
Published as a conference paper at ICLR 2023

SYMMETRIES, FLAT MINIMA AND THE CONSERVED

QUANTITIES OF GRADIENT FLOW

Bo Zhao∗†

University of California, San Diego
bozhao@ucsd.edu

Iordan Ganev∗

Radboud University
iganev@cs.ru.nl

Robin Walters
Northeastern University
r.walters@northeastern.edu

Rose Yu
University of California, San Diego
roseyu@ucsd.edu

Nima Dehmamy
IBM Research
nima.dehmamy@ibm.com

ABSTRACT

Empirical studies of the loss landscape of deep networks have revealed that many
local minima are connected through low-loss valleys. Yet, little is known about
the theoretical origin of such valleys. We present a general framework for finding
continuous symmetries in the parameter space, which carve out low-loss valleys.
Our framework uses equivariances of the activation functions and can be applied
to different layer architectures. To generalize this framework to nonlinear neu-
ral networks, we introduce a novel set of nonlinear, data-dependent symmetries.
These symmetries can transform a trained model such that it performs similarly
on new samples, which allows ensemble building that improves robustness un-
der certain adversarial attacks. We then show that conserved quantities associated
with linear symmetries can be used to define coordinates along low-loss valleys.
The conserved quantities help reveal that using common initialization methods,
gradient flow only explores a small part of the global minimum. By relating con-
served quantities to convergence rate and sharpness of the minimum, we provide
insights on how initialization impacts convergence and generalizability.

1 INTRODUCTION

Training deep neural networks (NNs) is a highly non-convex optimization problem. The loss land-
scape of a NN, which is shaped by the model architecture and the dataset, is generally very rugged,
with the number of local minima growing rapidly with model size (Bray & Dean, 2007; SË imsËek
et al., 2021). Despite this complexity, recent work has revealed many interesting structures in the
loss landscape. For example, NN loss landscapes often contain approximately flat directions along
which the loss does not change significantly (Freeman & Bruna, 2017; Garipov et al., 2018). Flat
minima have been used to build ensemble or mixture models by sampling different parameter con-
figurations that yield similar loss values (Garipov et al., 2018; Benton et al., 2021). However, finding
such flat directions is mostly done empirically, with few theoretical results.

One source of flat directions is parameter transformations that keep the loss invariant (i.e. symme-
tries). Specifically, moving in the parameter space from a minimum in the direction of a symmetry
takes us to another minimum. Motivated by the fact that continuous symmetries of the loss result in
flat directions in local minima, we derive a general class of such symmetries in this paper.

∗Equal contribution.
†Work done during an internship at IBM.
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Figure 1: Visualization of the extended
minimum in a 2-layer linear network
with loss L = ∥Y − UV X∥2. Points
along the minima are related to each
other by scaling symmetry U → Ug−1

and V → gV . Conserved quantities,
Q, associated with scaling symmetry
parametrize points along the minimum.

Our key insight is to focus on equivariances of the non-
linear activation functions; most known continuous sym-
metries can be derived using this framework. Models re-
lated by exact equivalence cannot behave differently on
different inputs. Hence, for ensembling or robustness
tasks, we need to find data-dependent symmetries. In-
deed, aside from the familiar ªlinear symmetriesº of NN,
the framework of equivariance allows us to introduce a
novel class of symmetries which act nonlinearly on the
parameters and are data-dependent. These nonlinear sym-
metries cover a much larger class of continuous symme-
tries than their linear counterparts, as they apply for al-
most any activation function. We provide preliminary ex-
perimental evidence that ensembles using these nonlinear
symmetries are more robust to adversarial attacks.

Extended flat minima arise frequently in the loss land-
scape of NNs; we show that symmetry-induced flat min-
ima can be parametrized using conserved quantities. Fur-
thermore, we provide a method of deriving explicit con-
served quantities (CQ) for different continuous symme-
tries of NN parameter spaces. CQ had previously been
derived from symmetries for one-parameter groups (Kunin et al., 2021; Tanaka & Kunin, 2021).
Using a similar approach we derive the CQ for general continuous symmetries. This approach fails
to find CQ for rotational symmetries. Nevertheless, we find the conservation law resulting from
the symmetry implies a cancellation of angular momenta between layers. To summarize, our
contributions are:

1. A general framework based on equivariance for finding symmetries in NN loss landscapes.

2. A derivation of the dimensions of minima induced by symmetries.

3. A new class of nonlinear, data-dependent symmetries of NN parameter spaces.

4. An expansion of prior work on deriving conserved quantities (CQ) associated with sym-
metries, and a discussion of its failure for rotation symmetries.

5. A cancellation of angular momenta result for between layers for rotation symmetries.

6. A parameterization of symmetry-induced flat minima via the associated CQ.

This paper is organized as follows. First, we review existing literature on flat minima, continuous
symmetries of parameter space, and conserved quantities. In Section 3, we define continuous sym-
metries and flat minima, and show how linear symmetries lead to extended minima. We illustrate
our constructions through examples of linear symmetries of NN parameter spaces. In Section 4,
we define nonlinear, data-dependent symmetries. In Section 5, we use infinitesimal symmetries to
derive conserved quantities for parameter space symmetries, extending the results in Kunin et al.
(2021) to larger groups and more activation functions. Additionally, we show how CQ can be used
to define coordinates along flat minima. We close with experiments involving nonlinear symmetries,
conserved quantities and a discussion of potential use cases.

2 RELATED WORK

Continuous symmetry in parameter space. Overparametrization in neural networks leads to sym-
metries in the parameter space (Gøuch & Urbanke, 2021). Continuous symmetry has been identified
in fully-connected linear networks (Tarmoun et al., 2021), homogeneous neural networks (Badri-
narayanan et al., 2015; Du et al., 2018), radial neural networks (Ganev et al., 2022), and softmax
and batchnorm functions (Kunin et al., 2021). We provide a unified framework that generalizes
previous findings, and identify nonlinear group actions that have not been studied before.

Conserved quantities. The imbalance between layers in linear or homogeneous networks is known
to be invariant during gradient flow and related to convergence rate (Saxe et al., 2014; Du et al.,
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2018; Arora et al., 2018a;b; Tarmoun et al., 2021; Min et al., 2021). Huh (2020) discovered sim-
ilar conservation laws in natural gradient descents. Kunin et al. (2021) develop a more general
approach for finding conserved quantities for certain one-parameter symmetry groups. Tanaka &
Kunin (2021) relate continuous symmetries to dynamics of conserved quantities using an approach
similar to Noether’s theorem (Noether, 1918). We develop a procedure that determines conserved
quantities from infinitesimal symmetries, which is closely related to Noether’s theorem.

Topology of minimum. The global minimum of overparametrized neural networks are connected
spaces instead of isolated points. We show that parameter space symmetries lead to extended flat
minima. Previously, Cooper (2018) proved that the global minima is usually a manifold with di-
mension equal to the number of parameters subtracted by the number of data points. We derive
the dimensionality of the symmetry-induced flat minima and show they are related to the number
of infinitesimal symmetry generators and dimension of weight matrices. SË imsËek et al. (2021) study
permutation symmetry and show that in certain overparametrized networks, the minimum related by
permutations are connected. Entezari et al. (2022) hypothesize that SGD solutions can be permuted
to points on the same connected minima. Ainsworth et al. (2023) develop algorithms that find such
permutations. Additional discussion on mode connectivity, sharpness of minima, and the role of
symmetry in optimization can be found in Appendix A.

3 CONTINUOUS SYMMETRIES IN DEEP LEARNING

In this section, we first summarize our notation for basic neural network constructions (see Appendix
C for more details). Then we consider transformations on the parameter space that leave the loss
invariant and demonstrate how they lead to extended flat minima.

3.1 THE PARAMETER SPACE AND LOSS FUNCTION

The parameters of a neural network consist of weights1 Wi ∈ R
ni×mi for each layer i, where

ni and mi are the layer output and input dimensions, respectively. For feedforward networks,
successive output and input dimensions match: mi = ni−1. We group the widths into a tuple
n = (nL, . . . , n1, n0), and the parameter space becomes Param = R

nL×ni−1 ×· · ·×R
n1×n0 . We

denote an element therein as a tuple of matrices θ = (Wi ∈ R
ni×ni−1)Li=1. The activation of the i-th

layer is a piecewise differentiable function σi : R
ni → R

ni , which may or may not be pointwise.
For θ ∈ Param and input x ∈ R

n0 , the feature vector of the ith layer in feedforward network is
Zi+1(x) = Wi+1σ(Zi(x)), where the juxtaposition ‘Wσ(Z)’ denotes an arbitrary linear operation
depending on the context; for example, matrix product, convolution, etc. For simplicity, we largely
focus on the case of multilayer perceptrons (MLPs). We denote the final output by Fθ : Rn0 → R

nL ,
defined as Fθ(x) = σL(ZL(x)). The ªloss functionº L of our model is defined as:

L : Param×Data → R, L(θ, (x, y)) = Cost(y, Fθ(x)). (1)

where Data = R
n0 × R

nL is the space of data and Cost : RnL × R
nL → R is a differentiable

cost function, such as mean square error or cross-entropy. In the case of multiple samples, we have
matrices X ∈ R

n0×k and Y ∈ R
nL×k whose columns are the k samples2, and retain the same

notation for the feedforward function, namely, Fθ : Rn0×k → R
nL×k. Most of our results concern

properties of L that hold for any training data. Hence, unless specified otherwise, we take a fixed
batch of data {(xi, yi)}

k
i=1 ⊆ Data, and consider the loss as a function of the parameters only.

Example 3.1. Two-layer network with MSE Consider a network with n = (n, h,m), the identity
output activation (σL(x) = (x)), and no biases. The parameter space is Param(n) = R

n×h ×
R

h×m and we denote an element as θ = (U, V ). Taking the mean square error cost function, the
loss function for data (X,Y ) ∈ R

n×k×R
m×k takes the form L(θ, (X,Y )) = 1

k∥Y −Uσ(V X)∥2.

3.2 ACTION OF CONTINUOUS GROUPS AND FLAT MINIMA

Let G be a group. An action of G on the parameter space Param is a function · : G×Param →
Param, written as g · θ, that satisfies the unit and multiplication axioms of the group, meaning
id · θ = θ where id is the identity of G, and g1 · (g2 · θ) = (g1g2) · θ for all g1, g2 ∈ G .

1For clarity, we suppress the bias vectors; all results can be extended to include bias; see appendix C.
2We use capital letters for matrix data and small letters for individual samples.

3



Published as a conference paper at ICLR 2023

Definition 3.1 (Parameter space symmetry). The action G×Param → Param is a symmetry of
L if it leaves the loss function invariant, that is:

L(g · θ) = L(θ), ∀θ ∈ Param, g ∈ G. (2)

We describe examples of parameter space symmetries in the next section. Before doing so, we show
how a parameter space symmetry leads to flat minima (see Appendix C.6):

Proposition 3.2. Suppose G × Param → Param is a symmetry of L. If θ∗ is a critical point
(resp. local minimum) of L, then so is g · θ∗ for any g ∈ G.

The proof of this result relies on using the differential of the action of g to relate the gradient of L
at θ∗ with the gradient at g · θ∗. We see that, if θ∗ is a local minimum, then so is every element
of the set {g · θ∗ | g ∈ G}. This set is known as the orbit of θ∗ under the action of G. The orbits
of different parameter values may be of different dimensions. However, in many cases, there is a
ªgenericº or most common dimension, which is the orbit dimension of any randomly chosen θ.

3.3 EQUIVARIANCE OF THE ACTIVATION FUNCTION

In this section, we describe a large class of linear symmetries of L using an equivariance property of
the activations between layers. For accessibility, we focus on the example of two layers with output
F (x) = Uσ(V x) for (U, V ) ∈ Param = R

m×h × R
h×n and x ∈ R

n. All results generalize to
multiple layers by letting U = Wi and V = Wi−1 be weights of two successive layers in a deep
neural network (see Appendix C.5). Let G ⊆ GLh(R) be a subgroup of the general linear group,
and let π : G → GLh(R) a representation (the simplest example is π(g) = g). We consider the
following action of the group G on the parameter space Param:

g · U = Uπ(g−1), g · V = gV (3)

This action becomes a symmetry of L if and only if the following identity holds:

σ(gz) = π(g)σ(z) ∀g ∈ G, ∀z ∈ R
h (4)

We now turn our attention to examples. To ease notation, we write GLh instead of GLh(R).

Example 3.2. Linear networks A simple example of (4) is that of linear networks, where σ is the
identity function: σ(x) = x. One can take π(g) = g and G = GLh.

Example 3.3. Homogeneous activations Suppose the activation σ : Rh → R
h is homogeneous,

meaning that (1) σ is applied pointwise in the standard basis and (2) there exists α > 0 such
that σ(cz) = cασ(z) for all c ∈ R>0 and z ∈ R

h. Such an activation is equivariant under the
positive scaling group G ⊂ GLh consisting of diagonal matrices with positive diagonal entries.
Explicitly, the group G consists of diagonal matrices g = diag(c) with c = (c1, . . . , ch) ∈ R

h
>0.

For z = (z1, . . . , zh) ∈ R
h and g ∈ G, we have σ(gz) =

∑
j σ(cjzj) =

∑
j c

α
j σ(zj) = gασ(z).

Hence, the equivariance equation is satisfied with π(g) = gα.

Example 3.4. LeakyReLU This is a special case of homogeneous activation, defined as σ(z) =
max(z, 0) + smin(z, 0), with s ∈ R≥0. We have α = 1, and π(g) = g.

Example 3.5. Radial rescaling activations A less trivial example of continuous symmetries is the
case of a radial rescaling activation (Ganev et al., 2022) where for z ∈ R

h, we have σ(z) = f(∥z∥)z
for some function f : R → R. Radial rescaling activations are equivariant under rotations of the
input: for any orthogonal transformation g ∈ O(h) (that is, gT g = I) we have σ(gz) = gσ(z) for
all z ∈ R

h. Indeed, σ(gz) = f(∥gz∥)(gz) = g(f(∥z∥)z) = gσ(z), where we use the fact that
∥gz∥ = zT gT gz = zT z = ∥z∥ for g ∈ O(h). Hence, (4) is satisfied with π(g) = g.

We arrive at our first novel result, whose proof appears in Appendix C.6.

Theorem 3.3. The dimension of a generic orbit in Param under the appropriate symmetry group
is given as follows. The cases are divided based on whether h ≤ max(n,m) or not.

Orbit Dimension
Activation Symmetry Group h ≤ max(n,m) h ≥ max(n,m)

Identity GLh(R) h2 h(n+m)− nm
Homogeneous Positive rescaling h max(n,m)

Radial rescaling O(h)
(
h
2

) (
h
2

)
−
(
h−max(m,n)

2

)
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As an aside, we note that a familiar example where (4) is satisfied involves the permutation of
neurons. More precisely, suppose σ is pointwise and let G be the finite group of h× h permutation
matrices. Then (4) holds with π(g) = g. However, the permutation group is finite (0-dimensional),
and so does not imply the presence of flat minima.

3.4 INFINITESIMAL SYMMETRIES

Deriving conserved quantities from symmetries requires the infinitesimal versions of parameter
space symmetries. Recall that any smooth action of a matrix Lie group G ⊆ GLh induces an
action of the infinitesimal generators of the group, i.e., elements of its Lie algebra. Concretely, let
g = Lie(G) = TIG be the Lie algebra, which can be identified with a certain subspace of matri-
ces in glh = R

h×h. For every M ∈ g, we have an exponential map expM : R → G defined as

expM (t) =
∑∞

k=0
(tM)k

k! . If ρ : G → GLh is a (linear) representation, then the infinitesimal action

is given by dρ : g → glh by dρ(M) = d
dt

∣∣
0
ρ(expM (t)). In the case of the action appearing in (3),

the corresponding infinitesimal action of the Lie algebra g induced by (3) is given by:

M · U = −Udπ(M), M · V = MV (5)

More generally, suppose G acts linearly on parameter space (see Appendix C for non-linear ver-
sions). Set d to be the dimension of the parameter space3, and make the identification Param ≃ R

d

by flattening matrices into column vectors. The general linear group GL(Param) ≃ GLd(R) con-
sists of all invertible linear transformations of Param. Suppose G is a subgroup of GL(Param),
so its Lie algebra g is a Lie subalgebra of gld = R

d×d. For M ∈ g and θ ∈ Param, the infinitesimal
action is given simply by matrix multiplication: M · θ.

