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Abstract

The study of language variation examines how
language varies between and within different
groups of speakers, shedding light on how we
use language to construct identities and how
social contexts affect language use. A com-
mon method is to identify instances of a cer-
tain linguistic feature—say, the zero copula
construction—in a corpus, and analyze the fea-
ture’s distribution across speakers, topics, and
other variables, to either gain a qualitative un-
derstanding of the feature’s function or system-
atically measure variation. In this paper, we
explore the challenging task of automatic mor-
phosyntactic feature detection in low-resource
English varieties. We present a human-in-the-
loop approach to generate and filter effective
contrast sets via corpus-guided edits. We show
that our approach improves feature detection
for both Indian English and African American
English, demonstrate how it can assist linguis-
tic research, and release our fine-tuned models
for use by other researchers.

1 Introduction

Linguistic features—such as specific phonological,
syntactic, or lexical phenomena that may be asso-
ciated with a language variety—are widely used
by sociolinguists to quantify linguistic variation
between speakers through feature frequency mea-
surements (Renn and Terry, 2009; Grieser, 2019;
Craig and Washington, 2006), even if subject to
certain limitations (Green, 2017). Since manual
annotation is limited due to the required expert hu-
man labor, automatic methods are a valuable alter-
native (Grieve et al., 2011; Jones, 2015; Eisenstein,
2015; Nguyen et al., 2016). However, accurately
detecting morphosyntactic features (e.g. Figure 1)
remains an open challenge, especially in informal
genres such as transcripts and social media, and in
low resource nonstandard languages. We explore
fine-tuning pretrained language models (LMs) for
utterance-level classification of a feature by train-
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Morphosyntactic features in African American Language
finna (indicates event is imminent): I'm finna be late
habitual be (indicates habitual/iterative meaning): | be out at my bus stop every day
zero copula (omission of a copula): He on the five dollar bill
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Figure 1: Top: Example features. Bottom: Our ap-
proach to generate contrast sets for feature detection.

ing on a contrast set—a small collection of positive
and negative examples that are highly similar—as
recently introduced by Demszky et al. (2021).

Our work makes the following contributions:

* We propose a method for generating mor-
phosyntactically contrastive training data,
combining corpus-driven edits and human-in-
the-loop filtering (§4).

* We evaluate our method’s ability to detect fea-
tures against new baselines on three datasets,
encompassing two Englishes (Indian English
(IndE) and African American English (AAE))
and two centuries of speakers, and show that
our best method outperforms prior work by
up to 16 points in Prec@ 100 scores (§5).

* For further validation, we confirm and extend
the findings of sociolinguistic studies of AAE
which use manual feature annotation to exam-
ine if feature use aligns with social factors like
age and gender (§6).

* Finally, we release training data and models
for detecting 10 features in IndE and 17 in
AAE.!

"https://github.com/slanglab/CGEdit
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2 Related Work

Feature detection. Detecting morphosyntactic fea-
tures in low-resource domains presents significant
challenges. Rule-based approaches have used se-
quences of unigrams and POS tags to identify syn-
tactic features (Blodgett et al., 2016), but many
features cannot be defined by sequences and the
tags may be unreliable. More recently, machine
learning has been used for feature detection by
training domain-specific LMs with synthetically
augmented data (Santiago et al., 2022), fine-tuning
pretrained LMs with contrast sets (Demszky et al.,
2021), or manually filtering results from noisy clas-
sifiers (Austen, 2017). While prior work has only
considered one language variety at a time and pri-
marily evaluated with labeled test sets, we examine
performance on multiple language varieties and
analyze external sociolinguistic validity.

Contrast set generation. Manual generation
of contrast sets has mostly been used for semantic
tasks (Stalitinaité and Bonfil, 2017; Mabhler et al.,
2017; Gardner et al., 2020), and occasionally for
morphosyntactic tasks (Demszky et al., 2021). Un-
like these approaches, our proposed method gen-
erates a morphosyntactically diverse contrast set
via a corpus-guided edit system. Data augmenta-
tion methods for automatic generation of contrast
sets include random edits (Smith and Eisner, 2005;
Alleman et al., 2021), which cannot target spe-
cific linguistic features, or informed edits (Burlot
and Yvon, 2017; Sennrich, 2017; Gulordava et al.,
2018; Miao et al., 2020; Ross et al., 2021), which
require syntactic or semantic annotations that are
not easily available for datasets with nonstandard
languages.

