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Abstract

Considering two decision-making tasks A and B, each of which wishes to compute
an effective decision Y for a given query X, can we solve task B by using query-
decision pairs (X,Y") of A without knowing the latent decision-making model?
Such problems, called inverse decision-making with task migrations, are of interest
in that the complex and stochastic nature of real-world applications often prevents
the agent from completely knowing the underlying system. In this paper, we
introduce such a new problem with formal formulations and present a generic
framework for addressing decision-making tasks in social contagion management.
On the theory side, we present a generalization analysis for justifying the learning
performance of our framework. In empirical studies, we perform a sanity check and
compare the presented method with other possible learning-based and graph-based
methods. We have acquired promising experimental results, confirming for the first
time that it is possible to solve one decision-making task by using the solutions
associated with another one.

1 Introduction

Social contagion management. Social contagion, in its most general sense, describes the diffusion
process of one or more information cascades spreading between a set of atomic entities through the
underlying network [1, 2, 3, 4]. Prototypical applications of social contagion management include
deploying advertising campaigns to maximize brand awareness [5, 6], broadcasting debunking
information to minimize the negative impact of online misinformation [7, 8, 9], HIV prevention for
homeless youth [10, 11], and the prevention of youth obesity [12, 13]. In these applications, a central
problem is to launch new information cascades in response to certain input queries, with the goal of
optimizing the agents’ objectives [14, 15]. In principle, most of these tasks fall into either diffusion
enhancement, which seeks to maximize the influence of the to-be-generated cascade (e.g., marketing
campaign [5, 16, 17] and public service announcement [12, 18, 19]), or diffusion containment, which
aims to generate positive cascades to minimize the spread of negative cascades (e.g., misinformation
[20, 21, 22] and violence-promoting messages [23, 24]).

Inverse decision-making with task migrations. Traditional research on social contagion manage-
ment often adopts classic operational diffusion models with known parameters, and focuses on
algorithmic development in overcoming the NP-hardness [25, 17, 26, 27, 28]. However, real-world
contagions are often very complicated, and therefore, perfectly knowing the diffusion model is
less realistic [29, 30, 31, 32, 33]. When presented with management tasks defined over unknown
diffusion models, one can adopt the learn-and-optimize approach in which modeling methodologies
and optimization schemes are designed separately; in such methods, the main issue is that the learning
process is guided by model accuracy but not by the optimization effect [34, 35], suggesting that
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the endeavors dedicated to model construction are neither necessary nor sufficient for successfully
handling the downstream optimization problems. This motivates us to explore unified frameworks
that can shape the learning pipeline towards effective approximations. Recently, it has been shown
that for contagion management tasks like diffusion containment, it is possible to produce high-quality
decisions for future queries by using query-decision pairs from the same management task without
learning the diffusion model [36]. Such findings point out an interesting and fundamental question:
with a fixed latent diffusion model, can we solve a target management task by using query-decision
pairs from a different management task? This is of interest because the agents often simultaneously
deal with several management tasks while it is less likely that they always have the proper empirical
evidence concerning the target task. For example, a network manager may need to work on a rumor
blocking task, but they only have historical data collected in solving viral marketing tasks. We call
such a setting as inverse decision-making with task migrations.

Contribution. This paper presents a formal formulation of inverse decision making where the target
task we wish to solve is different from the source task that generates samples, with a particular focus
on social contagion management tasks. Our main contribution is a generic framework, called Social-
Inverse, for handling migrations between tasks of diffusion enhancement and diffusion containment.
For Social-Inverse, we present theoretical analysis to obtain insights regarding how different contagion
management tasks can be subtly correlated in order for samples from one task to help the optimization
of another task. In empirical studies, we have observed encouraging results indicating that our method
indeed works the way it is supposed to. Our main observations suggest that the task migrations
are practically manageable to a satisfactory extent in many cases. In addition, we also explore the
situations where the discrepancy between the target task and the source task is inherently essential,
thereby making the samples from the source task less useful.