In the case of a parameter space symmetry, the invariance of L translates into the following orthogo-
nality condition, where the inner product ⟨, ⟩ : Param×Param → R is calculated by contracting
all indices, e.g. ⟨A,B⟩ =

∑
ijk... Aijk...Bijk....

Proposition 3.4. Let G be a matrix Lie group and a symmetry of L. Then the gradient vector field
is point-wise orthogonal to the action of any M ∈ g:

⟨∇θL , M · θ⟩ = 0, ∀θ ∈ Param (6)

4 NONLINEAR DATA-DEPENDENT SYMMETRIES

For common activation functions, the equivariance σ(gz) = π(g)σ(z) of (4) holds only for g be-
longing to a relatively small subgroup of GLh. For ReLU, g must be in the positive scaling group,
while for the usual sigmoid activation, the equation only holds for trivial g = id. However, under
certain conditions, it is possible to define a nonlinear action of the full GLh which applies to many
different activations. The subtlety of such an action is that it is data-dependent, which means that,
for any g ∈ GLh, the transformation of the parameter space depends on the input data4 x.

The nonlinear action. For any nonzero vector z ∈ R
h, let (r, α1, . . . , αh−1) be the spherical

coordinates5 of z, and define the following h by h matrix:

(Rz)ij =





zi cos(αj−1)
(∏j−1

k=1 sin(αk)
)−1

if j ≤ i and
∏i−1

k=1 sin(αk) ̸= 0

−r sin(αi) if j = i+ 1

0 otherwise

where α0 = 0 by convention. We observe that Rz is the product of a rotation matrix and rescaling
by |z|. Moreover, since z ̸= 0, the first column of Rz is the unit vector z/|z| and Rz has inverse
given by R−1

z = 1
|z|2R

T
z . Using these facts, one arrives at the following result, stated in the case of

a two-layer neural network with notation from Section 3.3, and proven in Appendix D:

3In terms of the widths, we have d =
∑L

i=1
nini−1.

4That is, rather than being a map GLh × Param → Param satisfying the group action axioms, a data-
dependent action is a map GLh × (Param× R

n) → Param× R
n satisfying the same axioms.

5Hence, r = |z| is the norm, and the i-th coordinate of z is zi = r cos(αi)
∏i−1

k=1
sin(αk), where αh = 0.

5



Published as a conference paper at ICLR 2023

Theorem 4.1. Suppose σ(z) is nonzero for any z ∈ R
h. Then there is an action GLh × (Param×

R
n) → Param× R

n given by

g · (U, V, x) = (URσ(V x)R
−1
σ(gV x) , gV , x). (7)

The evaluation of the feedforward function at x unchanged: F(U,V )(x) = F(URσ(V x)R
−1
σ(gV x)

,gV )(x).

We emphasize that a necessary and sufficient condition for the particular action of Theorem 4.1
to be well-defined is that σ(z) be nonzero for any z ∈ R

h; this is the case for usual sigmoid.
Moreover, in Appendix D.2, we provide a generalization to the case where σ(z) is only required to
be nonzero for any nonzero z ∈ R

h, a condition satisfied by hyperbolic tangent, leaky ReLU, and
many other activations. The cost of such a generalization is a restriction to a ‘non-degenerate locus’
of Param×R

n where V x ̸= 0. Theorem 4.1 also generalizes to mutli-layer networks, as explained
in Appendix D.3. We have the following explicit algorithm to compute the action of Theorem 4.1:

0. Input: weight matrices (U, V ), input vector x ∈ R
n, matrix g ∈ GLh.

1. Determine the spherical coordinates of σ(V x) and σ(gV x), and construct the matrices
Rσ(V x) and Rσ(gV x).

2. Compute the inverse R−1
σ(gV x) =

1
|σ(gV x)|2R

T
σ(gV x).

3. Set U ′ = URσ(V x)R
−1
σ(gV x) and V ′ = gV.

4. Output: the transformed weights (U ′, V ′). The data x ∈ R
n remains unchanged.

Lipschitz bounds. Unlike the exact symmetries of Section 3, a data-dependent action may alter the
loss in the function space. This is evident from (7): while the transformed and original feedforward
functions have the same value at x, they will differ at other points. That is, if x̃ ∈ R

h is an input
value different from x, then F(U,V )(x̃) ̸= F(URσ(V x)R

−1
σ(gV x)

,gV )(x̃) in general.

However, the transformed feedforward function will differ from the original one in a controlled way.
More precisely, when σ is Lipschitz continuous, we show that there is a bound on how much the
Lipschitz bound of the feedforward changes after the nonlinear action. The relevance of such a
bound originates in the fact that we expect the distance between data points to encode important
information about shared features. To be more specific, fix weight matrices (U, V ), which provide
the feedforward function F (x̃) = Uσ(V x̃). For any input vector x ∈ R

n and matrix g ∈ GLh, the

transformed weight matrices (URσ(V x)R
−1
σ(gV x), gV ) provide a new feedforward function given by:

F
(g,x)
(U,V ) : R

n → R
m F

(g,x)
(U,V )(x̃) = URσ(V x)R

−1
σ(gV x)σ(gV x̃) (8)

Proposition 4.2 (Lipschitz bounds from equivariance). Let σ be Lipschitz continuous with Lipschitz

constant η. Then F
(g,x)
(U,V ) is Lipschitz continuous with bound η∥U∥∥V ∥ |σ(V x)|∥g∥

|σ(gV x)| .

In particular, the Lipschitz bound of the original feedforward function is η∥U∥∥V ∥. Thus, if it
happens that |σ(V x)|∥g∥ < |σ(gV x)|, then the Lipschitz bound decreases when transforming the
parameters. Additionally, we observe that the nonlinear action does not disrupt latent distribution of
data significantly. See Appendix D.5 for proof of Proposition 4.2, which relies on iterative applica-
tions of the Cauchy-Schwarz inequality, as well as the fact that ∥R±1

z ∥ = |z|±1.

General equivariance. The action described is an instance of a more general framework of equiv-
ariance. Specifically, a map c : GLh × R

h → GLh is said to be an equivariance if it satisfies (1)
c(idh, z) = idh for all z, and (2) c(g1, g2z)c(g2, z) = c(g1g2, z) for all g1, g2 ∈ GLh and z. These
two conditions on c translate directly into the unit and multiplication axioms of a group6, generaliz-
ing π(g1g2) = π(g1)π(g2), and π(idh) = idh. Every equivariance gives rise to a nonlinear action
of GLh on Param×R

h given by g · (U, V, x) = (Uc(g, V x)−1, gV, x). This action is a symmetry
preserving the loss if and only if the following generalization of (4) holds:

General Equivariance: σ(gz) = c(g, z)σ(z) ∀g ∈ GLh ∀z ∈ R
h (9)

An explicit example of such an equivariance is c(g, z) = Rσ(gz)R
−1
σ(z), and Proposition 4.2 general-

izes to any general equivariance by replacing
|σ(V x)|∥g∥
|σ(gV x)| with ∥c(g, V x)−1∥.

6In fact, c defines a GLh-equivariant structure on the tangent bundle of Rh.
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5 CONSERVED QUANTITIES OF GRADIENT FLOW

We have shown that continuous symmetries lead us along extended flat minima in the loss landscape.
In this section, we identify quantities that (partially) parameterize these minima. We first show that
certain real-valued functions on the parameter space remain constant during gradient flow. We refer
to such functions as conserved quantities. Applying symmetries changes the value of the conserved
quantity. Therefore, conserved quantities can be used to parameterize flat minima.

Gradient flow (GF). Recall that GD proceeds in discrete steps with the update rule θt+1 =
θt − ε∇L(θt) where ε is the learning rate (which in general can be a symmetric matrix), and
t = 0, 1, 2, . . . are the time steps. In gradient flow, we can define a smooth curve in the parameter
space from a choice of initial values to the limiting local minimum without discretizing over time.
The curve is a function of a continuous time variable t ∈ R, and velocity of this curve at any point is
equal to the gradient of the loss function, scaled by the negative of the learning rate. In other words,
the dynamics of the parameters under GF are given by:

θ̇(t) = dθ(t)/dt = −ε∇θ(t)L. (10)

From an initialization θ(0) at t = 0, GF defines a trajectory θ(t) ∈ Param for t ∈ R>0, which
limits to a critical point. In this way, GF is a continuous version of GD.

Conserved quantities. A conserved quantity of GF is a function Q : Param → R such that the
value of Q at any two time points s, t ∈ R>0 along a GF trajectory is the same: Q(θ(s)) = Q(θ(t)).
In other words, we have dQ(θ(t))/dt = 0. Note that, if f : R → R is any function, and Q is a
conserved quantity, then the composition f ◦ Q is also a conserved quantity. Several conserved
quantities of GF have appeared in the literature, most notably layer imbalance Qimb ≡ ∥Wi∥

2 −
∥Wi−1∥

2 (Du et al., 2018) for each pair of successive feedforward linear layers (σ(x) = x), and its
full matrix version Qi = WT

i Wi −Wi−1W
T
i−1.

We now propose a generalization of the layer imbalance by associating a conserved quantity to
any infinitesimal symmetry. As in Section 3.2, suppose a matrix Lie group G acts linearly on the
parameter space. Then, from (6), we have the identity ⟨∇θL,M · θ⟩ = 0 for any element M in the
Lie algebra g. Using the gradient flow dynamics (10), this identity becomes:

〈
ε−1θ̇ , M · θ

〉
= 0 (11)

In other words, the velocity at any point of a gradient flow curve is orthogonal to the infinitesimal
action. For simplicity, we set the learning rate to the identity: ε = I (all results generalize to
symmetric ε.) The following proposition (whose proof is elementary and well-known) provides a
way of ‘integrating’ equation (11), in the appropriate sense, in order to obtain conserved quantities:

Proposition 5.1. Suppose the action of G on Param is linear7 and leaves L invariant. For any
M ∈ g, there is a conserved quantity QM : Param → R given by QM (θ) = ⟨θ , M · θ⟩.

While Proposition 5.1 directly links the infinitesimal action to conserved quantities, it has the limita-
tion that the conserved quantity corresponding to an anti-symmetric matrix M = −MT in g is con-
stantly zero, and we do not obtain meaningful conserved quantities. Instead, we can only conclude
that flow curves satisfy the differential equation (11). Fixing a basis (θ1, · · · θd) for Param ≃ R

d,

this equation becomes
∑

i<j Mijr
2
ij ϕ̇ij ≡ 0 where (rij , ϕij) are the polar coordinates for the point

(θi,θj) ∈ R
2 (see Appendix C.9.5). In summary, we find:

M ∈ g symmetric M anti-symmetric M
differential equation conserved quantity differential equation

θ̇TMθ = 0 QM (θ) = θTMθ
∑

i<j mijr
2
ij ϕ̇ij ≡ 0

Conserved quantities parametrize symmetry flat directions. We observe that applying a sym-
metry changes the values of the conserved quantities QM (Figure 1). Indeed, for M ∈ g and g ∈ G,

7For simplicity, we also assume that G is closed under taking transposes, and acts faithfully on the parameter
space. These assumptions generally hold in practice; see Appendix C for a version with fewer assumptions.
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we have QM (g · θ) = QgTMg(θ) for all θ ∈ Param, so applying the group action8 transforms
the conserved quantity QM to QgTMg . As discussed in Section 3, applying g to a minimum θ∗ of
L yields another minimum g · θ∗; hence applying symmetries leads to a partial parameterization of
flat minima. Note that, in general, we may lack sufficient number of QM to fully parameterize a flat
minimum. For example, in the linear network UV x, G = GLh and flat minima generically have h2

dimensions, whereas the number of independent nonzero QM is h(h+1)/2, which is the dimension
of the space of symmetric matrices M = MT in glh.

In gradient descent, the values of these conserved quantities may change due to the time discretiza-
tion. However, the change in Q is expected to be small. For example, in two-layer linear networks,
the change of Q is bounded by the square of learning rate. Appendix E contains derivations and
empirical observations of the magnitude of change in Q.

Relation to Noether’s theorem. In physics, Noether’s theorem (Noether, 1918) states that contin-
uous symmetries give rise to conserved quantities. Recently, Tanaka & Kunin (2021) showed that
Noether’s theorem can also be applied to GD by approximating it as a second order GF. We show
that in the limit where the second order GF reduces to first order GF (10), results from Noether’s
theorem reduce to our conservation law

〈
Mθ,∇L

〉
= 0 (6). In short, using Noether’s theorem, the

conserved Noether current is JM = et/τJ0M with J0M =
〈
Mθ, ε

−1θ̇
〉

. In the limit τ → 0, using

(10), J0M =
〈
Mθ,∇L

〉
= 0 and the conservation dJM/dt = 0 implies J0M = 0, meaning we

recover (6). Details appear in Appendix B.

Examples. We present examples of conserved quantities for two-layer neural networks. all of
which directly generalize to the multi-layer case. See Appendix C.9 for full derivations (which
heavily rely on properties of the trace). We adopt the notation of Section 3.3.

Example 5.1. General equivariant activation Suppose σ is equivariant under a linear action of a
subgroup G ⊆ GLh(R), so that π(g)σ(z) = σ(gz). Then the two-layer network F (z) = Uσ(V z)
is invariant under G, as is the loss function. For symmetric M ∈ g, Proposition 5.1 yields the
following conserved quantity:

QM : Param → R, QM (U, V ) = Tr
[
V TMV

]
− Tr

[
UTUdπ(M)

]
(12)

Indeed, this follows from the fact that M · (U, V ) = (−Udπ(M),MV ), as in (5).

Example 5.2. Imbalance in linear layers Suppose the network is linear. Then σ(z) = z and the
loss is invariant under GLh(R). For symmetric M we have the conserved quantity QM (U, V ) =
Tr
[
(V V T − UTU)M

]
. Moreover, each component of the matrix V V T − UTU is conserved.

Example 5.3. Homogeneous activation under scaling Suppose σ is a homogeneous activation

of degree α. Let G = (R>0)
h

be the positive rescaling group, so that σ(gz) = gασ(z) for any
g ∈ G and z ∈ R

h. Note that the Lie algebra of G consists of all diagonal matrices in glh, so
that, in particular, each M ∈ g is symmetric. Since dπ(M) = αM for any M ∈ g, we obtain the

conserved quantity QM (U, V ) = Tr
[
(V V T − αUTU)M

]
. Using the basis M = Ekk, we see that

Q = diag
[
V V T − αUTU

]
is conserved (here, diag[A] is the leading diagonal). Special cases of

this are LeakyReLU and ReLU with α = 1.

Example 5.4. Radial rescaling activations Let σ be such a radial rescaling activation. As in
Section 3.3, the orthogonal group G = O(h) is a symmetry of L. The Lie algebra g = soh comprises
anti-symmetric matrices, and so Proposition 5.1 yields no non-trivial conserved quantities. However,
using the canonical basis of g = soh given by E[kl] = Ekl−Elk (so [kl] indicates anti-symmetrized
indices), one uses equation (11) to deduce the following novel result (see Appendix C.9):

Theorem 5.2. When σ is a radial rescaling activation, we have:

V V̇ T − V̇ V T + UT U̇ − U̇TU = 0 (13)

for any (U, V ) ∈ Param, where the dots indicate derivatives with respect to gradient flow.

Expanding the (k, l) entry of the matrix on the left-hand-side of (13), we obtain:∑n
s=1 r

2
U,s;klϕ̇U,s;kl +

∑m
s=1 r

2
V T ,s;klϕ̇V T ,s;kl = 0, where (rU,s;kl, ϕU,s;kl) and (rV T ,s;kl, ϕV T ,s;kl)

8Note that this procedure only works if gTMg belongs to g, which is the case the examples we consider.
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(a) (b) (c) (d)

Figure 2: Overview of empirical observations with more details in Appendix G, H, and I. (a) In
a two-layer neural network, the convergence rate depends on the conserved quantity Q. (b) The
distribution of the eigenvalues of the Hessian at the minimum is related to the value of Q. (c) The
ensemble created by group actions has similar loss values when ε is small. (d) The ensemble model
improves robustness against fast gradient sign method attacks.

are the 2D polar coordinates of the points (Usk, Usl) and (V T
sk, V

T
sl ). This is analogous to the ªangu-

lar momentumº in 2D, that is: x∧ ẋ = r2ϕ̇. Intuitively, Theorem 5.2 implies that in every 2D plane
(k, l), the angular momenta of the rows of U and the columns of V sum to zero. These results also
apply to linear networks F (x) = UV x, since rotational symmetries are linear.