3 Task and Data

3.1 Morphosyntactic feature detection

Given a training set T, target corpus C, and mor-
phosyntactic features F', for each f € F' we model

where f, € {0,1} indicates the utterance z € C
contains the feature when f, = 1. An utterance
may contain multiple features.

3.2 Language Varieties and Data

We consider two English varieties, IndE and AAE,
each with their own target corpora C' and feature
inventories F'; see Appendix A for feature lists.
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Indian English. The International Corpus of
English (ICE) (Greenbaum and Nelson, 1996) is a
collection of national and regional English varieties,
and contains IndE material produced after 1989.
The ICE-India subcorpus that our study uses is the
complete subset of spontaneous spoken dialogues
(21,759 utterances). We use manual annotations of
10 syntactic features from Lange (2012).

African American English. We use two un-
labeled AAE corpora. The first is the Corpus of
Regional African American Language (CORAAL)
(Kendall and Farrington, 2021), which contains so-
ciolinguistic interviews with AAE speakers from
1968-2017 from six US sites (152,069 utterances).
The second is Born in Slavery: Slave Narratives
from the Federal Writers’ Project, 1936-38 (FWP)
(Library of Congress, 2001), a digital archive con-
taining over 2,300 ex-slave narratives, with speak-
ers from 17 US states (148,018 utterances).?

We examine 17 AAE features, sourced from
Green (2002) and Koenecke et al. (2020); examples
of three features are in Figure 1, and a complete list
is in Appendix A. During evaluation, we manually
annotated the top 100 utterances per AAE feature,
for each corpus, for the Prec@100 scores in §5.

4 CGEDIT: Corpus-Guided Edits

4.1 Motivation

Our method starts with a seed set of positive exam-
ples illustrating a feature, then uses corpus n-gram
statistics to generate proposed negative (and addi-
tional positive) examples, which require manual
filtering by the user to define the final training set.
A major motivation is speed and ease of use—it is
easier to filter candidate examples than to manually
write all the examples, as in Demszky et al. (2021).

At the same time, we believe negative examples
should be intelligently synthesized. A morphosyn-
tactic feature is beholden to its syntactic constraints
(i.e. word order, co-occurrence requirements); if a
sentence does not follow these constraints then it
is not an instance of the feature (Wilson and Mi-
halicek, 2011, Ch. 5.2). For example, an instance
of zero copula must have a noun phrase immedi-
ately followed by a predicate and must not have
a copula. The positive example in Figure 2 obeys
these syntactic constraints while the negatives do

’Given authenticity and reliability concerns about FWP
(Maynor, 1988; Wolfram, 1990), we primarily use it to evalu-
ate our method, and not to pursue linguistic questions about
Early African American English.



not. Unlike previous work which uses constraints
to detect or generate positive instances, we gen-
erate negative examples which minimally violate
these constraints to create a contrast set that defines
a tight decision boundary. Based on the view that
good syntax is largely independent from meaning
(Chomsky, 1957), we argue that focusing on syntac-
tic constraint violation is a useful first step. While
potentially valuable, semantic-preserving edits are
beyond the scope of this work.

4.2 Method

Training data. We briefly describe how the con-
trast sets are generated (Figure 2; see Appendix B
for details). For a single feature, the input is a small
set P of 5 positive examples constructed by the au-
thors and an unlabeled target corpus C' to compute
n-gram statistics. The output is a contrast set T'
consisting of both P plus semi-synthetic positive
and negative examples.

The first step proposes candidate examples by
perturbing words in positive examples through
corpus-guided local edits. For each overlapping
3-gram ¢ in a positive example p, we perturb it
by swapping ¢ for a new 2-, 3-, or 4-gram ¢’ that
is both similar to ¢, and has a high frequency in
target corpus C'. Similarity is defined as having 0
to 1 subtoken difference between ¢ and '.> This
step typically produces 10-50 perturbed examples,
which may or may not have the feature. Our corpus-
guided edits are effective because they generate
plausible sentences with targeted edits, while ran-
dom edits often propose ungrammatical output.*

In the second step, the perturbed examples are
manually filtered so that only 2 positive and 3 nega-
tive examples are retained for each original p. Both
p and the new examples are included in the final
training set 7'. This step takes 30-60 seconds per p,
and was performed by the first author.

