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Abstract
Evaluating the performance of machine learning
models under distribution shifts is challenging, es-
pecially when we only have unlabeled data from
the shifted (target) domain, along with labeled
data from the original (source) domain. Recent
work suggests that the notion of disagreement,
the degree to which two models trained with dif-
ferent randomness differ on the same input, is a
key to tackling this problem. Experimentally, dis-
agreement and prediction error have been shown
to be strongly connected, which has been used to
estimate model performance. Experiments have
led to the discovery of the disagreement-on-the-
line phenomenon, whereby the classification error
under the target domain is often a linear func-
tion of the classification error under the source
domain; and whenever this property holds, dis-
agreement under the source and target domain
follow the same linear relation. In this work, we
develop a theoretical foundation for analyzing dis-
agreement in high-dimensional random features
regression; and study under what conditions the
disagreement-on-the-line phenomenon occurs in
our setting. Experiments on CIFAR-10-C, Tiny
ImageNet-C, and Camelyon17 are consistent with
our theory and support the universality of the the-
oretical findings.

1. Introduction
Modern machine learning methods such as deep neural net-
works are effective at prediction tasks when the input test
data is similar to the data used during training. However,
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they can be extremely sensitive to changes in the input data
distribution (e.g., Biggio et al. (2013); Szegedy et al. (2014);
Hendrycks et al. (2020), etc.). This is a significant con-
cern in safety-critical applications where errors are costly
(e.g., Oakden-Rayner et al. (2020), etc.). In such scenarios,
it is important to estimate how well the predictive model
performs on out-of-distribution (OOD) data.

Collecting labeled data from new distributions can be costly,
but unlabeled data is often readily available. As such, recent
research efforts have focused on developing methods that
can estimate a predictive model’s OOD performance using
only unlabeled data (e.g., Garg et al. (2021); Deng & Zheng
(2021); Chen et al. (2021); Guillory et al. (2021), etc.).

In particular, works dating back at least to Recht et al.
(2019) suggest that the out-of-distribution (OOD) and in-
distribution (ID) errors of predictive models of different
complexities are highly correlated. This was rigorously
proved in Tripuraneni et al. (2021) for random features
model under covariate shift. However, determining the cor-
relation requires labeled OOD data. To sidestep this require-
ment, Baek et al. (2022) proposed an alternative approach
that looks at the disagreement on an unlabeled set of data
points between pairs of neural networks with the same archi-
tecture trained with different sources of randomness. They
observed a linear trend between ID and OOD disagreement,
as for ID and OOD error. Surprisingly, the linear trend had
the same empirical slope and intercept as the linear trend
between ID and OOD accuracy. This phenomenon, termed
disagreement-on-the-line, allows estimating the linear rela-
tionship between OOD and ID error using only unlabeled
data, and finally allows estimating the OOD error.

At the moment, the theoretical basis for disagreement-on-
the-line remains unclear. It is unknown how generally it
occurs, and what factors (such as the type of models or
data used) may influence it. To better understand—or even
demystify—these empirical findings, in this paper, we de-
velop a theoretical foundation for studying disagreement.
We focus on the following key questions:

Is disagreement-on-the-line a universal phenomenon? Un-
der what conditions is it guaranteed to happen, and what
happens if those conditions fail?

To work towards answering these questions, we study dis-
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Figure 1. Target vs. source risk and shared-sample disagreement
of random features model trained on CIFAR-10. Solid lines are
derived from Theorem 4.1. Target domain is CIFAR-10-C-Fog
(Hendrycks & Dietterich, 2018). See Section 5 for details.

agreement in a widely used theoretical framework for high-
dimensional learning, random features models. We consider
a setting where input data is from a Gaussian distribution,
but possibly with a different covariance structure at train-
ing and test time, and study disagreement under the high-
dimensional/proportional limit setting. We define various
types of disagreement depending on what randomness the
two models share. We rigorously prove that depending on
the type of shared randomness and the regime of param-
eterization, the disagreement-on-the-line may or may not
happen in random feature models trained using ridgeless
least squares. Moreover, in contrast to prior observations,
the line for disagreement and the line for risk may have
different intercepts, even if they share the same slope. Addi-
tionally, we prove that adding ridge regularization breaks the
exact linear relation, but an approximate linear relation still
exists. Thus, we find that even in a simple theoretical setting,
disagreement-on-the-line is a nuanced phenomenon that can
depend on the type of randomness shared, regularization,
and the level of overparametrization.

Experiments we performed on CIFAR-10-C and other
datasets are consistent with our theory, even though the
assumptions of Gaussianity of inputs and linearity of the
data generation are not met (Figure 1, 4). This suggests that
our theory is relevant beyond our theoretical setting.

1.1. Main Contributions

We provide an overview of the paper and our results.

• We propose a framework for the theoretical study of
disagreement. We introduce a comprehensive and uni-
fying set of notions of disagreement (Definition 2.1).
Then, we find a limiting formula for disagreement in
the high-dimensional limit where the sample size, input

dimension, and feature dimension grow proportionally
(Theorem 3.1).

• Based on this characterization, we study how dis-
agreement under source and target domains are re-
lated. We identify under what conditions and for which
type of disagreement the disagreement-on-the-line phe-
nomenon holds (Section 4). Theorem 4.3 and Corollary
4.4 show an approximate linear relation when the con-
ditions are not met.

• When the disagreement-on-the-line holds in our model,
our results imply that the target vs. source line for risk
and the target vs. source line for disagreement have
the same slope. This is consistent with the findings of
Baek et al. (2022), that whenever OOD vs. ID accuracy
is on a line, OOD vs. ID agreement is also on the same
line. However, unlike their finding, in our problem, the
intercepts of the lines can be different (Remark 4.2).

• In Section 5, we conduct experiments on several
datasets including CIFAR-10-C, Tiny ImageNet-C, and
Camelyon17. The experimental results are generally
consistent with our theoretical findings, even as the the-
oretical conditions we use (e.g., Gaussian input, linear
generative model, etc.) may not hold. This suggests a
possible universality of the theoretical predictions.

• Our work shows that disagreement-on-the-line is a sub-
tle phenomenon that depends on the shared random-
ness, regularization, and regime of parameterization.
We also identify a difference between the intercept of
the line for risk and the line for disagreement. If these
factors are not properly considered, the disagreement-
on-the-line principle can lead to an inaccurate OOD
performance estimation.

1.2. Related Work

Random Features Model. Random features models were
introduced by Rahimi & Recht (2007) as an approach for
scaling kernel methods to massive datasets. Recently, they
have been used as a standard model for the theoretical study
of deep neural networks. Despite its simplicity, it is rich
enough to capture various phenomena of deep learning in-
cluding double descent (Mei & Montanari, 2022; Adlam
et al., 2022; Lin & Dobriban, 2021), adversarial training
(Hassani & Javanmard, 2022), feature learning (Ba et al.,
2022), and transfer learning (Tripuraneni et al., 2021). In
particular, in this model, the number of parameters and the
ambient dimension are disentangled, hence the effect of
overparameterization can be studied on its own.

Linear Relation Under Distribution Shift. Several in-
triguing phenomena have been observed in empirical studies
of distribution shifts. Recht et al. (2019); Hendrycks et al.
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(2021); Koh et al. (2021); Taori et al. (2020); Miller et al.
(2021) observed linear trends between OOD and ID test
error. Tripuraneni et al. (2021) proved this phenomenon in
random features models under covariate shift.

Recently, the notion of disagreement has been gaining a lot
of attention (e.g., Hacohen et al. (2020); Chen et al. (2021);
Jiang et al. (2021); Nakkiran & Bansal (2020); Baek et al.
(2022); Atanov et al. (2022); Pliushch et al. (2022), etc.).

In particular, Baek et al. (2022) empirically showed that
OOD agreement between the predictions of pairs of neu-
ral networks also has a strong linear correlation with their
ID agreement. They further observed that the slope and
intercept of the OOD vs ID agreement line closely match
that of the accuracy. This can be used to predict the OOD
performance of predictive models only using unlabeled data.

High-dimensional Asymptotics. Work on high-
dimensional asymptotics dates back at least to the 1960s
(Raudys, 1967; Deev, 1970; Raudys, 1972) and has more
recently been studied in a wide range of areas, such as
high-dimensional statistics (e.g., Raudys & Young (2004);
Serdobolskii (2007); Paul & Aue (2014); Yao et al. (2015);
Dobriban & Wager (2018), etc.), wireless communications
(e.g., Tulino & Verdú (2004); Couillet & Debbah (2011),
etc.), and machine learning (e.g., Györgyi & Tishby (1990);
Opper (1995); Opper & Kinzel (1996); Couillet & Liao
(2022); Engel & Van den Broeck (2001), etc.).

Technical Tools. The results derived in this paper rely on
the Gaussian equivalence conjecture studied and used exten-
sively for random features model (e.g., Goldt et al. (2022);
Hu & Lu (2022); Montanari & Saeed (2022); Mei & Monta-
nari (2022); Hassani & Javanmard (2022); Tripuraneni et al.
(2021); Loureiro et al. (2021); d’Ascoli et al. (2021), etc.).
Our analytical results build upon the series of recent work
Mel & Pennington (2021); Adlam & Pennington (2020a);
Tripuraneni et al. (2021) using random matrix theory and
operator-valued free probability (Far et al., 2008; Mingo &
Speicher, 2017).

2. Preliminaries
2.1. Problem Setting

We study a supervised learning setting where the training
data (xi, yi) 2 Rd ⇥ R, i 2 [n], of dimension d and sample
size n, is generated according to

xi
i.i.d.⇠ N(0,⌃s), and yi =

1p
d
�
>
xi + "i, (1)

where "i
i.i.d.⇠ N(0,�2

"). Additionally, the true coefficient
� 2 Rd is assumed to be randomly drawn from N(0, Id).
The linear relationship between (xi, yi) is not known. We

fit a model to the data, which can then be used to predict
labels for unlabeled examples at test time.

We consider two-layer neural networks with fixed, randomly
generated weights in the first layer—a random features
model—as the learner. We let the width of the internal
layer be N 2 N. For a weight matrix W 2 RN⇥d with i.i.d.
random entries sampled from N(0, 1), an activation function
� : R ! R applied elementwise, and the weights a 2 RN

of a linear layer, the random features model is defined by

fW,a(x) =
1p
N

a
>
�

⇣
Wx/

p
d

⌘
.

The trainable parameters a 2 RN are fit via ridge regres-
sion to the training data X = (x1, . . . , xn) 2 Rd⇥n and
Y = (y1, . . . , yn)> 2 Rn. Specifically, for a regularization
parameter � > 0, we solve

â = arg min
a2RN

����Y � �

⇣
WX/

p
d

⌘>
a/

p
N

����
2

2

+ �kak22,

and use ŷ(x) = â
>
�(Wx/

p
d)/

p
N as the model predic-

tion for a data point x 2 Rd. Defining F = �(WX/
p
d)

and f = �(Wx/
p
d), we can write

ŷ(x) = Y
>
✓

1

N
F

>
F + �In

◆�1✓ 1

N
F

>
f

◆
. (2)

To emphasize the dependence on W,X, Y , we also use the
notation ŷW,X,Y .

It has been recognized in e.g., Adlam & Pennington (2020a);
Ghorbani et al. (2021); Mei & Montanari (2022) that
only linear data generative models can be learned in the
proportional-limit high-dimensional regime by random fea-
tures models, and the non-linear part behaves like an addi-
tive noise. Thus, we consider linear generative models as
in (1). Results for non-linear models can be obtained via
linearization, as is standard in the above work.

We also highlight that our theoretical findings are validated
by simulations on standard datasets (such as CIFAR-10-C)
where the input distribution is non-Gaussian and the data
generation model is non-linear.

