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Abstract—Smart water metering (SWM) infrastructure collects
real-time water usage data that is useful for automated billing,
leak detection, and forecasting of peak periods. Cyber/physical
attacks can lead to data falsification on water usage data. This
paper proposes a learning approach that converts smart water
meter data into a Pythagorean mean-based invariant that is
highly stable under normal conditions but deviates under attacks.
We show how adversaries can launch deductive or camouflage
attacks in the SWM infrastructure to gain benefits and impact
the water distribution utility. Then, we apply a two-tier approach
of stateless and stateful detection, reducing false alarms without
significantly sacrificing the attack detection rate. We validate our
approach using real-world water usage data of 92 households
in Alicante, Spain for varying attack scales and strengths and
prove that our method limits the impact of undetected attacks and
expected time between consecutive false alarms. Our results show
that even for low-strength, low-scale deductive attacks, the model
limits the impact of an undetected attack to only C0.2199375 and
for high-strength, low-scale camouflage attack, the impact of an
undetected attack was limited to C1.434375

Index Terms—Smart Water Meter, Anomaly detection, False
data injection, Smart Water Metering Infrastructure.

I. INTRODUCTION

Smart water meters (SWMs) installed at consumers’ houses
are key components of a water distribution network (WDN)
in a smart city. SWMs periodically capture the water usage
data and send it to the utility over a wireless network.
Such data allow for tasks such as determining peak periods
and conservation techniques, detecting leaks, and automating
billing and pricing. As a result, it is crucial that the integrity
of SWM data is preserved. [12].

Motivation It has been reported that the SWM data are
vulnerable to integrity attacks. In [13], a 12 billion gallon
water theft has been disclosed in California since 2013. This
type of attack is termed deductive [3] since the aim is to falsely
report reduced water usage. Given water supply is a lifeline
of a smart city, it is a target of organized adversaries, such as
business competitors, utility insiders, and rival nation-states.

Related Works: Examining the existing literature, we ob-
serve that most of the works in WDN security focus on
either the water treatment plants or distribution systems of
waterways, instead of SWM applications. In [1], an anomaly-
based attack detection is proposed in water treatment plants.
The work in [5] detects SCADA cyberattacks in WDN using
physics (constraints on pressure readings).

In [4], machine learning approaches were utilized in the
WDN attack detection model that made use of remote sensing

data (such as pipe flow sensor, nodal pressure sensor, tank
water level sensor, and programmable logic controllers) In [2],
the attack detection in a WDN is based on a Kalman filter
estimating the system dynamics evolution.

As mentioned, data falsification on SWMs at end users’
homes has not received adequate attention. The fact that it is
a critical issue that can create havoc on the WDN, motivates
us to explore this important topic.

From a technical point of view, the majority of existing
works in water systems are physics-based models that work
well for water treatment and distribution because the dynamics
are mostly affected by physical principles. However, it is
extremely difficult to apply such models to SWM attack
detection, since the data patterns are affected by complex user
behavioral relationships. Therefore, the knowledge of a stable
in-control process means is typically required for the accurate
implementation of a cumulative sum (CUSUM) control chart-
based approach, which exhibits poor performance.

Contributions This paper focuses on attacks that target
the SWM infrastructure to launch data falsification attacks
on the water consumption data. First, we establish the data
falsification threat landscape in SWM in terms of attack types,
strengths, scales, and strategy, and how they negatively impact
the operations of a SWM. Then, we identify unique behavioral
properties of water usage from the houses. We further show
that the problem is suitable for a time series anomaly detection
approach. Specifically, using Pythagoras means we model the
underlying structure of benign data from SWM and use it
to derive a data-driven invariant that is highly stable in the
absence of attacks. At the same time, using the properties
of consumer water usage, we regulate the time granularity at
which the invariant is calculated. This results in high stability
in the absence of attacks, but large deviations in the invariant,
as and when attacks from a subset of smart water meters are
launched. The detection model consists of a two-tier approach.
The first tier determines the ratio of Harmonic Mean (HM) to
Arithmetic Mean (AM) of the (time series) water usage. With
a goal to reduce false alarms without increasing the impact
of an undetected attack, the second tier which is the sum of
residual under curve (RUC) was used.

The rest of the paper is organized as follows. Section II
introduces the system and threat models, while Section III
discusses the proposed framework. Experimental results are
described in Section IV and Section V concludes the paper.