Models. We fine-tune multiheaded BERT mod-
els, where each head is a binary classifier for a sin-
gle feature (Devlin et al., 2019). We use two sets
of models in our experiments, where a set shares
a language variety, a feature inventory F', target

3Specifically, the set difference between subtoken sets
set(t) and set(t') must have cardinality O or 1; thus a 2-gram
t' represents a (sub)token deletion, a 4-gram an insertion, and
perturbations may change order as well. Since only a single
3-gram is changed, the resulting perturbed utterance has a low
edit distance to the original.

*While our n-gram swapping heuristic is straightforward,
generating from a C-specific language model could be an
interesting alternative in future work.

13

t

POSITIVE He on the five dollar bill

t, n=2

CGEDIT NEGATIVE on the five dollar bill

t, n=3

CGEDIT NEGATIVE was on the five dollar bill

t, n=4

CGEDIT NEGATIVE He was on the five dollar bill

MANUALGEN NEGATIVE He is on the five dollar bill

Figure 2: Examples of negative examples generated
via our approach, compared to a semantically-matched,
manually created example (MANUALGEN).

corpora (' (i.e. test set for our results in Table 1),
and a BERT variant (bert-base-uncased for IndE,
bert-base-cased for AAE, selected based on pre-
liminary experiments). The only variation between
models within a set is the approach used to generate
the training set 7. Models were fine-tuned with
cross-entropy loss for 500 epochs using the Adam
optimizer, batch size of 64, and learning rate of
1073, warmed up over the first 150 epochs.’

5 Results and Analysis

Baselines. We compare our approach (which we
refer to as CGEDIT) to several baseline methods,
all of which take the same seed set of positive ex-
amples P then add negative examples to complete
the training set. Examples in P were sourced from
Demszky et al. (2021) for IndE and crafted by the
authors for AAE.

MANUALGEN: The approach used in Demszky
et al. (2021). This method involves manually gen-
erating negatives by modifying positive examples
so they are (1) semantically-similar Mainstream
American English versions, and (2) do not have the
feature (see Figure 2); see discussion in §4.1. Next,
we also test two methods to completely automati-
cally generate negative examples:

AUTOGEN: This approach automatically gen-
erates negative examples by dividing a positive
example p into n-grams and shuffling the n-grams.

AUTOID: Automatic identification randomly
chooses unlabeled examples from target corpus
C as the negatives. The assumption that unlabeled
examples are negatives with class label noise un-
derpins contrastive learning (Chen et al., 2020) and
PU learning methods (Bekker and Davis, 2020).

Overall results. Table 1 presents performance

>Early experiments indicated that class-balanced loss did
not improve scores.



ICE-India CORAAL FWP
Approach ROC-AUC AP  Prec@100 Prec@100 Prec@100
AUTOGEN 68.94 12.63 16.93 - -
AuTOoID 74.90 15.24 17.87 - -
MANUALGEN 86.83 25.77 31.63 57.88 58.71
AUTOID + MANUALGEN 76.34 19.95 24.30 - -
CGEDIT 84.92 27.48 32.50 6741 68.00
MANUALGEN + CGEDIT 88.76 29.32 35.67 64.94 74.35

Table 1: Area under precision-recall curve (ROC-AUC), average precision (AP), and precision@ 100 in percentages
for feature detection on all three corpora. Results are averages over all features (10 in ICE-India, 17 in CORAAL and
FWP). Reported scores for ICE-India are averaged from three runs with different random seeds. Best scores are

bolded.

of the proposed approach against baselines and
prior work. AUTOGEN and AUTOID perform
the worst across metrics. CGEDIT outperforms
MANUALGEN, the best prior work on this task,
by up to 10 points in Prec@ 100 scores for both
AAE datasets, CORAAL and FWP. Combining
the training sets of MANUALGEN and CGEDIT
yielded the best performance, consistently outper-
forming MANUALGEN by about 4 points across
metrics in ICE-INDIA and by about 10-15 points
in Prec@100 scores for both CORAAL and FWP.
These gains can’t simply be attributed to more
training data, as combining AUTOID and MANU-
ALGEN training sets did not improve performance.

