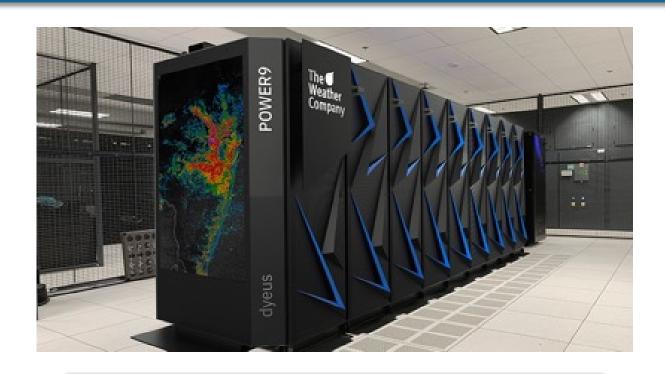


EarthWorks:

The Computational Science Challenges of building an end-toend, GPU-enabled, km-Scale Modeling System

Richard Loft², Sheri Mickelson¹ Thomas Hauser¹, Michael Duda¹, Dylan Dickerson¹, Supreeth Suresh¹, John Clyne¹, Jian Sun¹, Chris Fisher¹, Mariana Vertenstein¹, Donald Dazlich³, Raghu Raj Kumar⁴, Pranay Reddy Kommera⁴

1 National Center for Atmospheric Research

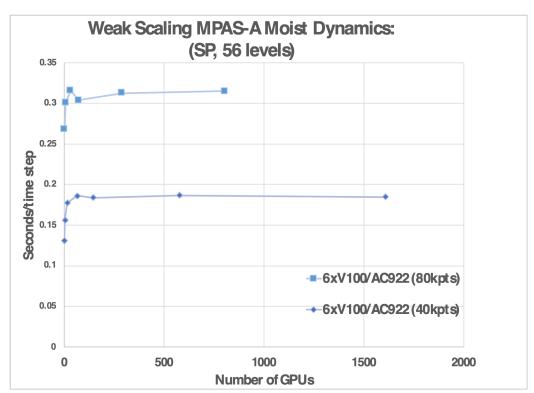

2 AreandDee, LLC

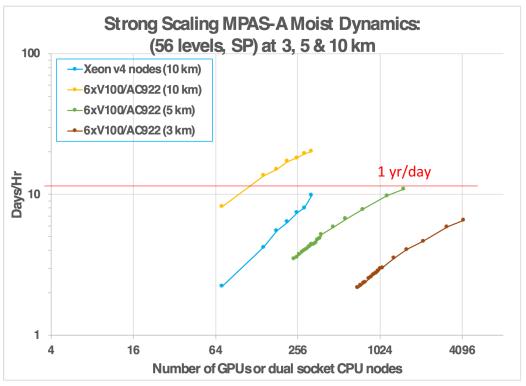
3 Colorado State University

4 NVIDIA Corporation

Back Story: Refactoring MPAS-A for GPUs... for 3 km NWP

MPAS-OpenACC It is the result of a partnership between NCAR, NVIDIA and IBM / The Weather Company

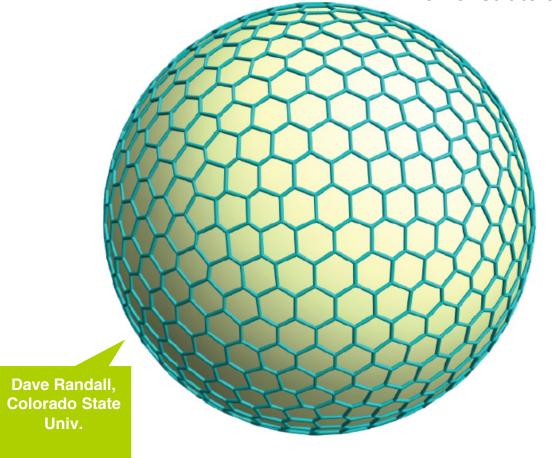

WCRP Workshop


MPAS-A OpenACC Accomplishments

- Moist dynamical core weak scales to 4,200 **GPUs on Summit @ quasi-uniform 3 km** resolution.
- Throughput was 3-4x comparing V100 GPUs to Chevenne Intel Xeon v4 (BWL) nodes.
- Overlapping CPU execution of lagged radiation with GPU model integration.
- In production since October 2019 as part of the **IBM-GRAF** forecast system.
- OpenACC version available to the community via GitHub.

