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Abstract—Approximate message passing (AMP) is a scalable,
iterative approach to signal recovery. For structured random
measurement ensembles, including independent and identically
distributed (i.i.d.) Gaussian and rotationally-invariant matrices,
the performance of AMP can be characterized by a scalar
recursion called state evolution (SE). The pseudo-Lipschitz (poly-
nomial) smoothness is conventionally assumed. In this work, we
extend the SE for AMP to a new class of measurement matrices
with independent (not necessarily identically distributed) entries.
We also extend it to a general class of functions, called controlled
functions which are not constrained by the polynomial smooth-
ness; unlike the pseudo-Lipschitz function that has polynomial
smoothness, the controlled function grows exponentially. The
lack of structure in the assumed measurement ensembles is
addressed by leveraging Lindeberg-Feller. The lack of smoothness
of the assumed controlled function is addressed by a proposed
conditioning technique leveraging the empirical statistics of the
AMP instances. The resultants grant the use of the SE to a
broader class of measurement ensembles and a new class of
functions.

Index Terms—Approximate message passing (AMP), state
evolution (SE), controlled function, and random matrix theory.

I. INTRODUCTION

The problem of signal recovery from a linear observation'
y =Axo+w ey

appears in various fields [1]-[3], where y € R"*1, A € R**V
is a given measurement matrix, xXo € RN %1 is the signal to be
recovered, and w € R™*! is an additive noise. Of particular
interest is the case when A is overcomplete (n < N).
However, the computational cost to solve this problem is
typically prohibitive when the dimensions n and N are large.

Message passing (MP) can be applied to handle the large-
dimensionality of the problem. Conventionally, sparsity is
essential for MP to approach a fundamental performance
limit [4]. Recently, the approximate message-passing (AMP)
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A bold lower case letter a is a column vector and a bold upper case letter
A is a matrix. ||a||p, A*, A1 and A;j denote the p-norm of a, transpose of
A, inverse of A, and ith row and jth column entry of A, respectively. A(N)
and a(NN), respectively, are the matrix and vector indexed by N. N (v, o?)

. o . . d
denotes the Gaussian distribution with mean v and variance o2. The =

and *=" denote the convergence in distribution and equivalence in an almost
sure sense, respectively. (u, v) = % T4 u;v; defines the normalized inner
product of u,v € R?*1. Ez[-] denotes the expectation with respect to the
random variable Z. 0,, denotes the n x 1 all-zero vector.

algorithm has received significant attention [5]-[7] because it
performs surprisingly well in systems that are not sparse.

The remarkable features of AMP have inspired a wide range
of applications [8]-[23]. Despite its widespread applicability,
the AMP algorithm suffers from instability issues [24]-[26].
The instability is closely related to the underlying structure
of the random measurement matrix A. Understanding the
dynamics of AMP for various classes of random measurement
ensembles has been an outstanding open problem.

A rigorous proof of state evolution (SE) was first established
by Bayati and Montanari [27]. As NN tends to infinity while
p = 7 is kept constant, Bayati and Montanari [27] asymptot-
ically characterized the evolution of the mean squared error
(state) of AMP for the A with independent and identically
distributed (i.i.d.) Gaussian entries. Rush et. al [28] showed a
concentration bound of the SE in the finite n and N regime;
the probability of deviation decays exponentially with n.

The validity of SE in [27] has inspired extensive research
efforts on extending it to different measurement ensembles
such as sub-Gaussian A by Bayati et. al [29] and Chen
et. al [30], right-orthogonally-invariant A by Rangan et. al
[31], rotationally-invariant A by Fan [32], unitarily-invariant
A by Takeuchi [33], and semi-random A by Dudeja et. al
[34]. A belief is that the SE for AMP might hold for an
even boarder class of matrices. The key to analyzing the
SE for AMP is the conditioning technique [27], [35]. This
means that the current instance of the AMP algorithm is
modeled as a linear combination of the previous instances that
are Gaussian, plus a deviation term (non-Gaussian). A key
step to the stability is leveraging the polynomial smoothness
of the pseudo-Lipschitz function’ and establishing that the
contribution from the deviation term decays as n and N grow.

Recently, the controlled function has been introduced to
analyze the nonlinear behavior of neural networks in machine
learning [36], [37]. Unlike the pseudo-Lipschitz function, the
controlled function incorporates exponential growth into its
model. Hence, the pseudo-Lipschitz function can be viewed
as a special case of the controlled function.

This work is motivated by the experimental observations [5],
[25] that there is ample room for extending the establishment
of SE for AMP to different classes of measurement ensembles

2The polynomial smoothness of the pseudo-Lipschitz function is defined in
Appendix A



and functions. The
summarized below.
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Fig. 1. Two categories of random measurement ensembles
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o« We extend the SE analysis for AMP to the measurement
ensembles in 7 in Fig. 1, where 7 is the set of matrices
with independent but not necessarily identically distributed
entries. Note that the SE analysis in the prior works [27],
[28], [31]-[33] focused on the set R in Fig. 1, where R
is the set of rotationally-invariant matrices, including the
ii.d. Gaussian ensembles. The set 7 distinguishes it from
the set R because it is far more incoherent than R. This
constitutes a major challenge in establishing the SE of the
assumed ensembles. In our work, the lack of structure of
the A € 7 is addressed by leveraging and extending the
Lindeberg-Feller theorem.

o In contrast to the prior works [27]-[33] that relied on the
pseudo-Lipschitz smoothness to establish SE, we generalize
the SE analysis to the controlled function. The lack of
smoothness of the latter is addressed by exploiting the
measurability against Gaussian measure in conjunction with
the conditioning technique, based on empirical statistics.

A part of our results is a theoretical justification for the
conjecture made in [27] about the validity of the SE for AMP
with i.i.d. non-Gaussian measurement ensembles.

II. PREMILINARIES

First, the concept of empirical statistics is developed. Next,
the frequently used statistical lemmas are presented.
A. Empirical Statistics

The empirical law of a random vector constructed here is
exploited to propose a conditioning technique in the following
sections. We start by defining probability distributions.

Suppose P(R) is the collection of all probability dis-
tributions on R with sample space 2. A random variable
X : Q — R has the distribution ¢ € P(R) denoted by X ~ pu,
if Pr(X € 8) = u(S), for a set S C Q. For a function
f R — R, we denote, if it exists, uf = [ f(x)u(dx).
The first moment and second moment of the distribution y are
then given by taking f(X) = X and f(X) = X?, respectively,
denoted as E[X] = (u) and E[X?] = (1u?). The variance of the
distribution y is denoted by (1)2, which equals to the variance
of X. Given these definitions, we define empirical distribution
of deterministic vectors as follows.