Better performance on AAE corpora may be due
to a few variables: a higher number of AAE fea-
tures means a larger total training set; larger AAE
corpora mean more target corpus n-grams; the se-
lected AAE features may be easier to distinguish
or more prevalent than the IndE ones. Discrepan-
cies between CORAAL and FWP are likely due to
different feature prevalences.

Results by feature. Feature difficulty is similar
across approaches; invariant features are easier to
detect (i.e. focus itself in IndE; finna in AAE),
while features with long-distance dependencies are
more difficult (i.e. double object construction in
AAE). See Appendix C for complete results.

6 Replicating Prior Sociolinguistic Work

We recreate three recent studies of CORAAL where
original authors manually annotated AAE mor-
phosyntactic features and analyzed correlations be-
tween feature frequency and speaker metadata (i.e.
gender, region, socioeconomic status). We used the
combined MANUALGEN + CGEDIT model and
Classify & Count (CC, summing hard classifica-
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Figure 3: African American English feature variation
by speaker’s social factor, across all of CORAAL. Re-
gions are Atlanta, GA; Princeville, NC; Washington,
DC; Valdosta, GA; Lower East Side, NY; Rochester,
NY; socioeconomic classes are Working Class, Lower
Middle Class, Upper Middle Class.

tions (Bella et al., 2010)) to calculate per-speaker
feature frequency.® The same subsets of features
and CORAAL were used as in previous work when
possible; detailed results are in Appendix C.
Koenecke et al. (2020) annotated 35 morphosyn-
tactic features in 150 utterances. We confirm their
conclusions that average feature frequency was low-
est in Rochester, followed by DC, then Princeville;
and lower among male speakers than female.
Cukor-Avila and Balcazar (2019) looked at 3
features over 14,506 utterances. They qualitatively
found considerable variation in feature use between
speakers, even when within the same age group.
We confirm this quantitatively: standard deviation
between speakers within an age group is larger than
standard deviation between age group means.
Grieser (2019) examined 14 features over 18,553
utterances. We confirm findings that age and so-

®In early experiments we tested the Saerens et al. (2002)
EM algorithm and PCC (Bella et al., 2010) to improve fre-
quency estimation, but found few improvements.



cioeconomic status are negatively correlated with
feature use. Grieser also found that being male was
weakly correlated with feature use; interestingly,
our results agree when we look at all 17 features
or all of CORAAL, but not when we look at the
same feature and data subsets as Grieser. This may
indicate how small sample size (in terms of both
features and datasets) can skew results.

See Figure 3 for average frequencies of our 17
features in all 152,069 utterances of CORAAL, bro-
ken down by several social factors of the speaker.
Feature detection at this scale is only possible with
automatic methods, and allows researchers to draw
more reliable conclusions about language use.

7 Discussion and Future Work

We propose a corpus-driven and manually-filtered
approach to generate contrast sets for morphosyn-
tactic feature detection in low-resource language
varieties, which may be useful for novel sociolin-
guistic analysis in future work. This approach may
be extendable to datasets with other nonstandard
language varieties (e.g. ICE with 14 English vari-
eties (Greenbaum and Nelson, 1996), QADI with
18 Arabic varieties (Abdelali et al., 2021), Cor-
pus del Espafiol with 21 Spanish varieties (Davies,
2016), or Masakhane’s African language collection,
currently under development (V et al., 2020)), in
addition to social media corpora, which are largely
unlabeled and could benefit from automatic meth-
ods.

Additionally, while we only examined automatic
identification of noisy negatives, future work might
explore automatic identification of reliable nega-
tives by using an apt word representation and dis-
tance function to obtain unlabeled examples which
are least similar to the positives (Bekker and Davis,
2020). Other extensions might consider adding
manual filtering to an automatic identification ap-
proach, such as filtering through and identifying
the nearest unlabeled examples that are true nega-
tives, instead of identifying reliable (e.g. distant)
negatives.

8 Ethical Considerations and Broader
Impact

Our objective is to expand the linguistic coverage
of NLP tools to include marginalized language va-
rieties, so that they may also benefit from the lin-
guistic analysis made possible by methodological
innovation. We hope to aid both sociolinguistic and
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corpus linguistic researchers studying nonstandard
language use.

