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Abstract—Smart water metering (SWM) infrastructure collects
real-time water usage data that is useful for automated billing,
leak detection, and forecasting of peak periods. Cyber/physical
attacks can lead to data falsification on water usage data. This
paper proposes a learning approach that converts smart water
meter data into a Pythagorean mean-based invariant that is
highly stable under normal conditions but deviates under attacks.
We show how adversaries can launch deductive or camouflage
attacks in the SWM infrastructure to gain benefits and impact
the water distribution utility. Then, we apply a two-tier approach
of stateless and stateful detection, reducing false alarms without
significantly sacrificing the attack detection rate. We validate our
approach using real-world water usage data of 92 households
in Alicante, Spain for varying attack scales and strengths and
prove that our method limits the impact of undetected attacks and
expected time between consecutive false alarms. Our results show
that even for low-strength, low-scale deductive attacks, the model
limits the impact of an undetected attack to only €0.2199375 and
for high-strength, low-scale camouflage attack, the impact of an
undetected attack was limited to €1.434375

Index Terms—Smart Water Meter, Anomaly detection, False
data injection, Smart Water Metering Infrastructure.

I. INTRODUCTION

Smart water meters (SWMs) installed at consumers’ houses
are key components of a water distribution network (WDN)
in a smart city. SWMs periodically capture the water usage
data and send it to the utility over a wireless network.
Such data allow for tasks such as determining peak periods
and conservation techniques, detecting leaks, and automating
billing and pricing. As a result, it is crucial that the integrity
of SWM data is preserved. [12].

Motivation It has been reported that the SWM data are
vulnerable to integrity attacks. In [13], a 12 billion gallon
water theft has been disclosed in California since 2013. This
type of attack is termed deductive [3] since the aim is to falsely
report reduced water usage. Given water supply is a lifeline
of a smart city, it is a target of organized adversaries, such as
business competitors, utility insiders, and rival nation-states.

Related Works: Examining the existing literature, we ob-
serve that most of the works in WDN security focus on
either the water treatment plants or distribution systems of
waterways, instead of SWM applications. In [1], an anomaly-
based attack detection is proposed in water treatment plants.
The work in [5] detects SCADA cyberattacks in WDN using
physics (constraints on pressure readings).

In [4], machine learning approaches were utilized in the
WDN attack detection model that made use of remote sensing

data (such as pipe flow sensor, nodal pressure sensor, tank
water level sensor, and programmable logic controllers) In [2],
the attack detection in a WDN is based on a Kalman filter
estimating the system dynamics evolution.

As mentioned, data falsification on SWMs at end users’
homes has not received adequate attention. The fact that it is
a critical issue that can create havoc on the WDN, motivates
us to explore this important topic.

From a technical point of view, the majority of existing
works in water systems are physics-based models that work
well for water treatment and distribution because the dynamics
are mostly affected by physical principles. However, it is
extremely difficult to apply such models to SWM attack
detection, since the data patterns are affected by complex user
behavioral relationships. Therefore, the knowledge of a stable
in-control process means is typically required for the accurate
implementation of a cumulative sum (CUSUM) control chart-
based approach, which exhibits poor performance.

Contributions This paper focuses on attacks that target
the SWM infrastructure to launch data falsification attacks
on the water consumption data. First, we establish the data
falsification threat landscape in SWM in terms of attack types,
strengths, scales, and strategy, and how they negatively impact
the operations of a SWM. Then, we identify unique behavioral
properties of water usage from the houses. We further show
that the problem is suitable for a time series anomaly detection
approach. Specifically, using Pythagoras means we model the
underlying structure of benign data from SWM and use it
to derive a data-driven invariant that is highly stable in the
absence of attacks. At the same time, using the properties
of consumer water usage, we regulate the time granularity at
which the invariant is calculated. This results in high stability
in the absence of attacks, but large deviations in the invariant,
as and when attacks from a subset of smart water meters are
launched. The detection model consists of a two-tier approach.
The first tier determines the ratio of Harmonic Mean (HM) to
Arithmetic Mean (AM) of the (time series) water usage. With
a goal to reduce false alarms without increasing the impact
of an undetected attack, the second tier which is the sum of
residual under curve (RUC) was used.

The rest of the paper is organized as follows. Section II
introduces the system and threat models, while Section III
discusses the proposed framework. Experimental results are
described in Section IV and Section V concludes the paper.