MPAS-A moist dycore scaling on Summit¹ and Cheyenne²

¹Benchmarking on Summit supported by DoE via an OLCF Director's Discretionary Allocation ²Cheyenne is a 5.4 PF, 4032-node HPE system with EDR interconnect operated by NCAR

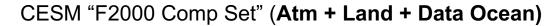

EarthWorks: Can NWP success translate to an ESM?

- Put all components on one mesh
- Target GSR resolutions
- Demonstrate 0.5 years/day at 3.75 km

Target

grid spacing

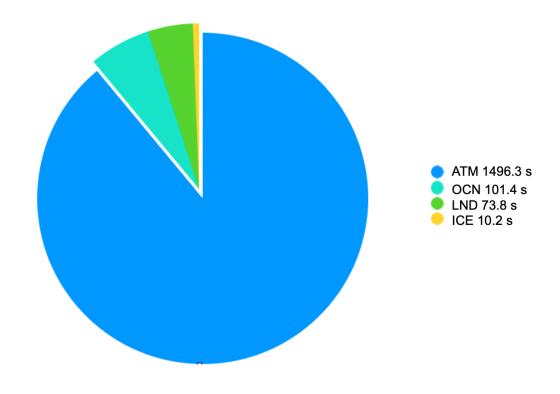
Grid	No. of grid points <i>N</i>	Avg grid distance ℓ (km)		
G 0	12	6699.1		
G1	42	3709.8		
G2	162	1908.8		
G3	642	961.4		
G4	2562	481.6		
G5	10242	240.9		
G6	40 962	120.4		
G7	163 842	60.2		
G8	655 362	30.1		
G9	2 621 442	15.0		
G10	10 485 762	7.53		
G11	41 943 042	3.76		
G12	167 772 162	1.88		
G13	671 088 642	0.94		


Non-hydrostatic regime

Experiences running high resolution tests on CPUs

Component Timings 7.5 km grid

Cheyenne Supercomputer (512 nodes)... ~1/8 of the system


Experiences:

Atmosphere dominates the computational time (89%)

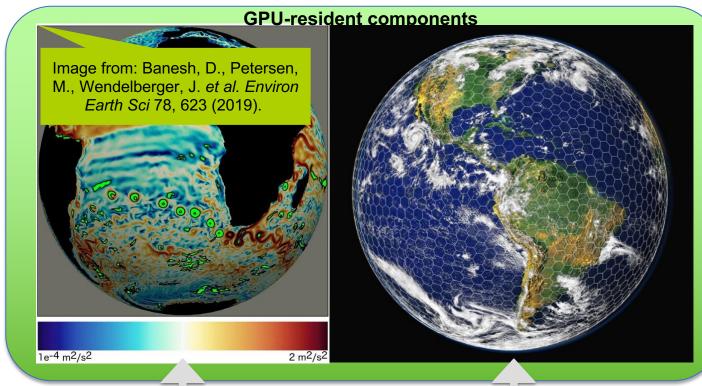
Long turnaround time (lots of queue draining)

Reveals model scalability issues

Slow throughput: in this case 0.08 SYPD @ 7.5 km

Data thanks to Chris Fischer, NCAR

EarthWorks Strategy for GSRM


Use regional refinement capabilities of MPAS to reduce cost of tuning climate parameterizations for meteorological length scales

