖

≤‖∇xf(x̃k, y
N
k)−∇xf(x̃k, y

∗
k)‖+ L̃xy‖vMk −∇2

yg(x̃k, y
∗
k)
−1∇yf(x̃k, y

∗
k)‖

+
‖∇yf(x̃k, y

∗
k)‖

µy
‖∇x∇yg(x̃k, y

N
k)−∇x∇yg(x̃k, y

∗
k)‖

≤Ly‖y∗k − yNk ‖+ L̃xy‖vMk −∇2
yg(x̃k, y

N
k)−1∇yf(x̃k, y

N
k)‖

+ L̃xy
∥∥∇2

yg(x̃k, y
N
k)−1∇yf(x̃k, y

N
k)−∇2

yg(x̃k, y
∗
k)
−1∇yf(x̃k, y

∗
k)
∥∥+

Uρxy
µy
‖yNk − y∗k‖

(i)

≤
(
Ly +

L̃xyLy
µy

+
(ρxy
µy

+
L̃xyρyy
µ2
y

)
U
)
‖yNk − y∗k‖+

UL̃xy
µy

(√κy − 1
√
κy + 1

)M
, (118)

49

Ji and Liang

where (i) follows from eq. (117). Note that yNk is obtained as the N th step output of AGD.
Then, based on the analysis in Nesterov (2003) for AGD, we have

‖yNk − y∗k‖2 ≤
L̃y + µy
µy

‖y0
k − y∗k‖2 exp

(
− N
√
κy

)
=
L̃y + µy
µy

‖yNk−1 − y∗k‖2 exp
(
− N
√
κy

)
≤2(L̃y + µy)

µy
exp

(
− N
√
κy

)
(‖yNk−1 − y∗k−1‖2 + ‖y∗k−1 − y∗k‖2)

≤ 2(L̃y + µy)

µy
exp

(
− N
√
κy

)
︸ ︷︷ ︸

τN

(‖yNk−1 − y∗k−1‖2 + κy‖x̃k − x̃k−1‖2), (119)

which, in conjunction with x̃k − x̃k−1 = ηk(xk − x̃k−1) + (1− ηk)(zk − x̃k−1), yields

‖yNk − y∗k‖2 ≤τN‖yNk−1 − y∗k−1‖2 + κyηkτN‖xk − x̃k−1‖2

+ κy(1− ηk)τN‖zk − x̃k−1‖2. (120)

Telescoping eq. (120) over k yields

‖yNk − y∗k‖2 ≤ τkN‖yN0 − y∗0‖2 +
k−1∑
i=0

τk−iN κyηk‖xi+1 − x̃i‖2 +
k−1∑
i=0

τk−iN κy(1− ηk)‖zi+1 − x̃i‖2,

which, in conjunction with eq. (115) and eq. (118) and letting x = x∗, yields

Φ(zk+1)− Φ(x∗) ≤
(
1−
√
αµx

2

)
(Φ(zk)− Φ(x∗)− 1

8α
‖zk+1 − x̃k‖2 −

µx
√
αµx

16
‖xk+1 − x̃k‖2

+ λ
k−1∑
i=0

τk−iN κyηk‖xi+1 − x̃i‖2 + λ
k−1∑
i=0

τk−iN κy(1− ηk)‖zi+1 − x̃i‖2

+ ∆ + λτkN‖y∗0 − yN0 ‖2, (121)

where ∆ and λ are given by

∆ =
(

4α+
1

µx
+

√
αµx

2µx

)U2L̃2
xy

µ2
y

(√κy − 1
√
κy + 1

)2M

λ =
(

4α+
1

µx
+

√
αµx

2µx

)(
Ly +

L̃xyLy
µy

+
(ρxy
µy

+
L̃xyρyy
µ2
y

)
U
)2

. (122)