II. SYSTEM AND THREAT MODELS
A. SWM data flow architecture

Fig. 1 illustrates smart water metering (SWM) infrastructure
topology. The SWM installed in a house senses the water us-
age, which is transferred periodically to a data concentrator in
the geographical area via a wireless link. The data concentrator
forwards the water usage data from each smart water meter to
the data center of the utility company. For more information
about the SWM deployment, please see [7].
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Fig. 1: Showing the flow of the water usage in WDN.
B. Threat Model.

The threat model followed in this work is similar to the
one presented in [3], this will be summarized in this section
False data injection (FDI) attacks on SWM imply an attacker
falsifying the water usage data ultimately received by the data
center. Data falsification may occur at an individual meter or a
compromised data concentrator, where the attacker can inter-
cept, view, and alter multiple smart meter data intelligently (an
example of a camouflaged attack discussed later). Individual
meters can be tampered with by cyber or physical attacks, e.g.,
transduction attack [11] that changes the accurate conversion
of analog sensor signals to the digital sensor output.

In this paper, we assume an organized adversary has the
resources to launch FDI attacks on multiple SWMs at a time.
Since real attack data are not readily available, we generated
malicious data samples having various attack parameters with
the aim of an unbiased evaluation of our detection model.

Let W/ (act) be the actual water consumption of a house
7 at time ¢, while W; is the reported value. Without attacks,
the W/ (act) = W}, while under attacks, the reported value is
perturbed by a false margin 6;. The §; values are sampled from
a strategic distribution whose mean depends on the intended
severity of impact by the attacker and stealth level, which is
discussed under attack strength.

Attack Types: denote the way the data is perturbed which
depends on the adversary’s intended nature of impact:

Deductive: Here the attacker reports a reduced amount of
water usage which leads to the consumer paying less amount
but will lead to a loss of revenue for the utility company. W} =
W/(act) — 8. This can also prevent the detection of leaks
that cause water usage to be increased because the reduction
prevents the utility to notice the increase in a timely manner.

Camouflage: The attacker divides the compromised meters
into two equal sets and launches an additive attack (report-
ing an increased amount of water usage) on one set while

launching a deductive attack on the second set. This favors
one set of customers at the expense of the other set. This
is not easily detectable as the mean consumption as seen by
the utility company remains unchanged. W/ = W/ (act) —
& & W] =W (act) + 6.

Attack Strength is a variable that controls the extent of per-
turbation in the FDI. Each §; is randomly generated between
a minimum value 9d,,;, and maximum value 0,,,,, With a
strategic dq.4 that is the average margin of false data for each
compromised house. This is then subtracted and/or added to
the water usage of the compromised nodes based on the attack
type. The 64,4 is varied by an adversary depending on the
amount of damage it wants to inflict.

Attack Scale An adversary may compromise a certain number
of M out of N possible smart water meters, and this fraction
of compromised meters is denoted as p; = M/N and is
treated as an attack variable. p,,,; is a percentage of the
total number of houses. The houses attacked are randomly
gotten. These variables 0; and p,,q;, are taken so that one
complements the other, i.e., as d4.4 increases (i.e., the false
margin increases), the p,,q; reduces and vise versa. This is to
inflict an approximate amount of damage.

Attack Strategy An adversary can use a pulse attack strategy
to launch periodic attacks on compromised SWMs. E.g., from
hour ¢ to ¢t + 5, there may be no attack while from hour ¢ + 6
to ¢+ 10, there is an attack. The non-continuous nature of this
attack is hard to detect because it will not create a continuously
large false margin (or large d,.4 that can easily catch the utility
company’s attention as water is not always expected to be low
or high).

III. PROPOSED FRAMEWORK
A. Dataset Description

We experimented with a dataset collected from Hellenic
Data Service [6]. It is a deployment of water usage for 92
households over a year period (March 2016 - February 2017).
We divided them into training, cross-validation, and testing
sets, whose details are given later. Our approach is based on
identifying the threshold limits of benign behavior from the
training data using a data-driven invariant from the process
data. We use the cross-validation set to understand the best
hyperparameter choices that give the best performance with a
small set of simulated attacks. Finally, the testing set contains
unseen attacks and we verify the extent to which the thresholds
of the invariant can detect the attacks.