Target heterogeneous computing with GPUs

Prioritize Accelerating 1) Atmosphere and 2) Ocean

Target large systems, e.g. exascale "Leadership Class" Systems

Adopt an end-to-end approach to addressing scalability issues

I/O & Analysis

CPU-resident components

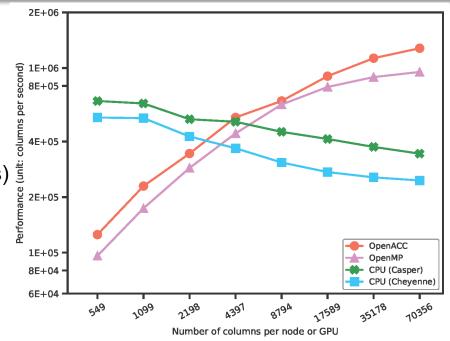
Microphysics (PUMAS) Performance on CPU vs GPU

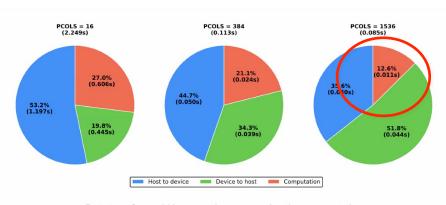
Experiment: CAM (192x288 lat-lon mesh; 32 levels; FP64; 36 MPI ranks/node or GPU) was run on CPU with PUMAS microphysics offloaded to GPU.

Equipment: NVIDIA V100 GPU was compared to Intel Xeon Broadwell and newer Skylake CPUs

Upper Left: Benchmark of CPU (cool colors) and GPU (warm colors)

Lower Left: Data transfer (cool colors) vs computation (red) for different chunk sizes (PCOLS)


Take Aways:


Clearly GPUs favor larger chunk sizes (PCOLS) and higher occupancy (Cols/GPU).

Earthworks will port all physics so we expect no data transfer overhead when calling PUMAS.

Able to compare directive-based GPU offload schemes: OMP is slower than OpenACC, but improving!

Slides courtesy of Jian Sun, NCAR

Atmospheric Dycore (MPAS-7) CPU/GPU Performance

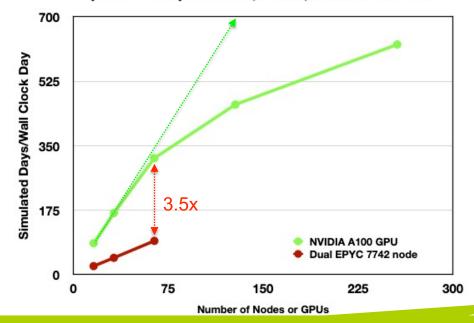
Experiment: MPAS-7 (5.9M cell mesh; 56 levels; FP32) ran dry baroclinic test case for 10 simulated days

Equipment: Selene supercomputer; nodes = AMD Dual socket EPYC 7742 "Rome" CPUs with 8x NVIDIA A100 GPUs; 10 HDR links/node.

Upper Left: Benchmark of 128-core ROME CPU node vs A100 GPU

Lower Left: Amdahl comparison of GPU performance for MPAS-6 vs MPAS-7. Compute (m) has gotten worse; latency has improved.

Take Aways:


Early scaling looks impressive - and 3.5x faster than CPU node.