Since language varieties, including the ones ex-
amined in this study, may correlate with the na-
tional origin or ethnicity of the speaker and linguis-
tic feature frequency may correlate with social fac-
tors, such as gender or socioeconomic status, there
is a risk of automatic feature detection being used to
infer personal information about a speaker (Kroger
et al., 2022; Chancellor et al., 2019; Veronese et al.,
2019). Our study has sought to show that there is a
correlation between language use and social factors,
but does not support any claims about the accuracy
or ethics of using linguistic feature frequency to
predict a given social factor.

There is not a one-to-one mapping of feature fre-
quency to ethnicity, socioeconomic status, or any
other social factor. Two speakers with the same
set of social factors may exhibit different feature
frequencies; life circumstances do not determinis-
tically produce linguistic competence. In addition,
linguistic competence does not deterministically
produce feature frequency. Every speaker has the
ability to style-shift and thus use linguistic features
to varying degrees for a given context, exhibiting a
range of feature frequencies throughout their spo-
ken interactions (Sharma, 2017, 2018). There are
many factors that may influence observed feature
frequency, including pragmatic context, register,
topic, relationship between the speakers, relation-
ship to one’s own identity, and so on. This complex
relationship between language production and ex-
ternal factors should be considered when using this
technology.
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A Feature inventories

Level IndE Feature

Example utterance

Noun phrase Non-initial existential there
Focus itself
Focus only

Verb phrase Zero copula

Sentence level  Left dislocation
Resumptive subject pronoun
Resumptive object pronoun
Topicalized object (argument)

library facility was not there

We are feeling tired now itself

I like dressing up I told you at the beginning only
Everybody (is) so worried about the exams

we elders, we don’t have much time to converse

the father, sometimes he is unemployed

also pickles, we eat it with this jaggery and lot of butter
brothers and sisters you have

Topicalized non-argument constituent ~ with your child you have come

Invariant tag no/na/isn’t it

both works same hours, isn’t it?

Table 2: Features of Indian English used in our study.

Level Grammatical domain

AAE Feature

Example utterance

Noun phrase Pronominal case

Verb phrase Copula deletion Zero copula
Tense marking
Aspect marking Habitual be
Resultant done
Other verbal markers finna
come
Double modal
Negation Negative concord

Negative auxiliary inversion
Non-inverted negative concord
Preverbal negator ain’t

Zero 3rd p sg present tense -s
is/was-generalization

Zero plural -s
Ditransitive constructions Double-object construction
Interrogative constructions ~ Wh-question

Sentence level ~ Subject-verb agreement

Number marking

Zero possessive -’s

Double marked/overregularized

go over my grandmama(’s) house
she (is) the folk around here

she likeded me the best

I just be liking the beat

you done lost your mind

she’s finna have a baby

she come grabbing me on my shirt
he might could really get our minds
I ain’t doing nothing wrong

don’t nobody know what I had
nobody don’t say nothing

I ain’t doing nothing wrong

I don’t know if it count(s)

they is die hard Laker fans

about four or five month(s)

I got me my own car

what they was doing?

Table 3: Features of African American English used in
our study.
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B Approach descriptions
B.1 Proposed approach

A positive example p is defined as (1, z2, ..., Tp)
where z; is a subtoken. For each positive example
D

1. A 3-gram instance ¢t in p is defined as
(i, Tit1,xiy2). For each 3-gram instance ¢
in p:

(a) For each n € {2,3,4}, find the 3 most
frequent n-grams from the corpus where,
for each n-gram ¢, the set difference be-
tween set(t) and set(t') is at most one
subtoken.

(b) Create perturbed examples by swapping
t for t'. These perturbed examples may
or may not have the feature.

Randomly order the perturbed examples.
Manually filter and label the perturbed exam-
ples; examples that pass the filter should not
have invalid subtoken combinations, positive
examples should unambiguously have the fea-
ture, and negative examples should unambigu-
ously not have the feature. Examples that
pass the filter (positive or negative) may be
ungrammatical. Stop after 2 positives and 3
negatives have passed the filter. Including the
original positive example p, you should have
3 positives and 3 negatives.