Telescoping eq. (121) over k from 0 to K − 1 and noting that 0 < ηk ≤ 1, we have

Φ(zK)− Φ(x∗) ≤
(
1−
√
αµx

2

)K
(Φ(z0)− Φ(x∗))− 1

8α

K−1∑
k=0

(
1−
√
αµx

2

)K−1−k‖zk+1 − x̃k‖2

−
µx
√
αµx

16

K−1∑
k=0

(
1−
√
αµx

2

)K−1−k‖xk+1 − x̃k‖2 +
2∆
√
αµx

+
K−1∑
k=0

(
1−
√
αµx

2

)K−1−k
λτkN‖y∗0 − yN0 ‖2

50

Lower Bounds and Accelerated Algorithms for Bilevel Optimization

+ λ
K−1∑
k=0

(
1−
√
αµx

2

)K−1−k
k−1∑
i=0

τk−iN κy‖xi+1 − x̃i‖2

+ λ
K−1∑
k=0

(
1−
√
αµx

2

)K−1−k
k−1∑
i=0

τk−iN κy‖zi+1 − x̃i‖2,

which, in conjunction with the fact that k ≤ K − 1, yields

Φ(zK)−Φ(x∗) ≤
(
1−
√
αµx

2

)K
(Φ(z0)− Φ(x∗))− 1

8α

K−1∑
k=0

(
1−
√
αµx

2

)K−1−k‖zk+1 − x̃k‖2

−
µx
√
αµx

16

K−1∑
k=0

(
1−
√
αµx

2

)K−1−k‖xk+1 − x̃k‖2 +
2∆
√
αµx

+

K−1∑
k=0

(
1−
√
αµx

2

)K−1−k
λτkN‖y∗0 − yN0 ‖2

+
2τNλκy√
αµx

K−2∑
i=0

τK−2−i
N ‖xi+1 − x̃i‖2 +

2τNλκy√
αµx

K−2∑
i=0

τK−2−i
N ‖zi+1 − x̃i‖2. (123)

Recall the definition of τN in eq. (119). Then, choose N such that

τN =
2(L̃y + µy)

µy
exp

(
− N
√
κy

)
≤ min

{ √
µx

16λκy
√
α
,
αµ2

x

32λκy
,
(
1−
√
αµx

2

)2}
, (124)

which, in conjunction with eq. (123), yields

Φ(zK)−Φ(x∗) ≤
(
1−
√
αµx

2

)K(
Φ(z0)− Φ(x∗) +

2λ‖y∗0 − yN0 ‖2√
αµx

)
+

2∆
√
αµx

.

Then, based on the definitions of λ and ∆ in eq. (122) and LΦ in eq. (110), to achieve
Φ(zK)− Φ(x∗) ≤ ε, we have

K = Õ
(√√√√UL̃2

xyρyy

µxµ3
y

)
, M = Õ

(√ L̃y
µy

)
. (125)

In addition, it follows from eq. (124) that

N = Õ
(√ L̃y

µy

)
. (126)

Based on eq. (125) and eq. (126), the total complexity is given by

Cfun(A, ε) = O(nJ + nH + nG) = O(K +KM +KN)

= Õ
(√√√√UL̃2

xyρyyL̃y

µxµ4
y

)
,

which finishes the proof.

51

Ji and Liang

Appendix K. Proof of Theorem 14

Let x̃∗ be the minimizer of Φ̃(·). Then, applying the results in Theorem 13 to Φ̃(x) with

the strongly-convex parameter µx = ε
B2 and choosing N = Θ

(√
L̃y
µy

log(poly(B, ε, µy, U))
)

,

we have

Φ̃(zK)−Φ̃(x̃∗) ≤
(
1−

√
ε

2
√

2L
Φ̃
B

)K(
Φ̃(z0)− Φ̃(x̃∗) +

2
√

2L
Φ̃
Bλ̃‖y∗0 − yN0 ‖2√

αε

)
+

2∆̃
√

2L
Φ̃
B

√
ε

,

where ∆̃ and λ̃ take the same forms as ∆ and λ in eq. (122) with µx being replaced by ε
B2 .

By choosing M = Θ
(√

L̃y
µy

log
poly(B,ε,µy ,U)

ε

)
in ∆̃, we have

2∆̃
√

2L
Φ̃
B

√
ε

≤ ε
4 , and hence

Φ̃(zK)−Φ̃(x̃∗) ≤
(
1−

√
ε

2
√

2L
Φ̃
B

)K(
Φ̃(z0)− Φ̃(x̃∗) +

2
√

2L
Φ̃
Bλ̃‖y∗0 − yN0 ‖2√

αε

)
+
ε

4
,

which, in conjunction with Φ̃(zK) ≥ Φ(zK), Φ̃(x̃∗) ≤ Φ̃(x∗) = Φ(x∗)+ ε
2B2 ‖x∗‖2 and z0 = 0,

yields

Φ(zK)− Φ(x∗) ≤
(
1−

√
ε

2
√

2L
Φ̃
B

)K(
Φ(0)− Φ̃(x̃∗) +

2
√

2L
Φ̃
Bλ̃‖y∗0 − yN0 ‖2√

αε

)
+
ε

4
+

ε

2B2
‖x∗‖2. (127)