1) Empirical Distribution of a Deterministic Vector: For a
deterministic vector v € R™*!, the empirical sample mean,
sample second moment, and sample variance are defined as
(V)= v (V) = 5300 v, and (v)a =5 ST (vi— ()%,
respectively. We let 7,y € P(R) be the Dirac distribution
with mass on {a} and 6y, f £ f(a) for all function f :
R — R. The empirical distribution of v is then defined by

v=1%"" 8¢y} For the empirical distribution v, the first

moment (V)= GmAz i 22:1 Sfopr==>1" v = (v), the
second moment (v?) = va? = 13" 02 = (v?), and the

. = n o))2
variance (V)y = 13" (v; — (V))? = (v)2. We are now
ready to present the empirical law of a random vector.

2) Empirical Law of a Random Vector: For a random vector
v :Q = R, v(w) € R™! is a random sample of the
empirical distribution v(w) € P(R). The empirical law of the
random vector v is then defined by vf = E[v(w)f], for a
measurable function f. Suppose that v; ~ u; € P(R), Vi.
Then, we have the empirical law v = %E?:l ;. Moreover,

the first moment (v) = £ > | (;1;) and the second moment

(v2) = 4 i)
B. Frequently Used Statistics Results

Lemma 1. (Lindeberg-Feller [38]) For n > 1, we
let {Xpnm 1 < m < n} be an independent tri-
angular array with E[X,,,] = 0, Vm. Suppose i)
limy, oo o1 E[X2,.] = 02 > 0; ii) (Lindeberg condition)
for all € > 0, limp 00 > n_ E[X72 05| Xnm| > €] = 0. Then
S Xnm L. N(0,02) as n — o

We propose a sufficient condition for the Lindeberg condition.

Proposition 1. If there exists o > 0 such that sup,,E[X212%] =
o(n™"), the Lindeberg condition in Lemma 1 holds.

Proof. See Appendix B. O

Incorporating Proposition 1 into Lemma 1 leads to a variant
of Lindeberg-Feller that we use for our analysis.

Proposition 2. For n > 1, we let {X,,m :1 < m < n} be
independent random triangular array with E[X, .| = 0,
Vm. Suppose i) limp_oo Yo BIXZ ] = 02 < oo ii)
sup,, E [ X212 = o(n™'), for a constant o > 0. Then

S X = N(0,02) as n — .

Proposition 2 will be further exploited to propose our key
propositions in Section III-B.

In what follows, I denotes an identity matrix with ap-
propriate dimensions. For a matrix H € Rt (n > t),
Py = H(H*H) 'H* is the orthogonal projection onto the
column subspace of H and Py; = I — Py. Two random
variables X and Y are said to be equal in distribution, denoted
by X L Y, if E[¢(X)Z] = E[¢(Y)Z], for any integrable
function ¢ and random variable Z. The following proposition
characterizes our conditional distribution result.

Proposition 3. Given A € R*N A € RN guch that A 4
A, and the set Pxy = {AJA*M = X, AQ = Y}, where
M e R™ X e RV*, Q € RV*, and Y € R™™, the
following holds . B

Alpy v = Py APG + B, 2)
where Alpy  is the orthogonal projection of A onto
Pxy and B = Y(Q'Q'Q" + M(M'M) 'X* —
MM'M)"'X"Q(Q'Q)~'Q".
Proof. See Appendix C. [



Remark 1. An equivalence to (2) was proven in [27, Lemma
10, Eqn. (3.29)]. The underlying assumption of [27] was that
A;j are iid. following N(0, 1), in which the conditional
distribution of A is computed based on its unitary-invariance
property (i.e., A € ZNR). On the other hand, Proposition 3
does not rely on the unitary-invariance property. The result in
Proposition 3 will be exploited in Section III-IV to character-
ize the conditional distribution of A € 7 in our SE analysis.

III. MAIN RESULTS

In this section, we present our main results by showing the
SE for AMP when A € 7 and for the controlled function.

Given the linear observation in (1), the general AMP al-

gorithm [27] recurs the vectors h*t!l € RVX1 qf ¢ RV*1,

bt € R™*!, and m’ € R™*!, sequentially, for t > 0, through

q' = fi(h', x0), b’ =Aq' — Am'™", (3a)

m' =g, (b',w), h'T'=A'm'-¢&q’, (3b)

where q° € RV*! is an initial condition, h® = 0y, m™! = 0,,,
and fi(-,-) and g:(-,-) are controlled functions. The f; and
g are applied entry-wise when their arguments are vectors,
e.g., gt(b',w) = (g:(bl,w1),...,g:(bh,wn)) € R"™'. Suppose
that f; and g, are differentiable with respect to their first
argument. Then, the scalar A\, and & in (3) are, respectively,
At = %<f1§(ht7x0)> and & = <g{5(btvw)>’ where ft/(ht7x0) =
(8. 20) e RV, gi(btw) = (3, 3% ) € R,

Dht ’ t bt ) t
ant only abt bt
% denotes the partial derivative of f with respect to z, and

p = 7 is kept being constant as n and N tend to infinity.

A. Definitions and Assumptions

1) Controlled Function: A function ¢: R?*! — R is called
a controlled function [36], [37] if for x € Rt*1,

|6(x)| < e1 exp(eallxl2), )

where ¢; > 0,c0 > 0, and 1 < A < 2 are constant. The
controlled function is a general model of a nonlinear function
without polynomial smoothness constraint. Although the con-
trolled function may increase exponentially, it is integrable in
L' and £2 spaces against Gaussian measure [36], [37]. Herein,
the space LP(X,F,u) consists of all measurable functions
{f} on X such that [, |f(z)|Pdu(x) < oo, where (X, F,p)
is a measure space and p € {1,2}.

Using the inequalities ||x|| < [|x||x < ¢%~2||x]|s for x €
R>1 and 1 < \ < 2, we get from (4)

6(x)| < c1explez||x[}) < crexpleat X 2 [x[3), ()

revealing that ¢; exp(cz||x||3) is also a controlled function.

2) Measurement Matrix: The matrix A in (1) consists
of independent entries A;; ~ ﬁuij, with (u;;) = 0 and
(pij)2 = 1, which are not necessarily identically distributed,
Vi, j, i.e., A € T.

3) Signal x¢ and Noise w: The entries of signal vector
Xo and noise w in (1) are i.i.d. according to the distribution
px, and py, respectively, where (ux,) = 0, (ux,)2 = 0%,
and (uw) = 0,(uw)2 = o,. The empirical distributions
§od$MXO asN—>oo,vAvi>uWasn—>oo,anduX0f<oo
and puw f < oo for any controlled function f.

B. Convergence Lemmas

To find an asymptotic expression SE for the measurement
ensemble Z, we establish the following lemmas.

Proposition 4. Let A(n) be a random variable with A(n) ~
ﬁu, where (1) = 0 and ()2 = 1. Then E[A?>T2*(n)] =
o(n~?) for a > 1.

Proof. See Appendix D. O
We now present a the key proposition in our SE analysis.

