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We give an n©(108196")_time membership query algorithm for properly and agnostically learning decision
trees under the uniform distribution over {+1}". Even in the realizable setting, the previous fastest runtime
was n@U0gn) 5 consequence of a classic algorithm of Ehrenfeucht and Haussler.

Our algorithm shares similarities with practical heuristics for learning decision trees, which we augment
with additional ideas to circumvent known lower bounds against these heuristics. To analyze our algorithm,
we prove a new structural result for decision trees that strengthens a theorem of O’Donnell, Saks, Schramm,
and Servedio. While the OSSS theorem says that every decision tree has an influential variable, we show how

every decision tree can be “pruned” so that every variable in the resulting tree is influential.
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1 INTRODUCTION

Decision trees are a simple and effective way to represent boolean functions f : {£1}" — {*1}.
Their logical, flow-chart-like structure makes them easy to understand, and they are the canonical
example of an interpretable model in machine learning. They are also fast to evaluate: the com-
plexity of evaluating a decision tree on an input scales with the depth of the tree, which is often
much smaller than the dimension n of f.

The algorithmic problem of converting a function f into a decision tree representation T has
therefore been extensively studied by a number of communities spanning both theory and practice.
Naturally, we would like T to be as small as possible, ideally close to the optimal decision tree size
of f.If we require T to compute f exactly, this is unfortunately likely an intractable problem, even
if T is allowed to be larger than the optimal decision tree for f: finding an approximately minimal
decision tree for a given function is NP-hard [1, 15, 28, 30].
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We therefore allow T to err on a small fraction of inputs. Our main result is a new algorithm for
this problem:

THEOREM 1. There is an algorithm which, given as input ¢ > 0, s € IN, and query access to a
function f : {£1}" — {£1} that is promised to be opt -close to a size-s decision tree, runs in time

é(n2) . (S/E)O(log((logS)/f))
and outputs a size-s decision tree T that w.h.p. satisfies _fPr [T(x) # f(x)] < opt, +e.
unirorm Xx

For s = poly(n) and ¢ > 1/polylog(n), our algorithm runs in almost polynomial time, n®{oglog ™)

Even in the realizable setting (opt, = 0), the previous fastest algorithms took quasipolynomial time,
n®Uogn) even for constant e. This was the state of the art even for algorithms with access to an
explicit representation of f, rather than just query access.

Another interesting setting is when the algorithm is only given uniform random examples la-
beled by f rather than query access. For this setting, we have the following result:

THEOREM 2. In the context of Theorem 1, if f is monotone, our algorithm uses only random labeled
examples (x, f(x)) where x ~ {£1}" is uniformly random.

1.1 Background and Context

In the language of learning theory, Theorem 1 gives a query algorithm for properly and agnosti-
cally learning decision trees under the uniform distribution. We now overview previous algorithms
for this and related problems.

Ehrenfeucht and Haussler [10], in an early paper following the introduction of the PAC learning
model, gave an n®1°¢%) time algorithm for properly learning size-s decision trees. [10]’s algorithm
works in the more general distribution-free setting and only uses random examples. On the other
hand, [10] assumes the realizable setting, and their algorithm is not known to extend to the agnostic
setting. This limitation is likely inherent: being an Occam algorithm, its analysis crucially relies on
noiseless examples. Furthermore, [10]’s algorithm is weakly proper, in the sense that its decision
tree hypothesis can be as large as n®1°8%) A (strongly) proper algorithm returns a hypothesis
that belongs to the target concept class; in this case, a size-s decision tree hypothesis for a size-s
decision tree target.

Since the work of Ehrenfeucht and Haussler, a couple of alternative algorithms for properly
learning decision trees have been developed in the uniform-distribution setting. These algorithms
are quite different from [10]’s and from each other. Mehta and Raghavan [22] gave an n©(°8s)
time algorithm that uses random examples, and more recently [3] gave a poly(n) - s?1°¢%) time
membership query algorithm. For the standard setting where s = poly(n), these runtimes are still
neen) just like [10]’s.

Therefore, while [10]’s n°1°%€™) runtime for properly learning polynomial-size decision trees
has been matched twice in the uniform-distribution setting, it has remained unsurpassed for over
three decades. Furthermore, the analyses of all three algorithms are known to be tight: for each of

Q(log n)

them, there are targets for which the algorithm can be shown to require n time.

Table 1 summarizes how our algorithm compares with existing ones.

Improper algorithms. While the focus of our work is on proper learning, the problem of improp-
erly learning decision trees, where the hypothesis is not required to itself be a decision tree, is also
the subject of intensive study. Kusilevitz and Mansour [20] gave a polynomial-time membership
query algorithm for learning polynomial-size decision trees under the uniform distribution; this
was subsequently extended to the agnostic setting by Gopalan, Kalai, and Klivans [11]. Both works
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Table 1. Algorithms for Properly Learning Size-s Decision Trees

Reference Running time Hypothesis size | Access to target | Agnostic?
[10] nOlogs) nOlogs) Random examples X
[22] nOlogs) s Random examples v

[3] poly(n) - sOUogs) sOlogs) Queries X
This work | poly(n) - sOUoglogs) s Queries v

[10]’s algorithm works in the more general distribution-free setting, whereas all others, including ours, work
in the uniform-distribution setting.

employ Fourier-analytic techniques, and their algorithms return the sign of a Fourier polynomial
as their hypothesis.
Other works on improper learning of decision trees include [4, 5, 7, 8, 12-14, 16, 18, 19, 26, 27].

On the use of membership queries. It would be preferable if our algorithm in Theorem 1 did not
require membership queries and instead relied only on random examples. However, there are well-
known barriers to obtaining such an improvement of our algorithm, even an improper one and
even just within the realizable setting.

First, no such statistical query algorithm exists: any SQ algorithm for learning polynomial-size
decision trees has to take n®(1°¢™) time [5]. Second, we observe that our poly(n)-s?(1°€1°¢$) runtime
is fixed-parameter tractable in ‘s’. Obtaining a poly(n) - ®(s) time algorithm that only uses random
examples, for any growth function ®, would give the first polynomial-time algorithm for learning
wp(1)-juntas. This would be a breakthrough on a notorious open problem [6]; current algorithms
for learning k-juntas take time n®*) [23, 29].

