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Abstract

We propose JAWS, a series of wrapper methods for distribution-free uncertainty
quantification tasks under covariate shift, centered on the core method JAW,
the JAckknife+ Weighted with data-dependent likelihood-ratio weights. JAWS
also includes computationally efficient Approximations of JAW using higher-
order influence functions: JAWA. Theoretically, we show that JAW relaxes the
jackknife+’s assumption of data exchangeability to achieve the same finite-sample
coverage guarantee even under covariate shift. JAWA further approaches the JAW
guarantee in the limit of the sample size or the influence function order under
common regularity assumptions. Moreover, we propose a general approach to
repurposing predictive interval-generating methods and their guarantees to the
reverse task: estimating the probability that a prediction is erroneous, based on
user-specified error criteria such as a safe or acceptable tolerance threshold around
the true label. We then propose JAW-E and JAWA-E as the repurposed proposed
methods for this Error assessment task. Practically, JAWS outperform state-of-
the-art predictive inference baselines in a variety of biased real world data sets for
interval-generation and error-assessment predictive uncertainty auditing tasks.

1 Introduction

Auditing the uncertainty under data shift Principled quantification of predictive uncertainty is
crucial for enabling users to calibrate how much they should or should not trust a given prediction
[Thiebes et al.,|2021} |Ghosh et al.| [2021} [Tomsett et al., 2020, |Bhatt et al., 2021]. Uncertainty-based
predictor auditing can be considered a type of uncertainty quantification performed post-hoc, for
example by a regulator without detailed knowledge of a predictor’s architecture and with limited
resources [Schulam and Saria, |2019]. Data shift poses a major challenge to uncertainty quantification
due to violation of the common assumption that the training and test data are exchangeable, or more
specifically independent and identically distributed (i.i.d.) [Ovadia et al., 2019, [UImer et al., 2020,
Zhou and Levine, [2021} |Chan et al., [2020]. Therefore, it is essential to develop convenient tools for
users or regulators to audit the uncertainty of a given prediction even when training data is biased.

Predictor auditing: Interval generation In this work we distinguish between two types of predictive
uncertainty auditing. We describe the first type as interval generation, which refers to a common
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goal in the distribution-free uncertainty quantification literature: to generate a predictive confidence
interval (or set) that covers the true label with at least a user-specified probability. For instance, an
auditor might ask for predictive intervals that contain the true label with at least, say 90% frequency.

Predictor auditing: Error assessment While predictive interval generation has been a central
focus of the distribution-free uncertainty quantification literature [Angelopoulos and Bates, 2021, in
some applications the reverse computation may be more actionable: estimating the probability that
a prediction is erroneous or not, based on user-specified error critieria such as a safe or acceptable
tolerance region around the true label. We thus refer to this task as error assessment. For instance, take
the setting of chemical or radiation therapy dose prediction for cancer treatment, where administering
a dose within approximately +10% of the optimal dose is considered safety-critical (see Appendix
[A.T]for details). Whereas predictive interval generation could fail to provide safety assurance (e.g., if
the predictive confidence interval is larger than the safe tolerance region), error assessment would
give a worst-case probability of the prediction being safe. Similar examples could be formulated in
other applications, such as incision planning in surgical robotics and autonomous vehicle navigation.

Coverage We assume a standard regression setup with a multiset of training data
{(X1,Y1),...,(X,,Y,)} and a test point (X, 41, Yy,+1) with unknown label Y;, 1, where (X;,Y;) €
R? x R foralli € {1,...,n + 1}. Also, we denote a predictor as 7i = A({(X1, Y1), ..., (Xn, Y0)})s

where A is a model-fitting algorithm. For a predictive interval (or set) éfl“i“ : R? — {subsets of R},
a coverage guarantee gives a lower bound to the probability that the interval covers the true test label:

P{Y,1 € CoM (X))} > 1 e))

The coverage guarantee provides the basis for both interval-generation and error-assessment auditing,
though it is important to note that in this work we focus on marginal rather than conditional coverage
(see [Foygel Barber et al.,[2021[] for more details on this distinction). Standard conformal prediction
methods [Vovk et al., 2005, Shafer and Vovk, 2008, |Vovk, [2013] along with the jackknife+ and
related methods [Barber et al., 2021]], which we refer to together as “predictive inference” methods,
provide a framework for generating predictive intervals with finite-sample guaranteed coverage.