6 APPLICATIONS

We present a set of experiments aimed at assessing the utility of the nonlinear group action and
conserved quantities9. A summary of the results are shown in Figure 2. We show that the value of
conserved quantities can impact convergence rate and generalizability. We also find the nonlinear
action to be viable for ensemble building to improve robustness under certain adversarial attacks.

Exploration of the minimum. While Q is often unbounded, common initialization methods such
as (Glorot & Bengio, 2010) limit the values of Q to a small range (Appendix F). As a result, only a
small part of the minimum is reachable by the models. Symmetries allow us to explore portions of
flat minima that gradient descent rarely reaches.

Convergence rate and generalizability. Conserved quantities are by definition unchanged during
gradient flows. By relating the values of conserved quantities to convergence rate and model gen-
eralizability, we have access to properties of the trajectory and the final model before the gradient
flow starts. This knowledge allows us to choose good conserved quantity values at initialization.
In Appendix G, we derive the relation between Q and convergence rate for two example optimiza-
tion problems, and provide numerical evidence that initializing parameters with certain conserved
quantity values accelerates convergence. In Appendix H, we derive the relation between conserved
quantities and sharpness of minima in a simple two-layer network, and show empirically that Q
values affect the eigenvalues of the Hessian (and possibly generalizability) in larger networks.

Ensemble models. Applying the nonlinear group action allows us to obtain an ensemble without any
retraining or searching. We show that even with stochasticity in the data, the loss is approximately
unchanged under the group action. The ensemble has the potential to improve robustness under
adversarial attacks (Appendix I).

7 DISCUSSION

In this paper, we present a general framework of equivariance and introduce a new class of nonlinear,
data-dependent symmetries of neural network parameter spaces. These symmetries give rise to
conserved quantities in gradient flows, with important implications in improving optimization and
robustness of neural networks. While our work sheds new light onto the link between symmetries
and group, it contains several limitations, which merit further investigation. First, we have not been
able to determine conserved quantities in the radial rescaling case, only a differential equation that
gradient flow curves must satisfy. Second, one major contribution of this paper is the non-linear
group action of Section 4. However, our formulation only gurantees full GLh equivariance for batch
size k = 1. In future work, we plan to explore more consequences and variations of this non-linear
group action, with the hope of generalizing to greater batch size. Finally, in many cases, parameter
space symmetries lead to model compression: i.e., finding a lower-dimension space of parameters
with the same expressivity of the original space.

9Our code is available at https://github.com/Rose-STL-Lab/Gradient-Flow-Symmetry.
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A ADDITIONAL RELATED WORKS

Mode connectivity / flat regions / ensembles In neural networks, the optima of the loss functions
are connected by curves or volumes, on which the loss is almost constant (Freeman & Bruna, 2017;
Garipov et al., 2018; Draxler et al., 2018; Benton et al., 2021; Izmailov et al., 2018). In these works,
various algorithms have been proposed to find these low-cost curves, which provides a low-cost
way to create an ensemble of models from a single trained model. Other related works include
linear mode connectivity (Frankle et al., 2020), using mode connectivity for loss landscape analysis
(Gotmare et al., 2018), and studying flat region by removing symmetry (Pittorino et al., 2022).

Sharpness of minima and generalization Recent theory and empirical studies suggest that sharp
minimum do not generalize well (Hochreiter & Schmidhuber, 1997; Keskar et al., 2017; Petzka et al.,
2021). Explicitly searching for flat minimum has been shown to improve generalization bounds and
model performance (Chaudhari et al., 2017; Foret et al., 2020; Kim et al., 2022). The sharpness of
minimum can be defined using the largest loss value in the neighborhood of a minima (Keskar et al.,
2017; Foret et al., 2020; Kim et al., 2022), visualization of the change in loss under perturbation with
various magnitudes on weights (Izmailov et al., 2018), singularity of Hessian (Sagun et al., 2017),
or the volume of the basin that contains the minimum (approximated by Radon measure (Zhou
et al., 2020) or product of the eigenvalues of the Hessian (Wu et al., 2017)). Under most of these
metrics, however, equivalent models can be built to have minimum with different sharpness but same
generalization ability (Dinh et al., 2017). Applications include explaining the good generalization of
SGD by examining asymmetric minimum (He et al., 2019), and new pruning algorithms that search
for minimizers close to flat regions (Chao et al., 2020).
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Parameter space symmetry and optimization While sets of parameter values related by the
symmetries produce the same output, the gradients at these points are different, resulting in different
learning dynamics (Kunin et al., 2021; Van Laarhoven, 2017). This insight leads to a number of
new advances in optimization. Neyshabur et al. (2015) and Meng et al. (2019) propose optimization
algorithms that are invariant to symmetry transformations on parameters. Armenta et al. (2023) and
Zhao et al. (2022) apply loss-invariant transformations on parameters to improve the magnitude of
gradients, and consequently the convergence speed.

The structures encoded in known symmetries have also led to new optimization methods and insights
of the loss landscape. Bamler & Mandt (2018) improves the convergence speed when optimizing
in the direction of weakly broken symmetry. Zhang et al. (2020) discusses how symmetry helps in
obtaining global minimizers for a class of nonconvex problems. The potential relevance of continu-
ous symmetries in optimization problems was also discussed in Leake & Vishnoi (2021), which also
provides an overview of Lie groups.

B RELATION TO NOETHER’S THEOREM

We will now show how the approach in Tanaka & Kunin (2021) relates to our conservation law

dQ/dt =
〈
θ̇,Mθ

〉
= 0. Assuming a small time-step τ ≪ 1, we can write GD as θ(t+τ)−θ(t) =

−ε̃∇L(θ(t)). Expanding the l.h.s to second order in τ and discarding O(τ3) terms defines the 2nd
order GF equation

2nd order GF:
dθ

dt
+

τ

2

d2θ

dt2
= −ε∇L. (14)

Here ε = ε̃/τ . To use Noether’s theorem, the dynamics (i.e. GF) must be a variational (Euler-
Lagrange (EL)) equation derived from an ªactionº S(θ) (objective function), which for (14) is the
time integral of Bregman Lagrangian (Wibisono & Wilson, 2015) L

S(θ) =

∫
dtL(θ(t), θ̇(t); t) =

∫

γ

dtet/τ
[τ
2

〈
θ̇, ε−1θ̇

〉
− L(θ)

]
(15)

where θ : R → Param is a trajectory (flow path) in Param, parametrized by t. The variational
EL equations find the paths γ∗ which minimize the action, meaning ∂Sγ/∂γ|γ∗ = 0.

Noether’s theorem states that if M ∈ g is a symmetry of the action S(θ) (15) (not just the loss
L(θ)), then the Noether current JM is conserved

Noether current: JM =

〈
Mθ,

∂L

∂θ̇

〉
= et/τ

〈
Mθ, ε

−1θ̇
〉
= et/τJ0M ,

Conservation:
dJM
dt

= et/τ
[
1

τ
J0M +

dJ0M
dt

]
= 0, ⇒ J0M (t) = J0Me−t/τ (16)

Tanaka & Kunin (2021) also derived the Noether current (16), but concludes that because L(θ, θ̇) ̸=
L(θ), the symmetries are ªbrokenº and therefore doesn’t derive conserved charges for the types of
symmetries we discussed above. However, while Tanaka & Kunin (2021) focuses on 2nd order GF,
we note that our conserved Q were derived for first order GF, which is found from the τ → 0 limit
of 2nd oder GF. In this limit L → et/τL and thus symmetries of L also becomes symmetries of L.

When τ → 0, 2nd order GF reduces to ε−1θ̇ = −∇L the conserved charge goes to

lim
τ→0

J0M =
〈
Mθ,∇L

〉
= J0M (0) lim

τ→0
e−t/τ = 0, (17)

which means that we recover the invariance under infinitesimal action (6). In fact, for linear sym-
metries and symmetric M ∈ g, J0M = dQM/dt = 0.

C NEURAL NETWORKS: LINEAR GROUP ACTIONS

In this appendix, we provide an extended discussion of the topics of Section 3, including full proofs
of all results. Specifically, after some technical background material on Jacobians and differen-
tials, we specify our conventions for neural network parameter space symmetries. In contrast to the
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discussion of the main text, we (1) assume that neural networks have biases, and (2) focus on the
multi-layer case rather than just the two-layer case. We then turn our attention to group actions of the
parameter space that leave the loss invariant, and the resulting infinitesimal symmetries. The groups
we consider are all subgroups of a large group of change-of-basis transformations of the hidden
feature spaces; we call this group the ‘hidden symmetry group’. We also compute the dimensions
of generic extended flat minima in various relevant examples. Finally, we explore consequences of
invariant group actions for conserved quantities.

C.1 JACOBIANS AND DIFFERENTIALS

In this section, we summarize background material on Jacobians and differentials. We adopt notation
and conventions from differential geometry. Let U ⊂ R

n be an open subset of Euclidean space R
n,

and let F : U → R
m be a differentiable function. Let F1, . . . , Fm : U → R be the components

of F , so that F (u) = (F1(u), . . . , Fm(u)). The Jacobian of F , also know as differential of F , at
u ∈ U is the following matrix of partial derivatives evaluated at u:

dFu =




∂F1

∂x1

∣∣
u

∂F1

∂x2

∣∣
u

· · · ∂F1

∂xn

∣∣
u

∂F2

∂x1

∣∣
u

∂F2

∂x2

∣∣
u

· · · ∂F2

∂xn

∣∣
u

...
...

. . .
...

∂Fm

∂x1

∣∣
u

∂Fm

∂x2

∣∣
u

· · · ∂Fm

∂xn

∣∣
u




The differential dFu defines a linear map from R
n to R

m, that is, an element of Rm×n. Observe that
if F itself is linear, then, as matrices, dFu = F for all points u ∈ U . If G : Rm → R

p is another
differentiable map, then the chain rule implies that, for all u ∈ R

n, we have:

d(G ◦ F )u = dGF (u) ◦ dFu.

In the special case the m = 1, the differential is a 1 × n row vector, and the gradient ∇uF of F at
u ∈ R

n is defined as the transpose of the Jacobian dFu:

∇vF = (dFu)
T =

[
∂F
∂x1

∣∣
u

. . . ∂F
∂xn

∣∣
u

]T
=

(
∂F

∂xi

∣∣∣∣
u

)n

i=1

∈ R
n

C.2 NEURAL NETWORK PARAMETER SPACES

Consider a neural network with L layers, input dimension n0 = n, output dimension nL = m, and
hidden dimensions given by n1, . . . , nL−1. For convenience, we group the dimensions into a tuple
n = (n0, n1, . . . , nL). The parameter space is given by:

Param(n) = R
nL×nL−1 ×R

nL−1×nL−2 × · · · ×R
n2×n1 ×R

n1×n0 ×R
nL ×R

nL−1 × · · · ×R
n1 .

We write an element therein as a pair θ = (W,b) of tuples W = (WL, . . . ,W1) and b =
(bL, . . . , b1), so that Wi is a ni × ni−1 matrix and bi is a vector in R

ni for i = 1, . . . , L. When
n is clear from context, we write simply Param for the parameter space. Fix a piecewise differ-
entiable function σi : Rni → R

ni for each i = 1, . . . , L. The activations can be pointwise (as is
conventionally the case), but are not necessarily so. The feedforward function

F = Fθ : Rn → R
m

corresponding to parameters θ = (W,b) ∈ Param with activations σi is defined in the usual
recursive way. To be explicit, we define the partial feedforward function Fθ,i = Fi : R

n → R
ni to

be the map taking x ∈ R
n to σi(WiFi−1(x) + bi), for i = 1, . . . , L, with F0 = idRn0 . Then the

feedforward function is F = FL. The ªloss functionº L of our model is defined as:

L : Param×Data → R, L(θ, (x, y)) = Cost(y, Fθ(x)). (18)

where Data = R
n0 × R

nL is the space of data (i.e., possible training data pairs), and Cost :
R

nL ×R
nL → R is a differentiable cost function, such as mean square error or cross-entropy. Many,

if not most, of our results involve properties of the loss function L that hold for any training data.
Hence, unless specified otherwise, we take a fixed batch of training data {(xi, yi)}

k
i=1 ⊆ Data, and

consider the loss to be a function of the parameters only.
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The above constructions generalize to multiple samples. Specifically, instead of x ∈ R
n0 and

y ∈ R
nL , one has matrices X ∈ R

no×k and Y ∈ R
nL×k whose columns are the k samples.

Additionally, one uses the Frobenius norm of nL × k matrices to compute the loss function. The
i-th partial feedforward function is Fθ,i : R

n0×k → R
ni×k, and we have the feedforward function

Fθ : Rn0×k → R
nL×k. (We use the same notation as in the case k = 1; the number of samples will

be understood from context.)

Example C.1. Consider the case L = 2 with no biases and no output activation. The dimension
vector is (n0, n1, n2) = (n, h,m), so the parameter space is Param(n, h,m) = R

h×n × R
m×h.

Taking the mean square error cost function, the loss function for data (X,Y ) ∈ R
n×k×R

m×k takes
the form L(θ, (X,Y )) = 1

k∥Y − Uσ(V X)∥2, where θ = (W2,W1) = (U, V ) ∈ Param.

C.3 ACTION OF CONTINUOUS GROUPS AND INFINITESIMAL SYMMETRIES

Let G be a group. An action of G on the parameter space Param is a function · : G×Param →
Param, written as g · θ, that satisfies the unit and multiplication axioms of the group, meaning
I · θ = θ where I is the identity of G, and g1 · (g2 · θ) = (g1g2) · θ for all g1, g2 ∈ G. Recall that
we say an action G × Param → Param is a symmetry of Param with respect to L if it leaves
the loss function invariant, that is:

L(g · θ) = L(θ), ∀θ ∈ Param, g ∈ G (19)

The groups within the scope of this paper are all matrix Lie groups, which are topologically closed
subgroups G ⊆ GLn(R) of the general linear group of invertible n × n real matrices. Any smooth
action of such a group induces an action of the infinitesimal generators of the group, i.e., elements
of its Lie algebra. Concretely, let g = Lie(G) = TIG be the Lie algebra, which can be thought of
as a certain subspace of matrices in gln = R

n×n, or (equivalently) as the tangent space10. at the
identity I of G. For every matrix M ∈ g, we have an exponential map expM : R → G defined as

expM (t) =
∑∞

k=0
(tM)k

k! . Given an action of G on Param, the infinitesimal action of M ∈ g is a

vector field M :

Infinitesimal action of M vector field: Mθ :=
d

dt

∣∣∣∣
t→0

(expM (t) · θ) , ∀θ ∈ Param. (20)

Hence, the value of the vector field M at the parameter value θ is given by the derivative at zero
of the function t 7→ (expM (t) · θ). In the case of a parameter space symmetry, the invariance
of L translates into the orthogonality condition in Proposition 3.4, where the inner product ⟨, ⟩ :
Param×Param → R is calculated by contracting all indices, e.g. ⟨A,B⟩ =

∑
ijk... Aijk...Bijk....

Proof of Proposition 3.4. The gradient is the transpose of the Jacobian (see Section C.1), so the
left-hand-side becomes dLθ

(
d
dt

∣∣
0
(expM (t) · θ)

)
. We compute:

dLθ

(
d

dt

∣∣∣∣
0

(expM (t) · θ)

)
=

d

dt

∣∣∣∣
0

L(expM (t) · θ) =
d

dt

∣∣∣∣
0

L(θ) = 0

where the first equality follows by the chain rule, the second equality uses the invariance of L, and
the third equality follows since L(θ) does not depend on t.