Proposition 5. We let A(N) € R™*N be a random matrix
defined as in Section HII-A2. Suppose that v(N) € RM*! is a
deterministic vector satisfying limy_, o (v*(N)) = s < oo and
limsupy_, o =[|[V(N)|3152 < oo for a constant o > 1.
Then, the following empirical law converges, A(WN ) L

n

N (0,s3/p) as N — oo while p = & is kept being constant.
Proof. See Appendix E. O

The next proposition is a direct consequence of Proposition 5.

Proposition 6. Suppose u € RN*! and v € R™1 with
[lull2 = [|v|lz2 = 1. Then v*Au N % as N — oo, where the
matrix A is defined as in Proposition 5 and Z ~ N(0,1).

Remark 2. It is worth noting that Proposition 6 is a general-
ization of Lemma 2 in [27]. In [27], the standard properties of
Gaussian matrices are used to show Proposition 6. However,
this can not be directly extended to the measurement matrices
in Z because its entries are not i.i.d.
C. State Evolution of General AMP Algorithm
Suppose that
lim (q”,q")/p = o < oo, limsup |q°[3135/N < o0, (6)
N—o0 N—o0
for a constant o > 1. Then, the SE for the general AMP in
(3) is described [27] by
m =E[g(@Z,W)], of =E[f/(n-12,X0)] /p, (D)

where Xo ~ pux,, W ~ pw, and Z ~ N(0, 1) is independent of
W and Xy. The SE in (7) has the same expression as the one
in [27], [28] except that the matrix A in our setting follows the
new assumptions in Section III-A2 and the controlled function.

Define a collection of vectors as a set Fy: =
{b° ..., b" 1t m® .. m" h'... h'2 q%.. . q2 x0, W}
The recursion in (3) can then be represented

Yt = AQt W]th

by incorgorating matrices  as
Y, = [b ‘b1+A1m0|”.|bt71 +)\t71mt72] c R™*t and

Q = [dq']...]a""] € RY, and X, = A"M, with
X; = [h' 4+ &q%...|h" + &-1q7'] € RYX* and
M, = [m°...[m""'] € R". The mj and q’ﬁ denote,

respectively, the projection of m and q’ onto the column
spaces of M, and Qq,

t—1 t—1
mjj =) _¢m', af =) fid’, ®)
1=0 1=0

where ¢; and j3; quantify, respectively, the contributions of m’
and q° to the projected images of m? and q. Then their null

space projections q, and m’, are defined as

91 =4’ —qjj, mi =m’ —mj. )



The following theorem is the main result of this work.

Theorem 1. Suppose {1;}1>0 and {oi}i>0 defined in (7).
Given the AMP recursion in (3), the following propositions
hold for t > 0.

a) =1 o
b'|7, ., < Zﬂjbj + Adq', as n — oo, (10)
j=0
b r,,, &> Gh T+ A'm!, as N — oo, (11)
=0
where A 2 A.
b) For a constant o > 1,
. 1 «
lim sup [ 5135 < oo, (12)
N—o0
lim sup — IImllwéiéz < 0. (13)
n—oo
c) Forall 0 <ty,ty <t
1
: t1 toy\ @.5. 4 4. t1 t2
Jim (b, b™) = p Jim (g™, q®) < oo (14)
lim (h" ' h"2™") = Jim (m", m™) < co. (15)
N — oo n— oo
d) For all controlled funcnons ¢y and ¢p: R7T2 5 R,
nlgr;o;Zm 2 E [gu(00Z0,, 0120, W), (16)
1 N
Jim S envD) S Bl o mZe Xo)l, (D)

where ul = (bY. ..,b’;,wi)Nand vl = (h},..,h?‘l,xm). The

(Zo, ..., Zs) and (Zo, ..., Zs) are Gaussian vectors, where
Zj and Z; are iid. following N'(0,1), for j = 1,2,...,t,
and independent of Xy and W.

Remark 3. The results in (16) and (17) are similar to Lemma
Ib in [27] except that ¢, and th in (16) and (17) are
controlled functions. The results in (10) and (11) represent
the convergence in the distribution of b*|z, , and h** Yz, 1o
which are obtained by applying the conditioning technique
and Proposition 3 in our analysis. Compared to Lemma la
in [27], the expressions in (10) and (11) do not include the
basis-aligned deviation terms. More specifically, the b, ,

and h'*!| £ in Lemma la of [27] are

t—1
b'lr, £ Bib’ + AdL + M, 9 (1), (18)
j=0
, o -
Wz, £ G + A'm! + Qe Bi(1),  (19)
J=0
where M, € R™** and Q.41 € R¥N*(+D are the orthogonal

bases of the column subspaces of M, and Q.1, respectively.
The (1) denotes a vector in R'*! such that all entries
converge to 0 almost surely as N — oo. The common
procedure for characterizing the SE in [27], [28] [31]-[33]
is to cancel the deviation terms M, S (1) and Q;16(1) in
(18) and (19), respectively, by assuming the smoothness of
the pseudo-Lipschitz functions. The challenge in our proof of
Theorem 1 is that there is no such smoothness for ¢, and
¢, in (16) and (17), respectively, because they are controlled
functions. It is shown in Section IV that these deviation
terms vanish in our derivation, which leverages the concept

of empirical statistics developed in Section II-A. We note that
the SE in (7) is a special case of Theorem 1; its detailed
derivation is relegated to Appendix G.

Remark 4. The results in Theorem 1 directly verify the
conjecture about the validity of SE for i.i.d. non-Gaussian
measurement ensemble in [27] because the set of such A is a
subset of the A defined in Section III-A2.

IV. PROOF OF THEOREM 1

The proof of Theorem 1 is inspired by [27]. Since a part
of the proof is based on a similar technique in [27], we refer
to [27] for those standard arguments, while we present the
features that are unique and refined in this work. The proof is
based on mathematical induction in ¢ and the application of
the conditioning technique on four sets Fy o, F1,0, Ft,¢ and
Fit1,+ sequentially.

A. Step 1: Conditioning on Fo o = {q°,x¢, w}.

_a) The convergence in (10) holds because b’ = Aq’ 4
Aq(j_, where q‘j_ = q° because Qg is an empty matrix.
b) The bound in (12) is due to (6) and q9 = q°.
¢) Given (6), applying Proposition 5 to A and q leads to
Aq® L N(0,03). (20)

Hence, by Step 1la), lim,e(b%,b%) “ o, implying
limy,— 0 (b?, %) 2 limy oo @ < oo, which completes
the proof of (14). B _

d) We let w0 = (00Zo,w;), Vi, where Zg ~
N(0,1). From (20), the convergence u) 4 uY holds. To

prove (16) we first claim that hm,Hoo; T (T 9y =
E[¢s(00Zo, W)]. By the triangular inequality, we have
LY ¢e(uf) — E[d’b(UoZmW)]‘ < XY + X9, where

X = L8 (a@) - Egle@)])| and x5 =
2 Eg [p(n?)] - [gz&b(aOZo,W)}‘ The goal is to prove
that lim, 0o X{ “© 0 and lim,,— . X5 “2 0, respectively.