We provide here an example of our approach.
For the feature zero copula, we are given p = He
on the five dollar. We generate:

Perturbed example

He on the last five

He on the five

on the other five dollar

He on the five hundred dollar
He was on the dollar

on the five dollar

the on five dollar

He and five on the dollar

He was on the five dollar
He on the five dollar bill

He beating on the five dollar
He on the dollar

He on the other dollar

He on five dollar

He the five dollar

He on five dollar bill

was on the five dollar

20

The manually filtered contrast set looks like:

Example Label
He on the five dollar
He on the last five

He on the five

on the other five dollar
He was on the dollar

on the five dollar

OO O = =

B.2 Manual generation

Given a positive example p, manually construct a
negative example by modifying p so they are (1)
semantically-similar MAE versions, and (2) do not
have the feature.

B.3 Automatic generation

For each positive example p:

1. Randomly choose n-gram order, where n is
some value 0 < n < length(p) - 1.
Split positive example into sequential non-
overlapping n-grams from left to right. If
length of sentence isn’t a multiple of n, then
the remaining words form an additional m-
gram (m < n).
Randomly shuffle the list of n-grams.
Repeat steps 1-3 until you have three distinct
shuffled negative examples per positive exam-
ple.’

2.

98]

B.4 Automatic identification

Randomly choose unlabeled examples from target
corpus and label them as the negative examples.
Five negatives are chosen per positive example.®

C Extended results and figures

Tables 4, 5, and 6 are per-feature results for Indian
English features in ICE-India. Tables 7 and 8 are
per-feature results for African American English
features in CORAAL and FWP. Tables 9, 10, and
11 are standard deviation scores for Indian English
features in ICE-India. Figures 4, 5, and 6 are de-
tailed results from replicating prior sociolinguistic
work.

"Number of negatives per positive was a tuned hyperpa-
rameter.

$Number of negatives per positive was a tuned hyperpa-
rameter.



ROC-AUC

AuTOoID MNLG.
Feature AutoG. AuTOoID MNLG. +MNLG. CGEDbIT +CGEDIT
Non-init. exist. there 91.14 90.47 89.88 89.74 95.46 89.03
Focus itself 94.08 98.02 98.70 97.58 99.49 99.89
Focus only 85.38 97.00 98.94 95.40 96.72 99.02
Zero copula 53.28 61.82 73.75 67.77 73.79 75.61
Left dislocation 64.17 70.18 93.13 69.32 89.92 93.14
Res. subject pronoun 72.81 70.03 93.60 67.92 88.32 89.94
Res. object pronoun 67.49 70.46 86.87 78.24 86.44 88.93
Topic. object (arg.) 63.20 59.17 76.72 54.28 72.08 81.30
Topic. non-arg. const. 44.90 55.48 69.24 55.55 59.99 79.54
Invar. tag no/na/isn’t it 52.96 76.37 87.46 87.55 86.95 91.24
Macro average 68.94 74.90 86.83 76.34 84.92 88.76

Table 4: ROC-AUC results on ICE-India, averaged over 3 runs.

AP
AuTolD MNLG.
Feature AuTOG. AUTOID MNLG. +MNLG. CGEDbIT +CGEDIT
Non-init. exist. there 46.56 41.32 53.16 51.84 61.11 59.56
Focus itself 39.99 40.16 74.76 72.76 78.12 75.14
Focus only 24.23 32.74 40.04 28.12 41.10 44.31
Zero copula 01.78 04.96 02.05 04.19 03.88 02.95
Left dislocation 02.78 05.70 25.78 09.47 23.07 26.63
Res. subject pronoun 03.68 03.57 21.72 07.55 20.64 20.50
Res. object pronoun 00.24 01.58 02.47 00.93 02.96 05.66
Topic. object (arg.) 02.04 15.95 06.99 02.13 06.00 10.16
Topic. non-arg. const. 01.11 02.53 03.78 02.26 02.65 06.10
Invar. tag no/na/isn’t it 03.89 04.96 26.95 20.26 37.26 42.18
Macro average 12.63 15.24 25.77 19.95 27.48 29.32

Table 5: AP results on ICE-India, averaged over 3 runs.