II. SYSTEM AND THREAT MODELS

A. SWM data flow architecture

Fig. 1 illustrates smart water metering (SWM) infrastructure

topology. The SWM installed in a house senses the water us-

age, which is transferred periodically to a data concentrator in

the geographical area via a wireless link. The data concentrator

forwards the water usage data from each smart water meter to

the data center of the utility company. For more information

about the SWM deployment, please see [7].

Fig. 1: Showing the flow of the water usage in WDN.

B. Threat Model.

The threat model followed in this work is similar to the

one presented in [3], this will be summarized in this section

False data injection (FDI) attacks on SWM imply an attacker

falsifying the water usage data ultimately received by the data

center. Data falsification may occur at an individual meter or a

compromised data concentrator, where the attacker can inter-

cept, view, and alter multiple smart meter data intelligently (an

example of a camouflaged attack discussed later). Individual

meters can be tampered with by cyber or physical attacks, e.g.,

transduction attack [11] that changes the accurate conversion

of analog sensor signals to the digital sensor output.

In this paper, we assume an organized adversary has the

resources to launch FDI attacks on multiple SWMs at a time.

Since real attack data are not readily available, we generated

malicious data samples having various attack parameters with

the aim of an unbiased evaluation of our detection model.

Let W i
t (act) be the actual water consumption of a house

i at time t, while W i
t is the reported value. Without attacks,

the W i
t (act) = W i

t , while under attacks, the reported value is

perturbed by a false margin δt. The δt values are sampled from

a strategic distribution whose mean depends on the intended

severity of impact by the attacker and stealth level, which is

discussed under attack strength.

Attack Types: denote the way the data is perturbed which

depends on the adversary’s intended nature of impact:

Deductive: Here the attacker reports a reduced amount of

water usage which leads to the consumer paying less amount

but will lead to a loss of revenue for the utility company. W i
t =

W i
t (act) − δt. This can also prevent the detection of leaks

that cause water usage to be increased because the reduction

prevents the utility to notice the increase in a timely manner.

Camouflage: The attacker divides the compromised meters

into two equal sets and launches an additive attack (report-

ing an increased amount of water usage) on one set while

launching a deductive attack on the second set. This favors

one set of customers at the expense of the other set. This

is not easily detectable as the mean consumption as seen by

the utility company remains unchanged. W i
t = W i

t (act) −
δt & W j

t = W j
t (act) + δt.

Attack Strength is a variable that controls the extent of per-

turbation in the FDI. Each δt is randomly generated between

a minimum value δmin and maximum value δmax, with a

strategic δavg that is the average margin of false data for each

compromised house. This is then subtracted and/or added to

the water usage of the compromised nodes based on the attack

type. The δavg is varied by an adversary depending on the

amount of damage it wants to inflict.

Attack Scale An adversary may compromise a certain number

of M out of N possible smart water meters, and this fraction

of compromised meters is denoted as ρmal = M/N and is

treated as an attack variable. ρmal is a percentage of the

total number of houses. The houses attacked are randomly

gotten. These variables δt and ρmal, are taken so that one

complements the other, i.e., as δavg increases (i.e., the false

margin increases), the ρmal reduces and vise versa. This is to

inflict an approximate amount of damage.

Attack Strategy An adversary can use a pulse attack strategy

to launch periodic attacks on compromised SWMs. E.g., from

hour t to t+5, there may be no attack while from hour t+6
to t+10, there is an attack. The non-continuous nature of this

attack is hard to detect because it will not create a continuously

large false margin (or large δavg that can easily catch the utility

company’s attention as water is not always expected to be low

or high).

III. PROPOSED FRAMEWORK

A. Dataset Description

We experimented with a dataset collected from Hellenic

Data Service [6]. It is a deployment of water usage for 92

households over a year period (March 2016 - February 2017).

We divided them into training, cross-validation, and testing

sets, whose details are given later. Our approach is based on

identifying the threshold limits of benign behavior from the

training data using a data-driven invariant from the process

data. We use the cross-validation set to understand the best

hyperparameter choices that give the best performance with a

small set of simulated attacks. Finally, the testing set contains

unseen attacks and we verify the extent to which the thresholds

of the invariant can detect the attacks.