2 OVERVIEW OF OUR APPROACH

The starting point of our work is [3]’s poly(n) - s°(°8%) time algorithm for the realizable setting.
We begin with a brief overview of their algorithm, followed by a description of how we obtain our
improved poly(n) - s9U°81°89) time algorithm in the realizable setting. We then explain how we
extend our algorithm to the agnostic setting.

[3]’s greedy algorithm. At the heart of [3]’s algorithm, as well as ours, is the notion of the in-
fluence of a variable on a function. For a function f : {£1}" — {1} and a variable i € [n], the
influence of i on f is the quantity Pr[f(x) # f(x~)], where x ~ {+1}" is uniformly random and
x~" denotes x with its i-th coordinate rerandomized.

[3] analyzes a simple greedy algorithm for constructing a decision tree T for f:

(1) Using membership queries to f, identify the variable i € [n] with (approximately) the largest
influence on f.

(2) Query x; at the root of T.

(3) Build the left and right subtrees of T by recursing on fy,-—1 and f,=1 respectively.

[3] proved that growing this tree to size s°(°8%) yields a high-accuracy hypothesis for f. Their
algorithm, like [10]’s, is weakly proper.

A near-matching lower bound. [3] provided a near-matching lower bound showing that their
analysis of their algorithm is essentially tight. They exhibited a size-s decision tree target f such
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that the tree grown by their algorithm has to reach size 2008 5) pefore achieving any nontrivial
accuracy.

2.1 Our Algorithm and Its Analysis

[3]’s algorithm formalizes the intuition, drawn from decision tree learning heuristics used in prac-
tice (e.g., ID3, CART, C4.5), that the most influential variable is a “somewhat good” root: the greedy
strategy of recursively querying the most influential variable converges to a high-accuracy hypoth-
esis at size s°(1°2%)_ Their lower bound establishes the limitations of this strategy.

At a high level, we obtain our improved algorithm by showing that there’s an even better root
among the polylog(s) most influential variables. Rather than committing to the single most influen-
tial variable as the root of our tree, we consider the set of polylog(s) most influential variables as
candidate roots. We prove the existence of a variable x; within this set such that growing a size-s
tree with x; as the root results in a high-accuracy hypothesis for f.

2.1.1  Our Key New Tool: A Pruning Lemma for Decision Trees. The analysis of our algorithm is
driven by a new structural lemma for decision trees. This lemma generalizes a result of O’Donnell,
Saks, Schramm, Servedio [25]—the OSSS inequality—which is the crux of [3]’s analysis of their
algorithm:

THEOREM 3 (OSSS INEQUALITY). Let f : {+1}" — {+1} be a size-s decision tree. Then:

Var(f)
grel[%{lnfi(f)} > 2logs

where Var(f) denotes the variance of the random variable f(x).

In words, the OSSS inequality says that every small-size decision tree (that is not too biased)
has an influential variable.

Our new structural lemma shows that every decision tree can be “pruned” so that every variable
in the resulting tree is influential. Our notion of pruning is simple and is based on a single atomic
procedure: one prunes a decision tree T by iteratively replacing any of its internal nodes by one
of the node’s subtrees.

THEOREM 4 (OUR PRUNING LEMMA FOR THE REALIZABLE SETTING). Let f be computable by a
size-s decision tree T and © > 0. There is a pruning T* of T satisfying:
o Pr [f(x)#T"(x)] <rlogs;

uniform x
o For every node v of T*, writing i(v) to denote the variable queried at v, we have that

Inf;y(fo) = 7, (1)
where f,, denotes the restriction of f by the root-to-v path in T*.

(We show in the body of this paper that this pruning lemma implies the OSSS inequality.)

For the realizable setting, this lemma is useful because only a small number of variables can
satisfy Equation (1). It is well known and easy to show that the total influence of a size-s decision
tree, the sum of individual variable influences, is upper bounded by logs. There can therefore be
at most (log s)/z many variables with influence at least 7. Our poly(n) - s°1°21°¢5) time algorithm
for the realizable setting follows quite easily from Theorem 4.

The agnostic setting. In the agnostic setting, there is no longer a good bound on the number of
variables of f with influence at least 7. If f is merely close to a size-s decision tree, say 0.1-close,
the size of this set can be as large as Q(n) as opposed to (logs)/r as in the realizable setting.
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To overcome this, we consider the smoothing of f and the noisy influence of its variables, and
rely on a generalization of our pruning lemma based on these notions. By choosing an appropriate
smoothing/noise parameter §, we show that:

o The smoothing f is (8 log s)-close to f; i
o There are at most 1/(rd) many variables with noisy influence at least 7 on f.

A straightforward application of these ideas yields an agnostic algorithm that achieves accuracy
O(opt) + ¢. A more careful analysis further improves the guarantee to opt + ¢.

The high-level idea of using smoothing and noisy influence to upgrade a non-agnostic algorithm
into an agnostic one already appears in prior work on decision tree learning [2], though the details
of our analyses differ.

3 PRELIMINARIES

We use boldface (e.g., x ~ {+1}") to denote random variables, and unless otherwise stated, all
probabilities and expectations are with respect to the uniform distribution. A restriction 7 of a
function f : {+1}" — R, denoted f, is the subfunction of f that one obtains by fixing a subset of
the variables to constants (i.e., x; = b fori € [n] and b € {+1}). We write || to denote the number
of variables fixed by 7.