Since ¢ is a controlled function, we get by (5) |¢,(0?)| <
A exp(S(looZo|® + |wil*)), where ¢ > 0, ¢ > 0, and
1 < XA < 2 are constant. Hence, EZOHQSb(ﬁ?)F*“] <
3 exp(c)|w; |} )Ez, [exp(c4|aoZ0| )], where 0 < k < 1
= ()%, and ¢} = (2 + k). Thus,

Ez, lon(a)[**] < cf exp(cfwil),

1)

where ¢ = JE [exp(cg\aogo\’\)] is constant. Define X ; =
a S.

o (0?)—E [¢b(~0)] Vi. To prove the thesis lim,, o, X9 =

0, we show that {X0 .} | satisfy Lemma 3 in Appendix F. In-
deed, applying Holder’s inequality in Lemma 4 in Appendix F
to XS,Z gives

Bz IX074) < 27 (B, [l60(@0) ) + B, [ou (@]

< cgexp(ciwi|), (22a)

where ¢ = 227 and (22a) follows from Lemma 5
(Lyapunov’s inequality) in Appendix F and (21). Note that
LS cexp(ciwi]®) = E[c§ exp(c}|W|[)]. For n suffi-
ciently large, using (22a) gives



[>T < E[c§ exp(ch W) < en™/?,

= ZEZO |X0

where ¢ > 0 is constant and (23) follows from the facts that
E[cd exp(c)|[W|M)] = ¢ < oo and there exists a constant
no > 0 such that ¢ < en®/? for n > ng. Lemma 3 in
Appendix F leads to lim, oo £ 7 X0, = 0, implying
lim,, oo X¥ 227 0.

The rest of Step 1d) is
lim, oo X9 % 0. Define ¢p(w;) =

(23)

showing the convergence
Ez, (¢ (87)], Vi.

Then limp_oo = 30, ou(wi) = E[g(W)] because
W 5w Hence, limuoo:Y " Ej [6(80)]
Ewl[Ej [¢b(00207W)ll = Elgs(00Zo, W)], implying
hm,HooX 2 ), concludes (16).

B. Step 2: Conditioning on F1,0 = {b°,m°, q°, xo, w}.

a) From (3), h'|#, , 4 A*| 7z, ,m°—¢&q". Conditioning on
F1,0 is equivalent to conditioning on {A|Aq" = b}. Hence,
applying Proposition 3 yields A| Fio & KPéO + Lgf‘;. Then

2

la

h1|.7:1 0o — P A* ” 0“2 foq resulting in
a.s. K b% m°
h'[7, A"’ — PoA m + (p% ~&)a’. @4
Substituting m’ = g% w) into (b’ m°) in (24)
llmn*)oo<b07m0> a.:& a..:s.

gives E[UOZOQO(UOZm W)l
aaE[g6(00Z, W)] 2 im0 (b2, bY) (g6 (bO w)), where the
first equality is due to (16) apphed to ¢p(u?) = bYgo(b?, w;),
the second equality is due to Stein’s Lemma (Lemma 2)
in Appendlx F, the third equality is obtained by settmg
¢o(u7) = go(bY,ws) in (16). Note that & = <go(b w)).
Using (14) gives lim, oo (b%, m®) *= (a” - D¢,
which is plugged into (24) to result in

h'|s, £ A*m’ — P oA m’ + o(1)q’, (25)
where lim,, .o, 0(1) “ 0. Using Proposition 7 in Ap-
pendix F, the second term on the right-hand side (r.h.s)
of (25) converges to limy_c PgoA*m® =" 0y. We claim
that the last term converges to limy_,o o(1)q" Oy,
Indeed, this is true because (i) the empirical expectation
of 0(1)q" satisfies limy o0 (0(1)q®) “=" 0, which holds due
to limy oo [{0(1)@®)| < Tlimy o fo(1)| 4 S, [gf] =
0 and (ii) the empirical variance of o(1)q” converges to
limy oo (0(1)q%)2 = limy_o0fo(1)]2(q%,q°) “= 0. Thus,
h1|].-1,0 N A*m°, which concludes (11) when ¢t = 0 since

m? = mY ; note that My is an empty matrix.

b) The bound in (13) is equivalent to
limsup,, o, = >0, [mf|*t** < co. Incorporating ¢, (b7, w;) =
lgo (B2, w;) |2 T2 for a constant & > 1 into (16) leads to
limy, o0 5 20 (M2 =7 Elgo (00 Zo, W)PT2] < o0,
which completes the proof.

¢) By (16) att = 0, we get lim, 00 (go(b°, W), go(b°, w)) =’
E[g2(00Zo, W), leading to lim,, . (m® m°) " 72 due to
the definitions of m® in (3) and 7¢ in (7). Thus, Propo-
sition 5 (Lindeberg-Feller) holds because mj = m" and
(13), resulting in A*m° < A(0,72) and h! < A(0,73),
ie., limyoeo(h',h') “ 7. Hence, limy_eo(h', h') =
lim,, 00 (m®, m®) < 0o, concluding (15).

llmN*)

d) We let v9 = (7920, x0;), Vi. Because v? N v? holds
due to h/:l £ N(0,73) (Lindeberg-Feller), Vi, the proof of

(17) is boiled down to showing limy o & S0, 6n(V)) =
E[én(m0Z0, Xo)]. Similar to Step 1d), by the triangu-
lar inequality | &SI, 6 (¥9) — Elgn(roZo, Xo)l| < ¥ +

Y9, where Y = |LYN 6,(+F0) — Ezo[qﬁh(V?)l‘ and

Y0 = ]% ZZN 1Bz, 6 (V)] — [¢>h(TOZ0,X0)]‘. We claim that

im0 Y1 =2 0 and impy 00 YO 2.
The convergence limpy_— oo Y1 =2 0 is treated first. Defining
Yy, = on(V)) — E Ez, [ (V))], the proof is equivalent to

showmg that {Y](\), N | satisfy Lemma 3 in Appendix F. Since

qSh is a controlled functlon the followmg holds |¢n (V)| <
d exp(d3 (|t Zo|* + |z0il*)), where dY > 0, d3 > 0, and
1 < X < 2 are constant. Hence, Ez,[|¢n(V )|2+“] <
ds exp(d4lm02l Ezogexp(d4|7'020| )], where 0 < & < 1, d§ =
(d9)?**, and d§ = d3(2 + k). Therefore,

Ezo[|on(V])[*T"] < d5 exp(di|zoil ), (26)

where dY = dSEz, [exp(d$|m0Zo|™)] is a constant. By Lemma 4
in App en(yx F, ) ) )
Ezo[[YN,:[*77] < 2777 (B, (|60 (F9) 7] + [z [6n (¥9)]7F7)

< dg exp(dq|zoi|*), (27a)

where d} = 227%d? and (27a) follows from Lemma 5 in

Appendix F and (26). Note that ~ ~ Zl L ddexp(d|zo; ) =
lE[dg exp(d0|X0| )]. For N is sufficiently large, we have

N ZEZO (VR[] < Bldg exp(d}|Xo )] < eN*/2, (28)

where ¢ > 0 is constant and the last estimation in (28) follows
because E[d] exp(dJ|Xo|*)] = d? < oo and there exists a
constant Ny > 0 such that dg < ¢N*/2 for N > Ny. Given
(28), applying Lemma 3 in Appendix F to {Y]9,7i}i1\;1 gives

iy o0 & Sy Yo, 0, implying limpy o0 Y 0.