B. Modelling the Water Consumption Behavior
During a 24-hour time frame, water is not expected to be

used at all times, (e.g. during nighttime, vacation, or office

hours) as a result, the water usage dataset contains a large

number of correlated zero values. Similarly, we found that

sharp increases in water usage are also correlated e.g. early

hours of the day almost in all houses. While there is a

correlation, the actual mean usage on a certain time slot of

the day varies greatly over time. Hence, metrics like moving

average or mean will be greatly affected by these changes as

the instability can be seen in figure 2.



Examining the characteristics of the behavioral patterns, we

believed that a previous theory of anomaly detection proposed

in [3] but in the context of electric grids, may be transferable

in this context, due to the identified parallelism between the

challenges of modeling benign behavior from IoT sensing data

from smart living applications. In this paper, we first perform

a transfer learning of the anomaly detection criterion from the

previous theory and modify the way we define and regulate

time window granularity over which the anomaly detection

invariant must be calculated and maintained, apart from the

appropriate power transformation parameter, and finding the

quantile regression weights which affect the threshold of

benign behavior.

Fig. 2: Mean of water Usage for corresponding hours

C. Invariant Generation

Overview Our approach is inspired by the theory that

originates from [3] which proposed a lightweight theoretical

framework for the detection of anomalies in the electricity

metering network. We found that the SWM behaviors can

be transformed to adhere to the properties that enable us

to transform. The framework consists of the design of an

invariant based on Pythagoras means after which a safe margin

(threshold) is determined which serves as the tier 1 stateless

detection metric. Tier 2 is based on the sum of the residual

distance between the observed ratio and the safe margin. In

[3] the ratio of harmonic mean to arithmetic mean has been

shown to be stable for smart grid and it is also shown that

an attack in the data will cause the ratio to change, thus this

work aims to investigate how to apply this detection model to

SWM in WDN.

1) Data Distribution and Boxcox Transformation:: An in-

vestigation into water usage shows that the distribution follows

an extremely left-skewed shape (a log-normal distribution).

This is expected because of the properties of water usage

discussed in section A above. Boxcox transformation was used

to convert it from log normal to normal distribution. This

step is necessary to transform the water usage to the lower

portion of the real number axis (which in turn increases the

sensitivity to any deviation from the normal) and also some

known statistical properties of parametric estimation are easily

applicable to a normal distribution.

2) Time Series Invariant: Let Wt = W 1
t , ...,W

N
t denote

the water usage in box cox transformed scale, from N
households at a time slot t, (t is slotted hourly), then the

Harmonic Mean (HM) and Arithmetic Mean (AM) on a

particular timeslot t is denoted by

HMt = N/

(∑N

i=1

1

W i
t

)
AMt =

∑N
i=1 W

i
t

N
. (1)

The HM and AM were first calculated for all the houses for

each time slot t over a time window T . Each T is composed

of 24-time slots that represent a particular day in the dataset,

i.e. the T -th day of the year. Then the Ratio of HM and AM

is given as
Qr(T ) =

∑24
t=1 HMt(T )∑24
t=1 AMt(T )

(2)

Where 0 ≤ Qr(T ) ≤ 1 due to the known Pythagorean mean

inequality, HM ≤ AM The stability of the ratio can be seen

in Fig. 3a making it suitable for anomaly detection. Figure 3b

shows the probability distribution for the ratio and a right tail

can be observed which informs that outliers exist in the ratio

data which can lead to lots of false alarms to prevent this, a

novel design of the system identification phase for tier one

was proposed as discussed in section III-D.

(a) HM/AM Ratio (b) Ratio Distribution

Fig. 3: Stability and Distribution of the Ratio

D. Safe Margin Generation

Stateless residuals track the difference between the range

of expected value(s) of the invariant at a time window T
(called safe margin), versus the actual invariant value at a

time window T . In [3], it was shown that it could be used to

reduce false alarms while not increasing missed detection in

the context of smart meters.

However, the behavior of a smart water system is different

compared to smart meters. Hence, we need to find an intel-

ligent way of finding the range of expected value(s) of the

invariant, which we do by temporal reasoning. The range of

expected value requires us to find some measure of location

and scale parameters of the ratios at a given time context.

1) Expected Value of Invariant: We define Tφ as a unique

day in a week, i.e. Tφ can be Sunday through to Saturday.

Therefore, φ varies from 1 to 7; 1 corresponds to Sunday and

7 corresponds to Saturday. We define the Qr(Th
φ ) to represent

the average of ratio values at each corresponding Tφ (i.e. of the

same φ) across the training data. For this work, the 7 months

of the training set is approximately 30 weeks, so h can take

values from 1 to 30 for each φ).