Exchangeability Standard conformal prediction and the jackknife+ rely on two crucial notions of
exchangeability: data exchangeability, that is that the training and test data are all exchangeable
(e.g.,i.i.d.); and secondly that the model-fitting algorithm A treats the data symmetrically [Barber
et al.,|2022]. In common situations of dataset shift, however, the data exchangeability assumption is
violated. Empirically, the coverage performance of standard conformal prediction methods can suffer
under data shift [Tibshirani et al.,|2019, [Podkopaev and Ramdas, 2021]].
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Figure 1: Jackknife+ loses coverage on the airfoil dataset under covariate shift (details in Section [)).

In this work, we build on the jackknife+ method due to its beneficial compromise between the
statistical and computational limitations of other conformal prediction methods [Barber et al.|[2021].
However, jackknife+ coverage performance can still degrade under data shift, such as shown in Figure
[} and in some applications its computational requirements can still be limiting. To address these
concerns and make extensions to error assessment, we develop JAWS, a series of wrapper methods
for distribution-free uncertainty quantification under covariate shift (see Table[T|for key properties).

Table 1: Summary of key properties for JAWS methods (details in Section [3).

Guarantee (under covariate shift)
Method Task Finite sample Asymptotic Avoids retraining
JAW Interval generation v 4 X
JAWA | Interval generation X v v
JAW-E Error assessment v v X
JAWA-E | Error assessment X v v




Our contributions can be summarized as follows:

1. We develop JAW: a jackknife+ method with data-dependent likelihood-ratio weights for predic-
tive interval generation under covariate shift. We show that JAW achieves the same rigorous,
finite-sample coverage guarantee as jackknife+ [Barber et al.l 2021] while relaxing the data
exchangeability assumption to allow for covariate shift.

2. We develop JAWA: a sequence of computationally efficient approximations to JAW that uses
higher-order influence functions to avoid retraining. Under assumptions outlined in |Giordano et al.
[2019a]] regarding the regularity of the data, Hessian of the objective (local strong convexity), and
the existence and boundedness of higher order derivatives, we provide an asymptotic guarantee
for the JAWA coverage in the limit of the sample size or influence function order.

3. We propose a general approach to repurposing any distribution-free predictive inference method
to the error assessment task, with rigorous guarantees for the coverage probability estimation. Our
approach applies to methods that assume exchangeable data and to methods like JAW and JAWA
that allow for covariate shift—JAW-E and JAWA-E refer to the error assessment versions.

4. We demonstrate superior empirical performance of JAWS over other distribution-free predictive
inference baselines on a variety of benchmark datasets under covariate shift.

2 Background and related work

2.1 Standard conformal prediction

Conformal prediction has grown into a broad research field since arising in the 1990s [Vovk et al.|
2005, Shafer and Vovk, 2008, Balasubramanian et al.,[2014|/Angelopoulos and Bates,[2021]. Standard
conformal prediction methods generate a prediction interval (or set) with a finite-sample coverage
guarantee as in (I)), which is distribution-free in the sense that the guarantee applies to any ex-
changeable data distribution [Lei and Wasserman, 2014, |Lei et al., 2018]. With the exchangeability
assumptions in Section [T, standard conformal prediction methods rely on a pre-fit score function
S :R? x R — R (in regression, the absolute-value residual score S (x,y) = |y — fa(x)| is commonly
used). A conformal prediction interval at confidence level 1 — v is then determined by a corresponding
quantile on a multiset of (exchangeable) score values.

Split conformal and full conformal are two main types of standard conformal prediction, and each
bears its own limitation [Vovk et al., 2005} |Shafer and Vovk, [2008]]. Split conformal generates scores
on labeled holdout data and is computationally efficient due to not requiring retraining, but sample
splitting to obtain the holdout set can reduce model accuracy [Papadopoulos} 2008, |Lei et al.} 2018},
'Vovk, 2012]. On the other hand, full conformal prediction avoids the holdout set requirement, but at
the heavy computational cost of retraining the model on every possible target value (or, in practice,
on a fine grid of target values) [Ndiaye and Takeuchi, 2019} Zeni et al., 2020].

2.2 Covariate shift

Under the covariate shift assumption, the Y| X distribution is assumed to be the same between training
and test data but the marginal X distributions may change [Sugiyama et al.,[2007, Shimodaira, [2000]:

(X1, Y;) = Py x Pyix,i=1,.,m (Xn+1, Ynt1) ~ Px X Py |x, independently. (2)

Rich literature exist in this domain—see Appendix [A.2]for more details. Uncertainty quantification
is relatively less explored under covariate shift, though recent work [Ovadia et al., 2019, Zhou and
Levine| 2021} |Chan et al.| | 2020] emphasizes its importance, especially in deep learning.