To show limy— oo Yo = 0, we define
on(zoi) = Ez, [6n(¥D)]. Then the following holds,
Wy oo 2 SN dn(0:) = E[én(Xo)]  because
X L pxe. Thus, limyoe & 3N Bz lon(®9)] %

Bxo[Ezo[¢n(1020, Xo)ll = El[¢n(10Z0, Xo)],
limy 00 Y3 20, concluding (17).

Suppose Theorem 1 holds up to the (¢ — 1)th iteration. We
prove that the thesis also holds for the tth iteration. Similar
to the first two steps, we show (10), (12), (14), and (16) in
Step 3 and (11), (13), (15), and (17) in Step 4, respectively,
which are more complex and thus, relegated to Appendix H.

resulting in

V. CONCLUSION

The SE analysis for AMP was extended to the class
of measurement matrices with independent (not necessarily
identically distributed) entries and the controlled functions. A
variant of the Lindeberg-Feller was proposed to deal with the
lack of the structure of the assumed measurement ensemble.
An empirical statistic-based conditioning technique was pro-
posed to cope with the lack of smoothness of the controlled
functions. The results revealed a new direction to the SE
analysis for boarder classes of measurement ensembles and
functions.
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APPENDIX A
PSEUDO-LIPSCHITZ FUNCTION
Definition 1. For a k > 1, a function f : R™! — R is said
pseudo-Lipschitz of order k if there exists a constant L > 0
such that |f(x) — f(y)] < L(1+ [|x||** + [ly[[*=)]
for all x,y € R"¥'; the first order derivative of f is bounded
by a polynomial of order (k —1), i.e., polynomial smoothness.

APPENDIX B
PROOF OF PROPOSITION 1

This follows from Y " _ E[X7 ;| Xnm| > € <

242c

n X, m
Zm:lE[ eéa ]’

where the right-hand side converges to zero

because S o(n~!) — 0 as n — oco.
APPENDIX C
PROOF OF PROPOSITION 3
Recalling the following subspace decomposition
A = PyAP§ + APq + PuyA — PyAPq, the
orthogonal projection of A onto Pxy 1is given
by Alpxy = PumAPg + B. For any integrable

function ¢, E[¢(Alpxy)] =
E[w(PﬁKPé—kB)} = E[w(.:’&'PX‘Y)], where the second
equality follows from the fact that A < A. Hence,
Alpx v < PI%,IKPJQ + B, which completes the proof.

E [v(PyAPG +B)] =

APPENDIX D
PROOF OF PROPOSITION 4
Denoting B = /nA(n) ~ p yields E[A*™2%(n)] =
E[B2(1+)]n=(+2) = o(n=2), where the last step uses the
facts that E[B2(1+)] is independent of n and o > 1.

APPENDIX E
PROOF OF PROPOSITION 5

Denoting XN,ij = Ai]‘(N)’Uj(N), then {XN,Z']'I 1 <
j < N} is an independent zero-mean triangular array,

for ¢« = 1,2,...,n. We claim that {Xy;: 1 < j <
N} satisfies two conditions in Proposition 2, Vi. First,
we note that Y7 E[XR ;] = Y E[AL(N)i(N) =

LN W(N) = LvA(N)) - B asm — oco. Second,
applying Proposition 4 to A;;(N) gives E[AZF**(N)] =
o(n™?), leading to E[X3F2] = E[AZ*(N)]Jv; (N)[PF2* <
o(n’z)%%HV(N)H%igg = o(n™'), where the last e.quality holds
because limsupy_, .. +[v(N)[5132 < oo and p is a constant.
Applying Proposition 2 to {XN ij 11 < j < N} leads to
ANV = TN, Xngy S /\/(o 50) as N — oo, Vi.

Hence, A(ﬁ)?( ):>N( ,70) as N — oo.

APPENDIX F
WELL-KNOWN LEMMAS

Lemma 2. (Stein’s Lemma [39]) For jointly zero-mean
Gaussian random variables Zy and Z,, and any function
¢ : R — R, where E[¢'(Z2)] and E[Z1¢(Z2)] exist, the
following holds E[Z1¢(Z2)] = Cov(Z1, Z2)E[¢'(Z2)], where
Cov(Z1, Zs) is the covariance between Zy and Zs.

Lemma 3. (Strong Law of Large Number [40]) Let {X,, ,, :
1 < m < n} be a triangular array of random variables with
(Xn1,Xn2,--., Xnn) mutually independent with zero-mean
foreachn and 5" _ K[| X, [>T < en™? for some 0 <
k< 1and ¢ < oco. Then limy oo 30 | Xy .

Lemma 4. (Holder’s inequality [41]) For random variables
X and Y, E[|X +Y]|"] < e (E[|X]|"] +E[IY]"]), where ¢, =
1if0O<r<1andc = 271 otherwise. In particular, the
inequality becomes E[|X + y|"] < ¢,.(E[|X["] + |y|"]) when
Y =y being a constant.

Lemma 5. (Lyapunov’s inequality [41]) Suppose a random

variable X and a constant k with 0 < k < 1, then
[E[X][*+* < E[|X[*).
Proposition 7. Suppose the P,y = (ﬁV(n)) (ﬁV(n))*

where M(n) € R™™ ' (t < n), t is a fixed constant, and
V(n)=[vi(n),va(n),...,vi(n)] € R™ " is an orthogonal
basis of M(n) such that V*(n)V(n) = nL If we let
a(n) € R™! be a random vector with independent en-
tries, which have zero mean and finite variance o2, then
lim,, 0 Pnm(n)a(n) 2 0,,, where 0,, is the n x 1 all-zero
vector.
_a(n)
Ta(r)l2
). The proposition follows from

and (fv*( )) a(n) 0, as

Proof. Denoting a(n) =
V(n) ”a(”r)LHQ ( 1 V* )
the fact that % “ g,

yields Pyyya(n) =

n — oo. L]
APPENDIX G
PROOF OF SE IN (7) THEOREM 1
Substituting  ¢p(ul) = (b)) into (16) gives
lim, oo (b%,b!) = E|02Z2| = o2 Using (14) with
t1, = ty = t yields limN_ﬂX)%(qt,qt) = o2, Then

substituting ¢, (viTl) = f2(hl,z0)) = (¢f)? into (17)
leads to thﬁoo(qt,qt) = E[fA(1-1Zi-1,X0)].
resulting in of = JE[ff(ri—1Z;-1,X0)]. Showing the
rest half 77 = E [g7(0:Z,W)] of the SE in (7) follows
from the exactly same procedure as the above. Setting
on(vh) = (12 in (17) gives limy_yoo (W' R+ = 72,

Using (15) with t; = t5 = t yields limy_,o, (m’, m?) = 72.