Based on eq. (99), we have Φ(0) − Φ̃(x̃∗) ≤ Φ(0)− Φ(x∗), which, combined with ‖x∗‖ = B

and K = Θ̃
(
B

√
L̃2
xyρyy
εµ3
y

)
, yields Φ(zK)− Φ(x∗) ≤ ε. Then, the total complexity satisfies

Cfun(A, ε) = O(nJ + nH + nG) = O(K +KM +KN) = Õ
(
B

√√√√ L̃2
xyρyyL̃y

εµ4
y

)
, (128)

which finishes the proof.

References

Eitaro Aiyoshi and Kiyotaka Shimizu. A solution method for the static constrained stack-
elberg problem via penalty method. IEEE Transactions on Automatic Control, 29(12):
1111–1114, 1984.

Faiz A Al-Khayyal, Reiner Horst, and Panos M Pardalos. Global optimization of concave
functions subject to quadratic constraints: an application in nonlinear bilevel program-
ming. Annals of Operations Research, 34(1):125–147, 1992.

Sanjeev Arora, Simon S Du, Sham Kakade, Yuping Luo, and Nikunj Saunshi. Provable rep-
resentation learning for imitation learning via bi-level optimization. In Proc. International
Conference on Machine Learning (ICML), 2020.

52

Lower Bounds and Accelerated Algorithms for Bilevel Optimization

Apurva Badithela and Peter Seiler. Analysis of the heavy-ball algorithm using integral
quadratic constraints. In 2019 American Control Conference (ACC), pages 4081–4085.
IEEE, 2019.

Juhan Bae and Roger Grosse. Delta-STN: Efficient bilevel optimization for neural networks
using structured response Jacobians. arXiv preprint arXiv:2010.13514, 2020.

Luca Bertinetto, Joao F Henriques, Philip Torr, and Andrea Vedaldi. Meta-learning with
differentiable closed-form solvers. In International Conference on Learning Representa-
tions (ICLR), 2018.

Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex Optimization. Cam-
bridge University Press, 2004.

Jerome Bracken and James T McGill. Mathematical programs with optimization problems
in the constraints. Operations Research, 21(1):37–44, 1973.

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding
stationary points i. Mathematical Programming, pages 1–50, 2019.

Tianyi Chen, Yuejiao Sun, and Wotao Yin. A single-timescale stochastic bilevel optimization
method. arXiv preprint arXiv:2102.04671, 2021.

Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-
convex sgd. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

Damek Davis and Dmitriy Drusvyatskiy. Stochastic model-based minimization of weakly
convex functions. SIAM Journal on Optimization, 29(1):207–239, 2019.

Justin Domke. Generic methods for optimization-based modeling. In Artificial Intelligence
and Statistics (AISTATS), pages 318–326, 2012.

Thomas Arthur Edmunds and Jonathan F Bard. Algorithms for nonlinear bilevel mathe-
matical programs. IEEE Transactions on Systems, Man, and Cybernetics, 21(1):83–89,
1991.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. On the convergence theory of
gradient-based model-agnostic meta-learning algorithms. In International Conference on
Artificial Intelligence and Statistics (AISTATS), pages 1082–1092. PMLR, 2020.

Matthias Feurer and Frank Hutter. Hyperparameter optimization. In Automated Machine
Learning, pages 3–33. Springer, Cham, 2019.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. In Proc. International Conference on Machine Learning
(ICML), pages 1126–1135, 2017.

Chuan-sheng Foo, Chuong B Do, and Andrew Y Ng. Efficient multiple hyperparameter
learning for log-linear models. In Advances in Neural Information Processing Systems
(NeurIPS), pages 377–384, 2008.

53

Ji and Liang

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and
reverse gradient-based hyperparameter optimization. In International Conference on Ma-
chine Learning (ICML), pages 1165–1173, 2017.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil.
Bilevel programming for hyperparameter optimization and meta-learning. In Interna-
tional Conference on Machine Learning (ICML), pages 1568–1577, 2018.