2.3 Conformal prediction under covariate shift and beyond exchangeability

Tibshirani et al.|[2019] develop the idea of weighted exchangeability for adapting conformal prediction
to the covariate shift setting. Random variables V1, ..., V,, are weighted exchangeable with weight
functions wy, ..., w,, if their joint density f can be factorized as f(v1,...,v,) = [[iq wi(v;) -

g(v1, ..., v,), where g is independent of ordering on its inputs. For covariate shift as in 2), if Px is
absolutely continuous with respect to Py, then the data {(X;,Y;)} are weighted exchangeable with

weight functions w; = ... = w, = land w41 = w = dﬁX/dPX [Tibshirani et al., 2019].



If {v;} represents a set of scores for standard conformal prediction, then we can represent the
empirical distribution of {v;} as -~ +1 Zl 100, + - +15oo, where J,,, denotes a point mass at v;
[Barber et al., 2022]. By extension, weighted conformal prediction uses the weighted empirical
distribution defined as Yo p¥(x )6,,1. + Py, 1 (%), With weights given by

w(X;) w()

pi(z) = ST (%) + w(x)’i =1,...,m and  ppy(z) = S w(X;) + w(z)

» 3)

where w = dPx /dPx, so p}’(X,+1) can be thought of as a normalized likelihood ratio weight for
eachi € {1,...,n + 1}. Corollary 1 in [Tibshirani et al.,{2019] provides the coverage guarantee of
weighted conformal prediction that takes the form of (1)) but relaxes the exchangeable data assumption
to allow for covariate shift. However, weighted split and weighted full conformal inherit the same
statistical and computational limitations, respectively, from their standard (exchangeable) variants.

The recent work of [Barber et al., 2022] provides a novel extension of conformal prediction and the
jackknife+ to unknown violations of the exchangeability assumption, including a “nonexchangeable
jackknife+” defined with fixed weights. The key difference between the nonexchangeable jackknife+
in|Barber et al. [2022] and our proposed JAW method is that Barber et al. [2022] use fixed weights to
compensate for unknown exchangeability violations (not limited to covariate shift) but at the expense
of a bounded but generally nonzero “coverage gap” (drop in guaranteed coverage relative to if the
data were exchangeable), whereas our JAW method with data-dependent weights assumes covariate
shift but does not suffer from any similar coverage gap. See Appendix [A.3|for more details.

2.4 Jackknife+

The jackknife+ [Barber et al.| [2021], which is closely related to cross conformal prediction [[Vovk
et al., 2018], offers a compromise between the statistical limitation of split conformal and the
computational limitation of full conformal, at the cost of a slightly weaker coverage guarantee. The
jackknife+ predictive interval can most easily be understood as a modification to a predictive interval
from the classic jackknife resampling method [Miller| |1974| |Steinberger and Leeb, |[2018] |2016]. For
a set of point masses {J,, } at Values V1, ey U, let Qg {557 jrl 0y, } denote the level 8 quantile on the

empirical distribution 7" | — +1 57,1 + n}H 5700 and let Q 3 {1 70y, } denote the level 3 quantile on
the empirical distribution Zl 17 +1 T +1 ——00. Then, denoting the model trained without the ith
point as fi_; = .A({(Xl,Yl) o (Xi21,Yi21), (X1, Yig1)s -y (X, Yy) }) and the leave-one-out

residual RFO0 = |Y; — 1i_i(Xy)],

agféknife(XnJrl) = [Q;{%ﬂéﬁ(xnﬂ)*RiLoo }, Qfﬁa{%_‘_l(sﬁ(X?LJrl)JrRiLoo }} . 4)

In contrast, we obtain the jackknife+ predictive interval in|Barber et al. [2021]] by replacing the full
model prediction fi( X, 1) in @) with 7_;(X,,11):

@;c;kmfa(Xnﬂ) = [Q; { IO (X i)~ REOO }, QT_a{ﬁéﬁ_i(Xﬂ/+l)+RiL()() H NG)

[Barber et al., 2021]] prove that, with the same exchangeability assumptions as in standard conformal
prediction, the jackknife+ prediction interval satisfies