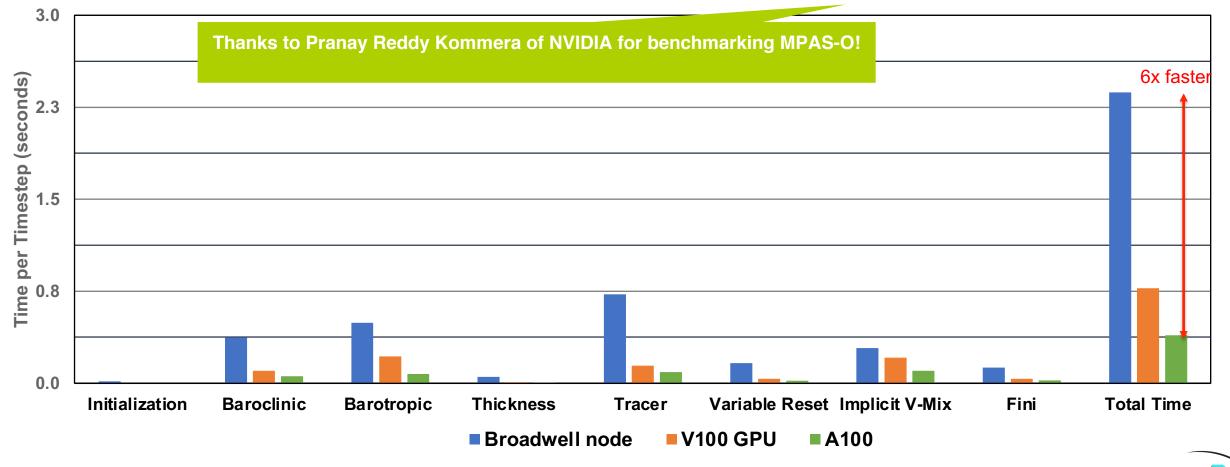
Latency (t0) kills multi-GPU scalability, represented by dotted green line). Have traced this issue to asynchronous MPI_Wait.

Slowdown of MPAS-7 compute (m) was recently isolated to not declaring new variables GPU resident.

With upgrades, 4 SYPD at 10 km on 256 A100s achievable.

MPAS 7.3 Dynamical Core Scaling: 10 km (5.6M cells) 56 level, FP32, Selene Cluster

Thanks to Raghu Raj Kumar of NVIDIA for benchmarking MPAS-7!


	m	standard deviation	t0	standard deviation	
MPAS 6.3	8.00964	0.211429	0.06542	0.006820	
MPAS 7	10.56827	0.317847	0.04126	0.010253	

MPAS-O CPU/GPU Performance Results

Performance comparison between two 40c Broadwell nodes, and two V100 (Prometheus) and two A100 (Selene) GPUs

Experiment: Testcase = "EC60to30"; dt = 30 min; 118K cells/GPU; 60 Levels; FP64; 1 MPI Rank/GPU

How to store and analyze EarthWorks output?

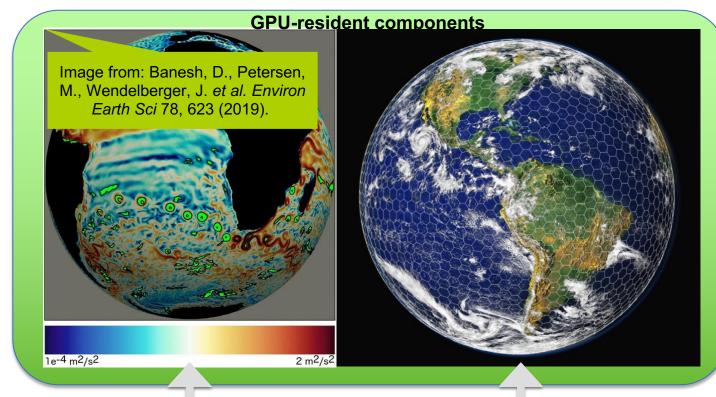
Use data compression to reduce dataset sizes

- ZFP is a computationally intensive, lossy compressor that has error bounded compression and can achieve larger compression ratios (e.g. 4x).
- LZ4 is a faster, lossless compressor but compresses than ZFP (e.g. 2.5x).
- We tried both and compared the performance

Use the parallelism of DASK/Xarray and Zarr chunking in the workflow

- Dask and Xarray are part of Pangeo, a popular climate analysis tool.
- Zarr has much higher throughput compared with traditional NetCDF files
- Zarr can write out data with compression coding (Zlib, LZ4, or ZFP)
- Zarr works on AWS S3-style storage systems.
- NCZarr is coming.
- Benchmarks of this approach shows good scaling on NCAR's GLADE POSIX filesystem.