Next, we comment on the case of a linear action. Observe that the parameter space is a vector

space of dimension d = dim(Param) =
∑L

i=1 ni(1 + ni−1). Hence, there is an isomorphism

Param ≃ R
d which flattens any tuple θ = (W,b) into a vector in R

d. We can identify the group
GL(Param) of all invertible linear transformations of the parameter space with the group GLd(R)
of invertible d× d matrices, and the Lie algebra of GL(Param) with gld = R

d×d. Suppose G acts
linearly on the parameter space. Then we can identify11 G with a subgroup of GL(Param), acting
on Param with matrix multiplication. Similarly, we can identify the Lie algebra g of G with a Lie
subalgebra of gld = R

d×d. In this case, the infinitesimal action is given by matrix multiplication:

Mθ = M · θ. We recover Equation (6).

10Hence, elements of the Lie algebra are ‘velocities’ at the identity of G. More precisely, for every Lie
algebra element ξ, there is a path γξ : (−ϵ, ϵ) → G whose value at 0 is the identity of G and whose derivative
(i.e., velocity) at zero is ξ.

11Modding out by the kernel, if necessary.
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C.4 THE HIDDEN SYMMETRY GROUP

Consider a neural network with L layers and dimensions n. The hidden symmetry group correspond-
ing to dimensions n is defined as the following product of general linear groups:

GLnhidden = GLn1
× · · · ×GLnL−1

An element is a tuple of invertible matrices g = (g1, . . . , gL−1), where gi ∈ GLni
. Consider the

action of the hidden symmetry group on the parameter space given by

GLnhidden ⟳ Param(n) g · (W,b) =
(
giWig

−1
i−1 , gibi

)L
i=1

. (21)

where g0 = idn0
and gL = idnL

. This action amounts to changing the basis at each hidden feature
space. The Lie algebra of GLnhidden is

glnhidden = gln1
× · · · × glnL1

,

and the infinitesimal action of the tuple M ∈ glnhidden is given by:

glnhidden ⟳ Param(n) M · (W,b) 7→ (MiWi −WiMi−1 , Mibi)
L
i=1

where we set M0 and ML to be the zero matrices.

Example C.2. In the case L = 2, with dimension vector n = (n, h,m) and no biases. The hidden
symmetry group is GLh with Lie algebra glh. The action of the group and the infinitesimal action
of the Lie algebra are given by:

GLh ⟳ Param(n, h,m) = R
h×n × R

m×h g · (V, U) =
(
gV, Ug−1

)

glh ⟳ Param(n, h,m) = R
h×n × R

m×h M · (V, U) = (MV,−UM)

C.5 LINEAR SYMMETRIES

Consider a feedforward fully-connected neural network with widths n = (n0, . . . , nL), so that the

parameters space consists of tuples of weights and biases θ = (Wi ∈ R
ni×ni−1 , bi ∈ R

ni)
L
i=1. For

each hidden layer 0 < i < L, let Gi be a subgroup of GLni
, and let πi : Gi → GLni

(R) be
a representation (in many cases, we take πi(g) = g). Hence the product G = G1 × GL−1 is a
subgroup of the hidden symmetry group GLnhidden . Define an action of G on Param via

∀g = (g1, . . . , gL) ∈ G, g ·Wi = giWiπi−1(g
−1
i−1) g · bi = gibi (22)

where g0 and gL are the identity matrices idn0
and idnL

, respectively. This is a version of the action
defined in (21), with the addition of the twists resulting from the representations πi.

We now consider the resulting infinitesimal action. For each i, the representation πi induces a
Lie algebra representation d(πi) : gi → glni

. The infinitesimal action of the Lie algebra g =
g1 × · · · × gL induced by 22 is given by:

∀M = (M1, . . . ,ML) ∈ g, M ·Wi = MiWi −Wid(πi−1)(Mi−1) M · bi = Mibi (23)

The proof of the first part of the following Proposition proceeds by induction, where the key com-
putation is that of from (4). The second part relies on (6).

Proposition C.1. Suppose that, for each i = 1, . . . , L, the activation σi intertwines the two actions
of Gi, that is, σi(gizi) = πi(gi)σ(zi) for all gi ∈ Gi, zi ∈ R

ni . Then:

1. (Combined equivariance of activations) The action of G = G1 × · · · ×GL defined in 22 is
a symmetry of the parameter space.

2. (Infinitesimal equivariant action) The action of g = g1 × · · · × gL defined in 23 satisfies
⟨∇θL,M · θ⟩ for all θ ∈ Param and all M ∈ g.

Proof. Let g = (gi)
L−1
i=1 ∈ G, so that gi ∈ Gi ⊆ GLni

. As usual, set g0 = idn0 and gL = idnL
.

Also set π0 and πL to be the identity maps on GLn0 and GLnL
, respectively. Fix parameters θ
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and an input value x ∈ R
n. We show by induction that the following relation between the partial

feedforward functions holds:
Fg·θ,i(x) = πi(gi)(Fθ,i(x))

for i = 0, . . . , L. The base step is trivial. For the induction step, we use the recursive definition of
the partial feedforward functions:

Fg·θ,i(x) = σi(giWiπi−1(g
−1
i−1)Fg·θ,i−1(x) + gibi)

= σi(gi(Wiπi−1(g
−1
i−1)πi−1(gi−1)Fθ,i−1(x) + bi)

= πi(gi)σi(WiFθ,i−1(x) + bi) = πi(gi)Fθ,i(x)

Hence θ and g · θ define the same feedforward function. Since the loss function depends on the
parameters only through the feedforward function, the first claim follows. The second claim is a
consequence of Proposition 3.4.

Note that two-layer case of the above result amounts to (4) (the argument can be simplified in that
case). While Proposition C.1 is stated for feedforward networks, it can easily be adopted to more
general settings, such as networks with skip connections and quiver neural networks. Denoting the
Jacobian of σi : R

ni → R
ni at z ∈ R

ni by d(σi)z ∈ R
ni×ni , the infinitesimal form of version of

σi(gz) = πi(g)σi(z) is

⟨d(σi)z,Mz⟩ = dπi(M)σi(z) ∀M ∈ glni
(24)

When the activation is pointwise, we have Mz ⊙ σ′
i(z) = d(π)i(M)σi(z), where ⊙ denotes ele-

mentwise multiplication. We now illustrate Proposition C.1 through examples in the two-layer case
with input dimension n, hidden dimension h, hidden activation σ, and output dimension m.

Example C.3. Linear networks For linear networks, we have σ(x) = x. One can take π(g) = g
and G = GLh(R).

Example C.4. Homogeneous activations Suppose the activation σ : Rh → R
h is homogeneous,

so that (1) σ is applied pointwise in the standard basis, and (2) t there exists α > 0 such that
σ(cz) = cασ(z) for all c ∈ R>0 and z ∈ R

h. These σ are equivariant under the positive scaling
group G ⊂ GLh consisting of diagonal matrices with positive diagonal entries. For g ∈ G, we have
g = diag(c) is a diagonal matrix with c = (c1, . . . , ch) ∈ R

h
>0. For z = (z1, . . . , zh) ∈ R

h, we
have σ(gz) =

∑
j σ(cjzj) =

∑
j c

α
j σ(zj) = gασ(z). Hence, the equivariance condition holds with

π(g) = gα. Since dπ(M) = αM for any element M of the Lie algebra g of G, the infinitesimal
version of rescaling invariance of homogeneous σ becomes Mz ⊙ σ′(z) = αMσ(z).

Example C.5. LeakyReLU This is a special case of homoegeneous activation, defined as σ(z) =
max(z, 0) − smin(z, 0), with s ∈ R>0. We have α = 1, and π(g) = g. Since σ(z) = zσ′(z),
infinitesimal equivariance becomes Mz ⊙ σ′(z) = Mσ(z).

Example C.6. Radial rescaling activations A less trivial example of continuous symmetries is the
case of a radial rescaling activation (Ganev et al., 2022) where for z ∈ R

h \ {0}, σ(z) = f(∥z∥)z
for some function f : R → R. Radial rescaling activations are equivariant under rotations of the
input: for any orthogonal transformation g ∈ O(h) (that is, gT g = I) we have σ(gz) = gσ(z) for
all z ∈ R

h. Indeed, σ(gz) = f(∥gz∥)(gz) = g(f(∥z∥)z) = gσ(z), where we use the fact that
∥gz∥ = zT gT gz = zT z = ∥z∥ for g ∈ O(h). Hence, (4) is satisfied with π(g) = g.

C.6 LINEAR SYMMETRIES LEAD TO EXTENDED, FLAT MINIMA

In this section, we show that, in the case of a linear group action, applying the action of any element
of the group to a local minimum yields another local minimum. This fact is a corollary of a more
general result; in order to describe it and remove ambiguity, we include the following clarifications.
Let G be a matrix Lie group acting as a linear symmetry. Fix a basis (θ1, . . . , θd) of the parameter
space. The gradient ∇θL of the loss L at a point θ ∈ Param in the parameter space as another
vector in Param ≃ R

d, whose i-th coordinate is the partial derivative ∂L
∂θi

∣∣
θ

. Hence, it makes sense

to apply the group action to the gradient: g · ∇θL. We regard vectors in Param ≃ R
d as column

vectors with d rows. Thus, the transpose of any vector is a row vector with d columns. In the case
of the gradient, its transpose at θ matches the Jacobian dLθ ∈ R

1×d of L (see Appendix C.1), that
is: dLθ = (∇θL)

T . Alternative notation for the Jacobian is dLθ0 = ∂L
∂θ

∣∣
θ0

, where we now use θ
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as a dummy variable and θ0 ∈ Param as a specific value. As noted above, we are interested in
matrix Lie groups G ⊆ GLd(R) = GL(Param), and assume that the matrix transpose gT belongs
to G for any g ∈ G. These assumptions hold in all examples of interest. We have the following
reformulation of Proposition 3.2:

Proposition C.2. Suppose the action of G on the parameter space is linear and leaves the loss
invariant. Then the gradients of L at any θ0 and g · θ0 are related as follows:

gT · ∇g·θ0
L = ∇θ0

L ∀g ∈ G, ∀θ0 ∈ Param (25)

If θ∗ is a critical point (resp. local minimum) of L, then so is g · θ∗.

Sketch of proof. Let Tg : Param → Param be the transformation corresponding to g ∈ G. The
the Jacobian dLθ0

is given by:

dLθ0
=

∂L

∂θ

∣∣∣∣
θ0

=
∂(L ◦ Tg)

∂θ

∣∣∣∣
θ0

=
∂L

∂θ

∣∣∣∣
g·θ0

∂Tg

∂θ

∣∣∣∣
θ0

= dLg·θ0
◦ Tg

where we use the definition of the Jacobian, the invariance of the loss (L ◦ Tg = L), the chain rule,
and the linearity of the action. The result follows from applying Tg−1 on the right to both sides, and
taking transposes (see Appendix C.1). The last statement follows from the invariance of L under the
action of G, and the fact that ∇θ∗L = 0 at a critical point θ∗ of L.

We conclude that, if θ∗ is a critical point, then the set {g · θ | g ∈ G} belongs to the critical
locus. This set is known as the orbit of θ under the action of G, and is isomorphic to the quotient
G/StabG(θ), where StabG(θ) = {g ∈ G | g · θ = θ} is the stabilizer subgroup of θ in G. In the
case of a linear action, the orbit is a smooth manifold. While the results above imply that the critical
locus is a union of G-orbits, they do not imply, in general, that the critical locus is a single G-orbit.
They also do not rule out the case that the stabilizer is a somewhat ‘large’ subgroup of G, in which
case the orbit would have low dimension. However, in many cases, there is a topologically dense
subset of parameter values θ ∈ Param whose orbits all have the same dimension. We call such an
orbit a ‘generic’ orbit. We now turn our attention to examples of two-layer networks where such a
generic orbit exists.

C.6.1 FLAT DIRECTIONS IN THE TWO-LAYER CASE

Recall that the parameter space of a two-layer network is Param = R
m×h × R

h×n, where the
dimension vector is (m,h, n), and we write elements as (U, V ). The action of GLh is g · (U, V ) =
(Ug−1, gV ). Let Param◦ ⊆ Param be the subset of pairs (U, V ) where each of U and V have
full rank. This is an open dense subset of Param, and is preserved by the GLh-action.

Proposition C.3. The GLh-orbit of each element of Param◦ has dimension

dim(Orbit) = h2 −max(0, h− n)max(0, h−m).

Proof. Fix (U, V ) ∈ Param◦. Suppose h ≤ n, so that h2 −max(0, h− n)max(0, h−m) = h2.
Then V ∈ R

h×n defines a surjective linear map, so has a right inverse V † ∈ R
n×h. If g ∈ GLh

belongs to the stabilizer of (U, V ), then we have gV = V . Applying V † on the right to both sides,
we obtain g = idh. Thus, the stabilizer of (U, V ) is trivial, and the orbit has dimension equal to the
dimension of the group, namely h2. The case h ≤ m is similar.

Now suppose h > max(n,m). In this case, h2−max(0, h−n)max(0, h−m) = h(n+m)−nm.

Set U0 = [idm 0] ∈ R
m×h and V0 =

[
idn

0

]
∈ R

h×n, so that the last h −m rows of U0 are zero,

and the last h − n columns of V0 are zero. Then, by the rank assumption, there exists g1 ∈ GLh

such that Ug1 = U0, and there exists g2 ∈ GLh such that g−1
2 V = V0. Without loss of generality,

we can take g1 and g2 such that det(g1) > 0 and det(g2) > 0. Thus, both g1 and g2 belong to the
component of the identity in GLh.

Next, consider the action of G = GLh on full rank matrices in R
m×h and R

h×n individually. We
have that StabG(U) = g1StabG(U0)g

−1
1 and StabG(V ) = g2StabG(V0)g

−1
2 . The stabilizer in
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GLh of the pair (U, V ) ∈ Param◦ can be written as:

StabG(U, V ) = {g ∈ G | Ug−1 = U and gV = V } (26)

= StabG(U) ∩ StabG(V ) (27)

= (g1StabG(U0)g
−1
1 ) ∩ (g2StabG(V0)g

−1
2 ) (28)

Since g1 and g2 belong to the connected component of the identity, the dimension of
(g1StabG(U0)g

−1
1 ) ∩ (g2StabG(V0)g

−1
2 ) is equal to the dimension12 of StabG(U0) ∩ StabG(V0).

Hence we reduce the problem to computing the dimension of StabG(U0) ∩ StabG(V0).

To this end, observe that a matrix g belongs to StabG(U0) (resp. StabG(V0)) if and only if is of the
form:

g =

[
idm 0
∗ ∗

]
(resp. g =

[
idn ∗
0 ∗

]
)

where the lower left ∗ ∈ R
(h−m)×m and the lower right ∗ ∈ GLh−m (resp. upper right ∗ ∈

R
n×(h−n) and lower right ∗ ∈ GLh−n) are arbitrary. If m ≥ n, taking the intersection amounts to

considering matrices of the form:

g =

[
idn 0 0
0 idm−n 0
0 ∗ ∗

]

where the rows and columns are divided according to the partition h = n+ (m− n) + (h−m). If
m ≥ n, taking the intersection amounts to considering matrices of the form:

g =

[
idm 0 0
0 idn−m ∗
0 0 ∗

]

where the rows and columns are divided according to h = m+(n−m)+(h−n). In both cases, the
dimension of the intersection is (h− n)(h−m) = h2 − hn− hm+ nm. We obtain the dimension
of the orbit as: h2 − (h− n)(h−m) = h(n+m)− nm.

Recall that the symmetry group for homogenous activations is the coordinate-wise positive rescaling
subgroup of GLh, consisting of diagonal matrices with positive entries along the diagonal. We
denote this subgroup as T+(h). Similarly, the symmetry group for radial rescaling activation is the
orthogonal group O(h). For linear networks, the activation is the identity function, so the symmetry
group is all of GLh.