B. Modelling the Water Consumption Behavior

During a 24-hour time frame, water is not expected to be
used at all times, (e.g. during nighttime, vacation, or office
hours) as a result, the water usage dataset contains a large
number of correlated zero values. Similarly, we found that
sharp increases in water usage are also correlated e.g. early
hours of the day almost in all houses. While there is a
correlation, the actual mean usage on a certain time slot of
the day varies greatly over time. Hence, metrics like moving
average or mean will be greatly affected by these changes as
the instability can be seen in figure 2.



Examining the characteristics of the behavioral patterns, we
believed that a previous theory of anomaly detection proposed
in [3] but in the context of electric grids, may be transferable
in this context, due to the identified parallelism between the
challenges of modeling benign behavior from [oT sensing data
from smart living applications. In this paper, we first perform
a transfer learning of the anomaly detection criterion from the
previous theory and modify the way we define and regulate
time window granularity over which the anomaly detection
invariant must be calculated and maintained, apart from the
appropriate power transformation parameter, and finding the
quantile regression weights which affect the threshold of
benign behavior.
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Fig. 2: Mean of water Usage for corresponding hours

C. Invariant Generation

Overview Our approach is inspired by the theory that
originates from [3] which proposed a lightweight theoretical
framework for the detection of anomalies in the electricity
metering network. We found that the SWM behaviors can
be transformed to adhere to the properties that enable us
to transform. The framework consists of the design of an
invariant based on Pythagoras means after which a safe margin
(threshold) is determined which serves as the tier 1 stateless
detection metric. Tier 2 is based on the sum of the residual
distance between the observed ratio and the safe margin. In
[3] the ratio of harmonic mean to arithmetic mean has been
shown to be stable for smart grid and it is also shown that
an attack in the data will cause the ratio to change, thus this
work aims to investigate how to apply this detection model to
SWM in WDN.

1) Data Distribution and Boxcox Transformation:: An in-
vestigation into water usage shows that the distribution follows
an extremely left-skewed shape (a log-normal distribution).
This is expected because of the properties of water usage
discussed in section A above. Boxcox transformation was used
to convert it from log normal to normal distribution. This
step is necessary to transform the water usage to the lower
portion of the real number axis (which in turn increases the
sensitivity to any deviation from the normal) and also some
known statistical properties of parametric estimation are easily
applicable to a normal distribution.

2) Time Series Invariant: Let W; = W}, ...,W}N denote
the water usage in box cox transformed scale, from N
households at a time slot ¢, (¢ is slotted hourly), then the

Harmonic Mean (HM) and Arithmetic Mean (AM) on a
particular timeslot ¢ is denoted by

N o1 N owi
HM, = N/ (Z“ WZ.) AM, — % )
- t

The HM and AM were first calculated for all the houses for
each time slot t over a time window 7'. Each T is composed
of 24-time slots that represent a particular day in the dataset,
i.e. the T-th day of the year. Then the Ratio of HM and AM

. . 94
1S given as - HMt(T)
24

t=1 AMt (T)

Where 0 < Q,.(T") < 1 due to the known Pythagorean mean
inequality, H M < AM The stability of the ratio can be seen
in Fig. 3a making it suitable for anomaly detection. Figure 3b
shows the probability distribution for the ratio and a right tail
can be observed which informs that outliers exist in the ratio
data which can lead to lots of false alarms to prevent this, a
novel design of the system identification phase for tier one
was proposed as discussed in section III-D.
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Fig. 3: Stability and Distribution of the Ratio
D. Safe Margin Generation

Stateless residuals track the difference between the range
of expected value(s) of the invariant at a time window T’
(called safe margin), versus the actual invariant value at a
time window 7. In [3], it was shown that it could be used to
reduce false alarms while not increasing missed detection in
the context of smart meters.

However, the behavior of a smart water system is different
compared to smart meters. Hence, we need to find an intel-
ligent way of finding the range of expected value(s) of the
invariant, which we do by temporal reasoning. The range of
expected value requires us to find some measure of location
and scale parameters of the ratios at a given time context.

1) Expected Value of Invariant: We define T}y as a unique
day in a week, i.e. T can be Sunday through to Saturday.
Therefore, ¢ varies from 1 to 7; 1 corresponds to Sunday and
7 corresponds to Saturday. We define the Q" (Tq';) to represent
the average of ratio values at each corresponding T (i.e. of the
same ¢) across the training data. For this work, the 7 months
of the training set is approximately 30 weeks, so h can take
values from 1 to 30 for each ¢).

