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Abstract

Zero-shot event extraction (EE) methods in-

fer richly structured event records from text,

based only on a minimal user specification and

no training examples, which enables flexibil-

ity in exploring and developing applications.

Most event extraction research uses the Au-

tomatic Content Extraction (ACE) annotated

dataset to evaluate supervised EE methods, but

can it be used to evaluate zero-shot and other

low-supervision EE? We describe ACE’s event

structures and identify significant ambiguities

and issues in current evaluation practice, includ-

ing (1) coreferent argument mentions, (2) con-

flicting argument head conventions, and (3) ig-

norance of modality and event class details. By

sometimes mishandling these subtleties, cur-

rent work may dramatically understate the ac-

tual performance of zero-shot and other low-

supervision EE, considering up to 32% of cor-

rectly identified arguments and 25% of cor-

rectly ignored event mentions as false nega-

tives. For each issue, we propose recommen-

dations for future evaluations so the research

community can better utilize ACE as an event

evaluation resource.

1 Introduction

Zero-shot event extraction (EE) methods infer

richly structured instances of action or relationship

occurrences from unstructured text data, based on a

user-supplied natural language specification of the

desired event—without annotated training exam-

ples (Du and Cardie, 2020; Liu et al., 2020; Li et al.,

2021; Lyu et al., 2021). The extracted structure is

useful for many applications such as analyzing in-

teractions between entities and performing more

intelligent question answering (Gao et al., 2016;

Liu et al., 2017a; Cao et al., 2020; Li et al., 2020b),

and the low resources required by zero-shot EE

methods further this practical advantage. We refer

to the structure as an event, where each event could

have an arbitrary structure as needed. Each struc-

ture contains information such as the participants

involved, content, and location of the event.

To evaluate supervised EE methods, many

works use the Automatic Content Extraction (ACE)

dataset—specifically, the Linguistic Data Consor-

tium’s ACE 2005 Multilingual Training Corpus

(Doddington et al., 2004),1 which includes English,

Chinese, and Arabic documents and resulted from

the U.S. federal government’s ACE program.2 The

ACE dataset stores information about entities, re-

lations, and events from 598 (for English) doc-

uments in a rich structure; our focus is mostly

on its events. ACE is frequently used for event

extraction modeling and evaluation, and is often

claimed to be the most widely used such dataset

(§3). While there are many somewhat similar struc-

tured semantic datasets, ACE still shines in hav-

ing whole-document annotations (contra FrameNet;

Baker et al., 2003; Baker and Sato, 2003; Fillmore

et al., 2003), realistically non-lexical-specific event

classes (contra PropBank (Palmer et al., 2005),

OntoNotes (Weischedel et al., 2017), and Semantic

Dependencies (Oepen et al., 2014)), event modality

(contra PB, ON, SD), English data (contra Enti-

ties, Relations, and Events (ERE)),3 and specifi-

cation of event arguments (contra Richer Event

Description (RED); O’Gorman et al., 2016) that

are simultaneously represented both as text spans

1
https://catalog.ldc.upenn.edu/LDC2006T06

https://doi.org/10.35111/mwxc-vh88
2
https://www.ldc.upenn.edu/collaborations/

past-projects/ace, http://web.archive.org/web/

20080303183132/https://www.nist.gov/speech/

tests/ace/. A separate evaluation dataset was not released
publicly (Haghighi and Klein, 2009, footnote 7); we follow
the convention of subsequent research of referring to the
public release LDC2006T06 as “the ACE dataset” or simply
“ACE,” despite “training” in its title.

3Song et al. (2015) promise an LDC release of their
ERE annotations while Aguilar et al. (2014) analyzes ERE’s
guidelines—both with English examples—but LDC’s cat-
alog suggests only a Chinese corpus was ever released
(LDC2020T19). Li et al. (2020b) reports ERE English re-
sults, presumably from a proprietary dataset.
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ity enables zero-shot EE methods to be more prac-

tical, extracting structured data as events without

requiring training examples, each practical applica-

tion has a different objective. For example, social

scientists and political forecasters may need to ana-

lyze historical events that actually happened in the

past (Schrodt et al., 1994; O’Connor et al., 2013;

Boschee et al., 2013; Halterman et al., 2021; Hanna,

2017; Hürriyetoğlu et al., 2021; Giorgi et al., 2021;

Stoehr et al., 2021), such as in the widely-used

ICEWS automatically generated events dataset

(Boschee et al., 2017). However, in other appli-

cations such as those on opinion or sentiment tasks

(Swamy et al., 2017), the aim of zero-shot EE meth-

ods may be benefited by hypothetical events.