The average of all Th
φ through the training data was taken as

Qr(Th
φ ). For example, if there are exactly 30 weeks (that is 30

Sundays, · · · 30 Saturdays), then the summation is taken for

each φ, i.e., Th
φ , where h = [1, 30]). This summation was then



divided by the total number of occurrences of the unique Tφ

which is represented with μh
φ (for the example above, μh

φ = 30

for each φ). This mean is represented by Qr(Th
φ ).

As a result, there will be a total of 7 distinct values of

Qr(Th
φ ) that will form the margin of each day of the week. For

example for a Monday, the HM/AM ratio for all the days of the

historical data was first obtained. The sum of the ratio for all

Mondays in the historical data was obtained, this was divided

by the number of times Mondays appear in the historical data.

This was done considering the observed premise that daily

water usage patterns are correlated to the day of the week.

2) Safe Range of the Invariant: Now we need to find a

range around the expected value of Qr(Th
φ ) (location parame-

ter) that indicates a safe margin of operation. We use a scalar

factor ε of the median absolute deviation of the entire ratio set

MAD(Qr) as a measure of spread in the benign data.

Therefore, the ε.MAD(Qr) was used to build the safe

margin around the observed instantaneous ratio as shown in

Equations (3) and (4). This is gotten by calculating the median

absolute deviation (MAD) of the different ratios obtained from

the whole training set, i.e., MAD across the ratios of the

training set. ε is parameterized as ε ∈ (0, 3) with a step size

of 0.02. The MAD was used because it is known to be more

robust in handling outliers than standard deviation (SD) [8].

It was also seen experimentally to minimize the upper and

lower bounds than SD. The upper limit Γhigh(T ) and lower

limit Γlow(T ) of the safe margins are defined as:

Γhigh(T ) = Qr(Th
φ ) + ε.MAD(Qr) (3)

Γlow(T ) = Qr(Th
φ )− ε.MAD(Qr) (4)

Where Qr(Th
φ ) =

∑h
i=1 Q

r(Tφ)

μh
φ

. (5)

The ratio was obtained for all days throughout the historical

data (7 consecutive months). Given time window T denotes a

day of the week, then the arithmetic means for the ratio for

each unique day T of the week through the historical data

was used as the safe margin. As a result, there are only seven

distinct values (number of days of a week) for the safe margin.

This is represented with Qr(Th
φ ).

∑h
i=1 Q

r(Th
φ ) = summation

of the ratio for each unique T across the historical data, μhφ
= the number of occurrences of each unique T (with the same

φ) across the historical data.

Larger ε values signify that there will be larger safe margins

which can result in more missed detection and smaller ε values

can result in more false alarms, as a result, a trade-off is

necessary for selecting ε such that there will be a lowered false

alarms while ensuring that the missed detection is not on the

high side. Section III-I discusses hyperparameter learning.

E. Stateless and Stateful Residuals

For the second tier of detection, the sum of Residual

distance RUC(T) was used. This calculates the difference (also

known as residual) between the observed ratio and the safe

margins. The sum of this difference is taken over a sliding time

frame. This is done by first determining the signed residual

(a) Ratio (b) RUC

Fig. 4: Detection model and learning phase for the training set

distance ∇(j) between the observed ratio and the safe margin

for that time window. This is given by:

∇(T ) =

⎧⎪⎨
⎪⎩
Qr(T )− Γhigh(T ), if Qr(T ) > Γhigh(T );

Qr(T )− Γlow(T ), if Qr(T ) < Γlow(T );

0, otherwise.

(6)

The sum of the residual is calculated over a sliding frame

length of past FL days. The RUC(T) is given by:

RUC(T ) =
T∑

j=T−FL

∇(j). (7)

F. Thresholds of Detection (Standard Limits):

The threshold for the RUC(T) was determined using Algo-

rithm 1 where τmax and τmin are the upper and lower limits.

Cost c and Penalty p were used to prevent overfitting and

underfitting respectively. Weight ω was hyper-parameterized

along with the FL with the cross-validation set to get the op-

timal value that minimizes the false alarm and simultaneously

minimizes the impact of the attack. For τmax, the algorithm

searches among all non-zero positive RUC(T), this is what is

shown in Algorithm 1 below. τmin searches among the non-

zero negative values in RUC(T).