Corollary C.4. The orbit of a point in Param◦ under the appropriate symmetry group is given by:

Type of activation Symmetry group Dimension of generic orbit

Linear GLh h2 −max(0, h− n)max(0, h−m)

Homogeneous T+(h) min(h,max(n,m))

Radial rescaling O(h)

{(
h
2

)
if h ≤ max(n,m)(

h
2

)
−
(
h−max(m,n)

2

)
otherwise

Proof. Adopt the notation of the proof of the above Proposition. The stabilizer in T+(h) of (U0, V0)
is the intersection of the stabilizer in GLh of (U0, V0) and T+(h). This intersection is easily seen
to have dimension max(0, h − max(n,m)). Subtracting this from dim(T+(h)) = h, we obtain
the result for the homogeneous case. For the orthogonal case, the stabilizer in O(h) of (U0, V0) is
the intersection of the stabilizer in GLh of (U0, V0) and O(h). This intersection has dimension 0

if h ≤ max(n,m) and
(
h−maxn,m

2

)
otherwise. Subtracting from dim(O(h)) =

(
h
2

)
, we obtain the

result for the radial rescaling case.

12Explicitly, fix a continuous path γi : [0, 1] such that γi(0) is the identity in G and γi(1) = gi, for i = 1, 2.
The dimension of (γ1(t)StabG(U0)γ1(t)

−1) ∩ (γ2(t)StabG(V0)γ2(t)
−1) is constant along this path.
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C.7 CONSERVED QUANTITIES

We now turn our attention to gradient flow and conserved quantities. In this section, we give a
formal definition of a conserved quantity. Let V = R

d be the standard vector space of dimension d.
Suppose L : V → R is a differentiable function. Let Flowt : V → V be the flow for time t along
the reverse gradient vector field, so that:

d

dt

∣∣∣∣
0

[t 7→ Flowt(v)] = −∇vL

Note that Flow0 is the identity on V , and, for any s, t, the composition of Flows and Flowt is
Flows+t. We will write v(t) for Flowt(v), so that v̇(s) = −∇v(s)L. A conserved quantity is a
function Q : V → R that satisfies either of the following equivalent conditions:

1. For any t, we have Q(v(t)) = Q(v).

2. Let Q̇(v) = d
dt

∣∣
0
[t 7→ Q(v(t))] be the derivative of Q along the flow. Then Q̇ ≡ 0.

3. The gradients of Q and L are point-wise orthogonal, that is, ⟨∇vQ,∇vL⟩ = 0 for all
v ∈ V .

The equivalence of (1) and (2) are immediate. To show the equivalence of the third and second
statements, let v ∈ V and compute:

⟨∇vQ,∇vL⟩ = dQv(0) ◦ ∇vL = dQv(0) ◦
d

dt

∣∣∣∣
0

v(t) =
d

dt
(Q ◦ v(t)) ,

where we use the definition of the flow in the second equality, and the chain rule in the third.

We note that, if f : R → R is any function, and Q is a conserved quantity, the f ◦ Q is also a con-
served quantity. Additionally, any linear combination of conserved quantities is again a conserved
quantity. Let Conserv(V, L) denote the vector space of conserved quantities for the gradient flow
of L : V → R. For any v ∈ V , there a map:

∇v : Conserv(V, L) → TvV = R
d, Q 7→ ∇vQ

taking a conserved quantity to the value of its gradient at v. By the above discussion, the map ∇v is
valued in the kernel of the differential dLv .

C.8 CONSERVED QUANTITIES FROM A GROUP ACTION

Let G be a subgroup of the general linear group GLd(R). Thus, there is a linear action of G on
V = R

d. Suppose the function L is invariant for the action of G, that is,

L(g · v) = L(v) ∀v ∈ V ∀g ∈ G.

Let g = Lie(G) be the Lie algebra of G, which is a Lie subalgebra of gld = R
d×d. The infinitesimal

action of g on V is given by g× V → V , taking (M, v) to Mv.

Proposition C.5. Let L : V → R be a G-invariant function, and let M ∈ g.

1. For any v ∈ V , the gradient of L and the infinitesimal action of M are orthogonal:

⟨∇vL,Mv⟩ = 0.

2. Suppose γ : (a, b) → V is a gradient flow curve for L. Then:

(γ̇(t))
T
Mγ(t) = 0 ∀t ∈ (a, b)

3. Suppose MT belongs to g. Then the function

QM : V → R, v 7→ vTMv

is a conserved quantity for the gradient flow of L.
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Proof. For the first claim, observe that the invariance of L implies that the left diagram commutes:

G

��

inc
// R

d×d evv
// R

d

L

��

{v}
L

// R

g

��

dinc1
// R

d×d
d(evx)idd

// R
d

dLv

��

0 // R

where inc : G → R
d×d is the inclusion (which passes through the inclusion of G in to GLd(R)),

evv : Rd×d → R
d be the evaluation map at v, and the left vertical map is the constant map at {v}.

Indeed, the clockwise composition is g 7→ L(gv), which is equal to the constant map at g 7→ L(v).
The chain rule implies that taking Jacobians at the identity 1 of G results in the commutative diagram
on the right. where g is the Lie algebra of G, identified with the tangent space of G at the identity;
the tangent space of the vector space R

d at v is canonically identified with R
d; and the the zero

appears because the tangent space of a single point is zero. The derivative of the inclusion map is
the inclusion g ↪→ gld = R

d×d, while the derivative the evaluation map is itself as it is a linear map.
Hence, for M ∈ g, we have:

0 = dLv ◦ d(evv)idd
◦ dinc1(M) = dLv ◦ evv(M) = dLv(Mv) = ⟨∇vL,Mv⟩.

The first claim follows. The second claim is consequence of the first claim, together with the defini-
tion of a gradient flow curve. For the third claim, we take the derivative of the composition of QM

with a gradient flow curve γ:

d

dt
(QM ◦ γ) = (γ̇(t))T (M +MT )γ(t)

= ⟨γ̇(t), (M +MT )γ(t)⟩

= −⟨∇γ(t)L, (M +MT )γ(t)⟩

= −⟨∇γ(t)L,Mγ(t)⟩ − ⟨∇γ(t)L,M
T γ(t)⟩

Both terms in the last expression are constantly zero by the second claim. Hence QM is constant on
any gradient flow curve, and so it is a conserved quantity.

We summarize some of the results and constructions of this section diagrammatically. Let gsym

denote the vector space of symmetric matrices in g (this is not a Lie subalgebra in general). Observe
that g ∩ gT is the set of all M ∈ g such that MT ∈ g. Let InfinG(V, L) denote the vector space of
infinitesimal-action conserved quantities for the gradient flow of the G-invariant function L : V →
R. We have:

g ∩ gT

InfinG(V, L) Conserv(V, L)

gsym

M 7→QM

≃

where the map g∩gT → gsym takes M to its symmetric part 1
2

(
M +MT

)
, while the map gsym ↪→

g ∩ gT is the natural inclusion. We note that g ∩ gT is the Lie algebra of the group G ∩ GT , while
gsym is in general not a Lie algebra. By definition, the vector space InfinG(V, L) is the image of the
map M → QM defined on g ∩ gT . It is straightforward to verify the following result:

Corollary C.6. The map M → QM establishes an isomorphism of vector spaces: gsym
∼
−→

InfinG(V, L).

As discussed in Section 3.2, applying a symmetry g to a minimum θ∗ of L yields another minimum
g ·θ∗. Using flattened θ ∈ R

d it is easy to show that acting with g changes some QM (θ) = θTMθ.
Let g = expM ′(t) ≈ I + tM ′, with M ′ ∈ g and 0 < η ≪ 1 be a g ∈ G close to identity. We have

QM (g · θ) = QM + tθT
(
M ′TM +MM ′

)
θ + O(η2). Thus, whenever M ′TM + MM ′ ̸= 0,

applying g changes the value of QM . Therefore, QM can be used to parameterize the flat minima.
However, for anti-symmetric M , we could not find nonzero Q explicitly.
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C.8.1 ANTI-SYMMETRIC CASE

Suppose M ∈ g is anti-symmetric, so M = −MT . Let γ : (a, b) → R
d be a gradient flow curve.

Write γ in coordinates as γ = (γ1, . . . , γd). Proposition C.5 implies that (γ̇(t))
T
Mγ = 0. Hence

we have:

0 =
∑

i<j

mij (γ̇iγj − γiγ̇j) =
∑

i<j

mijγ
2
i

(
γj
γi

)′

=
∑

i<j

mijr
2
ij θ̇ij

where rij = rij(t) is equal to
√

γi(t)2 − γj(t)2 and θij = θij(t) is the angle between the i-th
coordinate axis and the ray from the origin to the projection of γ(t) to the (i, j)-plane. One verifies
the last equality using the definition of θij in terms of the arctangent of the quotient γj/γi. We see

that (rij(t), θij(t)) are the polar coordinates for the point (γi(t), γj(t)) ∈ R
2.

Case d = 2. Then M =

[
0 a
−a 0

]
for some nonzero a ∈ R, and so:

0 = γ̇TMγ = aγ̇1(t)γ2(t)− aγ1(t)γ̇2(t) = ar(t)2θ̇(t)

where r(t) and θ(t) are polar coordinates. Setting the final expression equal to zero, we obtain that
θ(t) is constant along any flow line γ(t) that begins away from the origin.

Case d = 3. Then M =

[
0 a b
−a 0 c
−b −c 0

]
for some a, b, c ∈ R, and so:

0 = γ̇TMγ = ar212θ̇12 + br213θ̇13 + cr223θ̇23

C.9 EXAMPLES OF CONSERVED QUANTITIES FOR NEURAL NETWORKS

We now compute conserved quantities for gradient flow on neural network parameter spaces in the
case of linear, homogeneous, and radial networks. In each case, we state results first in the for a
general multi-layer network, and then for the running example of a two-layer network. Throughout,
⊙ denotes the Hadamard product of matrices, defined by entrywise multiplication. We also set
τ(M) to be the sum of all entries in a matrix M . We note that, for square matrices M and N of the
same size, τ(M ⊙N) = Tr(MTN), which is the same as the inner product of the flattened versions
of M and N .

The notation for the running example of a two-layer network is as follows. We set the input and
output dimensions both equal to one, hidden dimension equal to two, and no bias vectors. The
hidden layer activation is σ : R2 → R

2. The parameter space is Param = R
2×1 × R

1×2, with

elements written as a pair of matrices: (U, V ) =

(
[u1 u2] ,

[
v1
v2

])
. The hidden symmetry group

is GL2, with action given by:

GL2(R)×Param → Param, (g, U, V ) 7→ g · (U, V ) =
(
Ug−1, gV

)
.

The Lie algebra gl2 of GL2(R) consists of all two-by-two matrices.

C.9.1 CONSERVED QUANTITIES FOR LINEAR NETWORKS

Suppose a neural network with L layers has the identity activation σi = idni
in each layer, so that

the resulting network is linear. Then it is straightforward to verify that the networks with parameters
g · (W,b) and (W,b) have the same feedforward function. Consequently, the loss is invariant for
the group action: its value the original and transformed parameters is the same for any choice of
training data. (As we will see below, for more sophisticated activations, one needs to restrict to a
subgroup of the hidden symmetry group to achieve such invariance.)
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Suppose M ∈ glnhidden is such that Mi ∈ glni
is symmetric for each i. The conserved quantity

implied by Proposition C.5 is:

QM(W,b) =

L−1∑

i=1

(τ(Wi ⊙MiWi) + τ(bi ⊙Mibi)− τ(Wi+1 ⊙Wi+1Mi))

=

L−1∑

i=1

Tr
((
WiW

T
i + bib

T
i −WT

i+1Wi+1

)
Mi

)

We examine these conserved quantities in the following convenient basis for the space of symmetric
matrices in glnhidden . For j = 1, . . . , L and {k, ℓ} ⊆ {1, . . . , nj}, set:

E
(j)
{k,ℓ} :=

{
E

(nj)
kk if k = ℓ

1
2

(
E

(nj)
kℓ + E

(nj)
ℓk

)
if k ̸= ℓ

where E
(nj)
kℓ is the elementary nj × nj matrix with the entry in the k-th row and ℓ-th column equal

to one, and all other entries equal to zero. Then one computes:

Q
E

(j)

{k,ℓ}

(W,b) = b
(j)
k b

(j)
ℓ +

nj−1∑

t=1

w
(j)
kt w

(j)
ℓt −

nj+1∑

r=1

w
(j+1)
rk w

(j+1)
rℓ

In other words, we take the sum of the following three terms: the product of the k-th and ℓ-th entries
of the bias vector bj , the dot product of the k-th and ℓ-th rows of Wj , and the dot product of the k-th
and ℓ-th columns of Wj+1. In particular, we see that every entry of the matrix

µi(W,b) := WiW
T
i + bib

T
i −WT

i+1Wi+1 ∈ glni

is a conserved quantity valued in glni
rather than in R. Additionally, we have a moment map:

Q : Param → gl∗nhidden , (W,b) 7→

[
M 7→

L−1∑

i=1

⟨µi(W,b),Mi⟩

]

C.9.2 CONSERVED QUANTITIES FOR LINEAR NETWORKS: TWO-LAYER CASE

In the two layer case of a linear network, we have that that the single hidden activation is the identity:
σ = id2 : R2 → R

2. The hidden symmetry group is GL2 with Lie algebra all of gl2. The space of
symmetric matrices in gl2 is spanned by the matrices:

E11 =

[
1 0
0 0

]
, E22

[
0 0
0 1

]
, and E(1,2) =

[
0 1
1 0

]
.

The corresponding conserved quantities are:

QE11(U, V ) = v21 − u2
1 QE22(U, V ) = v22 − u2

2 QE(1,2)
(U, V ) = v1v2 − u1u2

Thus, we obtain a three-dimensional space of conserved quantities. (Since GL2 also contains the
orthogonal group O(2), Equation 29 below holds along any gradient flow curve.)

C.9.3 CONSERVED QUANTITIES FOR RELU NETWORKS

The pointwise ReLU activation commutes with positive rescaling, so we consider the subgroup of
the hidden symmetry group consisting of tuples of diagonal matrices with positive diagonal entries,
that is:

G = {g ∈ GLnhidden | gi = Diag(s1, . . . , sni
) , sj > 0}

This subgroup, also known as the positive coordinate-wise rescaling subgroup, is isomorphic to

the product (R>0)
∑L−1

i=1 ni . Its Lie algebra is spanned by the elements E
(j)
kk defined above, for

j = 1, . . . , L− 1 and k = 1, . . . , nj . The conserved quantity implied by Proposition C.5 is:

Q
E

(j)
kk

(W,b) =
(
b
(j)
k

)2
+

nj−1∑

t=1

(
w

(j)
kt

)2
−

nj+1∑

r=1

(
w

(j+1)
rk

)2

In other words, we take the sum of the following three terms: the square of the k-th entry of the bias
vector bj , the norm of the k-th row of Wj , and the norm of the k-th column of Wj+1.
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C.9.4 CONSERVED QUANTITIES FOR RELU NETWORKS: TWO-LAYER CASE

In the two-layer case, the positive rescaling group is:

G =

{[
g1 0
0 g2

]
∈ GL2(R) | g1 and g2 are positive.

}

The Lie algebra of G is the two-dimensional space of diagonal matrices in gl2 (with not necessarily

positive diagonal entries). In other words, g is spanned by the matrices E11 =

[
1 0
0 0

]
and E22 =

[
0 0
0 1

]
. One computes the conserved quantities corresponding to these elements as:

QE11
(U, V ) = v21 − u2

1 QE22
(U, V ) = v22 − u2

2

Hence there is a two-dimensional space of conserved quantities coming from the infinitesimal action.

C.9.5 CONSERVED ANGULAR MOMENTUM FOR RADIAL RESCALING NETWORKS

Suppose each σi is a radial rescaling activation σi(z) = λi(|z|)z, where λi : R → R is the rescal-
ing factor. Each such activation commutes with orthogonal transformations, so we consider the
subgroup of the hidden symmetry group consisting of tuples of orthogonal matrices:

G = {g ∈ GLnhidden | gig
T
i = idni

for all i}

The Lie algebra of this subgroup consists only of anti-symmetric matrices, and so there are no
infinitesimal-action conserved quantities. However, given an anti-symmetric matrix Mi ∈ glni

for
each i, any gradient flow curve satisfies the following differential equation (encoding conservation
of angular momentum):

L−1∑

i=1

(
τ(Ẇi ⊙MiWi) + τ(ḃi ⊙Mibi)− τ(Ẇi+1 ⊙Wi+1Mi)

)
= 0

(cf. Section C.8.1). An equivalent way to write this equation is:

L−1∑

i=1

Tr
((

WiẆ
T
i + biḃ

T
i +WT

i+1Ẇi+1

)
Mi

)
= 0

Indeed, one uses the facts that τ(A⊙B) = Tr(ATB), Tr(AT ) = Tr(A), and Tr(AB) = Tr(BA),
for any two matrices A,B of the appropriate size in each case. Using a basis of anti-symmetric
matrices, one can show that the matrix

νi(W,b) := WiẆ
T
i − ẆiW

T
i + biḃ

T
i − ḃib

T
i +WT

i+1Ẇi+1 − ẆT
i+1Wi+1 ∈ glni

is equal to zero: νi(W,b) = 0. Note that νi depends on taking derivatives with respect to the
flow. In fact, νi is more properly formulated as a function on the tangent bundle T (Param) of
Param, which is then evaluated on the gradient flow vector field. Similarly, we have a moment
map T (Param) → gl∗nhidden , and the gradient flow vector field is contained in the preimage of zero.
We omit the details.