2.2. Distribution Shift

At training time (1), the inputs xi are sampled from the
source domain, Ds = N(0,⌃s). At test time, we assume the
input distribution shifts to the target domain, Dt = N(0,⌃t).
We do not restrict the change in P(y|x) since disagreement is
independent of the label y. Previous work (Lei et al., 2021;
Tripuraneni et al., 2021; Wu et al., 2022) found that the
learning problem under covariate shift is fully characterized
by input covariance matrices. For this reason, we do not
consider shifts in the mean of the input distribution.
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2.3. Definition of Disagreement

Hacohen et al. (2020); Chen et al. (2021); Jiang et al. (2021);
Nakkiran & Bansal (2020); Baek et al. (2022) define notions
of disagreement (or agreement) to quantify the difference
(or similarity) between the predictions of two randomly
trained predictive models in classification tasks.

Prior work on disagreement considers three sources of ran-
domness that lead to different predictive models: (i) random
initialization, (ii) sampling of the training set, and (iii) sam-
pling/ordering of mini-batches.

Motivated by these results, we propose analogous notions
of disagreement in random features regression. We consider
(i), (ii) and their combination, as (iii) is not present in our
problem.

The independent disagreement measures how much the pre-
diction of two models with independent random weights
and trained on two independent sets of training datasets dis-
agree, on average. Similar notions were used in (Nakkiran
& Bansal, 2020; Pliushch et al., 2022; Jiang et al., 2021;
Baek et al., 2022).

The shared-sample disagreement measures the average dif-
ference of the predictions of two models with independent
random weights, but trained on a shared training set. Simi-
lar notions were used in (Pliushch et al., 2022; Jiang et al.,
2021; Baek et al., 2022; Atanov et al., 2022).

The shared-weight disagreement measures the average dif-
ference of the predictions of two models with shared random
weights, but trained on two independent training samples.
Similar notions were used in (Jiang et al., 2021; Baek et al.,
2022).

While the prior work typically used 0-1 loss to define agree-
ment/disagreement in classification, we use the squared loss
to measure disagreement for real-valued outputs.

Definition 2.1 (Disagreement). Consider two random fea-
tures models trained on the data (X1, Y1), (X2, Y2) 2
Rd⇥n⇥Rn with random weight matrices W1,W2 2 RN⇥d,
respectively. We measure the disagreement of two models
by their mean squared difference

Disji (n, d,N, �) = E
h
(ŷW1,X1,Y1(x) � ŷW2,X2,Y2(x))2

i
,

where the expectation is over �,W1,W2, X1, Y1, X2, Y2,
and j 2 {s, t} is the domain that x ⇠ Dj is from, and the
index i 2 {I, SS, SW} corresponds to one of the following
cases.

• Independent disagreement (i = I): the training data
(X1, Y1), (X2, Y2) are independently generated from
(1), with the same �. The weights W1,W2 2 RN⇥d

are independent matrices with i.i.d. N(0, 1) entries.

• Shared-Sample disagreement (i = SS): the training
samples are shared, i.e., (X1, Y1) = (X2, Y2) =
(X,Y ), where (X,Y ) is generated from (1). The
weights W1,W2 2 RN⇥d are independent matrices
with i.i.d. N(0, 1) entries.

• Shared-Weight disagreement (i = SW): the training
data (X1, Y1), (X2, Y2) are independently generated
from (1), with the same �. Two models share the
weights, i.e., W1 = W2 = W . The weights are shared,
i.e., W1 = W2 = W , where W 2 RN⇥d is a matrix
with i.i.d. N(0, 1) entries.

2.4. Conditions

We characterize the asymptotics of disagreement in the pro-
portional limit asymptotic regime defined as follows.
Condition 2.2 (Asymptotic setting). We assume that
n, d,N ! 1 with d/n ! � > 0 and d/N !  > 0.

To characterize the limit of disagreement, we need condi-
tions on the spectral properties of ⌃s and ⌃t as their dimen-
sion d grows. When multiple growing matrices are involved,
it is not sufficient to make assumptions on the individual
spectra of the matrices, but rather, they have to be consid-
ered jointly (Wu & Xu, 2020; Tripuraneni et al., 2021; Mel
& Pennington, 2021). We assume that the joint spectral dis-
tribution of ⌃s and ⌃t converges to a limiting distribution
µ on R2

+ as d ! 1.
Condition 2.3. Let �s1, . . . ,�sd � 0 be the eigenvalues
of ⌃s and v1, . . . , vd be the corresponding eigenvectors.
Define �ti = v

>
i ⌃tvi for i 2 [d]. We assume the joint

empirical spectral distribution of (�si ,�
t
i), i 2 [d] converges

in distribution to a limiting distribution µ on R2
+. That is,

1
d

Pd
i=1 �(�s

i,�
t
i)

! µ, where � is the Dirac delta measure.
We additionally assume that µ has a compact support. We
denote random variables drawn from µ by (�s,�t), and
write ms = Eµ[�s] and mt = Eµ[�t].

For the existence of certain derivatives and expectations,
we assume the following mild condition on the activation
function � : R ! R.
Condition 2.4. The activation function � : R ! R is
differentiable almost everywhere. There are constants c0

and c1 such that |�(x)|, |�0(x)|  c0e
c1x, whenever �0(x)

exists. For j 2 {s, t} and a standard Gaussian random
variable Z ⇠ N(0, 1), define

⇢j =
E[Z�(

p
mjZ)]2

mj
, !j =

V[�(
p
mjZ)]

⇢j
�mj . (3)

These constants characterize the non-linearity of the activa-
tion � and will appear in the asymptotics of disagreement.
Note that when � is ReLU activation �(x) = max(x, 0),
we have ⇢j = 1/4, !j = mj(1 � 2/⇡) for j 2 {s, t}.

4



Demystifying Disagreement-on-the-Line in High Dimensions

3. Asymptotics of Disagreement
In this section, we present our results on characterizing the
limits of disagreement defined in Definition 2.1 for random
features models. We introduce results for general ridge
regression and also study the ridgeless limit � ! 0.

3.1. Ridge Setting

For i 2 {I, SS, SW} and j 2 {s, t}, define the asymptotic
disagreement

Disji (�, , �) = lim
n,d,N!1

Disji (n, d,N, �),

where the limit is in the regime considered in Condition 2.2.

Asymptotics in random features models and linear models
with general covariance (e.g., training/test error, bias, vari-
ance, etc.) typically do not have a closed form, and can only
be implicitly described through self-consistent equations
(Tulino & Verdú, 2004; Dobriban & Wager, 2018; Adlam
et al., 2022; Mei & Montanari, 2022; Hastie et al., 2022). To
facilitate analysis of these implicit quantities, previous work
(e.g., Dobriban & Sheng (2021; 2020); Tripuraneni et al.
(2021); Mel & Pennington (2021), etc.) proposed using
expressions containing only one implicit scalar. We show
that similar to the asymptotic risk derived in Tripuraneni
et al. (2021), the asymptotic disagreements can be expressed
using a scalar  which is the unique non-negative solution
of the self-consistent equation

 =
 + ��

p
( � �)2 + 4 ��/⇢s

2 (!s + Is
1,1())

, (4)

where Ij
a,b is the integral functional of µ defined by

Ij
a,b() = �Eµ


(�s)a�1

�
j

(�+ �s)b

�
, j 2 {s, t}. (5)

We omit  and simply write Ij
a,b whenever the argument is

clear from the context. Recall from Condition 2.3 that µ
describes the joint spectral properties of source and target
covariance matrices, so Ij

a,b can be viewed as a summary of
the joint spectral properties.

The following theorem—our first main result—shows that
DisjI (�, , �), DisjSS(�, , �), DisjSW(�, , �) are well de-
fined, and characterizes them.
Theorem 3.1 (Disagreement in general ridge regression).
For j 2 {s, t}, the asymptotic independent disagreement is

DisjI (�, , �)

=
2⇢j 

�� + ⇢s�(⌧ + ⌧̄�)(!s + �Is
1,2)

h
�⌧(!j + �Ij

1,2)Is
2,2

+ (�2
" + Is

1,1)(!s + �Is
1,2)(!j + Ij

1,1)

+
�

 
�⌧̄(�2

" + �Is
1,2)I

j
2,2

i
,

and the asymptotic shared-sample disagreement is

DisjSS(�, , �)

= DisjI (�, , �) �
2⇢j2(�2

" + �Is
1,2)I

j
2,2

⇢s(1 � 2Is
2,2)

,

and the asymptotic shared-weight disagreement is

DisjSW(�, , �)

= DisjI (�, , �) �
2⇢j 2(!j + �Ij

1,2)Is
2,2

⇢s(��  2Is
2,2)

,

where ⌧ and ⌧̄ are the limiting normalized trace of
(F>

F/N + �In)�1 and (FF
>
/N + �IN )�1, respectively.

They can be expressed as functions of  as follows:

⌧ =

p
( � �)2 + 4 ��/⇢s +  � �

2 �
,

⌧̄ =
1

�
+
 

�

✓
⌧ � 1

�

◆
. (6)

The expressions in Theorem 3.1 are written in terms of
the non-linearity constants ⇢s, ⇢t,!s,!t, the dimension pa-
rameters  ,�, the regularization �, the noise level �2

" , the
summary statistics Is

a,b, It
a,b of µ, and ⌧, ⌧̄ ,. Since ⌧, ⌧̄ are

algebraic functions of , the expressions are functions of
one implicit variable .

This theorem can be used to make numerical predictions for
disagreement. To do so, we first solve the self-consistent
equation (4) using a fixed-point iteration and find . Then,
we plug  into the terms appearing in the theorem. Figure
2 shows an example, supporting that the theoretical predic-
tions of Theorem 3.1 match very well with simulations even
for moderately large d, n,N .

Theoretical Innovations. To prove this theorem, we first
rely on Gaussian equivalence (Section A.3, A.4) to express
disagreement as a combination of traces of rational functions
of i.i.d. Gaussian matrices. Then, we construct linear pen-
cils (Section A.5) and use the theory of operator-valued free
probability (Section A.1, A.2) to derive the limit of these
trace objects. This general strategy has been used previ-
ously in Adlam et al. (2022); Adlam & Pennington (2020b);
Tripuraneni et al. (2021); Mel & Pennington (2021).

However, in the expressions of disagreement, new traces
appear that did not exist in prior work. We construct new
suitable linear pencils to derive the limit of these traces.
While this leads to a coupled system of self-consistent equa-
tions of many variables, it turns out that they can be fac-
tored into a single scalar variable  defined through the
self-consistent equation (4), and every term appearing in the
limiting disagreements, can be written as algebraic functions
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Figure 2. Independent, shared-sample, and shared-weight disagree-
ment under target domain in random features regression with ReLU
activation function, � = lim d/n = 0.5, versus �/ = lim N/n.
We set � = 0.01, �2

" = 0.25, and µ = 0.5�(1.5,5) + 0.5�(1,1).
Simulations are done with d = 512, n = 1024, and averaged over
300 trials. The continuous lines are theoretical predictions from
Theorem 3.1, and the dots are simulation results.

of . These results might also be of independent interest.
Since limiting disagreements only rely on the same implicit
variable as the variable appearing in the limiting risk, we
can derive the results in Section 4.

3.2. Ridgeless Limit

In the ridgeless limit � ! 0, the self-consistent equation (4)
for  becomes

 =
min(1,�/ )

!s + Is
1,1()

. (7)

Further, the asymptotic limits in Theorem 3.1 can be simpli-
fied as follows.