The size of a tree is its number of leaves, its depth is the length of the longest root-to-leaf path,
and we define its average depth to be the quantity:

A(T) .= [E [depth of leaf that x reaches] = E 27l ey,
x~{£1}"
leaves £ € T

where |£| denotes the depth of ¢ within T. Note that if T is a size-s decision tree, then A(T) < logs.
Definition 1 (Influence of Variables). For f : {£1}" — {1} and i € [n], the influence of x; with
respect to f is the quantity

Inf;(f) = Pr [f(x)# f(x)], 2)

x~{+1}n"
where x™ denotes x with its i™ coordinate rerandomized (i.e., flipped with probability %) More
generally, for f : {+1}" — Y where Y is a metric space equipped with a distance function p,

fi(f) = E [p(f(), fx™)] 3)

x~{x1}n

Remark 1 (Metric Spaces of Interest). Although the focus of our work is on learning boolean-
valued functions f : {£1}" — {+1}, our approach involves reasoning more generally about real-
valued functions f : {#£1}" — IR. Several intermediate results that we establish for real-valued
functions hold even more generally for any metric space Y as the codomain (e.g., our pruning
lemma), and in those cases we state and prove them in their most general form.

Throughout this paper the codomain Y = {+1} is by default equipped with the not-equals metric
p(x,y) = 1[x # y] (note that in this case Equations (2) and (3) are equivalent), and the codomain
Y = R is by default equipped with the absolute value metric p(x,y) = |x — y|.

Definition 2 (Distance between Functions). For any metric space Y equipped with a distance func-
tion p, we define the distance between two functions f,g: {+1}" — Y to be

dist(f.9) = B [p(f(x).g(x))].

We say that f is e-close to g if dist(f, g) < e.

We note that we can express influence in terms of distance.
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Fact 3.1. For any metric space Y, function f : {x1} = Y, andi € [n],

Inf (f) = dist(f, fimr) = dist(f, fremr)-

Fourier analysis of boolean functions. We will need the very basics of the Fourier analysis of
boolean functions; for an in-depth treatment, see [24]. Every function f : {#1}" — R can be
uniquely expressed as a multilinear polynomial via its Fourier expansion:

fe) =3 FO) ] [xi where f(S) = E[£(0) [Ties x:]-
Sc[n] ieS

Definition 3 (Smoothed Version of a Function). For a function f : {£1}" — {+1} and noise rate
§ € [0, 1], the 5-smoothed version of f is the function fs : {£1}" — [-1,1] defined as

fox) = B [f@).

where x ~s5 x denotes drawing x such that each coordinate x; is set to x; with probability 1 — 9,
and rerandomized with probability §. Equivalently, each bit of x gets flipped in x with probability
g independently.

We remark that fs is sometimes also denoted T;_s f, with T;_s being called the noise operator
with parameter 1 — §.

4 OUR PRUNING LEMMA
In this section we prove our key new structural result, the decision tree pruning lemma. The actual

result that we establish, Theorem 5, generalizes the pruning lemma as stated in the introduction
(Theorem 4) in two ways:

(1) It holds for functions mapping into an arbitrary metric space rather than just boolean-valued
functions;
(2) The decision tree T need not compute f.

Both aspects will be needed for the application to agnostic learning.

Definition 4 (Everywhere t-influential). For any function f : {+1}" — Y, threshold z > 0, and
decision tree T : {+1}" — Y, we say that T is everywhere t-influential with respect to f if, for every
internal node v of T, writing i(v) to denote the variable queried at v, we have

Infi(v)(fv) >,
where f;, denotes the restriction of f by the root-to-v path in T.

The proof of our pruning lemma is constructive—we give an efficient algorithm (Figure 1) show-
ing how to prune T so that the resulting tree is everywhere r-influential with respect to f—though
in our applications to learning we do not need it to be constructive.

The remainder of this subsection will be devoted to proving the following generalization of
Theorem 4.

THEOREM 5 (PROPERTIES OF PRUNE). For any metric space Y, function f : {£1} — Y, decision tree
T :{+1} — Y, and threshold r > 0, let T* = PRUNE(f, T, 7). Then,

(1) Size and depth do not increase: The size and depth of T* are at most the size and depth of T.
(2) Everywhere t-influential: T* is everywhere t-influential with respect to f .
(3) Small increase in distance: For A(T) the average depth of T,

dist(T*, f) < dist(T, f) + A(T) - 7.

Journal of the ACM, Vol. 69, No. 6, Article 39. Publication date: November 2022.



Properly Learning Decision Trees in almost Polynomial Time 39:7

p
PrUNE(f, T, 7):
Input: Query access to a function f : {+1}" — Y, a decision tree T : {+1}"" — Y, and a threshold 7 > 0.
Output: A decision tree that is everywhere z-influential w.r.t. f.
(1) If T has depth 0, return T.
(2) Let x; be the variable queried at root of T and T—; and T be its left and right subtree, respectively.
(3) IfInf;(f) > 7, return the tree that queries x; as its root and has PRUNE( fy,=—1, T-1, 7) and PRUNE(fx,=1, T1, 7) as
its left and right subtree, respectively.
(4) IfInf;(f) < 7, return whichever of PRUNE(f, T_1, 7) or PRUNE(f, T1, ) have less distance w.r.t. f.

Fig. 1. A procedure for pruning a tree T to ensure it is everywhere 7-influential with respect to a function f.

Theorem 4 is a special case of Theorem 5 where Y = {+1} with the not-equals metricand f = T.
(Recall also that A(T) < logs.) We prove each guarantee of Theorem 5 separately.

PrROOF OF THE FIRST GUARANTEE OF THEOREM 5. By induction on the depth of T. If T has depth
0, then the size and depth of PRUNE(f, T, 7) are the same as T. For x; the variable queried at root
of T and T_;, Tj its left and right subtrees, respectively, if Inf; (f) > 7,

size(PRUNE(f, T, 7)) = size(PRUNE(fx,=—1, -1, 7)) + size(PRUNE( fy,=1, T1, 7))
< size(T-1) + size(T})
= size(T).

where the second step is the inductive hypothesis. Similarly, for depth

depth(PRUNE(f, T, 7)) = 1+ max (depth(PRUNE(fy,=-1,T 1, 7)), depth(PRUNE(fi,=1, T1, 7))

< 1+ max (depth(Ty, ), depth(T}))
= depth(T).