A basis for the space of anti-symmetric matrices in glnhidden is given by:

E
(j)
k<ℓ := E

(nj)
kℓ − E

(nj)
ℓk

where j = 1, . . . , L−1, and k, ℓ ∈ {1, . . . , nj} satisfy k < ℓ. The differential equation correspond-

ing to E
(j)
k≤ℓ is given by:

r2bj ;k,ℓθ̇bj ;k,ℓ +

nj−1∑

t=1

r2Wj ;ks,ℓsθ̇Wj ;ks,ℓs +

nj+1∑

r=1

r2Wj+1;rk,rℓθ̇Wj+1;rk,rℓ = 0

where (rbj ;kℓ, θbj ;k,ℓ) are the polar coordinates of the image of bj under the projection R
nj → R

2

which selects only the k-th and ℓ-th coordinates. Similarly, for any pair matrix entries we have
a projection R

nj×nj−1 → R
2 and can take the polar coordinates of the image of Wj under this

projection.
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C.9.6 CONSERVED ANGULAR MOMENTUM FOR RADIAL RESCALING NETWORKS:
TWO-LAYER CASE

In the two-layer radial rescaling case, suppose the dimension vector is (n, h,m), and that there are
no bias vectors. For U ∈ R

m×h, V ∈ R
h×n and M ∈ so(h), we have:

〈
θ̇,M · θ

〉
=
〈
(U̇ , V̇ ), (−UM,MV )

〉
= −Tr(U̇TUM) + Tr(V̇ TMV )

= Tr(V V̇ TM)− Tr(MTUT U̇) = Tr(V V̇ TM) + Tr(MUT U̇)

= Tr(V V̇ TM) + Tr(UT U̇M) = Tr
[(

V V̇ T + UT U̇
)
M
]

Hence we obtain the differential equation:

Tr
[(

V V̇ T + UT U̇
)
M
]
= 0

In the case where (n, h,m) = (1, 2, 1), we have the two by two orthogonal group:

G = O(2) =
{
g ∈ GL2(R) | g

T g = id
}

The Lie algebra of G consists of anti-symmetric matrices in gl2, and contains no non-zero symmetric
matrices. Hence, we do not obtain any conserved quantities from the infinitesimal action in this case.

However, using the element

[
0 1
−1 0

]
∈ g, we obtain that the following differential equation holds

along any gradient flow curve:

r2U θ̇U + r2V θ̇V = 0 (29)

where (rU , θU ) are the polar coordinates of (u1, u2) ∈ R
2, and similarly for (rV , θV ). Note that the

left-hand side of Equation 29 is a function of t; so if γ : (a, b) → V is a gradient flow curve, then a

more precise version of the equation is
(
r2U ◦ γ

)
(t) · (θU ◦ γ)′ (t) +

(
r2V ◦ γ

)
(t) · (θV ◦ γ)′ (t) = 0

for all t.

C.10 JACOBIANS: SPECIAL CASES

We conclude this appendix with a side remark on special cases of the Jacobian formalism.

Manifolds. Suppose M and N are smooth manifolds, and suppose F : M → N is a smooth map.
The differential of F at m ∈ M is a linear map between the tangent spaces:

dFm : TmM → TF (m)N

The map dFm is computed in local coordinate charts as the Jacobian of partial derivatives. If G :
N → L is another smooth map, then the chain rule becomes d(G ◦ F )m = dGF (m) ◦ dFm, for any
m ∈ M .

Matrix case. Suppose L : Rm×n → R is a differentiable function. In this case, we regard the
Jacobian at W ∈ R

m×n as an n×m matrix:

dLW =




∂L
∂w11

∣∣∣∣
W

∂L
∂w21

∣∣∣∣
W

· · · ∂L
∂wm1

∣∣∣∣
W

∂L
∂w12

∣∣∣∣
W

∂L
∂w22

∣∣∣∣
W

· · · ∂L
∂wm2

∣∣∣∣
W

...
...

. . .
...

∂L
∂w1n

∣∣∣∣
W

∂L
∂w2n

∣∣∣∣
W

· · · ∂L
∂wmn

∣∣∣∣
W




∈ R
m×n
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where wij are the matrix coordinates. If F : R → R
m×n is a differentiable function, we regard its

Jacobian at s ∈ R as a m× n matrix:

dFt =




dF11

dt

∣∣∣∣
s

dF12

dt

∣∣∣∣
s

· · · dF1n

dt

∣∣∣∣
s

dF21

dt

∣∣∣∣
s

dF22

dt

∣∣∣∣
s

· · · dF2n

dt

∣∣∣∣
s

...
...

. . .
...

dFm1

dt

∣∣∣∣
s

dFm2

dt

∣∣∣∣
s

· · · dFmn

dt

∣∣∣∣
s




∈ R
n×m

where Fij : R → R are the coordinates of F . Then the chain rule becomes:

d

dt

∣∣∣∣
s

(L ◦ F ) =

m∑

i=1

n∑

j=1

(
∂L

∂wij

∣∣∣∣
F (s)

dFij

dt

∣∣∣∣
s

)
= Tr(dLF (s) · dFs).

In other words, the derivative of the composition L ◦ F at s ∈ R is the trace of the product of the
matrices dLF (s) ∈ R

n×m and dFs ∈ R
m×n.

D NEURAL NETWORKS: NON-LINEAR ACTIONS GROUP ACTIONS

In this section, we consider a non-linear action of the hidden symmetry group on the parameter
space. This action has the advantage that exists for a wider variety of activation functions (such
as the usual sigmoid, which has no linear equivariance properties), and that it is defined for the
full general linear group. However, in constrast to the linear action, the non-linear action is data-
dependent: the transformation of the weights and biases depends on the input data.

D.1 ROTATIONS

We first define certain orthogonal matrices.

Definition D.1. For any tuple of real numbers β = (β1, . . . , βn), define an (n+1)× (n+1) matrix
R(β) as follows:

(R(β))ij =





cos(βj−1)
(∏i−1

k=j sin(βk)
)
cos(βi) if j ≤ i

− sin(βi) if j = i+ 1

0 if j > i+ 1

where, by convention, we set β0 = βn+1 = 0.

For example, when n = 1, 2, we have:

R(β) =

[
cos(β) − sin(β)
sin(β) cos(β)

]
R(β1, β2) =

[
cos(β1) − sin(β1) 0

sin(β1) cos(β2) cos(β1) cos(β2) − sin(β2)
sin(β1) sin(β2) cos(β1) sin(β2) cos(β2)

]

Lemma D.2. For any tuple of real numbers β = (β1, . . . , βn), we have:

1.
∑n

i=1 cos
2(βi)

∏i−1
k=1 sin

2(βk) +
∏n

k=1 sin
2(βk) = 1

2. The matrix R(β) is orthogonal.

Sketch of proof. The first identity follows from a straightforward induction argument, while the
proof of the second claim amounts to a computation that invokes the identity of the first claim.

Proposition D.3. There is a continuous map R : Rh \ {0} → GLh, written z 7→ Rz , such that:

1. For any z ∈ R
h \ {0}, the first column of Rz is z. Hence Rze1 = z, where e1 =

(1, 0, . . . , 0) is the first basis vector.
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2. The operator norm of Rz is ∥Rz∥ = |z|.

3. If |z| = 1, then Rz is an orthogonal matrix.

Proof. Let z ∈ R
h \ {0}, and let (r, α1, . . . , αn−1) be the (reverse) h-spherical coordinates of z.

Hence, r = |z| is the norm of z and the i-th coordinate of z is zi = r
(∏i−1

k=1 sin(αk)
)
cos(αi),

where αh = 0 by convention. Now set Rz = |z|R(α1, . . . , αh−1). Using Lemma D.2, one con-
cludes that Rz is invertible with inverse 1

|z|2R
T
z , so that Rz has operator norm is |z| and Rz is

orthogonal if |z| = 1. It is also clear that the first column of Rz is equal to z.

We note the the matrix in D.1 has a form similar, but not identical, to the Jacobian matrix for the
transformation to n-spherical coordinates. Euler angles provide another way to construct a map
R

h \ {0} → GLh the same properties as in Proposition D.3.

D.2 NON-LINEAR ACTION: TWO-LAYER CASE

Consider a two-layer network with dimension vector (m,h, n), no bias vectors, and no output acti-
vation. The parameter space is Param = R

m×h × R
h×n. Define the non-degenerate locus as:

(Param× R
n)

◦
= {(U, V, x) ∈ R

m×h × R
h×n × R

n | V x ̸= 0}

Let F̃ : Param×R
n → R

m be the extended feedforward function, taking (U, V, x) to F(U,V )(x) =
Uσ(V x). We now state and prove a more general version of Theorem 4.1.

Theorem D.4. Suppose σ(z) ̸= 0 for all nonzero z ∈ R
h \ {0}.

1. There is an action:

GLh × (Param× R
n)

◦ → (Param× R
n)

◦

g · (U, V, x) = (URσ(V x)R
−1
σ(gV x) , gV , x)

2. Suppose, in addition, that σ(0) ̸= 0, so that σ is nonzero on all of Rh. There is an action:

GLh × (Param× R
n) → (Param× R

n)

g · (U, V, x) = (URσ(V x)R
−1
σ(gV x) , gV , x)

In both cases, the extended feedforward function is invariant for this action, that is: F̃ (g ·
(U, V, x)) = F̃ (U, V, x).

Proof. We first verify that the action is well-defined. In the second case, σ(gV x) ̸= 0 for all
(U, V, x) and hence Rσ(gV x) is defined and invertible for any g ∈ GLh. For the first case, let

(U, V, x) be in the non-degenerate locus. The non-degeneracy condition V x ̸= 0 guarantees that
gV x ̸= 0 for all g ∈ GLh. The hypothesis on σ in turn implies that Rσ(gV x) is defined and invertible
for any g ∈ GLh. Hence the action is well-defined in both cases.

To check the unit axiom, observe that, when g = idh is the identity of GLh, we have
Rσ(V x)R

−1
σ(gV x) = Rσ(V x)R

−1
σ(V x) = idh and gV = V . It follows that id · (U, V, x) = (U, V, x). To

check the multiplication axiom, let g1, g2 ∈ GLh. Then:
(
Rσ(g1g2v)R

−1
σ(g2v)

)(
Rσ(g2v)R

−1
σ(v)

)
= Rσ(g1g2v)R

−1
σ(v).

It follows that g1 · (g2 · (U, V, x)) = (g1g2) · (U, V, x). For the last claim, we compute:

F̃ (g · (U, V, x)) = F̃ (URσ(V x)R
−1
σ(gV x), gV, x) = URσ(V x)R

−1
σ(gV x)σ(gV x)

= URσ(V x)e1 = Uσ(V x)

where the first equality follows from the definition of the action; the second from the extended

feedforward function F̃ ; and the third and fourth follow from Proposition D.3.
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From the proof, we see that a key property of the matrices Rz is that:

Rσ(gz)R
−1
σ(z)σ(z) = σ(gz) (30)

This can be interpreted as a data-dependent generalization of the equivariance condition appearing
in Equation (4). We emphasize that a sufficient condition for the existence of such an action is that
σ(z) is nonzero for any nonzero z ∈ R

h; this is the case for usual sigmoid, hyperbolic tangent, leaky
ReLU, and many other activations.

Finally, we remark on a differential-geometric interpretation of the construction of this section. One
can regard σ as a section of the trivial bundle on R

h \{0} with fiber Rh. The map z 7→ Rσ(gz)R
−1
σ(z)

defines a GLh-equivariant structure on this bundle such that σ is an equivariant section. Indeed, the
action of GLh on the total space

(
R

h \ {0}
)
× R

h is given by g · (z, a) = (gz,Rσ(gz)R
−1
σ(z)a), and

the equivariance of σ is precisely the condition Rσ(gz)R
−1
σ(z)σ(z) = σ(gz).

D.3 NON-LINEAR ACTION: MULTI-LAYER CASE

We adopt the notation of Section C.2. In particular, consider a neural network with L layers and
widths n = (n0, n1, . . . , nL). The parameter space is given by:

Param(n) = R
nL×nL−1 ×R

nL−1×nL−2 × · · · ×R
n2×n1 ×R

n1×n0 ×R
nL ×R

nL−1 × · · · ×R
n1 .

So for each layer i, we have a matrix Wi ∈ R
ni×ni−1 and vector bi ∈ R

ni . We write θ = (Wi, bi)
L
i=1

for a choice of parameters. Fix activations σi : R
ni → R

ni for each i = 1, . . . , L. Let

F = Fθ : Rn0 → R
nL

be the feedforward function corresponding to parameters θ = (W,b) ∈ Param with activations
σi. Taking the parameters into account, we form the extended feedforward function:

F̃ : Param× R
n0 → R

nL , F̃ (θ, x) = Fθ(x)

One can also define the extension of the partial feedforward function F̃i : Param× R
n → R

ni as
(θ, x) 7→ Fθ,i(x). Furthermore, let Zi : Param × R

n → R
ni be the function defined recursively

as:

Zi(θ, x) =





x if i = 0

W1x+ b1 if i = 1

Wiσi−1(Zi−1(θ, x)) + bi for i = 2, . . . , L

We have F̃i = σi ◦ Zi for i = 1, . . . , L, and the extended feedforward function is F̃ = σL ◦ ZL.
Define the non-degenerate locus as:

(Param× R
n)

◦
= {(θ, x) | Zi(θ, x) ̸= 0 for i = 1, . . . , L− 1}.

Proposition D.5. Suppose that, for i = 1, . . . , L − 1, the activation σi : R
ni → R

ni satisfies
σ−1
i (0) ⊆ {0}. Then there is an action of the hidden symmetry group GLnhidden on the non-degenerate

locus given by:

GLnhidden × (Param× R
n)◦ → (Param× R

n)◦

g · (θ, x) =

((
giWiRF̃i−1(θ,x)

R−1
σi(gi−1Zi−1(θ,x))

, gibi

)L−1

i=1
, x

)

Moreover, this action preserves the extended feedforward function.

Proof. The fact that the action is well-defined follows from the assumption on each σi and the non-
degeneracy condition. The unit and multiplication axioms are shown in the same way as in the proof
of Theorem D.4. For the last claim, one first verifies by induction that Zi(g · (θ, x)) = giZi(θ, x)
for i = 0, 1, . . . , L. Hence,

F̃ (g · θ, x) = σL(ZL(g · (θ, x))) = σL(gLZL(θ, x)) = σL(ZL(θ, x)) = F̃ (θ, x)

using the fact that gL is the identity. So the extended feedforward function is preserved under this
action.
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D.4 DISCUSSION: INCREASING THE BATCH SIZE

In this section, we discuss difficulties in adopting the construction of the previous sections to cases
where the batch size is greater than one. Fix a batch size k, so that the feature space of the hidden
layer is Rh×k. By abuse notation, we write σ : Rh×k → R

h×k for the map applying σ column-wise.
We say that σ preserves full rank matrices if σ(Z) is full rank for any full-rank matrix in Z ∈ R

h×k.

As a final piece of notation, let
(
R

h×k
)◦

⊆ R
h×k be the subset of full rank matrices.