Many aspects of modality have been explored in

computational modeling, such as temporal seman-

tics (Timebank (Pustejovsky et al., 2003)), factual

versus uncertain or hypothetical status (Factbank

(Saurí and Pustejovsky, 2009), Pragbank (de Marn-

effe et al., 2012), (Diab et al., 2009; Prabhakaran

et al., 2015; Stanovsky et al., 2017; Rudinger et al.,

2018; Yao et al., 2021; Lee et al., 2015)), and in

literary domains (Litbank (Bamman et al., 2019,

2020)). ACE includes a simple modality label for

each event instance as either ASSERTED to indicate

an event instance that was referred to as a real oc-

currence, or OTHER for all others: non-grounded

beliefs (e.g. rumors), hypotheticals, commands,

threats, proposals, desires, promises, etc. In fact,

for 25% of event instances in ACE, the modality tag

label is OTHER. Yet, the 38 works that we explored

in §3 which use ACE to evaluate EE methods do

not include modality as part of the task definition.

We propose that future work could better use ACE

by predicting or analyzing subsets of modalities to

more clearly support downstream applications.

Finally, modality is important since it may

also interact with modeling (Cai and O’Connor,

2023). Zero-shot EE methods involving question-

answering (QA) or text entailment (TE) models

(Lyu et al., 2021), may enforce modality restric-

tions through the language in the query. For exam-

ple, the past tense question “did the police arrest

someone?” (Halterman et al., 2021) asks for a re-

ported occurrence that the police are arresting or

have arrested someone, but not an intended or hy-

pothetical arrest. Whether this matches user intent,

and whether models respect or ignore the query’s

modality restrictions, are important avenues for

future work; ACE data can aid such analysis.

5 Conclusion

We explore how to use ACE, which is a gold stan-

dard dataset containing annotations of events from

diverse text data in a rich structure, to evaluate

zero-shot and other low-supervision EE methods

by identifying issues that may more severely affect

their evaluation. We particularly find difficulties

with evaluating spans of events due to a lack of

training data for zero-shot and low-supervision EE

methods to learn superficial annotation quirks from.

However, we present methods to overcome these

issues and demonstrate them on the English por-

tion of ACE, noting that in principle they may be

adaptable to any language. Ultimately, we advocate

for using ACE to evaluate zero-shot and other low-

supervision EE methods after addressing the issues,

and discuss the potential for using ACE in smarter

ways to evaluate different types of EE methods in

the future.
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A Appendix

A.1 Limitations

This work identifies specific issues and provides

solutions to them. Recommendations 1 and 3 have

solutions that could completely eliminate the issue

that they address. The method that we introduce

for recommendation 2 eliminates inconsistency in

selecting the head of an argument extent; however,

more ways of selecting the head may exist. Future

work could explore additional ways of selecting

the head in order to further reduce the chance that

a correctly identified argument is considered as

incorrectly identified.

A.2 Risks

The risks are the same as the risks for event ex-

traction and information extraction. While a large

literature, portions of which we reference, exists

on ACE event extraction, less attention has been

paid to its ethical and social implications. Sociopo-

litical events, which ACE often focuses on, may

be of great interest to social scientists (e.g. the

CASE workshop) as well as having government

and military intelligence utility (presumably, an

original motivation of the ACE program: while its

original websites11 and papers (Doddington et al.,

2004) do not appear to explicitly specify a funding

agency, they cite the earlier Message Understand-

ing Conference (MUC) as its predecessor, whose

proceedings explicitly cite DARPA as a sponsor

(muc, 1991)). See, for example, Li et al. (2020b)’s

ethical discussion of dual use issues for their par-

tially ACE-based multimodal tracking/surveillance

system.

A.3 Issues with the Current Literature for

Identifying Arguments

In Section 4, we identified that several recent works

since 2018, including some on zero-shot EE, do not

11
https://www.ldc.upenn.edu/collaborations/

past-projects/ace http://web.archive.org/web/

20080303183132/https://www.nist.gov/speech/

tests/ace/
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evaluate the correctness of an argument by compar-

ing it against all possible references to the argument

within a sentence. We discuss more details about

such works.

Wadden et al. (2019) state that "the ACE data

set lacks coreference annotations," and the original

released code12 does not consider evaluating an

argument against multiple references to the same

argument. (As we note, ACE does in fact include

significant coreference annotations.) Later, a third

party added a software option to include clusters of

entity spans, where a cluster contains spans of refer-

ences referring to the same entity throughout a doc-

ument, along with the event information. However,

with this option, coreference resolution is still diffi-

cult because neither the entity information nor the

event argument information in the pre-processed

data includes an ID. While the pre-processed data

includes entity and event argument spans, the spans

may not completely match so mapping an event

mention argument to an entity mention to check for

multiple references using the pre-processed data be-

comes very difficult. Another third party also added

code to gather coreference information correspond-

ing to each event, but in the Github repository, one

of Wadden et al. (2019)’s original authors states

that both of these additions are unofficial.