Applying (16) to ¢p(ul) = gZ(b,w;) yields
limpy s oo (m?, m*) = E [g?(0:Z,W)].  Therefore,
2 =E [9#(6:Z,W)], concluding the proof.
APPENDIX H
PROOF OF THEOREM 1: STEPS 3 AND 4
A. Step 3: We show a), b), <¢), and d)
of  Theorem 1 conditioning on Fir =
B ... b=t mO ... m!t hl ... htq’... qf %0, W}

a) Note that conditioning on F; ; is equivalent to condition-
ing on Px, v, = {A|A*M,; = X;,AQ; = Y,}. Applying
Proposition 3 to obtain the conditional distribution A|f,,



and following the same procedure as in [27, Lemma la], the
conditional distribution of b’ on Fit 1s expressed as

t—1
< Zﬂjbj +Adq|, —Pum,Aq) +M;o;(1). (29)
j=0

b'|7,,

By Proposition 7 in Appendix F, the th1rd term on the rh.s
of (29) converges to lim,,, PMtAq i " 0,,. Similar to
Step 2a), we verify the convergence limTHoo M, ot( ) s

0,, by characterizing the /e@ctation and variance of its
Indeed

empirical distribution M, ,(1) as n — oc.

S [

limy, oo (M G4 (1))] < limy_yeo |o(1)

< limy, o0 [o(1)] Y020 £ 300 | :f' 0, where the last
equality holds because applying ¢,(b),w;) = g;(b], w;)
to the induction hypothesis of (16), for j < ¢, leads to

n I L Ellgi(o;Z;, W] < o0. Hence,

hm”_“)O % Zi:l ms;
limy, 00 (M 0 (1)) = 0. For the variance of M; 0 ;(1), we

get
n t—1 )
lim (M G(1))2 = lim_ 5[0(1)122 Zomi ,
1= 7=
1 n t—1
3 2 J\2
< lim [o(1)] tﬁz (m?)%, (30a)
i=1 j=0
t—1
= lim [o(1)]*t Y (m? m’) 2 0,30b)

J=0

where (30a) follows from the Cauchy-Schwarz inequality and
(30b) holds because lim,, _, o (m’, m’) = E[g?(0; Z;, W)] <
oo, Vj, which is a direct Consequence of the induction
hypothesis of (16) with ¢;(b!, ) = g5l (b] w;). Hence,
(30b) is equivalent to 1imn_>oo<Mt 0 (1))2 “ 0. Therefore,
lim,, 00 Mtﬁt(l) 2 0,,, implying

t—1
bz, L > 8;b) + Ad'. 31)

j=0
b) Note that by the induction hypothesis of
(17)  for (bh(hwaz) = |ft(h§,:1,‘0i)|2+20‘, we  get

th_}OO N Zz 1 |q2|2+2a CL:{’ Hft(Tt 1Zt 1>X0)|2+2a} <

0. On the other hand, YN 1‘qJ7v|2+2a < N |gfFrRe.
Thus, we have limsupy . + 2 i q' ;|*T2* < oo, which

concludes (12).
c) For t; <t and t5 = ¢, we obtain

t—1
lim (b, b) inlggo z;)ﬂj<bt1,b3)+nli_>n;o (b", Aq",),(32a)
=

n—oo

e t1 . J btlz t

S 8; lim M-F lim 9L
n

" N—oo P n— oo

,(32b)

where (32a) follows from (31) and (32b) results from the
induction hypothesis (14) for ¢t; < t and ¢35 = j < t. Now,

~ t d

bl q
using Proposition 6, we get A—L— =
g Frop 8 Tori T, A e T

~ b'TAq" d b fla |
Z ~ N(0,1). Hence, =—-34+ = N

%, where

1 Z
% ﬁ, 1.€.,

b'TAq} 4 1 z
TS b )

T (33)

n

By the induction hypothesis of (14), have
lim,, (b1, bi1) = limnﬂm% < o00. Moreover,
the (q’,q’) converges to limy_oo(q’,q’) <
limy_o00(ql,q’) < oo because using the induction
hypothesis (17) we have (q’,q") = & SN | fZ(h =

1‘71'01‘) =
E[f2(1t-1Z¢-1, X0)] < oo. Thus, for t; < t,

we

lim (Aq’,b") = 0.

n—roo

(34)

S

Substituting (34) into _(32b) gives hmn_m,(btl bt) =4

Z?;é ﬂj hmn—)oomTqJ) = 11mN~>00< ’qH> due to (8)
implying
s <qt17qt> 1 gt
lim (b, b!) = lim " 4 Jim A d1) (35,
n—o00 N —o00 P N—o0
t1 ot
_ g ,q>’ (35b)
N—o0 p

where (35a) follows from the fact that g’ is orthogonal to qi,
for j < t, and (35b) holds due to (9), concluding (14) when
t1 <t and t; =t.

For the case of t; = 1t = ¢, it is similarly
given by lim,,_, (b?, bt) 4 ijloﬁlﬁj hmn_mo(b b))+

25070 Bilimy, o (b, AqY) )+ lim,, o (Aq’, Aq} ) due to
(31). Then by (34), the followmg holds

t—1
lim (b, b") =" 3 " if; lim (b',b')+ lim (Aq',Adl). (36)
n—o0 520 n—»oo

Using Proposition 5, Aqﬁ_ 4, N(O,limN_,oo <qi/’)qfi>)_

Thus, the second moment of :&qi is
t t
. XNt Rt @S . <qJ_qu_>
Jim (Aqy, Aq)) = lim — (37)

S

Now, incorporating (37) in (36), hmnﬁoo(b bt) =
ijloﬁzﬁ] limy, ;00 (b?, b7) +-limy 00 7<quqL> resulting in

i g t ot
lim (b’,b?) % Z 8., ) <q Aha) g LL;)‘m,(:ssa)

n—oo =0 1% N—o00
t t + t
as o <q|wqu>+ i (9L at)
t t
a.s. lim <q »d >7
N —oco P

where (38a) is due to the induction hypothesis (14) for
0 <ty =14,ty =7 <t — 1. This completes the proof of (14)
at the tth iteration.