Lemma D.6. Suppose that k ≤ h, and that σ preserves full-rank matrices. Then there exists a map
c : GLh ×

(
R

h×k \ {0}
)
→ GLh satisfying the following identities for any nonzero Z ∈ R

h×k and
g, g1, g2 ∈ GLh:

c(idh, Z) = idh (31)

c(g1, g2Z)c(g2, Z) = c(g1g2, Z) (32)

c(g, Z)σ(Z) = σ(gZ) (33)

We omit a proof of this lemma. A key tool is the fact that, for k ≤ h, any two matrices in
(
R

h×k
)◦

are related by an element of GLh. This lemma implies that, for a multi-layer network, if σi preserves
full rank matrices in R

ni×k for each i, then there is a non-linear group action as in Proposition D.5,
where the appropriate version of the non-degenerate locus is:

(
Param× R

n0×k
)◦

= {(θ, X) | Zi(θ, X) ∈ R
ni×k is of full rank for i = 1, . . . , L− 1}.

However, as the following examples show, the condition that σ preserves full rank matrices is not
satisfied in the case of common activation functions.

Example D.1.

1. For k > 1, the column-wise application of the usual sigmoid activation does not preserve
full rank matrices. For example, for k = 2, take:

Z =

[
σ−1

(
1
5

)
σ−1

(
2
5

)

σ−1
(
2
5

)
σ−1

(
4
5

)
]
≃

[
−1.3863 −0.4055
−0.4055 1.3863

]

Then det(σ(Z)) = 0 while det(Z) = −2.0862.

2. For k > 1, the column-wise application of hyperbolic tangent does not preserve full rank
matrices. To see this, set k = 1 and consider:

Z =

[
tanh−1

(
1
5

)
tanh−1

(
2
5

)

tanh−1
(
2
5

)
tanh−1

(
4
5

)
]
≃

[
0.2027 0.4236
0.4236 1.0986

]

Then det(tanh(Z)) = 0 while det(Z) = 0.0432.

3. Let s be a real number with 0 < s < 1. The corresponding leaky ReLU activation function
is given by σ(z) = szmin(0, z) + zmax(0, z). For k > 1, the column-wise application of
leaky ReLU tangent does not preserve full rank matrices. Indeed, for k = 2, set:

Z =

[
s −1
−1 s

]

Then det(σ(Z)) = det

([
s −s
−s s

])
= 0 while det(Z) = s2 − 1 ̸= 0.

Finally, in the case k > h, the action of GLh on full rank h × k matrices is not transitive. Hence,
there will generally be no matrix in GLh taking σ(Z) to σ(gZ), even if both are full rank.
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D.5 LIPSCHTIZ BOUNDS

Proof of Proposition 4.2. Let (U, V, x) be in the non-degenerate locus, let g ∈ GLh, and let x1, x2 ∈
R

n. Using the Lipschitz constant of σ and the definition of operator norms, we compute:

|F
(g,x)
(U,V )(x1 − x2)| ≤ |URσ(V x)R

−1
σ(gV x)σ(gV (x1 − x2))|

≤ η∥U∥∥Rσ(V x)∥∥R
−1
σ(gV x)∥∥g∥∥V ∥|x1 − x2|

= η∥U∥|σ(V x)|∥
1

|σ(gV x)|2
RT

σ(gV x)∥∥g∥∥V ∥|x1 − x2|

= η∥U∥
|σ(V x)|∥g∥

|σ(gV x)|
∥V ∥|x1 − x2|

The result follows.

E GRADIENT DESCENT AND DRIFTING CONSERVED QUANTITIES

While gradient flows are well approximated by gradient descent (Elkabetz & Cohen, 2021), the
conserved quantities of gradient descent are no longer conserved in gradient flow due to non-
infinitesimal time steps. However, with small learning rate, we expect the change in the conserved
quantities to be small. In this section, we first prove that the change of Q is bounded by the square
of learning rate for two layer linear networks, then show empirically that the change Q is small for
nonlinear networks.

E.1 CHANGE IN Q IN GRADIENT DESCENT (LINEAR LAYERS)

Proposition E.1. Consider the two layer linear network, where U ∈ R
m×h, V ∈ R

h×n are the only
parameters, and the loss function L is a function of UV . In gradient descent with learning rate η,
the change in the conserved quantity Q = Tr

[
UTU − V V T

]
at step t is bounded by

|Qt+1 −Qt| ≤ η2
∣∣∣∣
dL(t)

dt

∣∣∣∣ . (34)

Proof. Let Ut and Vt be the value of U and V at time t in a gradient descent. The update rule is

Ut+1 = Ut − η
∂L

∂U
, Vt+1 = Vt − η

∂L

∂V
(35)

Consider the two layer linear reparametrization W = UV .

Qt = Tr
[
UT
t Ut − VtV

T
t

]

Qt+1 = Tr
[
UT
t+1Ut+1 − Vt+1V

T
t+1

]
(36)

Substituting in Ut+1 and Vt+1, expanding Qt+1, and subtracting by Qt, we have

Qt+1 −Qt = Tr

[
η2
(

∂L

∂Ut

)T
∂L

∂Ut
− η

(
∂L

∂Ut

)T

Ut − ηUT
t

∂L

∂Ut

− η2
∂L

∂Vt

(
∂L

∂Vt

)T

+ η
∂L

∂Vt
V T
t + ηVt

(
∂L

∂Vt

)T
]
. (37)

Note that
(

∂L

∂Ut

)T

Ut = (∇LV T
t )TUt = Vt∇LTUt = Vt

(
∂L

∂Vt

)T

, (38)

and similarly

UT
t

∂L

∂Ut
=

∂L

∂Vt
V T
t . (39)
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Therefore, (37) simplifies to

Qt+1 −Qt = η2Tr

[(
∂L

∂Ut

)T
∂L

∂Ut
−

∂L

∂Vt

(
∂L

∂Vt

)T
]

= η2

(
Tr

[(
∂L

∂Ut

)T
∂L

∂Ut

]
− Tr

[(
∂L

∂Vt

)T
∂L

∂Vt

])
, (40)

and the variation of Q in each step is bounded by the convergence rate:

|Qt+1 −Qt| = η2

∣∣∣∣∣Tr
[(

∂L

∂Ut

)T
∂L

∂Ut

]
− Tr

[(
∂L

∂Vt

)T
∂L

∂Vt

]∣∣∣∣∣

≤ η2

∣∣∣∣∣Tr
[(

∂L

∂Ut

)T
∂L

∂Ut

]
+Tr

[(
∂L

∂Vt

)T
∂L

∂Vt

]∣∣∣∣∣

= η2
∣∣∣∣
dL

dt

∣∣∣∣ (41)

E.2 EMPIRICAL OBSERVATIONS

In gradient flow, the conserved quantity Q is constant by definition. In gradient descent, Q varies
with time. In order to see how applicable our theoretical results are in gradient descent, we investi-
gate the amount of variation in Q in gradient descent using two-layer neural networks.

Since Q is the difference between the two terms f1(U) = 1
2Tr[U

TU ] and f2(V ) =
∑

a,j

∫ Vaj

x0
dx σ(x)

σ′(x) , we normalize Q by the initial value of f1(U) and f2(V ), i.e.,

Q̃ =

∣∣∣ 12Tr[UTU ]−
∑

a,j

∫ Vaj

x0
dx σ(x)

σ′(x)

∣∣∣
∣∣ 1
2Tr[U

T
0 U0]

∣∣+
∣∣∣
∑

a,j

∫ V0aj

x0
dx σ(x)

σ′(x)

∣∣∣

and denote the amount of change in Q̃ as

∆Q̃(t) = Q̃(t)− Q̃(0) (42)

We run gradient descent on two-layer networks with whitened input with the following objective

argminU,V {L(U, V ) = ∥Y − Uσ(V T )∥2F } (43)

where σ is the identity function, ReLU, sigmoid, or tanh. Y ∈ R
5×10, U ∈ R

5×50 and V ∈ R
10×50

have random Gaussian initialization with zero mean. We repeat the gradient descent with learning
rate 0.1, 0.01, and 0.001.

The variation ∆Q̃(t) and loss is shown in Fig.3. The amount of change in Q is small relative
to the magnitude of f1(U) and f2(V ), indicating that conserved quantities in gradient flow are

approximately conserved in gradient descent. The error in Q grows with step size, as ∆Q̃(t) is
larger with the largest learning rate we used, although it has the same magnitude as those of smaller
learning rates. We also observe that Q stays constant after loss converges.

F DISTRIBUTION OF Q UNDER XAVIER INITIALIZATION

We first consider a linear two-layer neural network UV X , where U ∈ R
m×h, V ∈ R

h×n, and
X ∈ R

n×k. We choose the following form of the conserved quantity:

Q =
1

2
Tr[UTU − V V T ]. (44)

33



Published as a conference paper at ICLR 2023

0
0.0002
0.0004
0.0006

Q

0 2e+05 4e+05
Training steps

10 4

10 2

100
Lo

ss
lr=0.1
lr=0.01
lr=0.001

(a) linear

-0.0006
-0.0004
-0.0002

0
0.0002
0.0004

Q

0 2e+05 4e+05
Training steps

10 4

10 2

100

Lo
ss

lr=0.1
lr=0.01
lr=0.001

(b) ReLU

0

5e-06

1e-05

1.5e-05

Q

0 2e+05 4e+05
Training steps

10 4

10 2

100

Lo
ss

lr=0.1
lr=0.01
lr=0.001

(c) tanh

0
2e-05
4e-05
6e-05

Q

0 4e+05 8e+05
Training steps

10 4

10 2

100

Lo
ss

lr=0.1
lr=0.01
lr=0.001

(d) sigmoid

Figure 3: Dynamics of conserved quantities in GD. The amount of change in Q is small relative to
its magnitude, and Q converges when loss converges.

Xavier initialization keeps the variance of each layer’s output the same as the variance of the input.
Under Xavier initialization (Glorot & Bengio, 2010), each element in a given layer is initialized
independently, with mean 0 and variance equal to the inverse of the layer’s input dimension:

Uij = N

(
0,

1

h

)
Vij = N

(
0,

1

n

)
(45)

The expected value of Q is

E[Q] = V ar(Uij)×m× h+ V ar(Vij)× h× n = m− h. (46)

Figure 4 shows the distribution of Q for 2-layer linear NN with different layer dimensions. For each
dimension tuples (m,h, n), we constructed 1000 sets of parameters using Xavier initialization. The
centers of the distributions of Q match Eq. (46).
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Figure 4: Distribution of Q for 2-layer linear NN with different layer dimensions.

Next, we consider the nonlinear two-layer neural network Uσ(V X), where σ : R −→ R is an
element-wise activation function. For simplicity, we assume whitened input (X = I). We choose
the following form of the conserved quantity:

Q =
1

2
Tr[UTU ]−

∑

a,j

∫ Vaj

0

dx
σ(x)

σ′(x)
(47)

Figure 5 shows the distribution of Q for 2-layer linear NN with different nonlinearities, each with
1000 sets of parameters created under Xavier initialization. The shapes of the distributions are
similar to that of linear networks. The value of Q is usually concentrated around a small range of
values. Since the range of Q is unbounded, the Xavier initialization limits the model to a small part
of the global minimum.

G CONSERVED QUANTITY AND CONVERGENCE RATE

The values of conserved quantities are unchanged throughout the gradient flow. Since the conserved
quantities parameterize trajectories, initializing parameters with certain conserved quantity values
accelerates convergence. For two-layer linear reparametrization, Tarmoun et al. (2021) derived the
explicit relation between layer imbalance and convergence rate. We derive the relation between
conserved quantities and convergence rate for two example optimization problems and provide nu-
merical evidence that initializing parameters with optimal conserved quantity values accelerates
convergence.
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Figure 5: Distribution of Q for 2-layer linear NN with different nonlinearities, with parameter di-
mensions m = h = n = 100.

G.1 EXAMPLE 1: ELLIPSE

We first show that the convergence rate is related to the conserved quantity in a toy optimization
problem. Consider the following loss function with a ∈ R:

L(w1, w2) = w2
1 + aw2

2

∇L = (2w1, 2aw2) (48)

Assuming gradient flow,

dw1

dt
= −∇w1L = −2w1

dw2

dt
= −∇w2L = −2aw2 (49)

Then w1, w2 are governed by the following differential equations:

w1(t) = w10e
−2t w2(t) = w20e

−2at (50)

where w10 , w20 are initial values of w1 and w2. We can find conserved quantities by using an ansatz
Q = f(wi

1w
k
2 ) and solving ∇Q · ∇L = 0 for i, k. Below we use the following form of conserved

quantity:

Q =
w2a

1

w2
2

=
w2a

10

w2
20

(51)

To show the effect of Q on the convergence rate, we fix L(0) and derive how Q affects L(t). Let
L(0) = w2

10 +aw2
20 = L0. Let w20 continue to be an independent variable. Then w2

10 = L0−aw2
20 .

Substitute in w2
10 , the loss at time t is

L(t) = w1(t)
2 + aw2(t)

2 = (L0 − aw2
20)e

−4t + aw2
20e

−4at (52)

and Q becomes

Q =
w2a

10

w2
20

=
(L0 − aw2

20)
a

w2
20

(53)

The derivative of L in the direction of Q is

∂QL(t) =
dL(t)

dw20

dw20

dQ
=

dL(t)

dw20

(
dQ

dw20

)−1

=
(
−2aw20e

−4t + 2aw20e
−4at

)(a(L0 − aw2
20)

a−1(−2aw20)w
2
20 − 2w20(L0 − aw2

20)
a

w4
20

)−1

=

(
−2aw20e

−4t + 2aw20e
−4at

)
w4

20

a(L0 − aw2
20
)a−1(−2aw20)w

2
20

− 2w20(L0 − aw2
20
)a

=
2aw5

20

(
e−4at − e−4t

)

2w20(L0 − aw2
20
)a−1

(
−a2w2

20
− (L0 − aw2

20
)
) (54)

In general, ∂QL(t) ̸= 0, meaning that the loss at time t depends on Q. Since we have fixed the
initial loss, the convergence rate L(t) − L(0) also depends on Q. Special cases where ∂QL(t) = 0
include a = 1 (circle), a = 0 (collapsed dimension), and certain initializations such as w20 = 0
(local maximum of gradient magnitude).

35



Published as a conference paper at ICLR 2023

G.2 EXAMPLE 2: RADIAL ACTIVATION FUNCTIONS

In this example, we find the conserved quantities and their relation with convergence rate for two-
layer reparametrization with radial activation functions under spectral initialization.

Define radial function g : Rm×n −→ R
m×n as

g(W )ij = h (|Wi|)Wij , (55)

where |Wi| =
(∑

k W
2
ik

) 1
2 is the norm of the ith row of W , and h : R −→ R outputs a scalar.

Consider the following objective:

argminU,V {L(U, V ) =
1

2
∥Y − Ug(V T )∥2F } (56)

with spectral initializations

U0 = ΦU0, V0 = ΨV 0,

where Φ,Ψ come from the singular value decomposition Y = ΦΣY Ψ
T , and U0, V 0 are random

diagonal matrices.

Proposition G.1. Under the gradient flow U = −∇UL and V = −∇V L, the following quantity is
an invariant:

Q =
1

2
Tr[UTU ]−

∑

i

∫ V̄ii

x0

dx
g(x)

g′(x)
(57)

Proof. Since g is a radial function on rows and ΨT is an orthogonal matrix, g(V
T
ΨT ) = g(V

T
)ΨT .