Roadmap. In Sec. 2, we first provide preliminaries regarding social contagion models, and then
discuss how to formalize the considered problem. The proposed method together with its theoretical
analysis is presented in Sec. 3. In Sec. 4, we present our empirical studies. We close our paper with
a discussion on limitations and future works (Sec. 5). The technical proofs, source code, pre-train
models, data, and full experimental analysis can be found in the supplementary material. The data
and source code is maintained online'.

2 Preliminaries

2.1 Stochastic diffusion model

A social network is given by a directed graph G = (V, E), with V and FE respectively denoting the
user set and the edge set. In modeling the contagion process, let us assume that there are L € Z
information cascades {C; }£_,, each of which is associated with a seed set S; C V. Without loss of
generality, we assume that S; N.S; = () for i # j. A diffusion model M is governed by two sets of

configurations: each node u € V is associated with a distribution A", over 2™V« , where N, is the set
of the in-neighbors of u; each edge (u,v) € E is associated with a distribution 7, ., over (0, +00)
denoting the transmission time. During the diffusion process, a node can be inactive or C;-active if
activated by cascade C;. Given the seed sets, the diffusion process unfolds as follows:

e Initialization: Each node u samples a subset A, C N, following A, and each edge
(u,v) samples a real number (,, ,,y > 0 following T (y, .,).

e Time 0: The nodes in .S; become C;-active at time 0, and other nodes are inactive.

e Time ¢: When a node u becomes C;-active at time ¢, for each inactive node v such that w is
in A,, v will be activated by u and become C}-active at time ¢ + ¢, ,,. Each node will be
activated by the first in-neighbor attempting to activate them and never deactivated. When a
node v is activated by two or more in-neighbors at the same time, v will be activated by the
cascade with the smallest index.

Remark 1. The considered model is in general highly expressive because A/, and T (u,v) can be
flexibly designed. For sample, it subsumes the classic independent cascade model [25] by making A/,
sample each in-neighbor independently. When there is only one or two cascades, the above model
generalizes a few popular diffusion models, including discrete-time independent cascade model [25],
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discrete-time linear threshold model [25], continuous-time independent cascade model [37], and
independent multi-cascade model [38, 36].

Definition 1 (Realization). Notice that the initialization phase essentially samples a weighted
subgraph, and the diffusion process becomes deterministic after the initialization phase. For an
abstraction, we call each of such weighted subgraph a realization, and use R to denote the space
of weighted subgraphs of GG. With the concept of realization, we may abstract a concrete stochastic
diffusion model M as a collection of density functions, i.e., M = {N, : u € V}U{T (4 :
(u,v) € E}. Slightly abusing the notation, we also use M : Rg — [0, 1] to denote the distribution
over R induced by the density functions specified by M. On top of a diffusion model M, the
distribution of the diffusion outcome depends on the seed sets of the cascades. An example for
illustrating the diffusion process is given in Appendix A.

2.2 Social contagion management tasks

In this paper, we focus on the following two classes of social contagion management tasks.

Problem 1 (Diffusion Enhancement (DE)). Given a diffusion model M and a set of target users
X C V, we consider the single-cascade case and let f/]\DAE(X ,Y') be the expected number of users in
X who are activated by a cascade from seed set Y C V. We would like to find a seed set with at
most & € Z nodes such that the total influence on X can be maximized, i.e.,

argmax [ (X,Y). (1)
YCV|Y|<k

Problem 2 (Diffusion Containment (DC)). Given a diffusion model M, we now consider the
situation of competitive diffusion where there is a negative cascade C; with a seed set X C V and a
positive cascade C; with a seed set Y C V. Let f}?,ic (X,Y) be the expected number of users who
are not activated by the negative cascade. Given the diffusion model M and the seed set X of the
negative cascade, we would like to find a seed set Y for the positive cascade with at most k € Z
nodes such that the impact of the negative cascade can be maximally limited, i.e.,

argmax frg(X,Y). (2)
YCV,|Y|<k

Contagion management tasks like Problems 1 and 2 might be viewed as decision-making problems
aiming to infer an effective decision Y in response to a query X . In such a sense, we may abstract
such problems in the following way:

Problem 3 (Abstract Contagion Management Tasks). Given a diffusion model M, an abstract
management task 7" is specified by an objective function f}\:t (X,Y):2Y x 2V — R, a candidate
space X7 C 2V of the queries, and a candidate space YV C 2V of the decisions, where we wish to
compute

Yur.x i=argmax f1(X,Y) 3

YeVr

for each input query X € X'r. We assume that X1 and Y are matroids over V', subsuming common
constraints such as the cardinality constraint or k-partition [39]. Since such optimization problems
are often NP-hard, their approximate solutions are frequently used, and we denote by Y5 1  an
a-approximation to Equation 3.

Definition 2 (Linearity over Kernel Functions). In addressing the above management tasks, it is
worth noting that the objective function is calculated over the possible diffusion outcomes, which
are determined in the initialization phase. Specifically, denoting by £ (X,Y") the objective value
projected to a single realization € R, the objective function can be expressed as

FauXxy) = . M(r) - f1(X,Y)dr. (4)
reRa

The function £ (X,Y) is called kernel function, in the sense that it transforms set structures into
real numbers. For example, fPF(X,Y) denotes the number of users in X who are activated by a
cascade generated from Y in a single realization r; f°°(X,Y’) denotes the number of users in G
who are not activated by the negative cascade (generated from X)) in realization  when the positive
cascade spreads from Y.



2.3 Inverse decision-making of contagion management with task migrations

Supposing that the diffusion model M is given, DE and DC are purely combinatorial optimization
problems, which have been extensively studied [25, 20]. In the case that the diffusion model is
unknown, inverse decision-making is a potential solution, which seeks to solve contagion management
tasks by directly learning from query-decision pairs [40]. In particular, with respect to a certain
management task f 1, associated with an unknown diffusion model M, the agent receives a collection
of pairs (X;,Y;) where Y; is the optimal/suboptimal solution to maximizing f1,(X;,Y). Such
empirical evidence can be mathematically characterized as
m

S%{,T,m = {(XiaY.A(il,T,Xi) : fL(Xn /(\X/I,T,Xi) >a- ;%%,XT ffA(XiaY)}i_ &)
where @ € (0, 1] is introduced to measure the optimality of the sample decisions. For the purpose
of theoretical analysis, the ratio @ may be interpreted as the best approximation ratio that can be
achieved by a polynomial-time algorithm under common complexity assumptions (e.g., NP # P).
For DE and DC, we have the best ratio as 1 — 1/e due to the well-known fact that their objective
functions are submodular [25, 20]. Leveraging such empirical evidence, we wish to solve the same or
a different management task for future queries:

Problem 4 (Inverse Decision-making with Task Migrations). Suppose that there is an underlying
diffusion model M,.,... Consider two management tasks Tg and T(g defined in Problem 3, where

T(s is the source task and T(g is the target task. With a collection Sji\,l@’ T~ Of samples concerning
true,d ®,M

the source task T for some ratio ag € (0, 1], we aim to build a framework A : X', — V7, that

can make a prediction A(X) for each future query X of the target task T(g). Let [ be a loss function

I(X,Y): X1y x Y1y — [0, 1] that measures the desirability of Y with respect to X. We seek to

minimize the generalization error £ with respect to an unknown distribution D over X7 :

L(A,D,l) =Exp [z(X, A(X))} . ©6)
Since M, and m are fixed, we denote S?\/[@;.WT@M as S?g for conciseness. We will focus on

the case where the source task and the target task are selected from DE and DC.

Remark 2. In general, the above problem appears to be challenging because the query-decision
pairs of one optimization problem do not necessarily shed any clues on effectively solving another
optimization problem. What makes our problem tractable is that the source task and the target task
share the same underlying diffusion model My,,,.. With the hope that the query-decision pairs of
the source task can identify My, to a certain extent, we may solve the target task with statistical
significance, as evidenced in experiments. In such a sense, our setting is called inverse as it implicitly
infers the structure of the underlying model from solutions, in contrast to the forward decision-making
pipeline that seeks solutions based on given models.