P{Yn+1 c C«Jdckknlfe+( n+1)} Z 1 — 2a. (6)

n,x

2.5 Approximating leave-one-out models with higher-order influence functions

Influence functions (IFs) [Cook, [1977] have a long history in robust statistics for estimating the
dependence of parameters on sample data. Recently, IFs have become more widespread in machine
learning for uses including model interpretability Koh and Liang| [2017] and approximating classic
resampling-based uncertainty quantification methods including bootstrap [Schulam and Saria}, 2019],
jackknife, and leave-k-out cross validation [Giordano et al., 2019bJa]. In each of these cases, IFs
enable approximation of the parameters that would be obtained if the model were retrained on
resampled data by instead estimating the effect of a corresponding reweighting. In prior work,
Alaa and Van Der Schaar [2020] proposed approximating the leave-one-out models required by the
jackknife+ with higher-order IFs, but their work assumes exchangeable or i.i.d. train and test data.



Let § denote the fitted parameters for predictor f trained on the full training data. Given Assumptions
1-4 in|Giordano et al.|[2019a]—which require that 6 is a local minimum of the objective function, that
the objective is k + 1 times continuously differentiable with bounded norms, and that the objective is
strongly convex in the neighborhood of —then the k-th order leave-one-out IF refers to the k-th
order directional derivative of the model parameters 6 with respect to the data weights, in the direction
of the leave-one-out change in weights (See M for more details). With each of these kth order
leave-one-out IFs for k € {1, ..., K}, denoted with condensed notation §* ZHA, we can construct a

K -th order Taylor series approximation to estimated the leave-one-out model parameters 0_;
K
. . 1 . 4
0K =0+ Eaiie. (7
k=1 "

In this work we implement the algorithm proposed by |Giordano et al.|[2019a] to compute higher-order
IFs, a recursive procedure based on foreward-mode automatic differentiation [Maclaurin et al., 2015]
for memory efficiency in computing higher-order directional derivatives. Our introduction of IFs is
highly simplified—we refer to Appendix and to|Giordano et al.|[2019a] for more details.

2.6 Error assessment

Whereas conformal prediction and related methods generate prediction intervals that control the
error probability (miscoverage level ) at a user-specified level, we refer to the reverse task as error
assessment: estimating the probability that a prediction is erroneous or not, based on user-specified
error criteria. For instance, a user might define an error as any deviation between the prediction
(X p41) and the true label Y, 11 greater than some acceptable tolerance threshold 7: that is, when
|Yi+1 — fi(Xpn41)| > 7. In Section we present a general approach to repurposing predictive
inference methods with validity under covariate shift to error assessment.

We note that for score functions that are monotonic in y, such as § (z,y) = y — p(x), guarantees for
this error assessment task can be obtained using conformal predictive distributions as described by
Vovk et al.|[2017] (also see Vovk et al.|[2020], |Vovk and Bendtsen|[2018], Xie and Zheng [2022]). In
regression tasks assuming exchangeable data, CPDs generate a probability distribution for the label
over R. However, CPDs require that score functions be monotonic in y, whereas we allow for certain
non-monotone conformity scores such as the commonly used absolute-value residual |y — fi(z)|;
Moreover, CPDs assume exchangeable data, whereas our approach extends to covariate shift.

3 Proposed approach and theoretical results

3.1 JAW: Jackknife+ weighted with data-dependent weights

We present JAW, the JAckknife+ Weighted with data-dependent likelihood-ratio weights, defined by

the following predictive interval:

CIN (X 1) = [Q; {P¥ (Xnt1) - 05y (xpe0)—RrE00 o Qi o APY (Xnt1) - 05, (X, 1)+ REOO }},
®)

, with p¥ () fori € {1,...,n+ 1} as in (3), where Q {p¥ (Xn+1) -

Xop1)— RiLOO} denotes the level o quantile of the empirical distribution >_7" | [p¥(X;41) -

where RFO0 = |ZZ_¢(Xi) -Y;
5

i
6ﬁ7¢(Xn+1)—RiLOO] +p;’17,}+1(X77/+1) - 0_oo, and where Qf_a{p;"(XnH) . 6ﬁ—i(Xn+1)+RiLOO} is the

level 1 — o quantile for 377 [p¥ (Xnt1) - 05_, (x,,1)+rE00 ] + Pyt (Xns1) - 0oc

We choose to define JAW using likelihood-ratio weights w(X;) = dPx (X;)/dPx (X;) in the p}’ (z)
to address covariate shift, but a similar result holds for other instances of weighted exchangeability
and corresponding data-dependent weight functions (see Appendix . We show that C*;Ay (Xnt1)
satisfies the same coverage guarantee as the jackknife+ except relaxing the data exchangeability
assumption to allow for covariate shift, which we state formally in the following theorem.