We examine code bases of several works that

design their pre-processing code similarly to Wad-

den et al. (2019) and find that they also do not

collect all possible references to arguments from

ACE (Du and Cardie, 2020; Lin et al., 2020; Lyu

et al., 2021; Lu et al., 2021; Li et al., 2021). The

Du and Cardie (2020) pre-processing code is most

similar to the Wadden et al. (2019) pre-processing

code, and the evaluation code does not compare

arguments extracted by an EE method with ACE

annotated references. Lin et al. (2020) and Lyu

et al. (2021) state that they follow Wadden et al’s

pre-processing code and release their code bases.

Although the code is more different than Du and

Cardie (2020)’s code is, it does not gather multiple

gold references for the same argument. Lyu et al.

(2021) mention that some errors in the evaluation

are attributable to this coreference issue. Further,

Li et al. (2021) and Lu et al. (2021) both state that

they follow Wadden et al. (2019)’s pre-processing

and their respective code bases reflect this. Li et al.

(2021) additionally state that they do not need to

perform coreference resolution.

12
https://github.com/dwadden/dygiepp

A.4 Exploration into the ACE Head and

UD-based Head

We discuss the algorithm for identifying the UD-

based head from the argument extent, and then

show examples of the head that ACE identifies ver-

sus the head that the UD-based algorithm extracts.

A.4.1 Algorithm

The algorithm identifies the head of an argument

extent in a way that is consistent with the Universal

Dependency Parsing (UD) definition of head, but

has slight modifications to suit the interpretation

that a head could be an entire named entity and

to work around possible well-known types of mis-

parses by the UD formalism. The first step of the

algorithm is to apply a tokenizer on the argument

extent such that hyphens and apostrophes do not

break words apart. Next, use SpaCy3 to construct

a list of named entities that do not include the date,

time, ordinal, or cardinal entity types. After, find

the lowest common ancestor (LCA) for the argu-

ment extent. If the LCA is not within a named

entity of the argument extent, select it as the head.

Otherwise, select the named entity that the LCA is

a substring of as the head.

The algorithm additionally handles two special

cases that could complicate the UD selection of

the appropriate head. If a null relativizer exists

in an event argument, the UD parser may select a

verb as the head. For example, in: “at least seven

journalists killed covering the conflict", the parser

selects “killed" as the head, which is incorrect. In

addition, if a relative pronoun exists in an event

argument, as in: “leader of the Iraq arms program

who defected for a time", the UD parser may select

the relativizer, “who", as the head. To work around

these cases, the algorithm considers the argument

extent to end after the first instance of a verb or

relativizer pronoun that occurs after a noun (after a

noun to avoid mis-identifying heads for cases such

as: “these battered buildings").

We run the algorithm over all of the argument

extents in ACE that are not of the form “[x] and/or

[y]" since ACE has an exception of extracting two

heads ([x] and [y]) from such extents, and find

three mistakes out of a sample of 300. On the

rare single-word case that a mistake occurs, the

argument span usually contains a noun compound

with spaces (most such noun compounds do not

indicate a mistake), and none of these spans contain

null relativizers.

1661



A.4.2 Contradictions

We show surprising discrepancies between the

head that ACE identifies and the head that the

UD-based algorithm identifies with respect to an

argument extent below. Similar to the examples

in Figure 3 of the main paper, the head that ACE

identifies is in red brackets and the head that the

UD-based algorithm identifies is in blue brackets.