3 Social-Inverse

In this section, we present a learning framework called Social-Inverse for solving Problem 4. Our
method is inspired by the classic structured prediction [41] coupled with randomized kernels [40],
which may be ultimately credited to the idea of Random Kitchen Sink [42]. Social-Inverse starts by
selecting an empirical distribution M., over R and a hyperparameter & € Z, and then proceeds
with the following steps:

e Hypothesis design. Sample K iid realizations Ry = {r1,...,rx } C R following M,
and obtain the hypothesis space F . :=={H® _(X,Y):w = (w1, ...,wx) € RE} where

Ri,w

H}?mw is the affine combination of fTT © over the realizations in Ry:
K
HY (X, V)= w;- flo(X,Y). )
i=1

e Training. Compute a prior vector w using the training set Sgg (Sec. 3.2), and sample the

final parameter W from an isotropic Gaussian Q(y - W, Z) with a mean of w scaled by ~.
The selection of  will be discussed in Sec. 3.1.



¢ Inference. Given a future query X € X', of the target task T(p, the prediction is made by
solving the inference problem over the hypothesis in F g, associated with final weight w:

arg max HI%DK (X, Y). (8)
YEyT® ’
It is often NP-hard to solve the above inference problem in optimal, and therefore, we
assume that an o -approximation to Equation 8 — denoted by YESW x — 1s employed for

some o € (0, 1]. Notice that the ratio &) herein represents the inference hardness, while
the ratio o/ associated with the training set measures the hardness of the source task.

In completing the above procedure, it is left to determine a) the prior distribution M.,,, b) the
hyperparameter K, c) the scale factor ~y, d) the training method for computing the prior vector w, and

e) the inference algorithm for computing Yggﬁ - In what follows, we will first discuss how they

may influence the generalization performance in theory, and then present methods for their selections.
For the convenience of reading, the notations are summarized in Table 2 in Appendix B.

3.1 Generalization analysis

For Social-Inverse, given the fact the generation of W is randomized, the generalization error is
further expressed as

£(Social-Inverse, D, 1) = Ex wp 50 [Z(X, Yafu o). 9)

In deriving an upper bound with respect to the prior vector w, let us notice that the empirical risk is
given by I(X;, Y5 P& ), which is randomized by W ~ Q(v - W, Z). Thus, the prediction Yz ©
associated with a training input X; is most likely one of those centered around Y}(;SW > and we will
measure such concentration by their difference in terms of a fraction of the empirical risk associated

with w. More specifically, controlled by a hyperparameter 5 € (0, & ), for an input query X;, the
potential predictions are those within the margin:

® —
L. x,0 7= (10)
YeVp:iap HY (X, V2o _ Y- HY (X, V)<B-HY _(x;,voo_ b
O] ®© Ri ,w\""Y * R ,w,X; Ry ,w\**® — Ry, W\ % R ,w,X;
The empirical risk is therefore given via the above margin:
_ 1 &
e~ ® 7y._ T 4 .
Lem(W, Ry, S, 1) = — 2 Jaax (X Y) e (), (11)

where 1g(z) € {0,1} is the indicator function: 1g(z) = 1 <= z € S. With the above
progressions, we have the following result concerning the generalization error.

Theorem 1. For each w = (W1,...,Wk ), Rk C R, B € (0, ), and 6 > 0, with probability at
least 1 — 9, we have

V21w /2 + In(m/6)
2(m—1)

_ ~ 2
L(Social-Inverse, D, 1) < Cem(W,RK,S;(gl) I [[w] i \/
m

provided that

a2 +1 omK
=— O 2l (12)
miny, | W, |- - a@ Wl

The proof follows from the standard analysis of the PAC-Bayesian framework [43] coupled with
the approximate inference [44] based on a multiplicative margin [40]; the extra caution we need to
handle is that our margin (Equation 10) is parameterized by . Notice that when 3 decreases, the
regularization term becomes larger, while the margin set IgK)W’ X8 becomes smaller — implying a
low empirical risk (Equation 11). In this regard, Theorem 1 presents an intuitive trade-off between
the estimation error and the approximation error controlled by .