Saeed Ghadimi and Guanghui Lan. Accelerated gradient methods for nonconvex nonlinear
and stochastic programming. Mathematical Programming, 156(1-2):59–99, 2016.

Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. arXiv
preprint arXiv:1802.02246, 2018.

Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, and Saverio Salzo. On the iteration
complexity of hypergradient computation. In Proc. International Conference on Machine
Learning (ICML), 2020.

Andreas Griewank. Some bounds on the complexity of gradients, jacobians, and hessians.
In Complexity in Numerical Optimization, pages 128–162. World Scientific, 1993.

Zhishuai Guo, Yi Xu, Wotao Yin, Rong Jin, and Tianbao Yang. On stochastic moving-
average estimators for non-convex optimization. arXiv preprint arXiv:2104.14840, 2021.

Pierre Hansen, Brigitte Jaumard, and Gilles Savard. New branch-and-bound rules for linear
bilevel programming. SIAM Journal on Scientific and Statistical Computing, 13(5):1194–
1217, 1992.

Chaoyang He, Haishan Ye, Li Shen, and Tong Zhang. Milenas: Efficient neural architecture
search via mixed-level reformulation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 11993–12002, 2020.

Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale frame-
work for bilevel optimization: Complexity analysis and application to actor-critic. arXiv
preprint arXiv:2007.05170, 2020.

Feihu Huang and Heng Huang. Biadam: Fast adaptive bilevel optimization methods. arXiv
preprint arXiv:2106.11396, 2021.

Simon Jenni and Paolo Favaro. Deep bilevel learning. In Proceedings of the European
conference on computer vision (ECCV), pages 618–633, 2018.

Kaiyi Ji and Yingbin Liang. Minimax estimation of neural net distance. Advances in Neural
Information Processing Systems, 31, 2018.

Kaiyi Ji, Jason D Lee, Yingbin Liang, and H Vincent Poor. Convergence of meta-learning
with task-specific adaptation over partial parameter. In Advances in Neural Information
Processing Systems (NeurIPS), 2020a.

Kaiyi Ji, Junjie Yang, and Yingbin Liang. Multi-step model-agnostic meta-learning: Con-
vergence and improved algorithms. arXiv preprint arXiv:2002.07836, 2020b.

54

Lower Bounds and Accelerated Algorithms for Bilevel Optimization

Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis
and enhanced design. In International Conference on Machine Learning (ICML), pages
4882–4892. PMLR, 2021.

Kaiyi Ji, Mingrui Liu, Yingbin Liang, and Lei Ying. Will bilevel optimizers benefit from
loops. arXiv preprint arXiv:2205.14224, 2022.

Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran
Yang. A near-optimal algorithm for stochastic bilevel optimization via double-momentum.
arXiv preprint arXiv:2102.07367, 2021.

Junyi Li, Bin Gu, and Heng Huang. Improved bilevel model: Fast and optimal algorithm
with theoretical guarantee. arXiv preprint arXiv:2009.00690, 2020.

Tianyi Lin, Chi Jin, and Michael I Jordan. Near-optimal algorithms for minimax optimiza-
tion. In Conference on Learning Theory (COLT), pages 2738–2779. PMLR, 2020.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search.
In International Conference on Learning Representations (ICLR), 2019.

Risheng Liu, Pan Mu, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A generic first-
order algorithmic framework for bi-level programming beyond lower-level singleton. In
International Conference on Machine Learning (ICML), 2020.

Risheng Liu, Xuan Liu, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A value-function-
based interior-point method for non-convex bi-level optimization. In Proc. International
Conference on Machine Learning (ICML), 2021.

Yibing Lv, Tiesong Hu, Guangmin Wang, and Zhongping Wan. A penalty function method
based on Kuhn–Tucker condition for solving linear bilevel programming. Applied Math-
ematics and Computation, 188(1):808–813, 2007.

Matthew Mackay, Paul Vicol, Jonathan Lorraine, David Duvenaud, and Roger Grosse. Self-
tuning networks: Bilevel optimization of hyperparameters using structured best-response
functions. In International Conference on Learning Representations (ICLR), 2018.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter op-
timization through reversible learning. In International Conference on Machine Learning
(ICML), pages 2113–2122, 2015.