the [Houston [Center]ACE ]AUT

[Wall [street]AUT ]ACE

[aol time [warnerings]AUT ]ACE

[f-14 [aircraft]ACE ]AUT

another [half-[brother]ACE ]AUT of saddam

hussein

[neither]AUT of the [women]ACE

the [[Office]ACE of the President]AUT

the [[president]AUT ]ACE-elect of the American

Medical Association

several [[parts]ACE ]AUT of southern Iraq

[hundreds]AUT of [civilians]ACE in East Timor

a [[warren]ACE ]AUT of cells

[thousands]AUT of U.S. [troops]ACE

the [[Shah]ACE of Iran]AUT

the [U.S. Army [7th Cavalry]ACE]AUT

[American [Marines]ACE ]AUT

two [U.S. [Marines]ACE ]AUT killed in combat

21-year- old [Marine Corporal [Randall Kent

Rosacker]ACE ]AUT

[delma [banks]AUT ]ACE

the [national youth and student peace [coali-

tion]AUT ]ACE

[persian [gulf]AUT ]ACE

the [center]ACE of the second largest city in iraq,

[basra]AUT

the [urbuinano [island]AUT ]ACE

the [catholic [church]ACE ]AUT in phoenix, arizona

two very strong – [militant groups]ACE

British [Desert [Rats]AUT ]ACE

the [Alfred P. Murrah federal [building]AUT ]ACE

his [ex-[wife]ACE ]AUT

[tight [ends]AUT ]ACE

[9]AUT [more]ACE

[19]AUT [more]ACE

[second-[graders]ACE ]AUT

A.5 ACE Experiment Details

To extract statistics about coreference, we modify

Wadden et al’s pre-processing code. In the analysis,

we omit one document due to preprocessing issues

and do not consider times and values as arguments;

only entities, which is consistent with most of the

literature that we reviewed.

From the results in Table 2, we observe that

the selected event mention argument does seem to

follow a specific pattern; it does not seem to prefer

being a named entity, nor consistently be the first

of the references to appear in a sentence; etc.

If multiple non-duplicate refs exist Excl. Incl.

in the same sentence, the percent that: Pron. Pron.

the event arg is a named entity,

given ≥ 1 reference is a named entity 67.63 60.73

the event arg is not a named entity,

given ≥ 1 reference is a named entity 32.37 39.27

the event arg is the first of those

references in the sentence 47.90 56.32

the event arg is not the first of

those references in the sentence 52.10 43.68

the event arg is not a relativizer pronoun,

given ≥ 1 reference is a relativizer pronoun n/a 80.63

the event arg is a relativizer pronoun,

given ≥ 1 reference is a relativizer pronoun n/a 19.37

the event arg is not a different pronoun,

given ≥ 1 reference is a different pronoun n/a 67.46

the event arg is a different pronoun,

given ≥ 1 reference is a different pronoun n/a 32.54

Table 2: Percentage information about the event men-

tion argument in the case that multiple non-duplicate

references (≥ 2) to the same entity exist in the same sen-

tence. A relativizer pronoun includes “who", “which";

etc while a different pronoun includes “he", “her"; etc.

We extract this number in cases where arguments can

be pronouns and where they cannot be.

A.6 Literature Review Details

To aim toward fair comparison among EE methods,

works use ACE to evaluate them in three general

ways. Only the earliest papers (Ji and Grishman,

2008; Liao and Grishman, 2010; Hong et al., 2011)

use the first split (A), where the evaluation uses all

of the text data and 33 separate event subclasses,

ignoring the event classes, and where the test set

contains 40 newswire texts, the development set

contains 10 newswire texts, and the rest of the texts

belong to the training set. The second split (B) is

an improvement upon the first, with the only dif-

ference of using 30 randomly selected texts in the

development set. A zero-shot evaluation of this

split variety ignores the training set. A third split

variety (C) is for a specific application of event

extraction which focuses more on the generaliza-

tion ability across different domains; in this split,

the source domain is news, half of bc is the devel-

opment set, and the remaining data makes up the

test set. Three papers that we reviewed use split

(A) (Ji and Grishman, 2008; Liao and Grishman,

2010; Hong et al., 2011), at least 28 papers use

split (B) (Li et al., 2013; Nguyen and Grishman,
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2015; Chen et al., 2015; Nguyen et al., 2016; Yang

and Mitchell, 2016; Nguyen and Grishman, 2016;

Feng et al., 2016; Liu et al., 2016; Huang et al.,

2016; Sha et al., 2016; Chen et al., 2017; Liu et al.,

2017b; Zhao et al., 2018; Liu et al., 2018, 2019;

Zhang et al., 2019b; Wang et al., 2019; Zhang et al.,

2019a; Yang et al., 2019; Nguyen and Nguyen,

2019; Wadden et al., 2019; Liu et al., 2020; Li

et al., 2020a; Ahmad et al., 2021; Lu et al., 2021;

Lyu et al., 2021; Wang et al., 2021; Zhou et al.,

2021), some for few-shot or zero-shot evaluations

use a different, contrived split (e.g. Huang et al.

(2018)) and others use both split (B) and a different

split (e.g. Du and Cardie (2020)).

In addition, most works use the evaluation crite-

ria that 1. The event trigger is considered correct

when its offsets match a gold trigger and event class

is correct and 2. An argument is considered correct

when its offsets and event class match a gold ar-

gument and its event role is correct. However, the

criteria does not include many more details and is

not in formal math notation, allowing discrepancies

in the way that different works implement them.
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