(‘L_v‘h_) a.s.

d) Defining limy oo ;

that Aq’; L N(0,~2
latter, we get

%, we can write by (37)

). Using (31) in conjunction with the

t—1

Vlr, Y Bibl +mZ, fori=1,2,....n,  (39)

§=0
where Z ~ AN(0,1). Similar to Step 1d), using
(39 u L @, where u! = (b?...,0f,w;) and

u = (bgv"'ab§_172§;loﬁj b + wZ,w;), Vi. To prove

(16), we first claim that hmnﬂogZz L op(al) —
E[¢b(0020, .. .,UtZ,W)} “2" 0. By the triangular inequal-
ity, |lim oo 2 7 gu(i) — E[¢b(00207...70t2t,W)] ’ <
Xt o+ xb owhere X{ o= |20 (@(@) —de(ulT) |,
X} = ’%z;;lab(u;*) — El¢p(00Zo,...,0:Z:,W)]|, and
Sp(ul™Y) = Ez[éy(wt)]. Similar to Step 1d), we verify

hmn_,oo X120 and lim,, oo X5 0.
First showing lim,, . X? a:S 0 is of interest. By
B + | izo Bt +

S) [on(@)] < el exp (e (242

’ny‘ + \wl\)‘)), where ¢! > 0, ¢4 > 0, and
1 < X < 2 are constants. Using the inequality
[} < (¢t + D MYx[R for x € ROEFUXL we get
o) < cfexp (ch( Tjzp(1 + (¢ + DA HBPIH +

(t + 1D MNZP + [wi)). Hence, Ex[lon(@)[*+] <
ch exp (cfl (Z?;E b7 1* + |wi|’\)) Ez [exp(cy|Z|*)], where
0<k <1 c=(c})?™", and ¢}, = (2 + n)cémax{l +

(E+ 1B T (DAY B (4 DMl
resulting in

t—1
Ez[lén(®) ] < chexp (4 (X 18,611 + il ) ), (40)
=0

and ct = ctEy [exp((zﬂt |Z|*)] is constant. We define
= o(u}) — ou(w;™") = du(Rf) — Ez[py(u))] such
that Xt = |y, m| To prove lim,, . X} “° 0, we

show that {X t) 11, satisfy Lemma 3 in Appendlx F. Indeed,
Ez[| X} ;|**"] is upper bouned as follows,

B [1X0,a07] < 27 (Ex [J60 (@) ]+ [Ezlon(@)] ") (410

<22 Ky [|¢n (@[>, (41b)
t—1

< chexp (ci(zwjbﬂ’\—i—\wip)), (41c)
3=0

where (41a) follows from Lemma 4 (Holder’s inequality)
in Appendix F, (41b) follows from Lemma 5 (Lyapunov’s
inequality) in Appendix F, and (41c) follows from (40) with
ck = 22Trck. We denote the last term of (41c) as p(ul™t) =

b exp (ci (Z;;é 1867 |* + |wi|*)). Then, 3, (ul™") is a con-

trolled function. From (41c), we get, for n is sufficiently large,

1 ~ t |24k 1 = t—1
=S Es[IX}, < =3 !
n i Z“ n,z| ] = £ ¢b(uz )7

= ]E[wb(o'ozo, .. ,Ut712t—1, W)]» (42a)
< en™/?, (42b)
where c¢ is a positive constant, (42a) is due to the

induction_ hypothesis_
Ey (0020, - - -,
n¢, a positive constant, such that c% <cn
Lemma 3 in Appendix F, we get lim,,_,
implying

(16), and (42b) holds because
01-1Zi—1,W)] = ¢t < oo and there exists
#/2 for n > ny. By
n a.s.
%Zizl thz,i =0,

n

S5 (an(@) — ol

i=1

1)) s (43)

which proving lim,, o, X! “= 0.
Now, showing hm,HooX =0 is of 1nterest By the
induction hypothesm (16), lim,_o0 Ezt 1¢b( ) s

[¢b(UOZo,-- o117 1, W], resulting in
lim ligb(uéfl)
n—oo 1 —) 4

t—1
= E |:EZ |:¢b(UOZO7 ey Ut,th,h ZﬂjUij + ’YtZ7 W)
7=0
t—1

7Ji—1Zt—1, Zﬂjajzj + ’YtZ, W):| )
j=0

|

(44)

=K |:¢b(00207 s

where (44) follows from the substitution gi)b( = 1) =
Ez[¢s(0f)]. Therefore, showing lim,, o X2 0 is equiv-
alent to proving ZJ Oﬂ]a]Z + w2 = o047, where Z; ~
N(0,1) and oy is defined in (7).

In particular, for ¢,(u 7;) j (bg)z, we get
(1) = (Z§ (1)53 +%Z> because u! =
(b?""’bz 1’23 (1)5] + mZ,w;). Combining (43)
and (44),

1 n
lim (b, bty = Jim — 2_; dp(ut)
d 1 n t—1 _ 5
£ lim S an(@) (Y 0z +wz) | @)
i=1 =0
Using (14), lim,_(b?, b?) = 1imN%o@ —

o?, where the last equality holds because by the in-
duction hypothesis (17) for qﬁh(vf_l) = f2(hl,zg;) in
7). plimyoala’ @) = JE[ff(r-1Z,X0)] = of.

- 2
Hence, EL(Z;:EBjonj +'ytZ>} “ 42, implying

Z;;é Bijo;Z; + wZ = 017, due to (45), verifying that
X; £ 0, which completes the proof of (16).

limy, o0



B. Step 4: We show a) b), c¢) and d)
of  Theorem 1 conditioning  on  Fipi1y =
{2 ... ,btm® ... mt ht ... hiq°... q xo,w}

The proof of Step 4 is similar to the proof of Step 3. Thus,
we only present the features that are unique in Step 4.

a) Similar to Step 3a), using Proposition 3 to characterize
A|r,., ., and following the same procedure as in [27, Lemma

la], the h**!| £, is

t—1
ht+1|]:t+1,t < ZthJJrl + A*th PQt+1A mL + Qt o:(1).
j=0
~ (46)
By Proposition 7 in Appendix F, limy_,o Pq,,, A*m{ =
a.s.

Oy . Similar to Step 3a), we verify that limy_, o, Qt?t( 1)
Oy by characterlzmg (i) the expectation of the empirical
distribution Q; ot( ) is bounded as limn— o0 [(Q: 0 +(1))] <
limpy oo |o(1)|2§ %)1{721 gl = 0 and (ii) the empir-
ical variance of Qtot( ) is bounded an converges to

Hmy o0 (Qi04(1))2 < thW[ 1 )} tZJ Nal,ql) 0.
Therefore, using limy_,-o Q: © t( ) = 0y, we get

t—1

Wz, S Y Ghith 4 Armi, @7)
j=0
which completes the proof of (11).
b) Using (16) for ¢y (bf,w;) = |g¢(b], wi)?*>*, we get

limnﬁoo%Z?zl |mi[>T2e = El|g, (00 Zy, W)[?H29] < 0.