Theorem 1. Assume data under covariate shift from Q). If Py is absolutely continuous with respect
to Px, then the JAW interval in satisfies

P{Y,i1 € CW(X,1)} > 1 - 20 ©)

n,o



Remark 1. The results from Tibshirani et al.| [2019] do not directly imply Theorem|1} The approach
in[Tibshirani et al.|[2019] relies on leveraging the weighted exchangeability of the data to reweight the
nonconformity scores {V1, ..., V,,+1} so they can be treated as exchangeable, and for the jackknife+
this approach would entail treating fi_;(X,t1) = RZLOO as implicit nonconformity scores. But,
observe that fori € {1,...,n}, [i_; is trained on n — 1 datapoints, whereas /i_(,,41) = /i is trained
on n datapoints. Thus, no reweighting can make fi_; equivalent in distribution to 2 and thereby allow
us to treat the reweighted 7i_; (X, 41) = R9° and [i(X,,41) + REQ? as exchangeable.

Proof sketch: Our proof technique for Theorem [l|extends the jackknife+ coverage guarantee proof
in Barber et al. [2021] to the covariate shift setting for JAW using likelihood ratio weights as in
Tibshirani et al. [2019]]. The full proof is given in Appendix [C.T, but the outline is as follows:

Setup: Following Barber et al.| [2021], we define a set of leave-two-out models {fi_(; ;) }. We then
generalize the notion of “strange” points described in|Barber et al.|[2021] to covariate shift.

1. Bounding the total normalized weight of strange points: We establish deterministically that the
total normalized weight of strange points cannot exceed 2a.

2. Weighted exchangeability using the leave-two-out models: Using the leave-two-out model con-
struction, we leverage weighted exchangeability to show that the probability that a test point n + 1
is strange is thus bounded by 2a.

3. Connection to JAW: Lastly, we show that the JAW interval can only fail to cover the test label
value Y,, 11 if n + 1 is a strange point.

While JAW assumes access to oracle likelihood ratio weights, in practice this information often has
to be estimated. See Appendix [D.5]for a discussion and experiments of JAW with estimated weights.

3.2 JAWA: Using higher-order influence functions to approximate JAW without retraining

For computationally efficient JAW Approximations that avoid retraining n leave-one-out models,
we propose the JAWA sequence, which approximates the leave-one-out models required by JAW
using higher-order influence functions. For each training point ¢ € {1, ..., n}, define the K-th order

influence function approximation to the leave-one-out refit parameters 6_;, obtained from Algorithm
4 in |Giordano et al. [2019a, as given by equation (7), and let 7i'";¥ be the model with with these

approximated parameters " K for each i € {1,...,n}. Then, the prediction interval for the K-th
order JAWA (i.e., for JAWA-K) is given by

égzéyA_K(Xle) = [Q; {Pi” (Xnt1) 5ﬁlf-iK(Xn+1),R'f'K»LOO }a

QF - {P¥ (Xns1) - O x4 k00 } (10)

with R 100 = |FE(X;) - V;

—1

, p¥(x) as in (B), and quantiles defined analogously to JAW.

We now provide an asymptotic coverage guarantee for GMA-K (X,,41) that holds either in the limit
of the sample size or in the limit of the influence function order, under regularity conditions formally
described in|Giordano et al.| [2019a]. These assumptions concern the regularity and continuity of the
training data, local convexity of the objective (or that the Hessian is strongly positive definite), and
the existence and boundedness of the objective’s 1st through K + 1th order directional derivatives.