Corollary 3.2 (Ridgeless limit). For j 2 {s, t} and in the
ridgeless limit � ! 0, the asymptotic independent disagree-
ment is

lim
�!0

DisjI (�, , �) =
2⇢j 

⇢s|��  | (�
2
" + Is

1,1)(!j + Ij
1,1)

+

8
<

:

2⇢j(�
2
"+�I

s
1,2)I

j
2,2

⇢s(!s+�Is
1,2)

� >  ,

2⇢j(!j+�Ij
1,2)I

s
2,2

⇢s(!s+�Is
1,2)

� <  ,

and the asymptotic shared-sample disagreement is

lim
�!0

DisjSS(�, , �) =
2⇢j 

⇢s|��  | (�
2
" + Is

1,1)(!j + Ij
1,1)

+

8
<

:

0 � >  ,

2⇢j
⇢s

✓
(!j+�Ij

1,2)I
s
2,2

!s+�Is
1,2

� (�2
"+�I

s
1,2)I

j
2,2

1�2Is
2,2

◆
� <  ,

Table 1. Existence of disagreement-on-the-line in the over-
parametrized regime for different regularization and types of dis-
agreement. The symbols 3, s, 7 correspond to exact, approxi-
mate, no linear relation, respectively.

DisI and DisSS DisSW

� ! 0 3 (Theorem 4.1)
7 (Section 4.2)

� > 0 s (Theorem 4.3)

and the asymptotic shared-weight disagreement is

lim
�!0

DisjSW(�, , �) =
2⇢j 

⇢s|��  | (�
2
" + Is

1,1)(!j + Ij
1,1)

+

8
<

:

2⇢j
⇢s

✓
(�2

"+�I
s
1,2)I

j
2,2

!s+�Is
1,2

�  (!j+�Ij
1,2)I

s
2,2

�� 2Is
2,2

◆
� >  ,

0 � <  ,

where  is defined in (7).

In the ridgeless limit, I and SS disagreement have a single
term that depends on  , which motivates the analysis in
Section 4 that examines the disagreement-on-the-line phe-
nomenon. In contrast, SW disagreement has two linearly
independent terms that are functions of  , leading to a dis-
tinct behavior compared to I and SS disagreement.

The asymptotics in Corollary 3.2 reveal another interesting
phenomenon regarding disagreements of random features
model in the ridgeless limit. For example, it follows from
Corollary 3.2 that SS disagreement tends to zero in the
infinite overparameterization limit where the width N of
the internal layer is much larger than the data dimension d,
so that  = lim d/N ! 0. However, the same is not true
for the I and SW disagreement. This indicates that, in the
infinite overparameterization limit, the randomness caused
by the random weights disappears, and the model is solely
determined by the training sample.

4. When Does Disagreement-on-the-Line
Hold?

In this section, based on the characterizations of disagree-
ments derived in the previous section, we study for which
types of disagreement and under what conditions, the linear
relationship between disagreement under source and target
domain of models of varying complexity holds.

4.1. I and SS disagreement

Ridgeless. In the overparametrized regime � >  , the
self-consistent equation (7) is independent of  = lim d/N ,
and so is . This implies the following linear trend of I and
SS disagreement, in the ridgeless limit.
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Figure 3. (a) Target vs. source I, SS, SW disagreement in the ridgeless and underparametrized regime (� <  ). There is no linear
trend in this regime. (b) Deviation from the line, DistSS(�, , �) � aDissSS(�, , �), as a function of  for non-zero �. The deviation
becomes larger as � increases. See Section D.2 for figures for I disagreement and risk. (c) Target vs. source lines for I, SS disagreement
and risk, in the overparametrized regime  /� 2 (0, 1). The lines have identical slopes but different intercepts. (d) Deviation from
the line, lim�!0 DistSW(�, , �) � aDissSW(�, , �), vs. lim�!0 DissSW(�, , �), in the overparametrized regime (� >  ). This shows
disagreement-on-the-line does not happen for SW disagreement. We use � = 0.5, �2

" = 10�4, and ReLU activation �. We set
µ = 0.4�(0.1,1) + 0.6�(1,0.1) in (a), (b), (d) and µ = 0.5�(4,1) + 0.5�(1,4) in (c).

Theorem 4.1 (Exact linear relation). Define

a =
⇢t(!t + It

1,1)

⇢s(!s + Is
1,1)

, bSS = 0,

bI =
22(�2

" + �Is
1,2)(⇢tIt

2,2 � a⇢sIs
2,2)

⇢s(1 � 2Is
2,2)

, (8)

for  satisfying (7). We fix � and regard the disagreement
Disji (�, , �), i 2 {I, SS}, j 2 {s, t}, as a function of  . In
the overparametrized regime � >  and for i 2 {I, SS},

lim
�!0

Disti(�, , �) = a lim
�!0

Dissi(�, , �) + bi, (9)

where the slope a and the intercept bI are independent of  .

Recall from (3) and (5) that ⇢s, ⇢t,!s,!s are constants de-
scribing non-linearity of the activation �, and Is

a,b, It
a,b are

statistics summarizing spectra of ⌃s,⌃t. Therefore, the
slope a is determined by the property of �,⌃s,⌃t. By plug-
ging in sample covariance, we can build an estimate of the
slope in finite-sample settings. Also as a sanity check, if we
set ⌃s = ⌃t, then we recover a = 1 and bI = 0 as there will
be no difference between source and target domain.
Remark 4.2. The slope a = ⇢t(!t + It

1,1)/⇢s(!s + Is
1,1) is

same as the slope from Proposition C.3. This is consistent
with the empirical observations from Baek et al. (2022)
that the linear trend between ID disagreement and OOD
disagreement has the same slope as the linear trend between
ID risk and OOD risk. However, unlike in Baek et al. (2022),
in our case, the intercepts can be different. This can be seen
in Figure 1 and Figure 3 (c), and also from (51).

Our analysis provides an explicit formula for the intercepts.
Specifically, the intercepts can be numerically computed
using equations (8), (51), and Theorem C.1 if �2

" is known.

Note that in the general case of non-linear generative mod-
els, �2

" corresponds to the sum of the noise level and the
non-linear component of the data-generating function. By
estimating �2

" , we can obtain estimates of the intercepts
which can be potentially used for OOD performance estima-
tion.

Ridge. When � > 0, the exact linear relation between
source disagreement and target disagreement no longer
holds in our model. However, it turns out that there is
still an approximate linear relation, as we show next.

Theorem 4.3 (Approximate linear relation of disagreement).
Let a, bSS, bI be defined as in (8). Given � >  , deviation
from the line, for I and SS disagreement, is bounded by

|DistI (�, , �) � aDissI (�, , �) � bI| 

C(� +
p
 � +  � + �

p
 �)/(1 �  /�+

p
 �)2,

|DistSS(�, , �) � aDissSS(�, , �)| 

C(
p
 � +  � + �

p
 �)/(1 �  /�+

p
 �)2,

where C > 0 depends on �, µ,�2
" , and �.

We see the upper bounds vanish as � ! 0, consistent with
Theorem 4.1. Also, the upper bound for SS disagreement
vanishes as  ! 0, which is confirmed in Figure 3 (b).

We now present an analog of Theorem 4.3 for prediction
error of the random features model. This is a generalization
of Proposition C.3, which shows an exact linear relation
between risks in the ridgeless and overparametrized regime.

Corollary 4.4 (Approximate linear relation of risk). Denote
prediction risk in the source and target domains by Es, Et,
respectively (see Section C for definitions). Let a, brisk be
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Figure 4. (a) CIFAR-10-C-Snow (severity 3) (b) Tiny ImageNet-C-Fog (severity 3) (c) Camelyon17; For more results, see Section D.3.

defined as in (8) and (51). Given � >  , deviation from the
line, for risk, is bounded by

|Et � aEs � brisk| 
C(� +

p
 � +  � + �

p
 � +  �

2)

(1 �  /�+
p
 �)2

,

where C > 0 depends on �, µ,�2
" , and �.

Theorem 4.3 and Corollary 4.4 together show that the phe-
nomenon we discussed in Remark 4.2 occurs, at least ap-
proximately, even when applying ridge regularization.

In the underparametrized case  > �, the self-consistent
equation (7) is dependent on  , and so is . Hence, there is
no analog of the linear relation we find in Theorem 4.1 in
this regime. Figure 3 (a) displays this phenomenon.

4.2. SW disagreement

In Corollary 3.2, unlike I and SS disagreement, SW dis-
agreement contains two linearly independent functions of
 . Hence, the disagreement-on-the-line phenomenon (9)
cannot occur for any choice of slope and intercept inde-
pendent of  . Figure 3 (a) and (d) confirm the non-linear
relation between target vs. source SW disagreement in
underparametrized and overparametrized regimes, respec-
tively.

5. Experiments
5.1. Experiments Setup

We conduct experiments on the following datasets. The as-
sociated code can be found at https://github.com/
dh7401/RF-disagreement.

CIFAR-10-C. Hendrycks & Dietterich (2018) introduced
a corrupted version of CIFAR-10 (Krizhevsky et al., 2009).
We choose two classes and assign the label y 2 {0, 1} to

each. We use CIFAR-10 as the source domain and CIFAR-
10-C as the target domain.

Tiny ImageNet-C. Tiny ImageNet (Wu et al., 2017), a
smaller version of ImageNet (Deng et al., 2009), consists of
natural images of size 64⇥64 in 200 classes. Tiny ImageNet-
C (Hendrycks & Dietterich, 2019) is a corrupted version of
Tiny ImageNet. We down-sample images to 32 ⇥ 32 and
create two super-classes each consisting of 10 of the original
classes. We consider Tiny ImageNet as the source domain
and Tiny ImageNet-C as the target domain.

Camelyon17. Camelyon17 (Bandi et al., 2018) consists
of tissue slide images collected from five different hospitals,
and the task is to identify tumor cells in the images. Koh
et al. (2021) proposed a patch-based variant of the task,
where the input x is 96⇥ 96 image and the label y 2 {0, 1}
indicates whether the central 32 ⇥ 32 contains any tumor
tissue. We crop the central 32 ⇥ 32 region and use it as
the input in our problem. We use Hospital 0 as the source
domain and Hospital 2 as the target domain.

We run random features regression with ReLU activation
on these datasets. We use training sample size n = 1000,
random features dimension N 2 {3000, 4000, . . . , 49000},
input dimension d = 3072, regularization � = 0. We test
the trained model on the rest of the sample and plot target
vs. source SS disagreement and risk. Plots for I and SW
disagreements can be found in Section D.4.

We estimate the covariance ⌃s and ⌃t using the test sample
and derive the theoretical slope of target vs. source line pre-
dicted by Theorem 4.1 (see Section D.1). Since the limiting
spectral distribution of sample covariance is generally differ-
ent from that of population covariance, we remark that this
may lead to a biased estimate of the slope. As the intercept
brisk involves the unknown noise level �2

" , it is difficult to
make a theoretical prediction on its value. For this reason,
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we fit the intercept instead of using its theoretical value.

5.2. Results

While Theorem 4.1 is proved only for Gaussian input and
linear generative model, we observe the disagreement-on-
the-line phenomenon on all three datasets (Figure 4), in
which these assumptions are violated.

In this regard, a flurry of recent research (see e.g., Hastie
et al. (2022); Hu & Lu (2022); Loureiro et al. (2021); Goldt
et al. (2022); Wang et al. (2022); Dudeja et al. (2022); Mon-
tanari & Saeed (2022); Pesce et al. (2023)) has proved that
findings assuming Gaussian inputs often hold in a much
wider range of models. While none of the existing work
exactly fits the setting considered in this paper, this gives yet
another indication that our theory should remain true more
generally. The rigorous characterization of this universality
is left for future work.

Also, we find that target vs. source risk does not exhibit a
clear linear trend, especially in Tiny ImageNet and Came-
lyon17. This is because Proposition C.3 does not hold in
the case of concept shift, i.e., the shift in P(y|x). However,
since disagreement is oblivious to the change of P(y|x), the
disagreement-on-the-line is a general phenomenon happen-
ing regardless of the type of distribution shift.