The average of all Tg through the training data was taken as
QT(T;}). For example, if there are exactly 30 weeks (that is 30
Sundays, --- 30 Saturdays), then the summation is taken for
each ¢, i.e., T;}, where h = [1, 30]). This summation was then



divided by the total number of occurrences of the unique T
which is represented with pi/} (for the example above, p/; = 30
for each ¢). This mean is represented by Q’"(Té}).

As a result, there will be a total of 7 distinct values of
Q’“(T;j) that will form the margin of each day of the week. For
example for a Monday, the HM/AM ratio for all the days of the
historical data was first obtained. The sum of the ratio for all
Mondays in the historical data was obtained, this was divided
by the number of times Mondays appear in the historical data.
This was done considering the observed premise that daily
water usage patterns are correlated to the day of the week.

2) Safe Range of the Invariant: Now we need to find a
range around the expected value of Q" (Té}) (location parame-
ter) that indicates a safe margin of operation. We use a scalar
factor e of the median absolute deviation of the entire ratio set
MAD(Q") as a measure of spread in the benign data.

Therefore, the e. M AD(Q") was used to build the safe
margin around the observed instantaneous ratio as shown in
Equations (3) and (4). This is gotten by calculating the median
absolute deviation (MAD) of the different ratios obtained from
the whole training set, i.e., MAD across the ratios of the
training set. ¢ is parameterized as ¢ € (0,3) with a step size
of 0.02. The MAD was used because it is known to be more
robust in handling outliers than standard deviation (SD) [8].
It was also seen experimentally to minimize the upper and
lower bounds than SD. The upper limit I's;g5(7) and lower
limit I';,,,(T") of the safe margins are defined as:

Thign(T) = Q"(T}) + . MAD(Q") 3)
Tiow(T) = Q"(T}) — e MAD(Q") &)
T Q" (Ty)

Where QT(Té}) = - . 5
He

The ratio was obtained for all days throughout the historical
data (7 consecutive months). Given time window T denotes a
day of the week, then the arithmetic means for the ratio for
each unique day T of the week through the historical data
was used as the safe margin. As a result, there are only seven
distinct values (number of days of a week) for the safe margin.
This is represented with Q" (T7}'). s Q" (T}) = summation
of the ratio for each unique T across the historical data, ;"¢
= the number of occurrences of each unique T (with the same
¢) across the historical data.

Larger e values signify that there will be larger safe margins
which can result in more missed detection and smaller e values
can result in more false alarms, as a result, a trade-off is
necessary for selecting e such that there will be a lowered false
alarms while ensuring that the missed detection is not on the
high side. Section III-I discusses hyperparameter learning.

E. Stateless and Stateful Residuals

For the second tier of detection, the sum of Residual
distance RUC(T) was used. This calculates the difference (also
known as residual) between the observed ratio and the safe
margins. The sum of this difference is taken over a sliding time
frame. This is done by first determining the signed residual
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Fig. 4: Detection model and learning phase for the training set

distance V() between the observed ratio and the safe margin
for that time window. This is given by:

Q"(T) — Thign(T), if Q"(T) > Lhign(T);
QT(T) - Flow(T)7 if QT(T) < Flow (T)7 (6)
0, otherwise.

V(T) =

The sum of the residual is calculated over a sliding frame
length of past FL. days. The RUC(T) is given by:

RUC(T)= Y V(j). (7)

j=T-FL
FE. Thresholds of Detection (Standard Limits):

The threshold for the RUC(T) was determined using Algo-
rithm 1 where 7,4, and 7,,;, are the upper and lower limits.
Cost ¢ and Penalty p were used to prevent overfitting and
underfitting respectively. Weight w was hyper-parameterized
along with the FL with the cross-validation set to get the op-
timal value that minimizes the false alarm and simultaneously
minimizes the impact of the attack. For 7,4, the algorithm
searches among all non-zero positive RUC(T), this is what is
shown in Algorithm 1 below. 7,,;, searches among the non-
zero negative values in RUC(T).

Algorithm 1: Determining the Upper Limit 7,4,

Data: List of 7: [7]
Result: 7,4,
for RUC(T), 7) do
if RUC(T) > 0 then
if (RUC(T) < 7 then
|[T—RUC(T)]| .