Theorem 2. Assume data under covariate shift from (2)) and that Px is absolutely continuous with
respect to Px. Let Assumptions 1 - 4 and either Condition 2 or Condition 4 from|Giordano et al.
[2019a] hold uniformly for all n. Then, in the limit of the training sample size n — oo or in the limit
of the influence function order K — oo, the JAWA-K interval in satisfies

P{Y, 41 € CAK(x, 1)) >1-2a (11)

n,o

We leave the proof to Appendix [C.2] but we note that the result follows by combining Propositions 1
and 3 in|Giordano et al.| [2019a] with the JAW coverage guarantee that we present in Theorem T}

3.3 Error assessment under covariate shift

We now propose a general approach to repurposing predictive inference methods with validity under
covariate shift from predictive interval generation to the reverse task: estimating the probability that a



prediction is erroneous or not, based on user-specified error criteria. For example, consider a user
that defines a prediction fi(X,,41) as erroneous, relative to the true label Y;,1 1, if it is farther than
some acceptable tolerance threshold 7 from Y,,41: i.e., if [Y,,4+1 — fi(Xp+1)| > 7. For this common
regression error criterion, our approach to adapting a method such as JAW or weighted split
conformal prediction [Tibshirani et al.,[2019] to error assessment reduces to first defining the set of

labels that would not be considered erroneous, £ = [[i(X,+1) — 7, [(Xn41) + 7], and then finding

the method’s largest predictive interval contained within E, call it 6,‘;’,’3“;1“()( n+1)- The coverage

guarantee for ég;gugif(X n+1) then yields a lower bound on P{Y,,; € E}, the probability of no error
(or an upper bound on the error probability). See Figure [2|for an illustration of this example.

. A(Xns1) o
AXnpr) = Interval E I A(Xn1) + I
e ] ‘] ] "R N .

vi T Vik Vi VE CvrvEvEivE T T vl v

( 3;](:1 Xps1)

Figure 2: Illustration of approach to repurposing a predictive inference method “w-audit” to error
assessment. The interval £ = [[i(X,, 1) — 7, [i(X,41)+7] is shown in violet, the lower score values
{V:F'} in blue, the upper score values {V;V} in red, and the interval af{:gt;gi‘(XnH) in green. Each
vertical line at a location V; on the real line represents a point mass dy;, with height corresponding to
the normalized likelihood ratio weight p}’ (X, 11).

Generally, a user must specify error criteria by a test point score function S:RIxR >R (for
conformal prediction, a nonconformity score), as well as minimum and maximum acceptable score
values 7~ and 7, where 77 < 7715 i.e., [i(X,,1 1) is considered erroneous if S( X, 11, Yny1) < 77
orif 7t < S(X,,11,Y,11). (For nonnegative S, we might let 7= = 0.) Then, the values of y for
which observing Y;,11 = y would not imply ji(X,,+1) is erroneous are:
E={yeR:7 <8Xpi1,y) <7t} (12)
Now, assume a predictive inference method with predictive sets that can be written in the form
O (Xnt1) = {y € R: Qo {py (Xnt1)dvr} < S(Xns1,y) < Qo (P} (Xut1)dyu }
(13)
with valid coverage guaranteed under covariate shift. (Note, gives the JAW interval (8)) by setting
S(a,y) =y —f(x), V" = i-i(Xn1) = i(Xng1) = RFOC,and ViV = [ i(Xp1) = (X)) +
REOO; see Appendix E Similarly, (13) gives the prediction interval for weighted split conformal

prediction [Tibshirani et al.,[2019] for absolute value residual scores when 5 (z,y) = |y — fi(x)|, and
for all calibration data 7 we let V.V = |Y; — /i(X;)| and V;¥ = 0.) Then, defining

agmdt = min ({a’ : 7~ < QuApt (Xns)dve b, QF bt (Kas)bye} <771)0 (14
we can estimate the probability of i(X,,+1) nof resulting in an error as in as:

R o 1— aw—audit if aw-audit exists
P{¥ni1 € B} = {0 " otherEWise (15

While the target coverage for ég;glﬁﬂ(xnﬂ) is used in (15), the following theorem gives the worst-
case error assessment guarantee for covariate shift (proof in Appendix [C.3). Corollary [T]in Appendix
[B:3 and Corollary [ in Appendix [B4]give the error assessment guarantees for JAW-E and JAWA-E

respectively. Appendix [B.2 gives the analogous guarantee for exchangeable data.

Theorem 3. Assume a predictive inference method of the form has coverage guarantee
P{Y,41 € ég;g"d"(xnﬂ)} > 1—ca—cy, with c1,co € R, under covariate shift [2)) where
ng is absolutely continuous with respect to Px. Define E as in and a‘g“”d” as in (14). Then,

{1 —c a}”,j””d” —co if ag””di’ exists and a}”j“”d” < l=e

P{Y,s1 € E} > @ (16)

otherwise.