EarthWorks: Outstanding Challenges

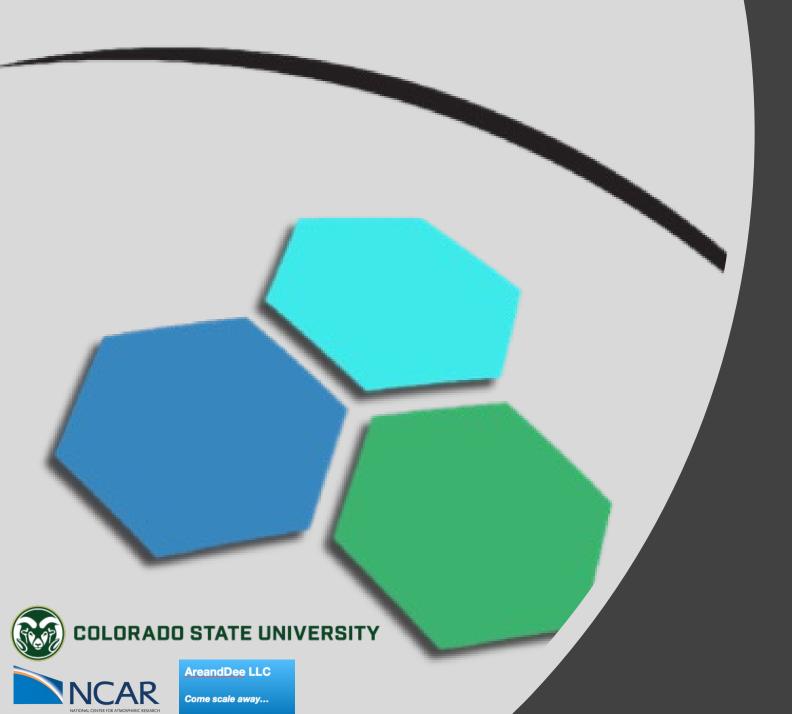


- **Intra-component:** Decoupling the number of ranks/GPU between ESM subcomponents (e.g. Atm. dycore and physics);
- **Inter-component:** Load balancing GPU-resident and CPU-resident ESM components;
- **Precision:** Running (some) ESM components in FP32;

WCRP Workshop

Big-data: Parallelizing climate analysis software ecosystem for ultrahigh resolution.

I/O & Analysis


CPU-resident components

Loft: EarthWorks Computational Challenges

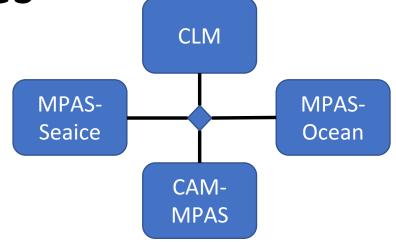
Please hold questions until the end...

EarthWorks

Addressing the Software
Engineering Challenges within
the EarthWorks Project

Sheri Mickelson¹
Thomas Hauser¹, Richard Loft²,
Michael Duda¹, Dylan Dickerson¹,
Supreeth Suresh¹, Donald Dazlich³,
John Clyne¹, Jian Sun¹,
Mariana Vertenstein¹

1 National Center for Atmospheric Research


2 AreandDee, LLC

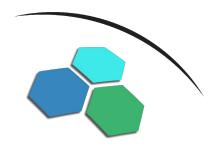
3 Colorado State University

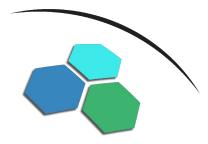
EarthWorks Computational Objectives

Goal: End-to-end workflow portability

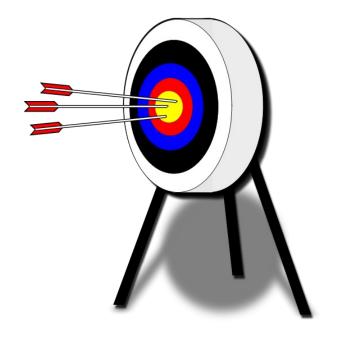
Objective	Tools
Revision Control	Github 🕥
Containers for portability	Singularity and Docker Socker
Performance portability	OpenACC, OpenMP, OpenMPI OpenACC OpenMP
Scalable I/O	PIO
Analysis	Atmospheric Diagnostic Framework and Raijin raijin
Data Transfer	Globus globus
Science Gateway	Containerized Gateway