Finally, if Inf;(f) < 7, then PRUNE(f, T, 7) is equal to either PRUNE(f, T_1, 7) or PRUNE(f, T}, 7).
Since T_; and T; each have size and depth less than those of T, the desired result holds by the
inductive hypothesis. O

PROOF OF THE SECOND GUARANTEE OF THEOREM 5. By induction on the depth of T. If T has
depth 0, then it has no internal nodes, so vacuously is everywhere r-influential. Otherwise, let
x; be the variable queried at root of T and T_;,T; be its left and right subtrees, respectively. If
Inf;(f) < 7, then PrRUNE(f,T,7) is either PRUNE(f, T_1,7) or PRUNE(f, Ty, 7), which is every-
where r-influential w.r.t. f by the inductive hypothesis.

If we did not fall in either of the above cases, then Inf;(f) > 7. Let v be some internal node of
PrUNE(f, T, 7). If v is the root of PRUNE(f, T, 7), then

Inf;(o)(fo) = Infi(f) > 7.

Otherwise, let a be the restriction corresponding to the root-to-v path. Since x; is the root

of PRUNE(f, T, 7), we have that « must fix x; = b for b € {+1} and v is an internal node
for PRUNE(fy,=p, Tp, 7). Applying the inductive hypothesis to PRUNE(fy,=p, Tp, 7), we have that
Inf;)(fo) > 7. O

Before we prove the third and final guarantee of Theorem 5, we state two easy facts about the
subtrees of a decision tree.
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FacT 4.1 (SUBTREES OF A TREE). Let T : {1} — Y be some decision tree and T_1, T be its left
and right subtrees, respectively. Then,

L(A(Toy) + A(Ty)) = A(T) - 1. ©

Furthermore, any function f : {£1}" — Y and x; being the root of T,
1+ (dist(T-1, fr,=—1) + dist(Ty, fi,=1)) = dist(T, f). (5)

PRrROOF OF THE THIRD GUARANTEE OF THEROEM 5. By induction on the depth of T.If T has depth
0 then the claim easily holds with equality. Otherwise, let x; be the variable queried at root of T
and T, T; be its left and right subtrees, respectively. We note that the depth of T_; and T; are
strictly less than the depth of T, so we can apply our inductive hypothesis to them. We consider
two cases.

Case 1: Inf;(f) > 7.

dist(PruNe(f,T,7), f) = 1 ( Z dist(PRUNE( fx, =5, T, T),fxl:b)) (Equation (5))
be{+1}

IA

. ( Z dist(Tp, fx,=b) + A(Tp) - 1') (Inductive hypothesis)

!
2 be{x1}

dist(T, f) + (A(T) - 1) - (Equations (4) and (5))
< dist(T, f) + A(T) - 7.

Case 2: Inf;(f) < 7.

dist(Prune(f,T,7), ) = bm{ir}} {dist(PRUNE(f, Ty, 7), f)}

1
<= Z dist(PrRUNE(f, Tp, r),f)) (min < average)
2 bef{+1}
1
< == Z dist(Tp, ) + A(Tp) - T) (Inductive hypothesis)
2 be{+1}
1
<= Z dist(Ty, fx,=p) + dist(f, fx,=) + A(Tp) - T)
be{+1}
(Triangle inequality)
1
=5 Z dist(Tp, fx;=p) + Inf; (f) + A(Tp) - T) (Fact 3.1)
be{x1}
=dist(T, f) + (A(T) — 1) - = + Inf;(f) (Equations (4) and (5))
< dist(T, ) + A(T) - r. (Inf;(f) < 7)
This completes the proof. ]

4.1 Our Pruning Lemma Implies the OSSS Inequality

Several variants of the OSSS inequality (Theorem 3) have been proved over the years [9, 17, 21, 24].
We show that our pruning lemma implies the following strengthening of the OSSS inequality:
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THEOREM 6 ([17]). For any function f : {+1}"* — {+1} and decision tree T : {£1}" — {*1},

bias(f) — dist(T, f)
max {Infi (f)} 2 AT)

where the bias of f is defined as
i = mi p .
bias(f) ,min {xN{fl}n[f(x) # b]}

The OSSS inequality follows from Theorem 6 by taking T = f, and because 2 - bias(f) < Var(f).
We now show that Theorem 6 is a special case of Theorem 5:

PROOF OF THEOREM 5 = THEOREM 6. Set Y = {+1} and 7 = max;e[,{Inf;(f)}. There are
no variables with influence more than 7 on f so the only decision trees that are everywhere 7-
influential w.r.t. f are the trivial ones that make no queries. In other words, PRUNE(T, f, 7) is
either the constant +1 function or constant —1 function. Therefore,

dist(f,PrRUNE(f, T, 7)) > bias(f).
By the third guarantee of Theorem 5,
bias(f) < dist(f,PRUNE(f, T, 7)) < dist(T, f) + A(T) -t
= dist(T, f) + A(T) - max {Inf; ()}

Rearranging completes the proof. O

5 LEARNING IN THE REALIZABLE SETTING

We first present and analyze our algorithm in the simpler realizable setting where f is exactly a
size-s decision tree (i.e., opt, = 0).

THEOREM 7 (SPECIAL CASE OF THEOREM 1: THE REALIZABLE SETTING). There is an algorithm
which, given as input ¢ > 0, s € IN, and query access to a size-s decision tree f : {+1}" — {+1}, runs
in time

O(n?) - (s/e)Clos(log)/6))
and outputs a size-s decision tree hypothesis T that w.h.p. satisfies dist(T, f) < e.

For clarity, we describe our algorithm, BuiLpDT in Figure 2, under the assumption that variable
influences of f and its subfunctions (i.e., the quantities Inf;(f;) for all i and 7) can be computed
exactly in unit time. In actuality one can only obtain high-accuracy estimates of these quantities via
random sampling. When we prove Theorem 7 we will show how this assumption can be removed
via standard arguments.