6. Conclusion
In this paper, we propose a framework to study various
types of disagreement in the random features model. We
precisely characterize disagreement in high dimensions and
study how disagreement under the source and target domains
relate to each other. Our results show that the occurrence of
disagreement-on-the-line in the random features model can
vary depending on the type of disagreement, regularization,
and regime of parameterization. We show that, contrary to
the prior observation, the line for disagreement and the line
for risk can differ in their intercepts. We run experiments
on several real-world datasets and show that the results hold
in settings more general than the theoretical setting that we
consider.

When the above factors are not properly considered, OOD
performance estimation using the disagreement-on-the-line
phenomenon can be inaccurate and unreliable. Our find-
ings indicate a potential for further examination of the
disagreement-on-the-line principle.
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A. Technical Tools
A.1. Operator-valued Free Probability

Operator-valued free probability (e.g., Speicher (1998); Mingo & Speicher (2017); Helton et al. (2007)) has appeared in
various studies of random features models including Adlam et al. (2022); Adlam & Pennington (2020a;b); Mel & Pennington
(2021); Ba et al. (2022). Here, we briefly outline the most relevant concepts, which are used in our computation.

Recall that a set A is an algebra (over the field C of complex numbers) if it is a vector space over C and is endowed
with a bilinear multiplication operation denoted by “·”. Thus, for all a, b, c 2 A we have the distributivity relations
a · (b + c) = a · b + a · c and (b + c) · a = b · a + c · a; and the relation indicating that multiplication in the algebra is
compatible with the usual multiplication over C, namely that for and x, y 2 C, (x · y) · (a · b) = (x · a) · (y · b). All algebras
we consider will be associative, so that the multiplication operation over the algebra is associative. Further, an algebra is
called unital if it contains a multiplicative identity element; this is denoted as “1”. Often, we drop the “·” symbol to denote
multiplication (both over the algebra and by scalars), and no confusion may arise.

Definition A.1 (Non-commutative probability space). Let C be a unital algebra and ' : C ! C be a linear map such that
'(1) = 1. We call the pair (C,') a non-commutative probability space.

Example A.2 (Deterministic matrices). For a matrix A 2 Cm⇥m, we denote its normalized trace by tr(A) = 1
m

Pm
i=1 Aii.

The pair (Cm⇥m
, tr) is a non-commutative probability space.

Example A.3 (Random matrices). Let (⌦,F ,P) be a (classical) probability space and L
�1(⌦) be the set of scalar random

variables with all moments finite. The pair (L�1(⌦)m⇥m
,Etr) is a non-commutative probability space.

Definition A.4 (Operator-valued probability space). Let A be a unital algebra and consider a unital sub-algebra B ✓ A. A
linear map E : A ! B is a conditional expectation if E(b) = b for all b 2 B and E(b1ab2) = b1E(a)b2 for all a 2 A and
b1, b2 2 B. The triple (A, E,B) is called an operator-valued probability space.

The name “conditional expectation” can be understood from the following example.
Example A.5 (Classical conditional expectation). Let (⌦,F ,P) be a probability space and G be a sub-�-algebra of F . Then,
considering E = E[·|G], any unital algebra A ⇢ L

1(⌦,F ,P) and its unital sub-algebra B ⇢ L
1(⌦,G,P), such that all

required integrals in the definition of E(b1ab2) = b1E(a)b2 exist for all a 2 A and b1, b2 2 B, form an operator-valued
probability space (A, E,B).
Example A.6 (block random matrices). Let (C,') = (L�1(⌦)m⇥m

,Etr) be the non-commutative probability space of
random matrices defined in Example A.3. Define A = CM⇥M ⌦ C and B = CM⇥M . In words, A is the space of M ⇥M

block matrices with entries in C, and B is the space of M ⇥ M scalar matrices. Note that B can be viewed as a unital
sub-algebra of A by the canonical inclusion ◆ : A ,! B defined by

◆(B) = B ⌦ 1C , (10)

where 1C is the unity of C (in this example 1C = Im). We also define the block-wise normalized expected trace E =
id⌦Etr : A ! B by

E(A) = (EtrAij)1i,jM , A = (Aij)1i,jM 2 A. (11)

Remark A.7. While we have only discussed squared blocks with identical sizes in Example A.6, it is possible to extend the
definition to block matrices with rectangular blocks (Far et al., 2006; 2008; Benaych-Georges, 2009; Speicher & Vargas,
2012). The idea of Benaych-Georges (2009) is to embed each rectangular matrix into a block of a common larger square
matrix. For example, if we have rectangular blocks whose dimensions are one of q1, . . . , qK 2 N, we consider the space of
(q1 + · · · + qK) ⇥ (q1 + · · · + qK) square matrices with a block structure

2

64
q1 ⇥ q1 · · · q1 ⇥ qK

...
. . .

...
qK ⇥ q1 · · · qK ⇥ qK

3

75 .

Then, we identify a rectangular matrix C 2 Cqi⇥qj with a square matrix eC 2 C(q1+···+qK)⇥(q1+···+qK), having the
aforementioned block structure, whose (i, j)-block is C and all other blocks are zero. This identification preserves scalar
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multiplication, addition, multiplication, transpose, and trace, in the sense that, for rectangular matrices C,D and a scalar
c 2 C,

c eC = fcC, eC + eD = Ĉ + D if C and D have same shape, ( eC)> = gC>,

eC eD =

(
gCD if C and D are conformable,
0 otherwise,

tr( eC) =

(
tr(C) if C is a square matrix,
0 otherwise.

Through this identification, the space of rectangular matrices (with finitely many different dimension types) can be also
understood as an algebra over C. Further, by replacing C in Example A.6 with the space of rectangular random matrices, we
can define the space of block random matrices with rectangular blocks. The space of block random matrices with rectangular
blocks, equipped with the block-wised expected trace, will be the operator-valued probability space we consider in our
proof.

Definition A.8 (Operator-valued Cauchy transform). Let (A, E,B) be an operator-valued probability space. For a 2 A,
define its operator-valued Cauchy transform Ga : B \ {a} ! B by

Ga(b) = E[(b� a)�1].

Definition A.9 (Operator-valued freeness). Let (A, E,B) be an operator-valued probability space and (Ai)i2I be a family
of sub-algebras of A which contain B. The sub-algebras Ai are freely independent over B, if E[a1 · · · an] = 0 whenever
E[a1] = · · · = E[an] = 0 and ai 2 Aj(i) for all i 2 [n] with j(1) 6= · · · 6= j(n). Variables a1, . . . , an 2 A are freely
independent over B if the sub-algebras generated by ai and B are freely independent over B.

Another important transform, introduced in Voiculescu (1986; 2006), is the R-transform. It enables the characterization
of the spectrum of a sum of asymptotically freely independent random matrices. It was generalized to operator-valued
probability spaces in Shlyakhtenko (1996); Mingo & Speicher (2017). The definition of operator-valued R-transform can
be found in Definition 10, Chapter 9 of Mingo & Speicher (2017). Our work does not directly require the definition of
R-transforms, and instead uses the following property.

Proposition A.10 (Subordination property, (9.21) of Mingo & Speicher (2017)). Let (A, E,B) be an operator-valued
probability space. If x, y 2 A are freely independent over B, then

Gx+y(b) = Gx[b�Ry(Gx+y(b))] (12)

for all b 2 B, where Ry is the operator-valued R-transform of y.

A.2. Limiting R-transform of Gaussian Block Matrices

Shlyakhtenko (1996; 1998) proposed using operator-valued free probability to study spectra of Gaussian block matrices.
Their insight was that operator-valued free independence among Gaussian block matrices is guaranteed for general covariance
structure, whereas scalar-valued freeness among them only holds in special cases. Later Far et al. (2006; 2008); Anderson &
Zeitouni (2006) revisited this idea. We present a theorem of Far et al. (2008), which characterizes limiting R-transform of
Gaussian block matrices with rectangular blocks.

Theorem A.11 (Theorem 5 of Far et al. (2008)). For m = m1 + · · · + mM , let A = (Aij)1i,jM 2 Rm⇥m be an
M ⇥M block random matrix whose block Aij is a mi ⇥mj random matrix with i.i.d. N(0, c2ij/m) entries. Define the
covariance function �(i, j; k, l) to be cijckl if Aij/cij = A

>
kl/ckl and 0 otherwise. We assume the proportional limit where

m1, . . . ,mM ! 1 with mi/m ! ↵i 2 (0,1), i = 1, . . . ,M . Then, the limiting R-transform of A can be expressed as

[RA(D)]ij =
X

1k,lM

�(i, k; l, j)↵kDkl, (13)

for any D 2 RM⇥M .

We remark the above statement should be understood in the space of block random matrices with rectangular blocks we
discussed in Remark A.7. Also, the original statement used a different terminology “covariance mapping”, but it is identical
to the R-transform of A (see discussion in Mingo & Speicher (2017) p.242 and Far et al. (2006) p.24)
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A.3. Centering Random Features

We first argue that the random features F, f can be centered without changing the asymptotics of disagreement. This
centering argument became a standard technique after it was introduced in Mei & Montanari (2022) (Section 10.4). More
generally, centering arguments are standard in random matrix theory (see e.g., Bai & Silverstein (2010)). For a standard
Gaussian random variable Z ⇠ N(0, 1), define centered random features by

F̄ = F � E�(
p
msZ), f̄ = f � E�(

p
mjZ),

where j 2 {s, t} is the domain that input x comes from. Subtracting a scalar from a matrix/vector should be understood
entry-wise. The following lemma states that model prediction obtained from these centered random features is close to the
original prediction ŷ(x) with high probability.
Lemma A.12. Define centered model prediction by

¯̂y(x) = Y
>
✓

1

N
F̄

>
F̄ + �In

◆�1✓ 1

N
F̄

>
f̄

◆
.

There exist constants c1, c2, c3, c4 > 0 such that

|¯̂y(x) � ŷ(x)|  c1d
�c2

with probability at least 1 � c3d
�c4 .

This lemma is a consequence of Lemma I.7 and Lemma I.8 of Tripuraneni et al. (2021). Since we consider the limit
n, d,N ! 1, disagreement Disi(�, , �), i 2 {I, SS, SW} are invariant to the centering. We also remark that the non-
linearity constants defined in (3) are also unchanged after this centering. For these reasons, perhaps with a slight abuse of
notation, we assume F and f are centered from now on.

A.4. Gaussian Equivalence

For domain j 2 {s, t} that input x is drawn from, we consider the following noisy linear random features

F̃ =

r
⇢s

d
WX +

p
⇢s!s⇥, f̃ =

r
⇢j

d
Wx +

p
⇢j!j✓, (14)

where ⇥ 2 RN⇥n and ✓ 2 RN have i.i.d. standard Gaussian entries independent from all other Gaussian matrices. The
coefficients above are chosen so that the first and second moment of F̃ and f̃ match those of F and f , respectively. We call
F̃ , f̃ the Gaussian equivalent of F, f as we claim the following.
Claim A.13 (Gaussian equivalence). The asymptotic limit (Condition 2.2) of the disagreement (Definition 2.1) of the
random features model (2) is invariant to the substitution F, f ! F̃ , f̃ .

This idea was introduced in the context of random kernel matrices (El Karoui, 2010; Cheng & Singer, 2013; Fan &
Montanari, 2019) and has been repeatedly used in recent studies of random feature models. Mei & Montanari (2022) proved
the Gaussian equivalence for random weights uniformly distributed on a sphere. Montanari et al. (2019) conjectured that the
same holds for classification. Adlam & Pennington (2020a;b); Tripuraneni et al. (2021) derived several asymptotic properties
of random features models building on the Gaussian equivalence conjecture. Goldt et al. (2022) provided theoretical and
numerical evidence suggesting that the Gaussian equivalence holds for a wide class of models including random features
models. Mel & Pennington (2021); d’Ascoli et al. (2021); Loureiro et al. (2021) conjectured the Gaussian equivalence
for anisotropic inputs. Hassani & Javanmard (2022) showed the Gaussian equivalence holds for the adversarial risk of
adversarially trained random features models. Hu & Lu (2022) showed the conjecture for isotropic Gaussian inputs, under
mild technical conditions. Montanari & Saeed (2022) generalized this by removing the isotropic condition and relaxing the
Gaussian input assumption.