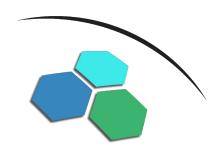
Models continue to be developed orthogonally to this project




Form a Community & Create a Development Plan

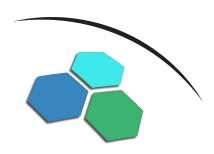
Coordinating the Effort Among the Software Engineers



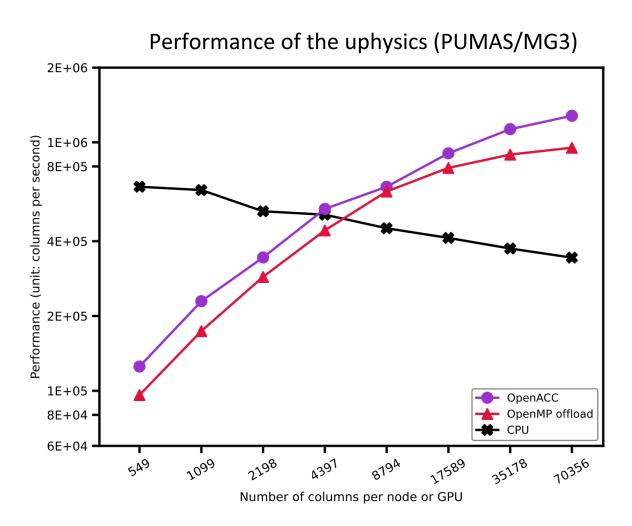

- Get everyone in the same room and talking to one another
- All voices are equally important
- Celebrate all successes
- Create a clear vision and path
- Everyone should understand how their contributions fit into the big picture
- Remove any barriers to entry
- Empower all team members

Coordinating the Effort with Scientists - the moving target problem -

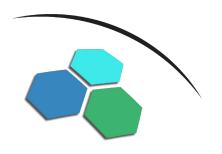
- The scientists have to be equally invested in the project
- The software engineers have to be aware of the science planning
- The scientists need to be involved with the software engineering planning
- How will the software be maintained after the work has completed?


Github

https://github.com/ESCOMP/EarthWorks


In order to create a reproducible software stack that all scientists and developers can work from, we have created a GitHub repo to hold the EarthWorks software stack.

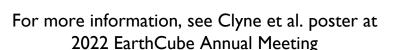
- The repo is in the same location (ESCOMP) as CESM
- Sits parallel to CESM
- The External config files contain the software stack lists


OpenACC vs. OpenMP Offload

Auto Conversion from OpenACC to OpenMP Offload

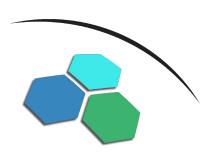
We've had great success with this tool from Intel https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp

Data Analysis - Project Raijin


Community Geoscience Analysis Tools for Unstructured Mesh Data

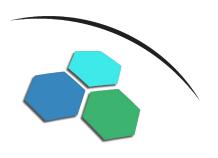
Scalable Python tools for analyzing and plotting geoscience data on unstructured grids

- Climate and global weather modeling communities focus (also works with regional data)
- ★ Generalizes NCAR's GeoCAT analysis package to support unstructured mesh data
- ★ Builds on the ubiquitous Xarray package