CramM 5.1 (CORRECTNESS). During the execution of BuiLpDT, for any f : {£1}" — [—1, 1], restric-
tion xr, and d,s € N, if M[r,s] is nonempty, it contains a tree T that minimizes dist(f;,T) among
all depth-(d — ||), size-s, everywhere t-influential trees.

Proor. We proceed by induction on d — ||. When d = |x|, ButLpDT populates M[x, s] with the
singleton leaf b € {+1} that minimizes dist(f,, b), which is indeed sign(I£[ f,;]). For the inductive
step, note that each T; i satisfies

dist(fr. Tik) = 3 (dist(frux,=—1)» ML U {x; = =1}, k]) + dist(fru 1), M7 U {x; = 1,5 = k).

It follows from the inductive hypothesis that T;  minimizes distance among all everywhere 7-
influential, depth-(d — |x]), size-s trees with x; as the root, and whose left and right subtrees have
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BuitoDTy(f, 7,8, d, 7):
Input: Query access to a function f : {£1}" — [-1,1], restriction x, size parameter s, depth parameter d, influence
parameter 7. It maintains a map M : {restrictions} X [s] — {decision trees}.
Output: A decision tree T that minimizes dist(T, f;) among all depth-(d — |r]), size-s, everywhere r-influential trees.
(1) If 7 = @, initialize M to the empty map.
(2) If M[n, s] is nonempty, return M|, s].
(3) If || =d ors = 1, return the singleton leaf labeled sign(E[ f]).
(4) Otherwise:
(a) LetS C [n] be the set of variables i such that Inf; (fz) > 7.
(b) Foreachie€ Sandk € [s— 1], let T; ;. be the tree such that

r00t(T; ) = x;
left-subtree(T; ;) = BurnDTp (f, 7 U {x; = =1}, k., d, 7)
right-subtree(T; ;) = BuroDTp(f, 7 U {x; = 1},5 — k. d, 7)

(c) Set M[,s] to be the tree among the T; ;.’s defined above with minimal distance to f;.
(d) Return M|[r,s].

Fig. 2. BuiLbDT uses dynamic programming to find the size-s, depth-d, everywhere r-influential tree of
minimal distance to f.

sizes k and s — k, respectively. Since M|, s] is chosen to minimize distance among all such T; x,
its distance is minimal among all size-s, depth-(d — |]), everywhere r-influential trees. m|

Cramm 5.2 (RUNTIME). Letd,s € IN. Let f : {+1}" — {+1} be a size-s decision tree, and assume
that variable influences of f and its subfunctions can be computed exactly in unit time. The algorithm
BuipDTy(f, @, s,d, ) runs in timen - s> - ((log s)/7)°(@.

Proor. For all 7, the size of the set S defined on Step 4(a) is at most

1% log s
S| <= Inf; < ==, 6
||_T;nl(fn)_ - ©)

where the second inequality uses the fact that for any size-s decision tree T : {+1}" — {+1},
n n
Z Inf;(T) < Z Pr[T queries x;] = A(T) < logs.
i=1 i=1

Since BurLpDT terminates once || = d (Step 3), and a restriction r is extended by {x; = b}
for some b € {+1} only if Inf;(f;) > 7 (Step 4), the number of different restrictions that can be
constructed throughout the execution of the algorithm is at most

zdl (logs)k B (logs)o(d)
o\ T T

Since BuiLpDT returns at Step 2 if M|, s] is nonempty, this ensures that Step 4, the recursive part
of BuiLpDT, is reached at most once for each restriction 7 and size s. The total number of recursive
calls is therefore upper bounded by

1 o(d)
. (_g) . @)
T
Outside of the recursive calls, the runtime of BurLpDT is
1
O(n+s-15]) < O(n)+s'(£). ®)
T
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The factor of n comes from computing and comparing influences of variables (Line 4(a)), and the
factor of s - |S| comes from Line 4(b), the number of different (candidate root, size split) pairs.
The overall runtime is therefore at most the product of the bounds in Equation (7) and (8), and
the proof is complete. O

ProoF oF THEOREM 7. Let d := log(s/e) and 7 := ¢/logs. We first establish correctness: we
claim that BurtpDTy(f, @, s, d, 7) returns a size-s tree T satistying dist(T, f) < 2e¢. Since A(f) <
log s, our pruning lemma, Theorem 5, tells us that there is a pruning T* of f that is everywhere
r-influential and satisfies dist(f,T*) < A(f) -7 < e.

Let T, be T* truncated to depth d (where the new leaves introduced by truncated paths
are labeled with arbitrary leaf values, say 1). This tree, Tt:‘unc, is a depth-d, size-s, everywhere 7-
influential tree. Furthermore,

dist (T*, Tt’r‘unc) < xj’irl }n[depth of leaf in T* that x reaches > d]
<279 (Union bound over leaves of T*)
= ¢

Therefore, dist(f, Tiy,,.) < dist(f,T*) + ¢ < 2¢ and , by Claim 5.1 BurLpDT returns a tree T that
also satisfies dist(f, T) < 2e.

As for runtime, in Claim 5.2 we assumed that variable influences can be computed exactly in unit
time, whereas in actuality, we can only obtain estimates of these quantities via random sampling.
By inspection of our proofs, it is straightforward to verify that it suffices for these estimates to
be accurate to +7. Query access to f provides us with query access to f; for any z, and hence
by the Chernoff bound, we can estimate Inf;(f;;) to accuracy +% and with confidence 1 — § using
O(log(1/68)/7%) queries and in n - O(log(1/8)/7?) time. As shown in Claim 5.2, the number of
times variables influences are computed throughout the execution of the algorithm is at most
n - ((logs)/7)°@, and so by setting § < 1/(n - ((logs)/7)°?), we ensure that w.h.p. all our
estimates are indeed accurate to within i%. Combining this with Claim 5.2, the overall runtime of
our algorithm is

T

logs ol .
nest ( ) - 2 (logn +dlog ((logs)/7) ) < O(n?) - (s/e)OeEtoEs)/e)
T
and this completes the proof. O

6 LEARNING MONOTONE TARGET FUNCTIONS IN THE AGNOSTIC SETTING

In the remainder of this paper we extend our analysis from the realizable to the agnostic setting.
As alluded to in the introduction, the main challenge that arises when if f is merely close to a
small-size decision tree, instead of being exactly a small-size decision tree, is that we no longer
have a good bound on the number of its variables with influence at least 7. In the realizable setting
we were able to bound this number by (logs)/z (Equation (6) in the proof of Theorem 7) but this
crucially relied on the assumption that f and and its subfunctions are size-s decision trees, and
hence have total influence at most log s.