More generally, the phenomenon that eigenvalue statistics in the bulk spectrum of a random matrix do not depend on the
specific law of the matrix entries is referred to as “bulk universality” (Wigner, 1955; Gaudin, 1961; Mehta, 2004; Dyson,
1962) and has been a central subject in the random matrix theory literature (Erdös et al., 2010; 2012; El Karoui, 2010; Tao &
Vu, 2011).
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It is known that local spectral laws of correlated random hermitian matrices can be fully determined by their first and
second moments, through the matrix Dyson equation (Erdös, 2019). Also, Banna et al. (2015; 2020) showed that spectral
distributions of correlated symmetric random matrices and sample covariance matrices can be characterized by Gaussian
matrices with identical correlation structures. However, these results do not directly imply Claim A.13 since we do not study
the spectral properties of F, f on their own.

A.5. Linear Pencils

After applying the Gaussian equivalence (14), each of the quantities that we study becomes an expected trace of a rational
function of random matrices. To analyze this, we use the linear pencil method (Haagerup & Thorbjørnsen, 2005; Haagerup
et al., 2006; Anderson, 2013; Helton et al., 2018), in which we build a large block matrix whose blocks are linear functions
of variables and one of the blocks of its inverse is the desired rational function. Then, operator-valued free probability can
be used to extract block-wise spectral properties of the inverse. For example, if we want to compute E tr[(X

>X
d + �In)�1]

for X 2 Rd⇥n, we consider
"
In � X>

p
�d

Xp
�d

Id

#
,

inverse has as its (1, 1)-block �(X
>X
d + �In)�1. Block matrices for more complicated rational functions can be constructed

using the following proposition.

Proposition A.14 (Algorithm 4.3 of Helton et al. (2018)). Let x1, . . . , xg be elements of an algebra A over a field K. For an
m⇥m matrix Q and vectors u, v 2 Km, a triple (u,Q, v) is called a linear pencil of a rational function r 2 K(x1, . . . , xg)
if each entry of Q is a K-affine function of x1, . . . , xg and r = �u

>
Q

�1
v. The following holds.

1. (Addition) If (u1, Q1, v1) and (u2, Q2, v2) are linear pencils of r1 and r2, respectively, then
✓

u1

u2

�
,


Q1 0m⇥m

0m⇥m Q2

�
,


v1

v2

�◆

is a linear pencil of r1 + r2.

2. (Multiplication) If (u1, Q1, v1) and (u2, Q2, v2) are linear pencils of r1 and r2, respectively, then
✓

0m
u1

�
,


xgv1u

>
2 Q1

Q2 0m⇥m

�
,


0m
v2

�◆

is a linear pencil of r1xgr2.

3. (Inverse) If (u,Q, v) is a linear pencil of r, then
✓

1
0m

�
,


0 u

>

v �Q
�1

�
,


1

0m

�◆

is a linear pencil of r�1.

In this language, the example before the algorithm can be interpreted in the space we consider in Remark A.7 as r =

��(X
>X
d + �In)�1 being a rational function of X and X

>, and
 

1
0

�
,

"
In � X>

p
�d

Xp
�d

Id

#
,


1
0

�!
(15)

being a linear pencil of r.

In principle, repeated application of the above rules to basic building blocks such as (15) can produce a linear pencil for
any rational function of given random matrices. For example, consider X1, X2 2 Rd⇥n

,⌃ 2 Rd⇥d and their transpose as
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elements of the algebra over R we discussed in Remark A.7. Then,
0

BBBB@

2

664

1
0
0
0

3

775 ,

2

66664

In � X>
1p
�d

� ⌃
�2 ·

X1p
�d

Id · ·
· · In � X>

2p
�d

· · X2p
�d

Id

3

77775
,

2

664

0
0
1
0

3

775

1

CCCCA

is a linear pencil of r0 = �(X
>
1 X1

d + �In)�1⌃(X
>
2 X2

d + �In)�1. Here, we denote zero blocks by dots. This can be seen
by applying the multiplication rule to two copies of (15) and xg = ⌃, and then switching the first and the second pairs of
columns.

However, constructing a suitably small linear pencil is a non-trivial problem of independent interest (see discussions on
reductions of linear pencils in e.g., Volčič (2018); Helton et al. (2018) and references therein). This is one of the challenges
we need to overcome in our proofs.

B. Proofs
B.1. Proof of Theorem 3.1

Starting from this section, we omit the high-dimensional limit signs limn,d,N!1 (Condition 2.2) for a simpler presentation.
However, every expectation appearing in the derivation should be understood as its high-dimensional limit.

For j 2 {s, t}, independent disagreement satisfies

DisjI (�, , �) = E[(ŷW1,X1,Y1(x) � ŷW2,X2,Y2(x))2]

= E[(ŷW1,X1,Y1(x) � EW1,X1,Y1 [ŷW1,X1,Y1(x)] + EW2,X2,Y2 [ŷW2,X2,Y2(x)] � ŷW2,X2,Y2(x))2]

= E�,x⇠Dj [(ŷW1,X1,Y1(x) � EW1,X1,Y1 [ŷW1,X1,Y1(x)])2] + E�,x⇠Dj [(ŷW2,X2,Y2(x) � EW2,X2,Y2 [ŷW2,X2,Y2(x)])2]

= E�,x⇠DjVW1,X1,Y1(ŷW1,X1,Y1(x)) + E�,x⇠DjVW2,X2,Y2(ŷW2,X2,Y2(x)) = 2Vj .

Plugging in the variance Vj given in Theorem C.1, we obtain the formula for DisjI (�, , �).

B.1.1. DECOMPOSITION OF DisjSS(�, , �)

Writing Fi = �(WiX/
p
d), fi = �(Wix/

p
d), Ki = 1

N F
>
i Fi + �In for i 2 {1, 2}, we can write shared-sample

disagreement as

DisjSS(�, , �) =
1

N2
E[(Y >

K
�1
1 F

>
1 f1 � Y

>
K

�1
2 F

>
2 f2)

2]

=
2

N2
E[f>

1 F1K
�1
1 Y Y

>
K

�1
1 F

>
1 f1] �

2

N2
E[f>

2 F2K
�1
2 Y Y

>
K

�1
1 F

>
1 f1]

= D1 �D2. (16)

The term D1 was computed in (A268), (A279), (A462), (A546) of Tripuraneni et al. (2021) as

D1 = 2Vj +
2⇢j2

⇢s�
Ij
3,2. (17)

Plugging in Y = X
>
�/

p
d + ", where " = ("1, . . . , "n)> 2 Rn, the term D2 becomes

D2 =
2

dN2
EWi,X tr[K�1

2 X
>E� [��>]XK

�1
1 F

>
1 Ex⇠Dj ,✓[f1f

>
2 ]F2]

+
4p
dN2

EWi,X [K�1
2 X

>E�,"[�">]K�1
1 F

>
1 Ex⇠Dj ,✓[f1f

>
2 ]F2]

+
2

N2
EWi,X tr[K�1

2 E"[""
>]K�1

1 F
>
1 Ex⇠Dj ,✓[f1f

>
2 ]F2]

=
2

dN2
EWi,X tr[K�1

2 X
>
XK

�1
1 F

>
1 Ex⇠Dj ,✓[f1f

>
2 ]F2] +

2�2
"

N2
EWi,X tr[K�1

2 K
�1
1 F

>
1 Ex⇠Dj ,✓[f1f

>
2 ]F2].
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From the Gaussian equivalence (14), we have

Ex⇠Dj ,✓[f1f
>
2 ] =

⇢j

d
W1⌃jW

>
2 .

Therefore,

D2 =
2⇢j
d2N2

EWi,X tr[W1⌃jW
>
2 F2K

�1
2 X

>
XK

�1
1 F

>
1 ] +

2�2
"⇢j

dN2
EWi,X tr[K�1

1 F
>
1 W1⌃jW

>
2 F2K

�1
2 ]

= D21 + D22. (18)

We can write X = ⌃
1
2
s Z for Z 2 Rd⇥n with i.i.d. standard Gaussian entries. Thus,

D21 =
2⇢j
d2N2

EWi,Z tr[W1⌃jW
>
2 F2K

�1
2 Z

>⌃sZK
�1
1 F

>
1 ],

D22 =
2�2

"⇢j

dN2
EWi,Z tr[K�1

1 F
>
1 W1⌃jW

>
2 F2K

�1
2 ].

Now, we use the linear pencil method (Helton et al., 2018) to build a block matrix such that (1) each block is either
deterministic or a constant multiple of Z,Wi,⇥i and (2) D21 or D22 appears as a trace of a block of its inverse. Then, we
compute the operator-valued Cauchy transform of the block matrix and extract D21 and D22 from the result.

B.1.2. PRELIMINARY COMPUTATIONS

We present some preliminary computations that will be used in later sections. We will also use the linear pencil Q0 as a
building block when constructing other linear pencils. Most of the computations here are adopted from Section A.9.6.1 of
Tripuraneni et al. (2021). For clarity and to be self-contained, we provide our own version of the same result updated in
some minor ways.

Using W,Z and other notations from Section 2 and ⇥ from (14), let

Q
0 =

2

6666666664

In

p
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�
p
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p
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�
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p
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p
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1
2
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� Zp
d

· · · · Id

3

7777777775

.

Recall from Example A.2 that we denote the normalized trace of a matrix A by tr(A). Define the block-wise normalized
expected trace of (Q0)�1 by G

0 = (id⌦Etr)((Q0)�1). From block matrix inversion, we see

G
0
1,1 = � Etr(K�1), G

0
3,6 =

�
p
⇢s Etr[⌃sW

>
K̂

�1
W ]

N
, G

0
5,4 = �

p
⇢s Etr[⌃sZK

�1
Z

>]

d
, (19)

in which K̂ = 1
N FF

> + �IN . We augment the matrix Q
0 to form the symmetric matrix Q̄

0 as

Q̄
0 =


· (Q0)>

Q
0 ·

�
.

This matrix can be written as

Q̄
0 = Z̄

0 � Q̄
0
W,Z,⇥ � Q̄

0
⌃

=


· In+4d+N

In+4d+N ·

�
�


· (Q0
W,Z,⇥)>

Q
0
W,Z,⇥ ·

�
�


0 (Q0
⌃)>

Q
0
⌃ ·

�
,
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with

Q
0
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and Q
0
⌃ =

2

66666664

· · · · · ·
· · · · · ·
· · · ⌃

1
2
s · ·

· · · · · ·
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1
2
s
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3
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.

Defining Ḡ
0 as below, we have

Ḡ
0 =


· G

0

(G0)> ·

�
=


· (id⌦Etr)((Q0)�1)

(id⌦Etr)(((Q0)>)�1) ·

�

= (id⌦Etr)


· (Q0)�1

((Q0)>)�1 ·

�
= (id⌦Etr)((Q̄0)�1).

Thus, Ḡ0 can be viewed as the operator-valued Cauchy transform of Q̄0
W,Z,⇥ + Q̄

0
⌃ (in the space we consider in Remark

A.7),
Ḡ

0 = (id⌦Etr)(Z̄0 � Q̄
0
W,Z,⇥ � Q̄

0
⌃)�1 = GQ̄0

W,Z,⇥+Q̄0
⌃
(Z̄0).

Here, we implicitly used the canonical inclusion defined in (10) to write

Z̄
0 =


· I6

I6 ·

�
.

Since Q̄
0
⌃ is deterministic, the matrices Q̄0

W,Z,⇥ and Q̄
0
⌃ are asymptotically freely independent according to Definition A.9.