Cmax =
C + ¢max
else
Pmax = W/RUC(T) — 7[;
P pmax

end
end
end
Tmaz = argmin'rl ZC(Cmam) - Eu”(pmaz)l

G. Detection Process during Testing

With the safe margin defined in section III-D, there will
only be 7 distinct values of QT(T;}) and with the optimal
e MAD(Q"), 7 distinct values of I'y;gn(T) and T'yp, (T)
were obtained and these represent the seven days of the
week. The instantaneous ratio gotten from currently observed
water usage is represented by QT(Tg). This is defined as the
currently observed ratio for a particular day in a week. Each
instantaneously observed ratio for a day of the week is checked
with the safe margins of the same day (i.e., both the current



ratio and the historical data will have the same ¢) For example,
a current ratio observed on a Monday will be checked with
the safe margins of Monday (gotten from the historical data).
If Q"(Tg) is within the safe margin, then it is counted as
normal water usage for that day, else, an anomaly is flagged.
The equation is given below.

€ [QT(TQ};)) +eMAD(Q")] Normal ;
¢ [QT(TJJ)) +eMAD(Q")] Suspected;
(6)
Where T is the current time window and in this case,
the current day, Q"(T") + e MAD(Q") is the safe mar-
gin as Q"(T") + e MAD(Q") represents I'jign(T") and
Q"(T") — e MAD(Q") represents Iy, (T7).

@ {

€ [Tmin, Tmax), No Anomaly;

RUC(T®) : { ©))

& [Tmin, Tmax), Anomaly.

The second tier of detection, the RUC(T) is the residual
under curve for the currently observed time window, while
Tmin and Ty,q. 1S the lower and upper threshold for the RUC.
This is needed to reduce the false alarms seen with tier 1.

H. Performance Evaluation Metrics

Expected time Between false alarm E(77,): False alarm
rate is not the best for security evaluation since it largely
depends on the time duration of the study and the granularity
of the time series detector. As proposed by [9] expected time
between false alarms E/(7,) should be used instead to account

for the base rate fallacy. The higher the E(T7,), the better the

. . . _oyrATy
model is. Mathematically, it is defined as E(Tfq) = =2y

Where nF A is the number of false alarms and T is the
duration between two consecutive false alarms.

Impact of an Undetected attack (I,,): We model this as
the revenue damage per hour for an undetected attack. For the
purpose of a security evaluation, this is a better metric given
the attacker who knows our approach may bypass detection.
Mathematically, it is quantified as I, = RR/24 where RR
is the total revenue loss, such that RR = 0449 X M X 1 X
E, where 7 is the number of days of attack before the first
detection, M = number of houses compromised and £ =
cost of water per liter. The average cost of water in Alicante,
Spain (the city of data collection) is €2.55/m? [10]. Hence,
E = €0.00255/liters (measurements are in liters in Spain).

The E(Ty,) versus I,, for varying thresholds of
e. MAD(Q") will be obtained for different attack parameters
instead of the typical ROC curves. If the impact of attack
of undetected attack does not drastically increase for higher
E(Ty,) then it indicates high performing time series anomaly
based attack detector.

1. Hyper-parameter Learning

To obtain the optimal value for €, w, and F'L, the cross-
validation set with low attack strength and scale (dqvg = 10
and pma = 10%) was used. The safe margins were got-
ten from the historical data and the residual distance was
calculated. Using this, different sets of standard limits for

different w were calculated using algorithm 1. The ratio of the
cross-validation set was obtained. Using this ratio, the residual
distance values for the cross-validation set was calculated, then
different sliding frame length (from 2 - 14) was used on the
RUC. This set of different values gotten from the different
frame lengths was used with the different set of standard limits
initially gotten. This process was repeated for all possible
values of e MAD(Q") taken from O to 3 with a step size
of 0.02. The optimal values obtained from this process are
FL =05 w=3, and ¢ = 1.96.

IV. EXPERIMENTAL RESULTS

We divided the 92-household data into three (3), 7 months
(August 2016 - February 2017) training sets which also served
as the historical data, 2 months (March 2016 - April 2016)
cross-validation set with some attack (9409 = 10, pmar =
10%) to obtain the optimal hyperparameter for F'L and e and
w. 3 months (May 2016 - July 2016) test sets were used to
validate our model.