The way we handle this in the case of general target functions is somewhat involved; we give
the full analysis in the next section. In this section we consider the special case of monotone target
functions and prove Theorem 2. For monotone functions f, we show that we can easily bound
the number of variables of influence at least 7 by 1/7%, even if f is not a small-size decision tree.
Furthermore, we also show that for monotone targets f our algorithm does not need membership
queries to f and can instead rely only on uniform random labeled examples.
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We recall two basic facts from the Fourier analysis of boolean functions:
FacT 6.1 (PARSEVAL’s IDENTITY). For all booleanfunctionsf 1" > {1},
> FO? =Elf(x)"] =
Scn]
FACT 6.2 (INFLUENCE = LINEAR FOURIER COEFFICIENT FOR MONOTONE f). For all monotone
boolean functions f : {+1}"* — {+1} and alli € [n],
Inf;(f) = 3 B[f(x)x:] = 5 ({i}).
Combining these facts, we also have the following, which is needed for our runtime bound.
COROLLARY 6.3. For all monotone boolean functions f : {+1}" — {+1} and all r € [0, 1],
1
i | Inf;(f) > 7} < —;
1 Infi(f) > 7l < £
Proor. The sum of squares of linear Fourier coefficients is at most the sum of squares of all
Fourier coefficients, so by Parseval’s identity, it is at most 1:

> Infi(f)? = Zf < Y fO) =

i€[n] SC[n

The corollary follows since Inf;(f) >  iff Inf;(f)? > 2. O

6.1 Proof of Theorem 2

THEOREM 8 (THEOREM 2 RESTATED). Let f : — {*1} be a monotone boolean function
that is opt,-close to a size-s decision tree. Then for d := log(s/¢e) and T := ¢/logs, the algorithm
BurLpDTy (f, @, s, d, T) runs in time

(j(nz) . (s/g)O(IOg((IOgS)/S))’

n

uses poly(s/¢) - log n uniform random examples labeled by f, and outputs a size-s decision tree hy-
pothesis T that satisfies dist(f,T) < opt, + €.

The proof is very similar to that of Theorem 7 and we point out the essential differences.
Correctness. Claim 5.1 does not use the assumption that f is exactly a size-s decision tree, so
correctness essentially follows from Claim 5.1 exactly as in the proof of Theorem 7. Let Ty, be the
size-s decision tree that is opt,-close to f. Our pruning lemma, Theorem 5, tells us that there is a
pruning T* of Ty that is everywhere 7- inﬂuential and satisfies dist(f, T*) < opt,+e¢. Then, letting
Tirine be T* truncated to depth d, we have that T}, . is a depth-d, size-s, everywhere r-influential
tree that satisfies dist(f, T5,,.) < opt, + O(¢). Therefore, by Claim 5.1 BurLpDT returns a tree T
that also satisfies dist(f,T) < opt, + O(e).

Runtime. We have the following analogue of Claim 5.2:

CrLAmM 6.4 (RUNTIME IN THE MONOTONE CASE). Assume that variable influences of f and its
subfunctions can be computed exactly in unit time. For all d,s € N and © > 0, the algorithm
BupDTy(f, @,s,d, t) runs in timen - s - (1/7)° @),

Proor. By Fact 6.3, we have that for any restriction f7, the set S defined on Step 4(a) of the

algorithm has size at most |S] < - —L. The rest of the proof proceeds exactly as in Claim 5.2, where
ogs

is replaced by - 7,7~ This gives a bound of

1,0
> (7)
T
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for the number of recursive calls, and a bound of
1,0(d)
e
T

for the total running time. O

Finally, we remove the assumption that the variable influences of f and its restrictions can be
computed in unit time. We claim that they can be efficiently estimated to sufficiently high accuracy
using only uniform random labeled examples (x, f(x)). As in the proof of Theorem 7, it suffices
to ensure that all the estimates that our algorithm makes are accurate to within +7.

Using Fact 6.2, we have for any i and restriction r,

Inf;(fr) = 3 E[fr(x)x;] = 3 B[f(x)x; | x consistent with 7].
The right hand side is equivalent to

% E [f(x)xl- - 1[x consistent with JT]]

=21 g 1 istent with 7]|.
Pr[x consistent with 7] [f(x)xl [x consistent wi ”]]

To estimate Inf;(f;) to accuracy +7, it then suffices to estimate IE[ f'(x)x; - 1 [x consistent with ]]

to accuracy +7 - 2”11, By Chernoff bounds, this can be estimated with confidence > 1 — § with

0 (% g2 . 1og(1/5))

uniform random examples (x, f(x)) labeled by f, where we have used the fact that |z| < d. Each
estimate takes time

n-0 (% g2 1og(1/5)) .

The number of times variable influences are computed during the execution of BuiLpDT is at
most n - (%)O(d), so by setting § < 1/(n- (%)O(d)) we ensure that w.h.p. all our estimates are indeed
accurate to within +7. The sample complexity of our algorithm is

1
0] (T_Z 2% (logn + dlog %)) = poly(s/¢) - logn,
and by Fact 6.4, the overall runtime of our algorithm is

1 o(d) n- 22d N 1 )
nest ( ) 2 (logn + dlog(1/7)) < O(n?) - (s/e)O0e(tors)/e),
T T

This completes the proof of Theorem 2.

7 LEARNING GENERAL TARGET FUNCTIONS IN THE AGNOSTIC SETTING

In this section we prove Theorem 1. The algorithm for the agnostic setting calls the same proce-
dure BurLpDT as in the realizable setting, but on the smoothed version fs of function f (recall
Definition 3).