Prec@100

AuTOID MNLG.
Feature AuTOG. AUTOID MNLG. +MNLG. CGEDbIT +CGEDIT
Non-init. exist. there 78.33 74.00 86.00 82.00 84.33 87.00
Focus itself 15.67 18.67 28.00 25.00 28.00 28.00
Focus only 34.33 41.33 48.33 39.67 45.00 48.33
Zero copula 03.33 01.67 03.33 05.00 03.00 05.33
Left dislocation 08.33 18.33 46.33 27.00 42.67 42.00
Res. subject pronoun 09.67 13.67 39.00 24.67 36.00 31.67
Res. object pronoun 00.00 01.00 03.67 01.67 04.67 08.33
Topic. object (arg.) 05.67 03.00 15.00 06.67 12.33 19.33
Topic. non-arg. const. 01.33 01.00 07.33 06.33 07.00 13.67
Invar. tag no/na/isn’t it 12.67 06.00 39.33 25.00 62.00 73.00
Macro average 16.93 17.87 31.63 24.30 32.50 35.67

Table 6: Prec@ 100 results on ICE-India, averaged over 3 runs.Prec @ 100 results on CORAAL. Note that if there are
less than 100 instances of a certain feature (e.g. finna occurs only 35 times in this dataset, confirmed via keyword
search), then its Prec@ 100 score will have an upper bound of less than 1.
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Prec@100

MNLG.
Feature MNLG. CGEbpIT +CGEDIT
Zero possessive -’s 030.0 071.0 088.0
Zero copula 089.0 100. 0 100.0
Double marked 024.0 031.0 045.0
Habitual be 100.0 100.0 100.0
Resultant done 089.0 097.0 097.0
finna 035.0 035.0 035.0
come 011.0 016.0 015.0
Double modal 014.0 014.0 013.0
Negative concord 100.0 096.0 077.0
Neg. auxiliary inversion 078.0 096.0 089.0
Non-inverted neg. concord 009.0 010.0 012.0
Preverbal negator ain’t 100.0 100.0 100.0
Zero 3rd p sg pres. tense -s 096.0 100.0 098.0
is/was-generalization 063.0 100.0 100.0
Zero plural -s 017.0 062.0 059.0
Double-object construction 050.0 030.0 018.0
Wh-question 079.0 088.0 058.0
Macro average 057.9 067.4 064.9

Table 7: Prec@100 results on CORAAL. Note that if there are less than 100 instances of a certain feature (e.g. finna
occurs only 35 times in this dataset, confirmed via keyword search), then its Prec@ 100 score will have an upper
bound of less than 1.

Prec@100
MNLG.
Feature MNLG. CGEbIT +CGEDIT
Zero possessive -’s 011.0 042.0 026.0
Zero copula 097.0 099.0 100.0
Double marked 053.0 049.0 095.0
Habitual be 078.0 099.0 097.0
Resultant done 093.0 100.0 100.0
finna 000.0 000.0 000.0
come 001.0 050.0 082.0
Double modal 004.0 005.0 004.0
Negative concord 100.0 100.0 100.0
Neg. auxiliary inversion 093.0 100.0 100.0
Non-inverted neg. concord 015.0 024.0 056.0
Preverbal negator ain’t 100.0 100.0 100.0
Zero 3rd p sg pres. tense -s 100.0 100.0 100.0
is/was-generalization 100.0 100.0 100.0
Zero plural -s 024.0 070.0 096.0
Double-object construction 036.0 028.0 020.0
Wh-question 093.0 090.0 088.0
Macro average 058.7 068.0 074.4

Table 8: Prec@100 results on FWP. Note that if there are less than 100 instances of a certain feature (e.g. finna
occurs 0 times in this dataset, confirmed via keyword search), then its Prec@ 100 score will have an upper bound of
less than 1.
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ROC-AUC Standard Deviation