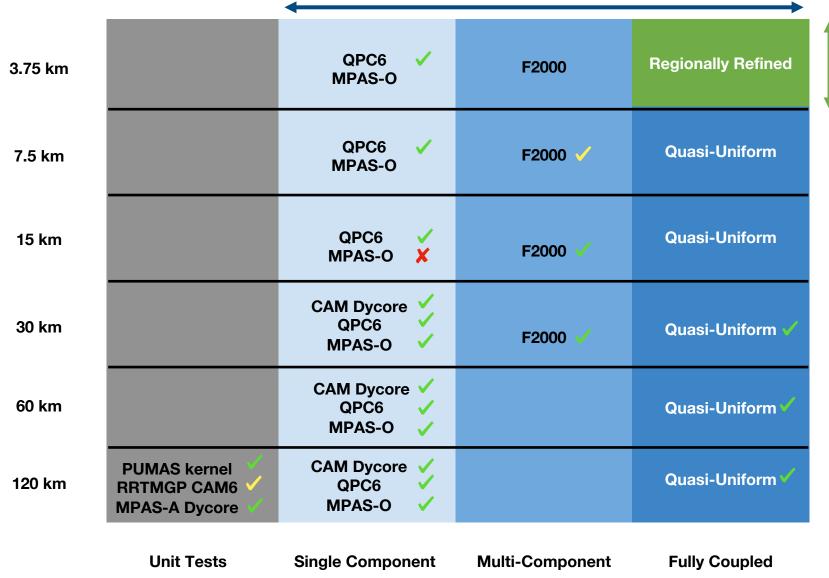
Testing Infrastructure

- During Development
 - KGEN
 - Testing with multi-column capabilities
 - Test often, performance measurement second
- After Development
 - We've created tests within the CAM testing infrastructure that is ran routinely as new tags are created
 - Smoke test does it run out of the box?
 - bit-for-bit comparison between CPU vs. GPU
 - We are coordinating with the CAM development group on fixing failures when they are found

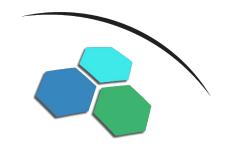


This Photo by Unknown Author is licensed under CC BY-SA-NC

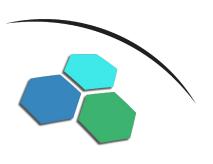
EarthWorks Deliverables Timetable

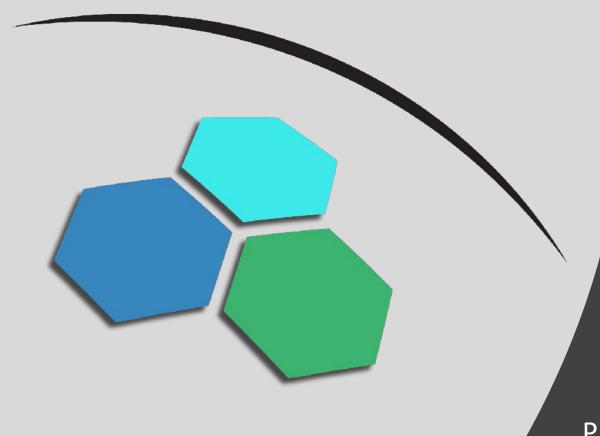

Version (Target Delivery Date)	Deliverables
Version 1.0 (December 2022)	 120,60,30 km Fully coupled Standalone MPAS-Ocean Aquaplanet, Coupled Atm-Lnd Atm dycore tests CPU Intel/GNU compilers
Version 1.5 (May 2023)	 + 15 km resolution + nyhpc compiler support + uphysics GPU offload + MPAS-7 dycore GPU offload + radiation GPU offload
Version 2.0 (December 2023)	 + 7.5 km resolution + Scalable tools v1 release + MPAS-Ocean GPU offload + Cloud parameterization GPU offload
Version 2.5 (May 2024)	+ 3.75 km resolution+ Scalable tools v2 release