Correctness. We'll prove that the output of BuiLpDT on f; is close to f. For that, we’ll need some
facts about the noise operator.

Fact 7.1 (NoISE SENSITIVITY OF DECISION TREES). For any & € (0,1) and decision tree T :
{1} — {1},

dist(Ts, T) < A(T) - 8.
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Proor. We expand the distance between Ts and T,
dist(Ts, T) = x~{I?1}" [ITs(x) — T(x)]

_ B []E
x~{£1}" | |x

~5X

[T(x)] - T(x)

|

=2- E [~~ [T(x)iT(x)]

x~{x1}n
For any x € {+1}", let d(x) be the depth of the leaf in T that x reaches. In order for T(x) # T(x),
T(x) must reach a different leaf in T than x does. For that to happen, one of the d(x) coordinates
T queries for x must flip. By union bound, this occurs with probability at most %. Therefore,

dist(Ts,T) <2- B [#]:Am-a O

x~{+1}n"
Fact 7.2 (No1isE OPERATOR IS SELF-ADJOINT, ALsO IN [24]). For any functions f,g : {x1}" —
{£1},
dist(fs, g) = dist(f, gs).

ProoF. Drawing x ~ {+1}" uniformly and then x ~s x gives the same joint distribution over
(x, x) as first drawing x ~s {+1}" uniformly and then x ~s x. That fact is used between the third
and fourth line of the following series of algebraic manipulations.

distfg) = E [ s (0)] - 9(x)
=2. [k [APr [f(x) #g(x )]]

x~{£1}" ||x~s5x
x~{£1}" [ x~sx

=2 Eq [10f (&) # 9(0)]]

x~{£1}", x~

=2- e # g001]

2. IE [ Pr [f(%) ¢g<x>1]

X~5X
= dlst(f gs)- m

Given the above two facts, we are able to prove that our algorithm has the desired error on
guarantee.

LeEmMA 7.3. For any size s and ¢ € (0,1), setd = log(3) and 7 =
BuiLoDTy(fs, @, s, d, T) returns a decision tree T satisfying

Then, for any § < ——

logs s logs”

dist(T, f) < opt, + 4e.

ProoF. Let T* be the size-s decision tree that f is opt,-close to. First, we show T* is also close

to fs.

dist(T*, fs) = dist((T*)s, f) (Fact 7.2)
< dist((T*)s, T*) + dist(T™, f) (Triangle inequality)
< 8- A(T*) + opt, (Fact 7.1)
< e+ opt,. (A(T*) < log(s),d < Iogs
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By Theorem 5 (applied with the metric space Y = [—1, 1]), we know that there is some T*

pruned
that is everywhere r-influential with respect to f; satisfying,

dist (Tp’;uned,]%) < (opts + e) + ¢ = opt, + 2¢.
As in the proof of Theorem 7, let T5, . be T*
prune;

introduced by truncated paths are labeled with arbitrary leaf values, say 1). This tree T, .
depth-d, size-s, everywhere r-influential tree that satisfies

dist (f(s,thunC) < dist (fcg,Tp’;uned) + ¢ < opt, + 3e.

Therefore, by Claim 5.1 BuiLpDT returns a tree T that also satisfies dist(fs, T) < opt, + 3¢. Finally,
we bound the distance between f and T.

Trune truncated to depth d (where the new leaves

is a

dist(f,T) < dist(f, Ts) + dist(T, Ts) (Triangle inequality)
< dist(fs, T) + dist(T, Tys) (Fact 7.2)

< (optg +3¢) + 5 - A(T) (Fact 7.1)

< (opt + 3¢) + ¢ = opt, + 4e. (A(T) <logs,d < logs)

O

Efficiency. Now we analyze the runtime of the procedure BuiLpDT on the smoothed function
fs. As in the proof of Claim 5.2 for the realizable setting, we need to upper bound the number of
different recursive calls to the procedure. The key step is to control the size of S, the set of variables
that is sufficient influential (w.r.t. function (fs), and threshold 7).

We start with a well-known fact stating that the total influence of any §-smoothed function is at
most O(1/6). Here, we use a slightly different version of influence that is defined as the expected
squared difference between the functions values at x and x~*. This squared influence does not fit
into Definition 1 since the squared difference is not a metric, but the advantage is that it can be
easily expressed in terms of the Fourier coefficients of the function.

FAacT 7.4 (TOTAL INFLUENCE OF SMOOTHED FUNCTIONS). Forany f : {£1}" — {£1} and?d € (0, 1],
n

; 1

E _ ~i\\2 < —

Z B[00 - f] <

Proor. Suppose that the Fourier expansion of f is f(x) = Xscpn f (S) [Ties xi. The Fourier

coefficients of fs are given by fg; (S) = (1-8)5! f (S). Then, using the Fourier formula for the total
squared influence,

D B G - o] =2 3181 [Bo)]
i=1 S

C[n]
= > asl- (-8 [F9)]
SC[n]
<= Z
Sc(n]
- e(S
The third step applies max,>ox(1 — §)¥ < max,»oxe %* = 1/(ed), and the last step applies

Parseval’s identity (Fact 6.1). O
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For any restriction 7, applying Fact 7.4 to f; allows us to control the number of variables that
have large influences w.r.t. (f;)s. To upper bound the runtime of BuiLpDT, however, we need a
similar guarantee for the function (f5s),, which is different from (f;;)s in general. Fortunately, the
following fact states that for small §, the two functions are pointwise close, and thus allows us to
relate the influences of each variable x; w.r.t. the two functions.

Fact 7.5. For any f : {+1}" — {1} and restriction 7, it holds for every x € {+1}" that

|(fr)s(x) = (f5)n (%) < 6]

Furthermore, for everyi € [n],
[Inf; ((fx)s) — Infi ((f5)x)] < 20]7].