With spectral initialization, the loss function can be reduced to only involving diagonal matrices:

L =
1

2
∥Y − Ug(V T )∥2F

=
1

2
∥ΦΣΨT − ΦUg[(ΨV )T ]∥2F

=
1

2
∥ΦΣΨT − ΦUg(V

T
)ΨT ∥2F

=
1

2
∥Φ
(
Σ− Ug(V

T
)
)
ΨT ∥2F

=
1

2
∥Σ− Ug(V

T
)∥2F (58)

Since V is a diagonal matrix, g is now an element wise function on V . Let W = Ug(V
T
). The

gradients for U and V are

∂L

∂U
= ∇WLg(V )T

∂L

∂V
= ∇WLTU ⊙ g′(V ) (59)

where g′(x) = dg(x)/dx is the derivative of the nonlinearity. Additionally, since L does not depend
on Φ and Ψ,

∂L

∂Φ
=

∂L

∂Ψ
= 0 (60)

Since the rows of Φ,Ψ are orthogonal,

∂L

∂U
=

∂L

∂U
ΦT = ∇WLg(V )TΦT

∂L

∂V
=

∂L

∂V
ΨT =

(
∇WLTU ⊙ g′(V )

)
ΨT (61)
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Φ and Ψ are not changed in gradient flow, so ∂Q
∂U = ∂Q

∂U
ΦT and ∂Q

∂V = ∂Q

∂V
ΨT . Define inner product

on matrices as ⟨X,Y ⟩ = Tr[XTY ]. For Q to be a conserved quantity, we need ⟨∇L,∇Q⟩ = 0:

⟨∇L,∇Q⟩ = ⟨
∂L

∂U
,
∂Q

∂U
⟩+ ⟨

∂L

∂V
,
∂Q

∂V
⟩

= ⟨∇WLg(V )TΦT ,
∂Q

∂U
ΦT ⟩+ ⟨

(
∇WLTU ⊙ g′(V )

)
ΨT ,

∂Q

∂V
ΨT ⟩

= ⟨∇WLg(V )T ,
∂Q

∂U
⟩+ ⟨

(
∇WLTU ⊙ g′(V )

)
,
∂Q

∂V
⟩

= Tr
[
∂
U

TQ∇WLg(V )T + U
T
∇WL(∂V Q⊙ g′(V ))

]
= 0 (62)

Following the same procedure as for elementwise functions, to have a Q which satisfies (62) it is
sufficient to have

∂Q

∂U ia

= f(U, V )U ia
∂Q

∂V aj

g′(V )aj = −f(U, V )g(V )aj f(U, V ) ∈ R (63)

For simplicity, let f(U, V ) = 1. Then, (63) is satisfied by

Q =
1

2
Tr[ŪT Ū ]−

∑

i

∫ V̄ii

x0

dx
g(x)

g′(x)
(64)

Tarmoun et al. (2021) shows that the conserved quantity Q appears as a term in the convergence
rate of the matrix factorization gradient flow. We observe a similar relationship between Q and
convergence rate when the loss function is augmented with a radial activation function, as shown in
the following proposition.

Proposition G.2. Consider the objective function and spectral initialization defined in Proposition
G.1. Let h (|Wi|) = |Wi|

−2, and X = Ug(V T ) = ΦΣXΨT . Then, the eigencomponent of X
approaches the corresponding eigencomponent of Y at a rate of

σ̇X
i =

1

λi
(σY

i − σX
i )(σX

i

2
+ 1)2, (65)

where σX
i = diag(ΣX)i, σ

Y
i = diag(ΣY )i, and λi = Ū2

ii + V̄ 2
ii are conserved quantities.

Proof. Similar to Tarmoun et al. (2021), components can be decoupled, and we have a set of differ-
ential equations on scalars:

u̇i = [σY
i − uig(vi)]g(vi)

v̇i = [σY
i − uig(vi)]ui

dg(vi)

dvi
(66)

We also have

ġ(vi) =
dg

dvi

dvi
dt

= [σY
i − uig(vi)]ui

(
dg(vi)

dvi

)2

. (67)

Let σX
i = uig(vi). Then

σ̇X
i = u̇ig(vi) + uiġ(vi)

=
[
σY
i − uig(vi)

]
[
g(vi)

2 + u2
i

(
dg(vi)

dvi

)2
]
. (68)

Since V is a diagonal matrix, g is now an element wise function on V . Specifically, g(vi) = 1
vi

.

According to Proposition G.1, the following quantity is invariant:

1

2
u2
i −

∫
dx

g(x)

g′(x)
=

1

2
u2
i −

∫
dx

v−1
i

−v−2
i

=
1

2
u2
i +

1

2
v2i (69)
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Since any function of the invariant is also invariant, we will use the following form:

Q = U
T
U + V

T
V , (70)

and define

λi = Qii = u2
i + v2i (71)

Using the g that we defined,

σX
i = uig(vi) = uiv

−1
i . (72)

In order to relate σX and Q, we first write ui and vi as functions of σX
i ad Q using (71) and (72):

u2
i =

λiσ
X
i

2

σX
i

2
+ 1

, v2i =
λi

σX
i

2
+ 1

. (73)

Then, substitute ui, vi, g(vi), and
dg(vi)
dvi

into (68), and we have

σ̇X
i = [σi − uig(vi)]

[
g(vi)

2 + u2
i

(
dg(vi)

dvi

)2
]

=
[
σY
i − uig(vi)

]
[(

1

vi

)2

+ u2
i

(
−v−2

i

)2
]

=
[
σY
i − uig(vi)

] [
(v2i )

−1 + u2
i (v

2
i )

−2
]

=
[
σY
i − σX

i

]


(

λi

σX
i

2
+ 1

)−1

+
λiσ

X
i

2

σX
i

2
+ 1

(
λi

σX
i

2
+ 1

)−2



=
[
σY
i − σX

i

]
[
σX
i

2
+ 1

λi
+

σX
i

2
(σX

i
2
+ 1)

λi

]

=
[
σY
i − σX

i

]
[
σX
i

4
+ 2σX

i
2
+ 1

λi

]

=
1

λi
(σY

i − σX
i )(σX

i

2
+ 1)2 (74)

Proposition G.2 relates the rate of change in parameters σ̇X
i and the conserved quantity λi. To get a

more explicit expression of how λi affects convergence rate, we will derive a bound for |σY
i − σX

i |,
which describes the distance between trainable parameters to their desired value.

Proposition G.3. The difference between the singular values of Ug(V T ) and Y is bounded by

|σX
i − σY

i | ≤ |σX
i (0)− σY

i |e−
t
λi . (75)

Proof. Note that

˙σX
i =

1

λ
(σY

i − σX
i )(σX

i

2
+ 1)2 ≥

1

λi
(σY

i − σX
i ) (76)

Consider the following two differential equations, with same initialization a(0) = b(0):

ȧ =
1

λ
(σ − a)(a2 + 1)2

ḃ =
1

λ
(σ − b) (77)

In these equations, both a and b moves from a(0) = b(0) to σ monotonically. Since ȧ ≥ ḃ at
every a = b, a will always be closer to σ than b does. We can explicitly solve for b, which yields
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b(t) = σ + (b(0)− σ)e−
t
λ . Then the distance between b and σ is |b− σ| = |b(0)− σ|e−

t
λ . Using

|b− σ|, we can bound |a− σ|:

|a− σ| ≤ |b− σ| = |b(0)− σ|e−
t
λ (78)

Therefore,

|σX
i − σY

i | ≤ |σX
i (0)− σY

i |e−
t
λi (79)

Since λ is a conserved quantity, its value set at initialization remains unchanged throughout the
gradient flow. Therefore, we are able to optimize the convergence rate by choosing a favorable value
for λ at initialization. In this example, smaller λi’s lead to faster convergence.

G.3 EXPERIMENTS

We compare the convergence rate of two-layer networks initialized with different Q values. We run
gradient descent on two-layer networks with whitened input with the following objective

argminU,V {L(U, V ) = ∥Y − Uσ(V T )∥2F } (80)

where σ is the identity function, ReLU, sigmoid, or tanh. Matrices Y ∈ R
5×10, U ∈ R

5×50 and
V ∈ R

10×50 have random Gaussian initialization with zero mean. We repeat the gradient descent
with learning rate 0.1, 0.01, and 0.001. The learning rate is set to 10−3, as we do not observe
significant changes in the shape of learning curves at smaller learning rates. U and V are initialized
with different variance, which leads to different initial values of Q.
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Figure 6: Training curves of two-layer networks initialized with different Q. The value of Q affects
convergence rate.

As shown in Fig.6, the number of steps required for the loss curves to drop to near convergence
level is correlated with Q in both linear and element-wise nonlinear networks. This result provides
empirical evidence that initializing parameters with optimal values for Q accelerates convergence.

We then demonstrate the effect of conserved quantity values on the convergence rate of radial neural
networks. Fig.7 shows the training curve for loss function defined in Proposition G.2. We initialize
parameters U ∈ R

5×5 and V ∈ R
10×5 with 4 different values of Q and the learning rate is set to

10−5. As predicted in Eq. 75, convergence is faster when Q = Tr[UTU + V TV ] is small.

H CONSERVED QUANTITY AND GENERALIZATION ABILITY

Conserved quantities parameterize the minimum of neural networks and are related to the eigenval-
ues of the Hessian at minimum. Recent theory and empirical studies suggest that sharp minimum
do not generalize well (Hochreiter & Schmidhuber, 1997; Keskar et al., 2017; Petzka et al., 2021).
Explicitly searching for flat minimum has been shown to improve generalization bounds and model
performance (Chaudhari et al., 2017; Foret et al., 2020; Kim et al., 2022). We derive their relation-
ship for the simplest two-layer network, and show empircally that conserved quantity values affect
sharpness. Like convergence rate, a systematic study of the relationship between conserved quantity
and generalization ability of the solution is an interesting future direction.
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Figure 7: Training curve for the loss function defined in Proposition G.2. Smaller value of Q =
Tr[UTU + V TV ] at initialization leads to faster convergence.

Figure 8: Gradient flow for L(U, V ) = 1
2∥Y − UV X∥2, where U, V ∈ R, Y = 2, and X = 1.

Trajectories corresponding to different values of Q intersect the minima at different points.

H.1 EXAMPLE: TWO-LAYER LINEAR NETWORK WITH 1D PARAMETERS

We again consider the two-layer linear network with loss L = 1
2∥Y − UV X∥2. For simplicity, we

work with one dimensional parameters U, V ∈ R and assume X = Y = 1 in this example. We show
that at the point to which the gradient flow converges, the eigenvalues of the Hessian are related to
the value of the conserved quantity.

The gradients and Hessian of L are

∇L =

[
−(Y − UV X)V X
−(Y − UV X)UX

]
H =

[
V 2X2 −Y X + 2UV X2

−Y X + 2UV X2 U2X2

]
(81)

At the minima, U, V are related by UV X = Y . Recall that Q = U2 − V 2 is a conserved quantity.
From the above two equations, we can write U, V as functions of Q. Taking the solution U =√

1
2 (Q+

√
Q2 + 4), V =

√
1
2 (−Q+

√
Q2 + 4) and substitute in X = Y = 1, we have

H =

[
1
2 (−Q+

√
Q2 + 4) 1

1 1
2 (Q+

√
Q2 + 4)

]
, (82)

and the eigenvalues of H are

λ1 = 0, λ2 = 2
√
Q2 + 4. (83)

We have shown that Q is related the eigenvalues of the Hessian at the minimum. Since the eigenval-
ues determines the curvature, Q also determines the sharpness of the minimum, which is believed to
related to model’s generalization ability. The result in this example can also be observed in Figure
1, where the minimum of the Q = 0 trajectory lies at the least sharp point of the loss valley.
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H.2 EXPERIMENTS: TWO-LAYER NETWORKS

The goal of this section is to explore the relation between Q and the sharpness of the trained model.
We measure sharpness by the magnitude of the eigenvalues of the Hessian, which are related to the
curvature at the minima. We use the same loss function (80) in Section G.3. The parameters are
U ∈ R

10×50 and V ∈ R
5×50, each initialized with zero mean and various standard deviations that

lead to different Q’s. We first train the models using gradient descent. We then use the vectorized
parameters in the trained model to compute the eigenvalues of the Hessian.

The linear model extends the example in Section H.1 to higher dimension parameter spaces. 700 out
of the 750 eigenvalues are around 0 (with magnitude ≤ 10−3), which verifies the dimension of the
minima in Proposition C.3. After removing the small eigenvalues, the center of the eigenvalue distri-
bution correlates positively with the value of Q (Figure 9(a)). In models with nonlinear activations,
Q is still related to eigenvalue distributions, although the relations seem to be more complicated.

0 50 100 150 200 250
Eigenvalues of Hessian

0

5

10

15

20

Fr
eq

ue
nc

y

Q=1.93e-04
Q=17.3
Q=69.3
Q=156

(a) linear

0 50 100 150
Eigenvalues of Hessian

0
5

10
15
20
25

Fr
eq

ue
nc

y

Q=3.25e-04
Q=29.2
Q=117
Q=263

(b) ReLU

0 50 100
Eigenvalues of Hessian

0

5

10

15

Fr
eq

ue
nc

y

Q=-250
Q=-235
Q=-226
Q=-418

(c) tanh

0 50 100 150
Eigenvalues of Hessian

0

10

20

30

40

Fr
eq

ue
nc

y

Q=-250
Q=-243
Q=-222
Q=-200

(d) sigmoid

Figure 9: Eigenvalues of the Hessian from trained models initialized with different conserved quan-
tity values (Q). The distribution of the eigenvalues and the value of Q appear to be related.

I ENSEMBLE MODELS

In neural networks, the optima of the loss functions are connected by curves or volumes, on which
the loss is almost constant (Freeman & Bruna, 2017; Garipov et al., 2018; Draxler et al., 2018;
Benton et al., 2021; Izmailov et al., 2018). Various algorithms have been proposed to find these low-
cost curves, which provides a low-cost way to create an ensemble of models from a single trained
model. Using our group actions, we propose a new way of constructing models with similar loss
values. We show that even with stochasticity in the data, the loss is approximately unchanged under
the group action (Appendix I). This provides an efficient alternative to build ensemble models, since
the transformation only requires random elements in the symmetry group, without any searching or
additional optimization.

We implement our group actions by modifying the activation function between two consecutive
layers. Let H = V X be the output of the previous layer. The group action on the weights U, V is

g · (U, V ) = (Uπ(g,H), gV ) (84)

where π(g,H) = σ(H)σ(gH)†. The new activation implements the symmetry group action

Uσ(H) → Uπ(g,H)σ(gH) (85)

by wrapping the transformations around an activation function σ′(x) = π(g, x)σ(gx), so that
Uσ′(H) = Uπ(g,H)σ(gH).

We test the group action on CIFAR-10. The model contains a convolution layer with kernel size
3, followed by a max pooling, a fully connected layer, a leaky ReLU activation, and another fully
connected layer. The group action is on the last two fully connected layers. After training a single
model, we create transformed models using g = I + εM , where M ∈ R

32×32 is a random matrix
and ε controls the magnitude of movement in the parameter space. We then use the mode of the
transformed models’ prediction as the final output.

We compare the ensemble formed by group actions to four ensembles formed by various random
transformation. Let g = I + εM . The random baselines are:

• ‘group’: (U, V ) 7→ (Uπ(g,H), gV ). This is the model created by group actions.
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• ‘g−1’: (U, V ) 7→ (Ug−1, gV ).

• ‘random’: (U, V ) 7→ (Ug′, gV ), where g′ = I + εD and D is a random diagonal matrix.

• ‘shuffle’: (U, V ) 7→ (Uπ′(g,H), gV ), where π′(g,H) is constructed by randomly shuf-
fling π(g,H).

• ‘interpolated permute’ or ’perm interp’: (U, V ) 7→ (U
(

I+ ε
2 (I+S)

I+ε

)−1

,
I+ ε

2 (I+S)

I+ε V ),

where S ∈ R
32×32 is a random permutation matrix.

Figure 10 shows the accuracy of the ensembles compared to single models. The ensemble formed
by group actions preserves the model accuracy for small ε and has smaller accuracy drop at larger ε.
The ensemble model also improves robustness against Fast Gradient Signed Method (FGSM) attacks
(Figure 11). Under FGSM attacks with various strength, the ensemble model created using group
actions consistently performs better than the baselines with random transformations. However, the
same improvement is not observed under Projected Gradient Descent (PGD) attacks.
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Figure 10: Change in accuracy compared to the original single model when using the ensemble
model and 4 baselines. The red color indicates degradation in model performance. The ensemble
created by group actions has similar loss values when ε is small.

0.000 0.004 0.008 0.012
FGSM epsilon

0.1
0.2
0.3
0.4
0.5
0.6

Ac
cu

ra
cy

original
group
g 1

perm_interp

(a) FGSM

0 1 2 3
PGD iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

original
group
g 1

perm_interp

(b) PGD

Figure 11: Adversarial attacks on the original model and the ensemble models with various
strengths. In FGSM, the group ensemble model improves robustness. In PGD, the ensemble has
negligible effects on robustness.
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