Hence by the subordination formula (12),

Ḡ
0 = GQ̄0

⌃
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W,Z,⇥
(Ḡ0)) = (id⌦Etr)(Z̄0 �RQ̄0
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(Ḡ0) � Q̄

0
⌃)�1

. (20)

Since Q̄
0
W,Z,⇥ consists of i.i.d. Gaussian blocks, we use (13) to find the R-transform RQ̄0

W,Z,⇥
(Ḡ0) of the form

RQ̄0
W,Z,⇥

(Ḡ0) =


· (R0)>

R
0 ·

�
.

For example, to find R
0
1,1, we look for a block in the first row of Q̄0

W,Z,⇥ and a block in the first column of Q̄0
W,Z,⇥ such

that they are transpose to each other up to a constant factor. There are two such pairs, ((1, 2)-block, (2, 1)-block) and ((1,
3)-block, (6, 1)-block). Therefore, the equation (13) gives

R
0
1,1 = �⇢s!s

�
G

0
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p
⇢s

�
G

0
3,6.

Repeating the same procedure, the non-zero blocks of R0 are
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p
⇢sG

0
1,1

��
.

Plugging this into equation (20), we obtain self-consistent equations for G1. For example,

G
0
3,6 = Etr[(In+4d+N �R
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Similarly,
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Now, by eliminating G
0
3,6, G

0
5,4 and expressing in terms of , ⌧, and ⌧̄ defined in (4) and (6), we can show that Etr(K�1) =
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� = ⌧̄ . Thus, using equation (5) we have
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B.1.3. COMPUTATION OF D21

Define Q
1 by
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Define the block-wise normalized expected trace of (Q1)�1 by G
1 = (id⌦Etr)((Q1)�1). Then, by block matrix inversion

we have

G
1
2,14 =

 

d2N2
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>
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We augment Q1 to the symmetric matrix Q̄
1 as

Q̄
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
· (Q1)>

Q
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and write
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where
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Then defining Ḡ
1 below,

Ḡ
1 =


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1
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can be viewed as the operator-valued Cauchy transform of Q̄1
W,Z,⇥ + Q̄

1
⌃ (in the space we consider in Remark A.7), i.e.,
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Further by the subordination formula (12),
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Since Q̄
1
W,Z,⇥ consists of i.i.d. Gaussian blocks, by (13), its limiting R-transform has a form
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,
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where the non-zero blocks of R1 are
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We used the fact that G1
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14,2 = 0, which we obtain from block matrix inversion of Q1.

Computing the block-matrix inverse of Q1 and from equations (19), (21), we see
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Plugging these into (22), we obtain self-consistent equations. For example,
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B.1.4. COMPUTATION OF D22
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and G
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We augment Q2 to the symmetric matrix Q̄
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and

Q
2
⌃ =

2

666666666666666666664

· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · ⌃

1
2
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· · · · · · · · · · · ·
· · · · · ⌃

1
2
s · · · · · ·

· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · ⌃

1
2
s · ·

· · · · · · · · · · · ·
· · · �⌃j · · · · · · · ⌃

1
2
s

· · · · · · · · · · · ·

3

777777777777777777775

.

Defining Ḡ
2 below,

Ḡ
2 =


· G

2

(G2)> ·

�
=


· (id⌦Etr)((Q2)�1)

(id⌦Etr)(((Q2)>)�1) ·

�

= (id⌦Etr)


· (Q2)�1

((Q2)>)�1 ·

�
= (id⌦Etr)((Q̄2)�1).

It can be viewed as the operator-valued Cauchy transform of Q̄2
W,Z,⇥ + Q̄

2
⌃ (in the space we consider in Remark A.7), i.e.,

Ḡ
2 = (id⌦Etr)(Z̄2 � Q̄

2
W,Z,⇥ � Q̄

2
⌃)�1 = GQ̄2

W,Z,⇥+Q̄2
⌃
(Z̄2).

Further by the subordination formula (12),

Ḡ
2 = GQ̄2

⌃
(Z̄2 �RQ̄2

W,Z,⇥
(Ḡ2)) = (id⌦Etr)(Z̄2 �RQ̄2

W,Z,⇥
(Ḡ2) � Q̄

2
⌃)�1

. (24)

Since Q̄
2
W,Z,⇥ consists of i.i.d. Gaussian blocks, by (13), its limiting R-transform has a form

RQ̄2
W,Z,⇥

(Ḡ2) =


· (R2)>

R
2 ·

�
,

where the non-zero blocks of R2 are

R
2
1,1 = �⇢s!s

�
G

2
2,2 �

p
⇢s

�
G

2
3,6, R

2
1,7 = �

p
⇢s

�
G

2
3,12 = 0, R

2
2,2 = � ⇢s!s

��
G

2
1,1 +

p
⇢s G

2
5,4,

R
2
4,5 =

p
⇢sG

2
2,2, R

2
6,3 = �

p
⇢s

��
G

2
1,1, R

2
6,9 = �

p
⇢s

��
G

2
1,7 = 0, R

2
7,1 = �

p
⇢s

�
G

2
9,6,

R
2
7,7 = �⇢s!s

�
G

2
8,8 �

p
⇢s

�
G

2
9,12, R

2
8,8 = � ⇢s!s

��
G

2
7,7 +

p
⇢s G

2
11,10, R

2
10,11 =

p
⇢sG

2
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R
2
12,3 = �

p
⇢s

��
G

2
7,1, R

2
12,9 = �

p
⇢s

��
G

2
7,7.

We used the fact that G2
3,12 = G

2
1,7 = 0, which we obtain from block matrix inversion of Q2. From block matrix inversion

of Q2 and equations (19), (21), we have

G
2
1,1 = G

2
7,7 = �Etr(K�1) = G

0
1,1 = �⌧, G

2
2,2 = G

2
8,8 = �Etr(K̂�1) = G

0
2,2 = �⌧̄ ,

G
2
3,6 = G

2
9,12 =

�
p
⇢s Etr[⌃sW

>
K̂

�1
W ]

N
= G

0
3,6 = �

p
⇢s⌧̄Is

1,1,

G
2
5,4 = G

2
11,10 = �

p
⇢s Etr[⌃sZK

�1
Z

>]

d
= G

0
5,4 = �

p
⇢s⌧Is

1,1

�
.
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Plugging these into (24), we have the following self-consistent equations

G
2
7,1 = �

�
p
⇢sG

2
9,6

(� +
p
⇢sG

2
3,6 + ⇢s!sG

2
2,2)

2
= ��p⇢s⌧2G2

9,6,

G
2
9,6 = �Eµ

2

4 (�s)2�⇢
3
2
s �(G2

2,2)
2
G

2
7,1 + �

s
�
j
�
2
⇢s�

2(G2
2,2)

2

(��+ �s⇢sG
2
1,1G

2
2,2)

2

3

5 = ��⇢
3
2
s ⌧̄

2Is
2,2G

2
7,1 � �

2
⇢s⌧̄

2
�Ij

2,2.

Solving for G2
7,1,

G
2
7,1 =


2
��Ij

2,2p
⇢s(1 � 2Is

2,2)
.

Therefore,

D22 =
2�2

"⇢j

�
p
⇢s�

G
2
7,1 =

2⇢j2�2
"I

j
2,2

⇢s(1 � 2Is
2,2)

. (25)

B.1.5. COMPUTATION OF DisjSS(�, , �)

Combining equations (16), (17), (18), (23), (25), we get

DisjSS(�, , �) = DisjI (�, , �) �
2⇢j2(�2

" + �Is
1,2)I

j
2,2

⇢s(1 � 2Is
2,2)

.

B.1.6. DECOMPOSITION OF DisjSW(�, , �)

Writing Fi = �(WXi/
p
d), f = �(Wx/

p
d), Ki = 1

N F
>
i Fi + �In for i 2 {1, 2}, we can write SW disagreement as

DisjSW(�, , �) =
1

N2
E[(Y >

1 K
�1
1 F

>
1 f � Y

>
2 K

�1
2 F

>
2 f)2]

=
2

N2
E[f>

F1K
�1
1 Y1Y

>
1 K

�1
1 F

>
1 f ] � 2

N2
E[f>

F2K
�1
2 Y2Y

>
1 K

�1
1 F

>
1 f ]

= D1 �D3. (26)

The term D1 is given in (17). Plugging in Yi = X
>
i �/

p
d + "i, where "i = ("i1, . . . , "in)> 2 Rn, the term D3 becomes

D3 =
2

dN2
EW,Xi tr[F2K

�1
2 X

>
2 E� [��>]X1K

�1
1 F

>
1 Ex⇠Dj ,✓[ff

>]]

+
4p
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EW,Xi [F2K
�1
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>
2 E�,"1 [�"

>
1 ]K�1

1 F
>
1 Ex⇠Dj ,✓[ff

>]]

+
2
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EW,Xi tr[F2K
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2 E"i ["2"

>
1 ]K�1

1 F
>
1 Ex⇠Dj ,✓[ff
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=
2
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EW,Xi tr[F2K
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2 X

>
2 X1K

�1
1 F

>
1 Ex⇠Dj ,✓[ff

>]].

From the Gaussian equivalence (14), we have

Ex⇠Dj ,✓[ff
>] =

⇢j

d
W⌃jW

> + ⇢j!jIN .

Therefore,

D3 =
2⇢j
d2N2

EW,Xi tr[W⌃jW
>
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�1
2 X

>
2 X1K

�1
1 F

>
1 ] +

2⇢j!j
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⇥
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2 X

>
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>
1

⇤

= D31 + D32. (27)
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We can write Xi = ⌃
1
2
s Zi for Zi 2 Rd⇥n with i.i.d. standard Gaussian entries. Thus,

D31 =
2⇢j
d2N2

EW,Zi tr[W⌃jW
>
F2K

�1
2 Z

>
2 ⌃sZ1K

�1
1 F

>
1 ],

D32 =
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⇥
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>
2 ⌃sZ1K

�1
1 F

>
1

⇤
.

Now, we use the linear pencil method to compute D31 and D32.

B.1.7. COMPUTATION OF D31

Let

Q
3 =

2
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1
2
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>
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s
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77777777777777777777777777777775

and G
3 = (id⌦Etr)((Q3)�1). Then,

G
3
2,14 =

 

d2N2
EW,Zi tr[W⌃jW

>
F2K

�1
2 Z

>
2 ⌃sZ1K

�1
1 F

>
1 ] =

 

2⇢j
D31.

We augment Q3 to the symmetric matrix Q̄
3 as

Q̄
3 =


0 (Q3)>

Q
3 0

�

and write

Q̄
3 = Z̄

3 � Q̄
3
W,Z,⇥ � Q̄

3
⌃

=


0 I2n+9d+3N

I2n+9d+3N 0

�
�


0 (Q3
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Q
3
W,Z,⇥ 0

�
�


0 (Q3
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Q
3
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�
,
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where

Q
3
W,Z,⇥ =
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· �
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>
2

�
p
d

· · · · · · · · · · ·
p
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N
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p
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>
1

�
p
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�
p
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>
1

�
p
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p
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N
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p
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N
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p
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d
· · · · · · ·

· · · · · · · · · · · · · W>
p
N

· · · · · · · · · · · · · ·

3
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and

Q
3
⌃ =

2
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· · · · · · · · · · · · · ·
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· · · ⌃

1
2
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· · · · · · · · · · · � ⌃
1
2
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1
2
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· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·
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1
2
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1
2
s � ⌃jp
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· · · · · · · · · · · · · ·
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.

Defining Ḡ
3 below,

Ḡ
3 =


0 G

3

(G3)> 0

�
=


0 (id⌦Etr)((Q3)�1)

(id⌦Etr)(((Q3)>)�1) 0

�

= (id⌦Etr)


0 (Q3)�1

((Q3)>)�1 0

�
= (id⌦Etr)((Q̄3)�1).