Algorithm 1: Determining the Upper Limit τmax

Data: List of τ : [τ ]
Result: τmax

for RUC(T ), τ) do
if RUC(T ) > 0 then

if (RUC(T ) < τ then
cmax =

|τ−RUC(T )|
ω ;

C ← cmax
else

pmax = ω|RUC(T ) − τ |;
P ← pmax

end
end

end
τmax = argminτ |

∑
C
(cmax) −

∑
P
(pmax)|

G. Detection Process during Testing

With the safe margin defined in section III-D, there will

only be 7 distinct values of Qr(Th
φ ) and with the optimal

ε.MAD(Qr), 7 distinct values of Γhigh(T ) and Γlow(T )
were obtained and these represent the seven days of the

week. The instantaneous ratio gotten from currently observed

water usage is represented by Qr(T c
φ). This is defined as the

currently observed ratio for a particular day in a week. Each

instantaneously observed ratio for a day of the week is checked

with the safe margins of the same day (i.e., both the current



ratio and the historical data will have the same φ) For example,

a current ratio observed on a Monday will be checked with

the safe margins of Monday (gotten from the historical data).

If Qr(T c
φ) is within the safe margin, then it is counted as

normal water usage for that day, else, an anomaly is flagged.

The equation is given below.

Qr(T c
φ) :

{ ∈ [Qr(Th
φ ))± ε.MAD(Qr)] Normal ;

�∈ [Qr(Th
φ ))± ε.MAD(Qr)] Suspected;

(6)

Where T c is the current time window and in this case,

the current day, Qr(Th) ± ε.MAD(Qr) is the safe mar-

gin as Qr(Th) + ε.MAD(Qr) represents Γhigh(T
h) and

Qr(Th)− ε.MAD(Qr) represents Γlow(T
h).

RUC(T c) :

{
∈ [τmin, τmax], No Anomaly;

�∈ [τmin, τmax], Anomaly.
(9)

The second tier of detection, the RUC(Tc) is the residual

under curve for the currently observed time window, while

τmin and τmax is the lower and upper threshold for the RUC.

This is needed to reduce the false alarms seen with tier 1.
H. Performance Evaluation Metrics

Expected time Between false alarm E(Tfa): False alarm

rate is not the best for security evaluation since it largely

depends on the time duration of the study and the granularity

of the time series detector. As proposed by [9] expected time

between false alarms E(Tfa) should be used instead to account

for the base rate fallacy. The higher the E(Tfa), the better the

model is. Mathematically, it is defined as E(Tfa) =
∑nFA

1 TE

nFA
Where nFA is the number of false alarms and TE is the

duration between two consecutive false alarms.

Impact of an Undetected attack (Iu): We model this as

the revenue damage per hour for an undetected attack. For the

purpose of a security evaluation, this is a better metric given

the attacker who knows our approach may bypass detection.

Mathematically, it is quantified as Iu = RR/24 where RR
is the total revenue loss, such that RR = δavg ×M × η ×
E, where η is the number of days of attack before the first

detection, M = number of houses compromised and E =
cost of water per liter. The average cost of water in Alicante,

Spain (the city of data collection) is C2.55/m3 [10]. Hence,

E = C0.00255/liters (measurements are in liters in Spain).

The E(Tfa) versus Iu, for varying thresholds of

ε.MAD(Qr) will be obtained for different attack parameters

instead of the typical ROC curves. If the impact of attack

of undetected attack does not drastically increase for higher

E(Tfa) then it indicates high performing time series anomaly

based attack detector.

I. Hyper-parameter Learning

To obtain the optimal value for ε, ω, and FL, the cross-

validation set with low attack strength and scale (δavg = 10
and ρmal = 10%) was used. The safe margins were got-

ten from the historical data and the residual distance was

calculated. Using this, different sets of standard limits for

different ω were calculated using algorithm 1. The ratio of the

cross-validation set was obtained. Using this ratio, the residual

distance values for the cross-validation set was calculated, then

different sliding frame length (from 2 - 14) was used on the

RUC. This set of different values gotten from the different

frame lengths was used with the different set of standard limits

initially gotten. This process was repeated for all possible

values of ε.MAD(Qr) taken from 0 to 3 with a step size

of 0.02. The optimal values obtained from this process are

FL = 5, ω = 3, and ε = 1.96.