4 Experiments|

4.1 Datasets and creation of covariate shift

We conduct experiments on five UCI datasets [Dua and Graff [2017] with various dimensionality
(Table[2): airfoil self-noise, red wine quality prediction [Cortez et al.,[2009], wave energy converters,
superconductivity [Hamidieh, 2018]], and communities and crime [Redmond and Baveja, [2002].

Table 2: Statistics for the UCI datasets. Only the first 2000 samples were used for the wave and
superconductivity datasets (for wave, the first 2000 samples of Adelaide data).

Dataset # of samples | # of features Label range
Airfoil self-noise (airfoil) 1503 5 [103.38, 140.987]
Red wine quality (wine) 1599 11 [3, 8]
Wave energy converters (wave) 2000 48 [1226969, 1449349]
Superconductivity (superconduct) 2000 81 [0.2, 136.0]
Communities and crime (communities) 1994 99 [0, 1]

We use exponential tilting to induce covariate shift on the test data, based on the approach used in
Tibshirani et al.|[2019]]. We first randomly sample 200 points for the training data, and then sample
the biased test data from the remaining datapoints that are not used for training with probabilities
proportional to exponential tilting weights. See Appendix [D.I|for additional details.

4.2 Baselines

Baselines for comparison to JAW We compared JAW to the following baselines:

Naive estimates are based on training data residuals |Y; — 7i(X;)|, which suffers from overfitting.
Jackknife uses the classic Jackknife resampling as in (4).
Jackknife+ follows (5)), which replaces the prediction fi(X,,+1) in jackknife with fi_;(X,,41)-

Jackknife-mm [Barber et al.,|2021] is a more conservative alternative to jackknife+ that guarantees
coverage at the 1 — « level with exchangeable data, but usually with overly-wide intervals.

CHE™ (Xia) = [ min fis(Xos1) = QF o{REOOY, max fis(Xopn) + Qf o{RFOCY]

=1,...,

bl e

,,,,,

5. Cross validation+ (CV+) [Barber et al.,|2021] is similar to jackknife+ but splits data into K folds
and replaces the ji_;(X,,+1) with i_g(X,,+1), the model trained with the kth subset removed.

6. Split method follows split conformal prediction, which uses half the data for training and the
other half for generating the nonconformity scores.

7. Weighted split is a version of split conformal with likelihood ratio weights to maintain coverage
under covariate shift, as in |Tibshirani et al.|[2019].

Baselines for comparison to JAWA For influence function orders K € {1, 2,3}, we compared the
proposed JAWA- K method with K -th order influence function approximations of the jackknife-based
baselines that we used as comparisons to JAW—we thus refer to these approximations as IF-K
jackknife, IF- K jackknife+, and IF-K jackknife-mm. Each baseline compared to JAWA-K is thus
also approximated with the same K -th order leave-one-out influence function models.

4.3 Experimental results

We report experimental results on the predictive interval-generation task for both JAW and JAWA and
on the error assessment task for JAW, compared to baselines. Additional experimental details and
supplementary experiments can be found in Appendix [D, including for estimated likelihood ratio
weights in[D.3] ablation study with shift magnitudes in[D.6] and coverage histograms in[D.9]

4.3.1 Interval generation results for JAW: Coverage and interval width

Figure [3|compares JAW and its baselines, firstly regarding mean coverage and secondarily regarding
median interval width, on all five UCI datasets for both neural network and random forest predictors,

! Additional analysis in Appendix@ and code at https://github.com/drewprinster/jaws.git.
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averaged over 1000 experimental replicates. See Appendix[D.2for predictor function details. Meeting
the target coverage level of 1 — « is the primary goal of the interval-generation audit task, but
for methods that meet or nearly meet the target coverage level, smaller interval widths are more
informative. Additionally, smaller variance in coverage indicates a more reliable or consistent method.

As seen in Figure [3] the JAW predictive interval coverage is above the target level of 0.9 across
all datasets, for both random forest and neural network fi functions, along with the jackknife-mm
and weighted split methods. However, JAW’s interval widths are generally smaller and thus more
informative than those of jackknife-mm (which are often overly large, as noted in Barber et al.
[2021]). Weighted split and JAW perform similarly on mean coverage and median interval width
(both methods have coverage guarantees under covariate shift), but JAW avoids sample splitting and
as a result has lower coverage variance than weighted split for all dataset and predictor conditions
(see Appendix [D.3), which suggests that JAW’s predictive intervals are more reliable.
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Figure 3: Mean coverage (first row) and median interval width (second row) for neural network and
random forest predictors on UCI datasets. Dashed line is the target coverage level (1 — o = 0.9).
Error bars show the standard error of 1000 repeated experiments. JAW maintains target coverage
under covariate shift for all predictor and dataset conditions along with jackknife-mm and weighted
split—however, JAW’s intervals are generally smaller and thus more informative than jackknife-mm’s,
and JAW’s coverage variance is smaller and thus more reliable than weighted split’s (Appendix [D.3).