Because » ., |mY,|*T2* < S0 |mi[*T2, the following
holds limsup,, . >, |mf ;|*T?* < oo, which concludes
(13).

¢) For t; < t and ty = t, we have thﬂx,Lhtl“ h”l) =
limp o0 Ef gg ("1 W) 4 limy oo (W2 T A*m® ) due to
“7), resultlng in

t—1

t* Ati+1
. ti4+1 3 t+1y a.s. g I . m; Ah"
Jim (R n —Z{)C]nlgggm o) lim =
i=
(48)
where (48) is by the mductlon hypothesis (15). Note that

hf1+1 i
7HmLHzAHht1+1H = f due to Proposition 6. The second

term in (48) is represented as

t* A1.t1+1 t t14+1
o mUARTT 4 s [ A 2
N—oo N N—oo \/77, VN VN f
Z a.s.
= V7 im0, )

Substituting (49) into (48) yields

t141 ptt1 t t
h' T ptth = lim (m", mj),
n—o0

= lim (
"l—?OO

lim (
N —oco

ch

= lim (m" ,mH> + lim (m ,m‘) = lim (m", m"),
n—00 n—00 n—o0

concluding (15) when t; < t and t5 = t.

For t; =ty =t, by (47),

i, (7,6 2 Z s Jim (B, W)
t—1 ] _ _ _
+2;@ Jim (W, A%m) + lim (A"m, A'ml). (50)
Then, by (49), the following holds
Jim (" ) = Hzoggj lim (" W)+
lim (A*m',A*m"). (51)

N—o0
By Proposition 5, the empirical distribution of A*mﬁ_ con-

m’ LN N(0,lim;, o0 (m’ , m?, )). Hence, the

L —

verges to A

second moment of A*m’ converges to

lim (A*m’, A*m’) % lim (m% ,m’).  (52)

N—oo n—00
Substituting (52) into (51) leads to limpy_,o (ht+!, htH+1) %2
zjjl 0 GG im0 (D71 WIFLY 4 1im,, o (m! , m?, ), im-
plying
t—1

A}gn (h'+! pitty Z Ci¢y h_)m (m’, m’) + hm (mL,mQ
1,7=0

= lim (mﬁ,mﬂ} + lim (m%,m") = lim (m* m").
n—oo n—o0 n— oo

Therefore, (15) also holds for ¢t; = t5 = ¢, which completes
the proof.
d) Defining lim,, o, (m% , m? ) “© T, we can write

= d
A*m' = N(0,T7). (53)
Using (53) and (47), the following convergence holds
t—1
W p B > G 4T Z, (54)
§=0

where Z ~ N(0,1). Similar to Step 3d), we can write,
using (54), vt 4, vt, where vi = (R}, ..,hI"™ z0;) and
vi=(hl,... At Zi;é ¢ihiT + T, Z, 20;). Hence, to prove
(17) we first claim that ‘lim]\;_mO %Zil on(vh) —
E{qsh(mzo?...,nzt,xo)}

Step 2d), wusing the triangular inequality, we verify
that “ 0 and

limy oo Y = thHOO Y2 As
where Y = ’% Sy (on@) = dnlv )

iZi\fl&;h( ?71)_ (bh(TOZO;-"aTchXO)
on(vi ') = Ez[¢n(VY)], Vi. .

First, showing limy _ s Y1 =" 0 is of interest. By (5),
o@D < e (a5 (S P+ [ onl™
7 , where d¢ >0, d, >0,and 1 <\ < 2 are
constants. Using the inequality [|x||3 < (¢ + 1)*~1||x||3 for

0. Similar to

, and




x € RDX, we get |, (¥)] < df exp (dg (S50 (1+(t+
DAUGP)I TP (4 DD ZiP + feor ) )
Ez|lon(@)P] < dbexp [d (S92 1B + Jeoil) ]
where 0 < x < 1, d} = d§(2 + ﬁ)max{l + (t +
DX Haol, o 1 (¢4 DM o (¢ + DM,
and df = (dﬁ)”“Ez[exp(dﬂZﬂ’\)} are constants. Define

Yzfu on(VEh) — Ez[d)h(Nt)] Vi. To prove the conver-

gence lim,, oo Y = 0, we will show that {Y}, ;}N, sat-
isfy the condition in Lemma 3 in Appendix F. Indeed the
Ez[[Y% ;1***] is upper bounded as follows.

. Hence,

Ez[|Yal*™"] < 21“( zlléon (VO] + [Ez[én(¥ D]IQM)’

22 Bz [|gn (Vi) [7H"]

dg exp <di(z GhITH 1 + |$0i|A>),

=0

/\

IN

(55a)

>
<
>
-~
<
oo
|
=
N

Then, wh(vg_l) is a controlled function. From (55a), we get,
for N is sufficiently large,

P

|YN7,|2+K <

1 n
Y3 Z ¢h(vzt‘_1)a
N =1

E[Yn (1020, - - -,
< (:N"‘/Q7

a.

®

Ti—1Z4-1, X0)],
(56a)

where ¢ is a positive constant and (56a) holds because
Ely(00Zo, - .. 0t—1Z1—1, W)] = db < oo and there exists
Ny, a positive constant, such that dt < cN %/2 for N > N,.

Using Lemma 3 in Appendlx F, imy_ o0 = ~ Zl 1 YJ(, i =,

implying limy o Y7 %2 0.

We are now ready to verify the convergence
lim NHCXLYJ “2 0. Applying the induction hypothesis
(17) for ¢p(vi™!) gives

ngnooﬁz:% ) = Elgn(r0Z0, - - Te-1Ze-1, Xo)),

= E |:Ez[¢h(7'ozo, ey
7=0

t—1
=E |:¢h(7'OZOa e Te—1 241, Z CiTiZ; + 12, Xo)} .
=0
Therefore, showing limy o Yo 2" 0 is equivalent to proving
ZE_éCjTjZ' +TIvZ = 77, where Z; ~ N(0,1) and 7
is defined in (7). Similar to the proof of hmn_>OO X4 =
0 in Step 3d), settlng on(vh) = (hh)?, ie., on(v Z) =

(Zj Ogjhj+1+FtZ) we get

t—1
T1Zia, Y GTiZi+ T2, Xo)}] ;

lim (W1 ) = lim —
Ngnoo< ’ Ngnoo Z ¢h
2
=0
Using (15), we get limy_oo(h'T hiFl) s
lim,, oo (m?, m') = 72, where the last equality holds

by the induction hypothesis (16) for ¢,(u}) = g7 (b, w;),

resulting in lim,, o (m*, m*) = E[g?(0:Z;, W)] = 77.
2

Hence, E[(Z;;é CTiZ; + I‘tZ> ] a8

S T0GTiZ; + ThZ = 7Zp. Thus, it is verified that

lmpy oo YQt 2 ), which completes the proof of (17).

th , which implies