A. Attack Parameters

Using the DAIAD dataset, the experiments for different
falsification margins (from 10 - 50, 0444) along with the
different percentages of houses attacked (from 10 - 50, py,a1)
was carried out with the test set. Both additive and camouflage
attacks were launched with the pulse strategy by taking various
combinations of the attack parameters dq.,q and pr,q.

B. Deductive Attack

The tier 2 with low strength, low scale deductive attack
(0avg = 15, pmar = 10%) is shown in Figure 5a.

It can also be observed that for deductive attacks, the ratio
deviated upward instead of an expected downward deviation
as observed in previous works. A further investigation into
the AM and HM shows that there is a downward deviation
for both (for a deductive attack). This phenomenon happened
because the standard deviation of the data after an attack was
launched decreased instead of an expected increase (which is
the observation of other cyber-physical systems (CPS) data
like electricity grid and transportation as observed in previous
work). Also, The log-normal shape of the data distribution and
the outliers greatly affected the attack datapoint to fall on the
right of the mean and since AHM < AAM, the ratio will
increase with reduced values and the SD will decrease.

~Upper Limit ~Lower_limit A

“Attacked Ruc  =Normal Ruc J “

\l

~Upper Limit ~Lower_limit V

“Attacked Ruc =Normal Ruc

1 16 31 46 61 76 91 1 16 31 46 61 76 91
Time Window Time Window

(a) Deductive (§ = 15, p = 10%)  (b) Camouflage (§ = 10, p = 50%)
Fig. 5: Attack detection



C. Camouflage Attack:

The attack was performed by taking the extreme values of
the attack scale and attack strength (that is low scale high
strength and high scale high strength). Only the results for
tier 2 detection for d4,y = 10 and p = 50% is shown in Fig.
5b. The model detected the camouflage attack because of the
difference between the rate of decay of the AM and HM. From
figure 5b, the attack was confirmed with tier 2 within 2 days.
The low attack strength that the adversary employs in order to
remain in the system for a long time also ensures that impact
I, is not high. The ratio is seen to be decreasing in value
because the standard deviation for the attack data is greater
than the standard deviation of the actual data.

TABLE I: Experimental Results

pmal(%) l 5aug [ E(Tra) [ 1,(€)
Deductive Attack
10 50 23 0.669375
20 40 23 0.21675
30 30 23 0.0796875
40 20 23 0.07225
50 10 23 0.0669375
Worst case deductive attack i.e. low attack strength
10 15 23 0.3155625
10 10 23 0.2199375
Camouflage attack
10 50 92 1.434375
50 10 92 0.08925

D. Performance Evaluation

In this section, we report the performance over varying
attack parameters to give an average sense of performance.
To evaluate the performance of the model, the expected time
between false alarms F(Tr4) and the impact of undetected
attack I,, was plotted for each threshold e. M AD(Q"). With
each e MAD(Q"), different sets of E(Tr4), and I, was
gotten for deductive attack. The result in Figure 6 shows that
our model performs well mostly by reducing the impact of
the attack while increasing the expected time between false
alarms. The threshold chosen for e M AD(Q") = 1.96 was
observed to be the point where the expected time between
false alarms is high without a considerable increase in the
impact of the attack. Table 1 shows the results for the complete
attack spectrum the attacker can employ and it can be seen
that the expected time between false alarms and the impact of
undetected attack shows a good result.
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Fig. 6: Impact I,, Vs Expected time between false alarms

V. CONCLUSION

In this work, we presented a real-time, lightweight, privacy-
preserving detection model for the FDI attacks in SWM in
WDN. We show that the HM/AM ratio can be used as an
invariant for the detection of the attacks as it is stable under
normal conditions but deviates under an attack. The second
tier of detection was used which is based on the first which
aims to reduce false alarms, and with this second tier, the
expected time between false alarms was increased. Different
attack margins were tested with different types of attacks, and
the results were presented.

The main contribution of this work is as follows; A base
understanding of the behavioral pattern of water usage in
households was done. This enables us to be able to have a
structure of benign behavior of water usage. With this behavior
known, any deviations from the norm were categorized as an
attack. Based on this behavior, specifically the extreme values,
a new way of determining the safe margin was done and this
was able to reduce the false alarms by handling the outliers
in the historical data. Further studies will consider more years
of data with more households.
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