4.3.2 Interval generation results for JAWA: Coverage and interval width

Figure [ evaluates JAWA coverage and interval width compared to baselines for IF orders K €
{1, 2,3} with a neural network predictor (see Appendix for predictor details). As with the JAW
experiments, coverage at the target level of 1 — a = 0.9 is the primary goal, while secondarily,
smaller intervals are more informative for methods that meet or nearly meet target coverage. For
three of the five datasets (airfoil, wine, and communities), JAWA is the only method that consistently
reaches or nearly reaches the target coverage level. JAWA and all the baselines perform well on the
wave datasets, and in the superconduct dataset JAWA still outperforms approximations of jackknife
and jackknife+ for all IF orders. Appendix [D.7]provides an example empirical comparison of JAWA
and JAW runtimes, which demonstrates that JAWA can be orders of magnitude faster to compute.

4.3.3 Error assessment results for JAW-E: AUC

We now turn to an error-assessment audit task where the goal is to evaluate a method’s ability to
estimate the probability that a given prediction is erroneous or not, based on the error criterion
|Yii1 — i(Xnt1)| > 7. Let E = [[i(X41) — 7, [(Xnt1) + 7). Then, the goal is to estimate the
probability that 7i(X,,11) is correct, i.e., Y,,;1 € E; or an error, i.e., Y,,11 € E. For five predictive
interval-generation methods repurposed to the error assessment task (JAW-E, jackknife+E, cross
validation+E, split conformal-E, and weighted split conformal-E), Figure [5|reports the area under the
receiver operating characteristic curve (AUROC) for 50 repeated experiments with a neural network
predictor, with dataset-specific values of 7 (see Appendix [D.4]for details and additional experiments
with random forest predictor). Better performing methods have higher AUROC values for all values
7. For most tolerance levels and datasets, JAW achieves AUROC values comparable to jackknife+
and CV+ as well as higher AUROC values than split and weighted split conformal prediction. The
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Figure 4: Mean coverage (first row) and median interval width (second row) for JAWA and baselines
for influence function orders K € {1,2,3}. Dashed line is the target coverage level (1 — o =
0.9). Error bar shows the standard error of 200 repeated experiments. JAWA is more consistent
than baselines in reaching or nearly reaching the target coverage level across datasets and influence
function orders, and it is more computationally efficient than JAW (Appendix [D.7).
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Figure 5: AUROC values for tolerance levels 7 across the three datasets for the neural net predictor,
averaged across 50 experiment replicates. Results for random forest predictor in Appendix [D.4]

comparable performance of JAW and jackknife+ is likely due to a tradeoff between the benefit of
JAW’s validity under covariate shift and its reduced effective sample size inherent to likelihood-ratio
weighting, as jackknife+’s and CV+’s AUROC degrades with reduced sample size (Appendix |D.6).

5 Conclusion

In this paper, we develop JAWS, a series of wrapper methods for distribution-free predictive uncer-
tainty auditing tasks when the data exchangeability assumption is violated due to covariate shift. We
also propose a general approach to repurposing any distribution-free predictive inference method to
the error assessment task. We provide rigorous finite-sample guarantees for JAW and JAW-E on the
interval generation and error assessment tasks respectively, and analogous asymptotic guarantees for
the computationally efficient JAWA and JAWA-E. We moreover demonstrate superior performance of
the JAWS series on a variety of datasets. In supplementary experiments we investigate a number of
JAWS’ limitations: weight estimation can address the assumed access to oracle weights with similar
empirical performance (Appendix [D.5), and JAW’s increased coverage variance with covariate shift
can be explained by reduced effective sample size due to importance weighting (Appendix [D.6).
Additionally, we note that JAW and JAWA share a limitation with weighted conformal prediction
[Tibshirani et al., 2019] of potentially producing overly large intervals in extreme covariate shift
cases where a test point’s normalized likelihood ratio approaches or exceeds . In the future, we aim
to address the problems of reducing coverage variance and improving predictive interval sharpness.
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