AuTOID MNLG.
Feature AuTOG. AUTOID MNLG. +MNLG. CGEDbIT +CGEDIT
Non-init. exist. there 03.29 00.69 00.65 07.39 01.89 08.42
Focus itself 03.38 00.54 00.42 00.45 00.47 00.03
Focus only 06.40 01.59 00.66 01.25 02.74 00.48
Zero copula 04.63 03.80 07.95 04.71 06.87 01.04
Left dislocation 07.90 01.83 01.24 16.00 01.62 00.78
Res. subject pronoun 04.62 07.10 00.39 17.13 04.77 05.24
Res. object pronoun 04.73 06.15 05.66 07.79 01.77 00.70
Topic. object (arg.) 06.20 02.88 10.93 06.49 04.89 05.39
Topic. non-arg. const. 03.25 05.52 03.87 01.79 05.57 03.31
Invar. tag no/na/isn’t it 07.64 04.35 03.04 01.59 10.77 04.97
Macro average 05.20 03.45 03.48 06.46 04.14 03.04

Table 9: Standard deviation of ROC-AUC results on ICE-India over 3 runs.

AP Standard Deviation

AuToID MNLG.
Feature AuTOG. AuTOID MNLG. +MNLG. CGEDIT +CGEDIT
Non-init. exist. there 09.52 03.07 04.32 15.13 09.13 08.09
Focus itself 09.87 11.30 03.44 08.26 04.30 08.19
Focus only 08.36 02.62 05.68 08.01 04.74 00.43
Zero copula 01.79 05.45 01.22 02.07 01.50 01.36
Left dislocation 00.80 01.31 04.90 05.84 01.36 00.78
Res. subject pronoun 00.70 03.12 07.30 05.54 08.82 04.91
Res. object pronoun 00.07 01.77 00.72 00.89 00.65 01.83
Topic. object (arg.) 01.29 25.05 02.46 00.57 01.31 01.18
Topic. non-arg. const. 00.13 01.93 00.99 00.96 00.93 00.39
Invar. tag no/na/isn’t it 00.73 03.02 13.96 07.02 25.90 16.98
Macro average 03.33 05.86 04.50 05.43 05.86 04.41
Table 10: Standard deviation of AP results on ICE-India over 3 runs.
Prec@100 Standard Deviation
AuTOID MNLG.
Feature AUTOG. AuToID MNLG. +MNLG. CGEDIT +CGEDIT
Non-init. exist. there 08.02 07.00 04.00 12.90 04.16 03.61
Focus itself 03.51 04.04 00.00 31.19 00.00 00.00
Focus only 06.03 04.16 06.43 07.13 05.57 05.51
Zero copula 01.15 01.53 02.08 01.30 03.00 01.53
Left dislocation 04.04 06.66 05.20 34.27 05.51 02.65
Res. subject pronoun 04.51 03.21 14.73 21.81 17.69 07.09
Res. object pronoun 00.00 00.00 01.15 02.89 00.58 02.52
Topic. object (arg.) 03.79 02.65 05.20 06.48 02.31 03.51
Topic. non-arg. const. 00.58 00.00 03.21 07.57 03.00 03.79
Invar. tag no/na/isn’t it 04.16 04.36 16.20 38.91 25.51 17.09
Macro average 03.58 03.36 06.15 16.45 06.73 04.73

Table 11: Standard deviation of Prec @100 results on ICE-India over 3 runs.
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Figure 4: Confirming results from Koenecke et al. (2020). Examined 17 features over entire DCB, PRV, and ROC
subcorpora. We find higher feature frequencies among male speakers than female speakers; and highest feature
frequency in Princeville, followed by DC, and then Rochester.
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Figure 5: Confirming results from Cukor-Avila and Balcazar (2019). Examined 3 features over files specified in
their study from DCA and DCB subcorpora. Agl corresponds to ages less than 20, ag2 corresponds to ages 20-29,
ag3 corresponds to 30-50, and ag4 corresponds to 50+. We find that standard deviation between speakers in an age
group is equal to or larger than standard deviation between age groups.
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Figure 6: Confirming results from Grieser (2019). Examined 14 features over files specified in their study from
DCA subcorpus. Age group 1 corresponds to ages less than 20, age group 2 corresponds to ages 20-29, age group
3 corresponds to 30-50, and age group 4 corresponds to 50+; the socioeconomic classes, from left to right, are
Lower Working Class, Upper Working Class, and Middle Class. We find that age and socioeconomic status are
negatively correlated with feature use. We find that men have a slightly lower average feature frequency; however,
when looking at all of CORAAL for all of our features, we confirm that men have a higher average feature frequency.
This is perhaps an example of how small sample size can skew results.
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