Akshay Mehra and Jihun Hamm. Penalty method for inversion-free deep bilevel optimiza-
tion. arXiv preprint arXiv:1911.03432, 2019.

Gregory M Moore. Bilevel programming algorithms for machine learning model selection.
Rensselaer Polytechnic Institute, 2010.

Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course, volume 87.
Springer Science & Business Media, 2003.

Yurii Nesterov et al. Lectures on Convex Optimization, volume 137. Springer, 2018.

55

Ji and Liang

Takayuki Okuno, Akiko Takeda, and Akihiro Kawana. Hyperparameter learning via bilevel
nonsmooth optimization. arXiv preprint arXiv:1806.01520, 2018.

Yuyuan Ouyang and Yangyang Xu. Lower complexity bounds of first-order methods for
convex-concave bilinear saddle-point problems. Mathematical Programming, pages 1–35,
2019.

Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In Interna-
tional Conference on Machine Learning (ICML), pages 737–746, 2016.

Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or fea-
ture reuse? towards understanding the effectiveness of MAML. International Conference
on Learning Representations (ICLR), 2019.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-
learning with implicit gradients. In Advances in Neural Information Processing Systems
(NeurIPS), pages 113–124, 2019.

Yuji Roh, Kangwook Lee, Steven Whang, and Changho Suh. Sample selection for fair
and robust training. Advances in Neural Information Processing Systems (NeurIPS), 34,
2021.

Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-
propagation for bilevel optimization. In International Conference on Artificial Intelligence
and Statistics (AISTATS), pages 1723–1732, 2019.

Chenggen Shi, Jie Lu, and Guangquan Zhang. An extended Kuhn–Tucker approach for
linear bilevel programming. Applied Mathematics and Computation, 162(1):51–63, 2005.

Ankur Sinha, Tanmay Khandait, and Raja Mohanty. A gradient-based bilevel opti-
mization approach for tuning hyperparameters in machine learning. arXiv preprint
arXiv:2007.11022, 2020.

Daouda Sow, Kaiyi Ji, Ziwei Guan, and Yingbin Liang. A constrained optimiza-
tion approach to bilevel optimization with multiple inner minima. arXiv preprint
arXiv:2203.01123, 2022.

Rayadurgam Srikant and Lei Ying. Communication networks: an optimization, control,
and stochastic networks perspective. Cambridge University Press, 2013.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas: stochastic neural architecture
search. In International Conference on Learning Representations (ICLR), 2018.

Junjie Yang, Kaiyi Ji, and Yingbin Liang. Provably faster algorithms for bilevel optimiza-
tion. arXiv preprint arXiv:2106.04692, 2021.

Tong Yu and Hong Zhu. Hyper-parameter optimization: A review of algorithms and appli-
cations. arXiv preprint arXiv:2003.05689, 2020.

Junyu Zhang, Mingyi Hong, and Shuzhong Zhang. On lower iteration complexity bounds
for the saddle point problems. arXiv preprint arXiv:1912.07481, 2019.

56

	Introduction
	Summary of Contributions
	Related Works

	Preliminaries on Bilevel Optimization
	Bilevel Problem Class
	Algorithm Class for Bilevel Optimization
	Complexity Measures

	Lower Bounds for Bilevel Optimization
	Strongly-Convex-Strongly-Convex Bilevel Optimization
	Convex-Strongly-Convex Bilevel Optimization

	Accelerated Gradient Method and Upper Bounds for Bilevel Optimization
	Accelerated Bilevel Optimization Algorithm: AccBiO
	Strongly-Convex-Strongly-Convex Bilevel Optimization
	Convex-Strongly-Convex Bilevel Optimization
	Optimality of Bilevel Optimization and Discussion

	Upper Bounds with Gradient Boundedness Assumption
	Accelerated Bilevel Optimization Algorithm: AccBiO-BG
	Strongly-Convex-Strongly-Convex Bilevel Optimization
	Convex-Strongly-Convex Bilevel Optimization

	Numerical Experiments
	Conclusion and Discussion
	Appendix
	 Appendix
	ITD-Based Bilevel Algorithms
	Proof of thm:low1
	Proof of main:convex
	Proof of co:co1
	Proof of co:co2
	Proof of uppersrsrwithnoB
	Proof of coro:quadaticSr
	Proof of th:uppercsc1sc
	Proof of coro:quadaticConv
	Proof of uppersrsr
	Proof of convexupperBG