Proor. Fix x € {+1}" and consider the following procedure for calculating (f)s(x):

(1) Sety « x and draw sy, 53, . . ., S, independently from Beroulli (§/2).
(2) For each i € [n], negate y; if s; = 1.
(3) For each constraint “x; = b” in 7, set the i-th bit of y to b.
We can easily verify that (f;)s(x) = E[f(y)], where the expectation is over the randomness in s.
Furthermore, (f5),(x) can be defined by an almost identical procedure, with Steps 2 and 3 per-

formed in reverse order: We start with z = x and draw s € {+1}" randomly. We set z; to b for each
constraint “x; = b” in 7, and then negate z according to the non-zero entries in s. Similarly, we

have (f5)x(x) = E[f(2)].

We can couple the two procedures by sharing the random bits s; through s,. Note that if s; = 0
holds for every index i that appears in 7, we would end up with y = z. In other words, y and z
may differ only when s; = 1 for some index i that appears in 7, which, by a union bound, happens
with probability < |x| - (§/2). Since f has codomain {+1}, we have

[(fr)s (x) = (f6)= ()| = [E[f ()] - E[f ]| < E [If () - f(2)]] < 2Pr[y # 2] < 5|x|,

where the probability and expectations are over the coupling of (y, z) defined earlier.
The second part of the fact follows immediately: the first part implies

[(fr)s () = (fe)s @) = [(fs)r (x) = (fs)x ()| € [-26]], 25]7(]

for every x,y € {£1}". Therefore, the difference between the influences,
Infi(fe)s) = Ifi((f)e) = B [I(fr)s(0) = (f)s (1 = 1(fs)(x) = (f)= (2]
is also in [—26|x|, 26| x]]. O

Cramv 7.6 (RUNTIME). For all d,s € N and t,6 > 0 that satisfy © > 28d, assuming that
variable influences of fs and its subfunctions can be computed exactly in unit time, the algorithm
BuipDTy(fs, @, s, d, T) runs in time

o(d)
1
n-poly(s) (ea(f - 25d)2)

In particular, for § = t/(4d), the runtime is n - poly(s) - (d/7)°).

ProoF. As in the proof of Claim 5.2, it suffices to show that when invoking BuiLpDT),,
(fs,9,s,d,7), at most s - (m)o(‘j) different parameter tuples are passed to the recur-

sive calls. It is, in turn, sufficient to prove that [S| < holds for every recursive call

1
ed(r-20d)?

Journal of the ACM, Vol. 69, No. 6, Article 39. Publication date: November 2022.



Properly Learning Decision Trees in almost Polynomial Time 39:17

BurLpDT(fs, 7, s, d, T), where S is the set of indices i that satisty Inf;((fs).) = 7. We note that

€S e Infi((f5)e) =7

= Inf;((fr)s) = 7 —26d (Fact 7.5 and || < d)
= {IE)I}n [I(f,r)g(x) - (f,,)(;(xNi)I] > 7 —20d (definition of influence)

= E [(Fr)s () = (fr)s(x™))?] = (r = 26d)*. (Jensen’s inequality and 7 > 25d)

1/(ed)
(r—25d)?

335 d7 5(T_12 5a7 and finishes the proof. 5

different indices i. This

Applying Fact 7.4 to f,; shows that the above can hold for at most

proves |S| <

Now we put everything together to prove our main theorem.

Proor oF THEOREM 1. Let d = log(s/e), T = @ and § = g5. By Fact 7.3, BuipDTy
(fs.9,s,d, ) returns a decision tree T that satisfies dist(T, f) < opt, + 4e.

For the runtime, in Claim 7.6 we again assumed that the influences of fs and its restrictions can
be computed exactly in unit time. As in the proof of Theorem 7, estimating these influences up
to an O(r) additive error would suffice. Given query access to f, (fs)~(x) can be estimated up to
O(r) error with probability 1 — § using O(log(1/8)/7%) queries for any restriction 7 and input x.
Then, by randomly sampling O(log(1/8)/7?) copies of x ~ {#1} and estimating both (fs), (x) and
(f5) (x®"), we can estimate Inf; ((fs).) up to O(r) error with probability 1 — O(log(1/8)/7?%) - 6.

By Claim 7.6, the number of variable influences that need to be computed is at most - (d/7)°(.

By setting § < 1/(n® - (d/7)°(?), we can ensure that
n-(d/r)°D . 0(log(1/6)/7%) - § < 1,

so that w.h.p. all the influence estimates are accurate up to O(r) error. Note that estimating each
influence takes [O(log(1/5)/7%)]? queries and thus runs in time

n-[0(log(1/6)/7%)]* = O(n) - poly(d/).
Together with Claim 7.6, this upper bounds the overall runtime of the algorithm by

o(d)
n - poly(s) - (g) -O(n) - poly(d/r) < O(n?) - (s/e)Cloelog)/e) O

8 CONCLUSION

We have given an n©(°¢1°8™) _time membership query algorithm for properly learning decision
trees under the uniform distribution, improving on the previous fastest runtime of n°(°€™) The
obvious open problem is to obtain a polynomial-time algorithm, which would bring the state of
the art for proper learning of decision trees into alignment with that of improper learning [11, 20].

Improved learning algorithms for decision trees often go hand in hand with an improved under-
standing of their structure. Ehrenfeucht and Haussler’s algorithm [10] is based on the observation
that one of the subtrees of the root of a size-s decision tree has size < s/2; [3] uses the OSSS in-
equality to show that influence is a good proxy for quality as a root; our algorithm is built on our
decision tree pruning lemma, which strengthens the OSSS inequality and the connection between
influence and root quality. A natural next step is to formulate and develop new structural results
that will facilitate a polynomial-time algorithm.

Concluding on a speculative note, we remark that [3]’s algorithm is modeled after practical
heuristics, such as ID3, CART, and C4.5, for learning decision trees. These are some of the earliest
and most basic algorithms in machine learning, and they continue to be widely used to this day. Our
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algorithm extends [3]’s and circumvents lower bounds that [3] had established for their algorithm.
It would be interesting to explore possible practical implications of our work.
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