EarthWorks testing status: Intel CPU


CESM FrameWork

EarthWorks GSRM Target





EarthWorks testing status: GPU

Component	Subcomponent	Package	GPU Porting Status	Offload Paradigm	Version Skew?	Optimized	Comments
Atmosphere			in progress				
	Dycore	MPAS-7.x	completed	OpenACC & OpenMP	merge with CAM	yes	Awaiting results of upgraded MPAS-7 version scaling tests. AMD has attempted a port of MPAS using OpenMP offload.
	Physics	CAM-6	in progress	_			_
		PUMAS	completed	OpenACC & OpenMP	MG2->MG3	yes	Add new μprocesses: e.g. graupel.
		RRTMGP	completed	OpenACC	no	deferred	Need CPU version running under NVHPC compiler before testing on GPUs.
		CLUBB	in progress	OpenMP		no	Loop order refactoring for better vectorization, GPU parallelism underway. Merging physics to better represent tropical cyclones may be required.
Ocean	MPAS-O		completed	OpenACC	yes	yes	Need to test E3SM GPU versions and merge with CPU version.
Sea-Ice	MPAS-SI		deferred				Low-ish priority but looks doable.

EarthWorks

Questions

Contact Information richard.d.loft@areanddee.com mickelso@ucar.edu

Project Website: http://hogback.atmos.colostate.edu/earthworks

GitHub:

https://github.com/ESCOMP/EarthWorks

Extra Slides

Earthworks Initial Target Platforms

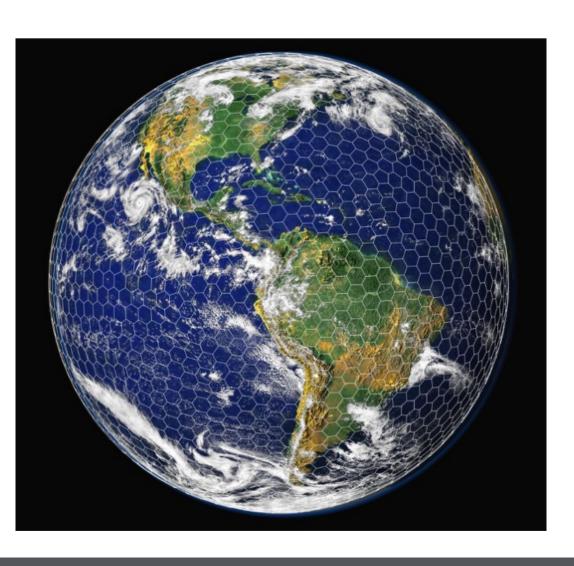
EarthWorks is currently pursuing workflow portability across these

leadership-computing systems.

- **NSF Systems:**
 - ○NCAR: Cheyenne¹ -> Derecho*
 - Texas Advanced Computing Center. Frontera

Horizon²

- **DoE Systems:**
 - Argonne National Lab: ThetaGPU* Polaris*
 - NERSC: Perlmutter*


¹Intel CPU architecture

²Unknown architecture

EarthWorks

EarthWorks is a five-year university-based project, supported by NSF CISE, to develop a global storm-resolving coupled model that uses a single, uniform global grid for the atmosphere, ocean, sea ice and land surface

Earthworks consists of:

- CAM6 with the MPAS non-hydrostatic dynamical core
- MPAS ocean model developed at LANL
- MPAS sea ice model, based on CISE
- Community Land Model (CLM)
- Community Mediator for Earth Prediction Systems (CMEPS)

Goal: retain compatibility with evolving CESM code base and engage with the CESM research community

Goal: enable community-based global storm resolving ES modeling on U.S. supercomputers

EarthWorks

GOAL:

WCRP Workshop

Capability to perform 3.75 km fully coupled simulations utilizing GPU-enabled components with end-to-end workflow portability across US leadership computing systems

SOME INITIAL OBJECTIVES:

- Port MPAS Ocean and Sea Ice into the CESM framework √
- Assemble a working CPU version of the EarthWorks configuration √
- Complete fully coupled simulations at relatively coarse grid resolutions \checkmark
- Test MPAS-CAM6 physics at convection-permitting spatial scales (Underway)
- Port critical-path portions of EarthWorks to GPUs (Underway)

Loft: EarthWorks Computational Challenges