It can be viewed as the operator-valued Cauchy transform of Q̄3
W,Z,⇥ + Q̄

3
⌃ (in the space we consider in Remark A.7), i.e.,

Ḡ
3 = (id⌦Etr)(Z̄3 � Q̄

3
W,Z,⇥ � Q̄

3
⌃)�1 = GQ̄3

W,Z,⇥+Q̄3
⌃
(Z̄3).

Further by the subordination formula (12),

Ḡ
3 = GQ̄3

⌃
(Z̄ �RQ̄3

W,Z,⇥
(Ḡ3)) = (id⌦Etr)(Z̄3 �RQ̄3

W,Z,⇥
(Ḡ3) � Q̄

3
⌃)�1

. (28)

Since Q̄
3
W,Z,⇥ consists of i.i.d. Gaussian blocks, by (13), its limiting R-transform has a form

RQ̄3
W,Z,⇥

(Ḡ3) =


0 (R3)>

R
3 0

�
,
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where the non-zero blocks of R3 are

R
3
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�
G

3
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�
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3
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3
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G
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3
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p
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3
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3
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p
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��
G

3
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3
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3
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R
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p
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3
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p
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3
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We used the fact that G3
11,4 = G

3
8,2 = G

3
14,2 = G

3
14,8 = 0, which we obtain from block matrix inversion of Q3.

Further from block matrix inversion of Q3 and equations (19), (21), we have

G
3
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0
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0
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3
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�
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Plugging these into (28), we have the following self-consistent equations

G
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3
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p
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Solving for G3
5,10 gives

G
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p
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.

Plugging in G
3
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3
11,13, G

3
5,13 to find G

3
2,14, we get
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j
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+
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B.1.8. COMPUTATION OF D32

Let
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and G
4 = (id⌦Etr)((Q4)�1). Then,
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We augment Q4 to the symmetric matrix Q̄
4 as
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and
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1
2
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1
2
s

· · · · · · · · · · · ·

3

777777777777777777775

.

Defining Ḡ
4 below,

Ḡ
4 =


0 G

4

(G4)> 0

�
=


0 (id⌦Etr)((Q4)�1)

(id⌦Etr)(((Q4)>)�1) 0

�

= (id⌦Etr)


0 (Q4)�1

((Q4)>)�1 0

�
= (id⌦Etr)((Q̄4)�1).
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It can be viewed as the operator-valued Cauchy transform of Q̄4
W,Z,⇥ + Q̄

4
⌃ (in the space we consider in Remark A.7), i.e.,

Ḡ
4 = (id⌦Etr)(Z̄4 � Q̄

4
W,Z,⇥ � Q̄

4
⌃)�1 = GQ̄4

W,Z,⇥+Q̄4
⌃
(Z̄4).

Further by the subordination formula (12),

Ḡ
4 = GQ̄4

⌃
(Z̄ �RQ̄4

W,Z,⇥
(Ḡ4)) = (id⌦Etr)(Z̄4 �RQ̄4

W,Z,⇥
(Ḡ4) � Q̄

4
⌃)�1

. (30)

Since Q̄
4
W,Z,⇥ consists of i.i.d. Gaussian blocks, by (13), its limiting R-transform has a form

RQ̄4
W,Z,⇥

(Ḡ4) =


0 (R4)>

R
4 0

�
,

where the non-zero blocks of R4 are

R
4
1,1 = �⇢s!s

�
G

4
2,2 �

p
⇢s

�
G

4
3,6, R

4
2,2 = �⇢s!s 

��
G

4
1,1 +

p
⇢s G

4
5,4, R

4
2,8 =

p
⇢s G

4
5,10, R

4
4,5 =

p
⇢sG

4
2,2

R
4
4,11 =

p
⇢sG

4
2,8, R

4
6,3 = �

p
⇢s

��
G

4
1,1, R

4
7,7 = �⇢s!s

�
G

4
8,8 �

p
⇢s

�
G

4
9,12, R

4
8,2 =

p
⇢s G

4
11,4 = 0,

R
4
8,8 = �⇢s!s 

��
G

4
7,7 +

p
⇢s G

4
11,10, R

4
10,5 =

p
⇢sG

4
8,2 = 0, R

4
10,11 =

p
⇢sG

4
8,8, R

4
12,9 = �

p
⇢s

��
G

4
7,7.

We used the fact that G4
11,4 = G

4
8,2 = 0, which we obtain from block matrix inversion of Q4.

Further from block matrix inversion of Q4 and equations (19), (21), we have

G
4
1,1 = G

4
7,7 = �Etr(K�1) = G

0
1,1 = �⌧, G

4
2,2 = G

4
8,8 = �Etr(K̂�1) = G

0
2,2 = �⌧̄ ,

G
4
3,6 = G

4
9,12 =

�
p
⇢s Etr[⌃sW

>
K̂

�1
W ]

N
= G

0
3,6 = �

p
⇢s⌧̄Is

1,1,

G
4
5,4 = G

4
11,10 = �

p
⇢s Etr[⌃sZK

�1
Z

>]

d
= G

0
5,4 = �

p
⇢s⌧Is

1,1

�
.

Plugging these into (30), we have the following self-consistent equations

G
4
2,8 =

p
⇢s �

2
G

4
5,10

(�+ ⇢s⌧ (!s + Is
1,1))

2
, G

4
5,10 = �⇢s⌧

2

�
Is
2,2 +

⇢
3
2
s ⌧

2

�
Is
2,2G

4
2,8

Solving for G4
2,8 and plugging in to D32, we get

D32 = �2⇢j!jp
⇢s

G
4
2,8 =

2⇢j!j 
2Is

2,2

⇢s(��  2Is
2,2)

. (31)

B.1.9. COMPUTATION OF DisjSW(�, , �)

Combining equations (26), (17), (27), (29), (31), we get

DisjSW(�, , �) = DisjI (�, , �) �
2⇢j 2(!j + �Ij

1,2)Is
2,2

⇢s(��  2Is
2,2)

.

B.2. Proof of Corollary 3.2

Since   1/!s for any � > 0 by (4), we know lim�!0 � = 0. Thus from (6), we have

lim
�!0

�⌧ =
| � �| +  � �

2 
, lim

�!0
�⌧̄ = 1 �  

�
+
 

�
lim
�!0

�⌧ =
| � �| + ��  

2�
.
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By Condition 2.3 and the dominated convergence theorem, the functionals Is
a,b, It

a,b and their derivatives with respect to 
are continuous in . Applying the implicit function theorem to the self-consistent equation (4), viewing it as a function of
 and �, we find that  is differentiable with respect to � and thus continuous. Therefore, the limit of , Is

a,b, It
a,b when

� ! 0 is well defined. Plugging these limits into Theorem 3.1, we reach

lim
�!0

DisjI (�, , �) =
2⇢j 

⇢s|��  | (�
2
" + Is

1,1)(!j + Ij
1,1) +

8
<

:

2⇢j(�
2
"+�I

s
1,2)I

j
2,2

⇢s(!s+�Is
1,2)

� >  ,

2⇢j(!j+�Ij
1,2)I

s
2,2

⇢s(!s+�Is
1,2)

� <  ,

lim
�!0

DisjSS(�, , �) = lim
�!0

DisjI (�, , �) �
2⇢j2(�2

" + �Is
1,2)I

j
2,2

⇢s(1 � 2Is
2,2)

, (32)

and

lim
�!0

DisjSW(�, , �) = lim
�!0

DisjI (�, , �) �
2⇢j 2(!j + �Ij

1,2)Is
2,2

⇢s(��  2Is
2,2)

. (33)

From the equation (5), we have Is
1,1 = �Is

1,2 + Is
2,2. Also by (4) and (6), !s = 1��⌧

 � Is
1,1. Therefore,

!s + �Is
1,2 =

1 � �⌧


� Is

1,1 + �Is
1,2 =

1 � �⌧


� Is

2,2. (34)

In the ridgeless limit � ! 0, the equation (34) gives

lim
�!0

1

!s + �Is
1,2

=

8
<

:
lim�!0


1�2Is

2,2
� >  ,

lim�!0
 

�� 2Is
2,2

� <  .
(35)

Putting (32), (33), (35) together, we conclude

lim
�!0

DisjSS(�, , �) =
2⇢j 

⇢s|��  | (�
2
" + Is

1,1)(!j + Ij
1,1) +

8
<

:

0 � >  ,

2⇢j
⇢s

✓
(!j+�Ij

1,2)I
s
2,2

!s+�Is
1,2

� (�2
"+�I

s
1,2)I

j
2,2

1�2Is
2,2

◆
� <  ,

lim
�!0

DisjSW(�, , �) =
2⇢j 

⇢s|��  | (�
2
" + Is

1,1)(!j + Ij
1,1) +

8
<

:

2⇢j
⇢s

✓
(�2

"+�I
s
1,2)I

j
2,2

!s+�Is
1,2

�  (!j+�Ij
1,2)I

s
2,2

�� 2Is
2,2

◆
� >  ,

0 � <  .

B.3. Proof of Theorem 4.1

By Corollary 3.2, disagreement in the ridgeless and overparametrized regime is given by

lim
�!0

DisjI (�, , �) =
2⇢j 

⇢s|��  | (�
2
" + Is

1,1)(!j + Ij
1,1) +

2⇢j(�2
" + �Is

1,2)I
j
2,2

⇢s(!s + �Is
1,2)

,

lim
�!0

DisjSS(�, , �) =
2⇢j 

⇢s|��  | (�
2
" + Is

1,1)(!j + Ij
1,1).

The self-consistent equation (7) in the overpametrized regime � >  is

 =
1

!s + Is
1,1()

,

which is independent of  . Consequently, the unique positive solution  is also independent of  . This proves that the slope
a and the intercept bI defined in Theorem 4.1 are independent of  as well. Checking the equation (9) can be done by using
(35) and a simple algebra.
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B.4. Proof of Theorem 4.3

Let a(�), bI(�), bSS(�) be defined by (8), but with  in the self-consistent equation (4) with general �, instead of the
self-consistent equation (7) in the ridgeless limit. With this notation, we have a = a(0), bI = bI(0), bSS = bSS(0). By
Theorem 3.1 and the triangle inequality, deviation from the line is bounded by

|Disti(�, ,�) � aDissi(�, , �) � bi|
 |Disti(�, , �) � a(�)Dissi(�, , �) � bi(�)| + |a(�) � a(0)||Dissi(�, , �)| + |bi(�) � bi(0)|
 A1 + A2 + Dissi(�, , �)|a(�) � a(0)| + |bi(�) � bi(0)|, i 2 {I, SS}, (36)

where

A1 =
2 �⌧Is

2,2|⇢t(!t + �It
1,2) � a⇢s(!s + �Is

1,2)|
�� + ⇢s( �⌧ + ��⌧̄)(!s + �Is

1,2)
,

A2 = 2(�2
" + �Is

1,2)|⇢tIt
2,2 � a⇢sIs

2,2|

�����
��⌧̄

�� + ⇢s( �⌧ + ��⌧̄)(!s + �Is
1,2)

� 
2

⇢s(1 � 2Is
2,2)

����� .

In what follows, we bound each of these terms. We will use O(·) notation to hide constants depending on �, µ,�2
" ,�. For

example, we can write Ij
a,b = O(1) for j 2 {s, t} since we assume in Condition 2.3 that µ is compactly supported.