IV. EXPERIMENTAL RESULTS

We divided the 92-household data into three (3), 7 months

(August 2016 - February 2017) training sets which also served

as the historical data, 2 months (March 2016 - April 2016)

cross-validation set with some attack (δavg = 10, ρmal =
10%) to obtain the optimal hyperparameter for FL and ε and

ω. 3 months (May 2016 - July 2016) test sets were used to

validate our model.

A. Attack Parameters

Using the DAIAD dataset, the experiments for different

falsification margins (from 10 - 50, δavg) along with the

different percentages of houses attacked (from 10 - 50, ρmal)

was carried out with the test set. Both additive and camouflage

attacks were launched with the pulse strategy by taking various

combinations of the attack parameters δavg and ρmal.

B. Deductive Attack

The tier 2 with low strength, low scale deductive attack

(δavg = 15, ρmal = 10%) is shown in Figure 5a.

It can also be observed that for deductive attacks, the ratio

deviated upward instead of an expected downward deviation

as observed in previous works. A further investigation into

the AM and HM shows that there is a downward deviation

for both (for a deductive attack). This phenomenon happened

because the standard deviation of the data after an attack was

launched decreased instead of an expected increase (which is

the observation of other cyber-physical systems (CPS) data

like electricity grid and transportation as observed in previous

work). Also, The log-normal shape of the data distribution and

the outliers greatly affected the attack datapoint to fall on the

right of the mean and since ΔHM < ΔAM , the ratio will

increase with reduced values and the SD will decrease.

(a) Deductive (δ = 15, ρ = 10%) (b) Camouflage (δ = 10, ρ = 50%)

Fig. 5: Attack detection



C. Camouflage Attack:

The attack was performed by taking the extreme values of
the attack scale and attack strength (that is low scale high
strength and high scale high strength). Only the results for
tier 2 detection for δavg = 10 and ρ = 50% is shown in Fig.
5b. The model detected the camouflage attack because of the
difference between the rate of decay of the AM and HM. From
figure 5b, the attack was confirmed with tier 2 within 2 days.
The low attack strength that the adversary employs in order to
remain in the system for a long time also ensures that impact
Iu is not high. The ratio is seen to be decreasing in value
because the standard deviation for the attack data is greater
than the standard deviation of the actual data.

TABLE I: Experimental Results

ρmal(%) δavg E(TFA) Iu(C)
Deductive Attack

10 50 23 0.669375
20 40 23 0.21675
30 30 23 0.0796875
40 20 23 0.07225
50 10 23 0.0669375

Worst case deductive attack i.e. low attack strength
10 15 23 0.3155625
10 10 23 0.2199375

Camouflage attack
10 50 92 1.434375
50 10 92 0.08925

D. Performance Evaluation

In this section, we report the performance over varying
attack parameters to give an average sense of performance.
To evaluate the performance of the model, the expected time
between false alarms E(TFA) and the impact of undetected
attack Iu was plotted for each threshold ϵ.MAD(Qr). With
each ϵ.MAD(Qr), different sets of E(TFA), and Iu was
gotten for deductive attack. The result in Figure 6 shows that
our model performs well mostly by reducing the impact of
the attack while increasing the expected time between false
alarms. The threshold chosen for ϵ.MAD(Qr) = 1.96 was
observed to be the point where the expected time between
false alarms is high without a considerable increase in the
impact of the attack. Table 1 shows the results for the complete
attack spectrum the attacker can employ and it can be seen
that the expected time between false alarms and the impact of
undetected attack shows a good result.

Fig. 6: Impact Iu Vs Expected time between false alarms

V. CONCLUSION

In this work, we presented a real-time, lightweight, privacy-
preserving detection model for the FDI attacks in SWM in
WDN. We show that the HM/AM ratio can be used as an
invariant for the detection of the attacks as it is stable under
normal conditions but deviates under an attack. The second
tier of detection was used which is based on the first which
aims to reduce false alarms, and with this second tier, the
expected time between false alarms was increased. Different
attack margins were tested with different types of attacks, and
the results were presented.

The main contribution of this work is as follows; A base
understanding of the behavioral pattern of water usage in
households was done. This enables us to be able to have a
structure of benign behavior of water usage. With this behavior
known, any deviations from the norm were categorized as an
attack. Based on this behavior, specifically the extreme values,
a new way of determining the safe margin was done and this
was able to reduce the false alarms by handling the outliers
in the historical data. Further studies will consider more years
of data with more households.
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