B.4.1. BOUNDING A1

We know a  ⇢t(!t + It
1,1)/⇢s!s by (8). Thus,

Is
2,2|⇢t(!t + �It

1,2) � a⇢s(!s + �Is
1,2)| = O(1). (37)

By (6) and since
p
x2 + y2  |x| + |y| for any x, y 2 R,

2 �⌧ =
p

( � �)2 + 4 ��/⇢s +  � � 

s
4 ��

⇢s
= O(

p
 �). (38)

Again by (6),  �⌧ + ��⌧̄ =
p

( � �)2 + 4 ��/⇢s. Therefore,



�� + ⇢s( �⌧ + ��⌧̄)(!s + �Is
1,2)

 

⇢s( �⌧ + ��⌧̄)(!s + �Is
1,2)

= O

✓
1

1 �  /�+
p
 �

◆
. (39)

Here, we used   1
!s

= O(1) by (4). Combining (37), (38), (39), we reach

A1 = O

✓ p
 �

1 �  /�+
p
 �

◆
. (40)

B.4.2. BOUNDING A2

Similar to (37), we have

2(�2
" + �Is

1,2)|⇢tIt
2,2 � a⇢sIs

2,2| = O(1). (41)

By (34),


2

⇢s(1 � 2Is
2,2)

=

2

⇢s[�⌧ + (!s + �Is
1,2)]

. (42)

From (42) and  = �⇢s⌧ ⌧̄ ,
�����

��⌧̄

�� + ⇢s( �⌧ + ��⌧̄)(!s + �Is
1,2)

� 
2

⇢s(1 � 2Is
2,2)

�����

=

2(!s + �Is

1,2) �⌧

[�� + ⇢s( �⌧ + ��⌧̄)(!s + �Is
1,2)][�⌧ + (!s + �Is

1,2)]
.
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From (38), (39), and (!s + �Is
1,2)/[�⌧ + (!s + �Is

1,2)]  1, we get
�����

��⌧̄

�� + ⇢s( �⌧ + ��⌧̄)(!s + �Is
1,2)

� 
2

⇢s(1 � 2Is
2,2)

����� = O

✓ p
 �

1 �  /�+
p
 �

◆
. (43)

Putting (41) and (43) together,

A2 = O

✓ p
 �

1 �  /�+
p
 �

◆
. (44)

B.4.3. BOUNDING DissI (�, , �) AND DissSS(�, , �)

By Theorem 3.1 and the equations (6), (38), (39), we have

DissI (�, , �) = O

✓
1 +

p
 �

1 �  /�+
p
 �

◆
. (45)

By Theorem 3.1 and the equations (38), (39), (43), we have

DissSS(�, , �) = O

✓
 +

p
 �

1 �  /�+
p
 �

◆
. (46)

B.4.4. BOUNDING |a(�) � a(0)|

From the argument in Section B.2, we know a(�) is differentiable with respect to �. By the chain rule and (5),

@a

@�
=
@

@�
⇥

�It
2,2(!s + Is

1,1) + Is
2,2(!t + It

1,1)

(!s + Is
1,1)

2
. (47)

By implicit differentiation of (4), we have

@

@�
= � 

�� + ⇢s( �⌧ + ��⌧̄)(!s + �Is
1,2)

. (48)

We have |(�It
2,2(!s + Is

1,1) + Is
2,2(!t + It

1,1))/(!s + Is
1,1)

2| = O(1) and

����
@

@�

���� = O

 
1p

( � �)2 +  ��

!

since  �⌧ + ��⌧̄ =
p

( � �)2 + 4 ��/⇢s. Therefore,

|a(�) � a(0)| =

����
Z �

0

@a

@�
(u)du

���� 
Z �

0

����
@a

@�
(u)

���� du

= O

 Z �

0

1p
( � �)2 +  �u

du

!
= O

✓
�

1 �  /�+
p
 �

◆
. (49)

B.4.5. BOUNDING |bI(�) � bI(0)|

From the argument in Section B.2, we know bI(�) is differentiable with respect to �. In (8), the terms 2

1�2Is
2,2

, �2
" + �Is

1,2,
⇢t � a⇢sIs

2,2 and their derivatives with respect to  are O(1). Thus,

����
@bI

@�

���� = O

✓����
@

@�

����

◆
= O

 
1p

( � �)2 +  ��

!
.
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Therefore,

|bI(�) � bI(0)| =

����
Z �

0

@bI

@�
(u)du

���� 
Z �

0

����
@bI

@�
(u)

���� du

= O

 Z �

0

1p
( � �)2 +  �u

du

!
= O

✓
�

1 �  /�+
p
 �

◆
. (50)

Theorem 4.3 is proved by combining the equations (36), (40), (44), (45), (46), (49), (50).

B.5. Proof of Corollary 4.4

By Ej = Bj + Vj = Bj + 1
2DisjI (�, , �) and (51), we have

|Et � aEs � brisk| 
1

2
|DistI (�, , �) � aDissI (�, , �) � bI| +

����Bt � aBs � lim
�!0

(Bt � aBs)

���� .

Since the derivatives of Ij
1,1, I

j
1,2 with respect to � is O(1). We have

����Bt � aBs � lim
�!0

(Bt � aBs)

���� = O(�)

by the mean value theorem. The conclusion follows from Theorem 4.3.

C. Recap of Tripuraneni et al. (2021)
In this section, we restate some relevant results of Tripuraneni et al. (2021), in the special cases ⌃⇤ = ⌃s or ⌃⇤ = ⌃t. See
Tripuraneni et al. (2021) for the original theorems.

For a test distribution x ⇠ N(0,⌃⇤), define the risk by

E⌃⇤ = Ex,�,X,Y,W [(�>
x� ŷW,X,Y (x))2].

We have the following bias-variance decomposition

E⌃⇤ = Ex,� [(�
>
x� EW,X,Y [ŷW,X,Y (x)])2] + Ex,� [VW,X,Y (ŷW,X,Y (x))]

= B⌃⇤ + V⌃⇤ .

We consider the high-dimensional limit n, d,N ! 1 with d/n ! � and d/N !  of the above quantities when ⌃⇤ = ⌃s

or ⌃⇤ = ⌃t,

Ej = lim
n,d,N!1

E⌃j , Bj = lim
n,d,N!1

B⌃j , Vj = lim
n,d,N!1

V⌃j , j 2 {s, t}.

Theorem C.1 (Theorem 5.1 of Tripuraneni et al. (2021)). For j 2 {s, t}, the asymptotic bias and variance are given by

Bj =

✓
1 �

r
⇢j

⇢s

◆2

mj + 2

✓
1 �

r
⇢j

⇢s

◆r
⇢j

⇢s
Ij
1,1 +

⇢j�

⇢s
Ij
1,2,

Vj = �⇢j 
�

@

@�


Is
1,1(!s + �Is

1,2)(!j + Ij
1,1) +

�
2

 
�⌧̄Is

1,2I
j
2,2

+�⌧Is
2,2(!j + �Ij

1,2) + �
2
"

✓
(!s + �Is

1,2)(!j + Ij
1,1) +

�

 
�⌧̄Ij

2,2

◆�
,

where , ⌧, ⌧̄ are defined in (4) and (6).

In the ridgeless limit � ! 0, the variance Vj is further simplified as follows.
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Corollary C.2 (Corollary 5.1 of Tripuraneni et al. (2021)). For j 2 {s, t}, the asymptotic variance in the ridgeless limit is

lim
�!0

Vj =
⇢j 

⇢s|��  | (�
2
" + Is

1,1)(!j + Ij
1,1) +

8
<

:

⇢j
⇢s

⇣
1 � (!s��2

")
1�2Is

2,2

⌘
Ij
2,2 � �  ,

⇢j
2 Is

2,2

⇢s(��2 Is
2,2)

(!j + �Ij
1,2) � <  ,

where  is defined in (7).

Another important observation is that there is a linear relation between the asymptotic error under the source and target
domain.
Proposition C.3 (Proposition 5.6 of Tripuraneni et al. (2021)). We assume � is fixed. In the ridgeless limit � ! 0 and the
overparametrized regime � �  , the error Et is linear in Es, as a function of  . That is,

lim
�!0

Et = brisk +
⇢t(!t + It

1,1)

⇢s(!s + Is
1,1)

lim
�!0

Es,

where the intercept

brisk =
1

2
bI + lim

�!0
(Bt � aBs) (51)

and the slope ⇢t(!t + It
1,1)/⇢s(!s + Is

1,1) are independent of  .

D. Additional Experiments
D.1. Estimation of the Slope

Let ⌃̂s, ⌃̂t be sample covariance of test inputs from the source and target domain, respectively. Denote the eigenvalues
and corresponding eigenvectors of ⌃̂s by �̂s1, . . . , �̂sd and v̂1, . . . , v̂d. Define �̂ti = v̂

>
i ⌃̂tv̂i for i 2 [d]. For j 2 {s, t}, we

estimate Ij
a,b() by

Îj
a,b() =

�

d

dX

i=1

(�̂si)
a�1

�̂
j
i

(�+ �̂si)
b
.

We estimate the constants defined in (3) by replacing mj with m̂j = tr(⌃̂j), j 2 {s, t}. Now, the self-consistent equation
(7) is estimated by

̂ =
min(1,�/ )

!̂s + Îs
1,1(̂)

,

and its unique non-negative solution is denoted by ̂. The existence and uniqueness of ̂ follows from Lemma A1.2 of
Tripuraneni et al. (2021). We use

â =
⇢̂t(!̂t + Ît

1,1(̂))

⇢̂s(!̂s + Îs
1,1(̂))

as an estimate of the slope a = ⇢t(!t + It
1,1)/⇢s(!s + Is

1,1).

D.2. Deviation from the Line

Figure 5 displays deviation from the line for I disagreement and risk, when non-zero ridge regularization � is used. Similar
to Figure 3 (b), the deviation is smaller for � closer to zero. However, unlike SS disagreement, the deviation is non-zero
even in the infinite overparameterization limit  ! 0. This is consistent with the upper bound we present in Theorem 4.3
and Corollary 4.4.

D.3. Varying Corruption Severity

CIFAR-10-C and Tiny ImageNet-C have different severity of corruption ranging from 1 to 5. We only included a few
selected results in the main text due to space limitations. We present the plots for all severity levels in Figure 7.
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Figure 5. (a) Deviation from the line, DistI (�, , �) � aDissI (�, , �) � bI , as a function of  for non-zero �. (b) Deviation from the line,
Et � aEs � brisk, as a function of  for non-zero �. We use � = 0.5, �2

" = 10�4, ReLU activation �, and µ = 0.4�(0.1,1) + 0.6�(1,0.1)

D.4. I and SW disagreement

In Figure 8, Figure 9, Figure 6 (a), (b), we repeat the experiment in Section D.3 for I and SW disagreement. Since our theory
suggests that the disagreement-on-the-line phenomenon does not occur for SW disagreement, we do not plot theoretical
predictions for SW disagreement.

D.5. Accuracy and Agreement

In the main text, we consider disagreement and risk defined in terms of mean squared error, but here we present classification
accuracy and 0-1 agreement as studied in Hacohen et al. (2020); Chen et al. (2021); Jiang et al. (2021); Nakkiran & Bansal
(2020); Baek et al. (2022); Atanov et al. (2022); Pliushch et al. (2022); Kirsch & Gal (2022). See Figures 10 and Figure 6
(c).
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Figure 6. (a) Target vs. source independent disagreement of random features model trained on Camelyon17. (b) Target vs. source
shared-weight disagreement of random features model trained on Camelyon17. (c) Target vs. source accuracy and agreement of random
features model trained on Camelyon17; Experimental setting is identical to Section 5.
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Figure 7. Target vs. source shared-sample disagreeement on CIFAR-10 and Tiny ImageNet with varying corruption severity. Experimental
setting is identical to Section 5.
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Figure 8. Target vs. source independent disagreeement on CIFAR-10 and Tiny ImageNet with varying corruption severity. Experimental
setting is identical to Section 5.
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Figure 9. Target vs. source shared-weight disagreeement on CIFAR-10 and Tiny ImageNet with varying corruption severity. Experimental
setting is identical to Section 5.
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Figure 10. Target vs. source classification accuracy and agreement on CIFAR-10 and Tiny ImageNet with varying corruption severity.
Experimental setting is identical to Section 5.
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