Having seen the result for a general loss, we now seek to understand the best possible generalization
performance in terms of the approximation 1oss lapprox:

A (X.Y)

true

Lapprox (X, V) =1 — € [0,1]. (13)

T,
maxyeyq, for.. (X,Y)

Such questions essentially explore the realizability of the hypothesis space F g, , which is determined
by the empirical distribution M., and the number of random realizations used to construct F g, .
We will see shortly how these factors may impact the generalization performance. By Theorem 1,
when infinite samples are available, the empirical risk approaches to

Ex-p [YIEHJZ};; lprox(X,Y) -y (V). (14)
The next result provides an analytical relationship between the complexity of the hypothesis space
and the best possible generalization performance in terms of l,pprox-

To
Theorem 2. Let A :=sup,. A/fxtt;:f(g)) . 2‘1’1‘ ]J: T; 5 ((;(;)) measure the divergence between M. and
My, scaled by the range of the kernel function. For each ¢ > 0,51 > 0,69 > 0, and M., when
K is O(%(lm | V1o | +1n %)), with probability at least 1 — 0, over the selection of Ry, there
2

exists a desired weight W such that

Pr [ max Lo (X, V) 1o (v) <1- 20 (@0 =5 U= s1 5. as)
X~D Ly eyrg Ry ,,X,6 (I+¢€)

Remark 3. The above result has the implication that the best possible ratio in generalization is
essentially bounded by O(a - (qx@ — £)). On the other hand, one can easily see that the target task
(Equation 3) and the inference problem (Equation 8) suffer the same approximation hardness, and
therefore, one would not wish for a true approximation error that is better than & g; in this regard, the
result in Theorem 2 is not very loose.

The results in this section demonstrate how the selections of K, M.,,,, W, and /3 may affect the gener-
alization performance in theory. Since the true model My,.,.. is unknown, the prior distribution M.,
can be selected to be uniform or Gaussian distribution. K and /3 can be taken as hyperparameters
determining the model complexity. In addition, since the true 10ss lapprox 1S NOt accessible, one can
take general loss functions. Given the fact that we are concerned with set structures rather than real
numbers, we employ the zero-one loss, which is adopted also for the convenience of optimization.
Therefore, it remains to figure out how to compute the prior vector w from training samples as well
as how to solve the inference problem (Equation 8), which will be discussed in the next part.

3.2 Training method

In computing the prior vector w, the main challenge caused by the task migration is that the target

task on which we performance inference is different from the source task that generates training

samples. Theorem 1 suggests that, ignoring the low-order terms, one may find the prior vector
— ~ 2

by minimizing the regularized empirical risk L., (W, R, Sgﬁg ) + % Directly minimizing

such a quantity would be notoriously hard because the optimization problem is bilevel: optimizing

over w involves the term Yggﬁ x, Which is obtained by solving another optimization problem

depending on w (Equations 10 and 11). Notably, since H}%DK (X, Yg}f’w X) is lower bounded
by a - H%( & (Xi, YM, 0 T, X, )» TEplacing ngfw x, With Y, 70, x, would allow for us to
optimize an upper bound of the empirical risk. Seeking a large-margin formulation, this amounts to
solving the following mathematical program under the zero-one loss [41, 45]:

m

min [[w|* +CY_&/m
i=1

st Ao — B) Hy, o(Xis Yity . To.x,) — HE, (X, Y) > &, Vi€ [m], VY € Vg
w >0 (16)



where &; is the slack variable and C' is a hyperparameter [46]. However, our dataset concerns only
about the source task T without informing Y, 74 ,x, Or its approximation. In order to see
where we could feed the training samples into the training process, let us notice that the constraints
in Equation 16 have an intuitive meaning: with respect to the target the task T(g), a desired weight
w should lead to a score function H}?K,vv that can assign highest scores to the optimal solutions
YMyyue T, X, Similar arguments also apply to the source task Ty, as the weight w implicitly
estimates the true model M;..., which is independent of the management tasks. This enables us
to reformulate the optimization problem with respect to the source task 1) by using the following
constraints:

0o @® — B) - Hip, W(Xi Y0 10 x,) = Hipg (X, Y) 2 &, Vi € [m], VY € Yo (17)

where HgK7w(X )= Zfil w; - To (X,Y) is the score function corresponding to the source task
T As desired, pairs of (X, Yﬁ?mmT@ X,i) are the exactly the information we have in the training

data S?@ . One remaining issue is that the acquired program (Equation 17) has an exponential number
of constrains [45], which can be reduced to linear (in sample size) if the following optimization
problem can be solved for each w and Xj;:
HY (X,,Y). 1

Juax e w(Xiy Y) (18)
Provided that the above problem can be addressed, the entire program can be solved by several
classic algorithms, such as the cutting plane algorithm [47] and the online subgradient algorithm [48].
Therefore, in completing the entire framework, it remains to solve Equations 8 and 18. For tasks of
DE and DC, we delightedly have the following results.

Theorem 3. When T and T(g) are selected from DE and DC, Equations 8 and 18 are both NP-hard
to solve in optimal, but both can be approximated within a ratio of 1 — 1/e in polynomial time.

A concrete example of using Social-Inverse to solve Problem 4 is provided in Appendix C.

4 Empirical studies

Although some theoretical properties of our framework can be justified (Sec. 3.1), it remains open
whether or not the proposed method is practically effective, especially given the fact that no prior
work has attempted to solve one optimization problem by using the solutions to another one. In this
section, we present our empirical studies.

4.1 Experimental settings

We herein present the key logic of our experimental settings and provide details in Appendix E.1.

The latent model M,.,. and samples (Appendix E.1.1). To generate a latent diffusion model
M rue, we first determine the graph structure and then fix the distributions A, and T (u,v) by
generating random parameters. We adopt four graphs: a Kronecker graph [49], an Erdés-Rényi graph
[50], a Higgs graph [51], and a Hep graph [52]). Given the underlying diffusion model M, for
each of DE and DC, we generate a pool of query-decision pairs (X, Y;) for training and testing, where
X is selected randomly from V' and Y; is the approximate solution associated with X; (Theorem 3).
As for Problem 4, there are four possible target-source pairs: DE-DE, DC-DE, DE-DC, and DC-DC.

Social-Inverse (Appendix E.1.2). With K and 3 being hyperparameters, to set up Social-Inverse, we
need to specify the empirical distribution M_,,,. We construct the empirical distribution by building
three diffusion models M, with ¢ € {0.1,0.5,1}, where a smaller ¢ implies that M, is closer to
Mirye. In addition, we construct an empirical distribution M, which is totally random and not
close to M, anywhere. For each empirical distribution, we generate a pool of realizations.

Competitors (Appendix E.1.3). Given the fact that Problem 4 may be treated as a supervised
learning problem with the ignorance of task migration, we have implemented Naive Bayes (NB) [53],
graph neural networks (GNN) [54], and a deep set prediction network (DSPN) [55]. In addition, we
consider the High-Degree (HD) method, which is a popular heuristic believing that selecting the
high-degree users as the seed nodes can decently solve DE and DC. A random (Random) method is
also used as the baseline.



Table 1: Results on Kronecker (Kro) and Erdds-Rényi (ER). Each cell shows the mean of perfor-
mance ratio with std. For Social-Inverse under each empirical distribution, the table shows the results
with K € {15,30,60} and 8 = 1. The training size is 270, and the testing size is 540.

K=15 K =30 K=60 K=15 K=30 K=60
DC Mo  0.541 0014y 0.567 0.016) 0.584 (0.006) M1 0.748 ©0.022) 0.794 0.016) 0.811 (0.011)
| Mo.s 0.767 ©0.028) 0.837 0.004) 0.851 (0.004) Mo.1 0.770 ©0.025) 0.850 0.018) 0.853 (0.040)
DE NB: 0.64 001y GNN: 0.51 ©.055 DSPN: 0.46 0.149 HD: 0.59 ©.01) Random: 0.15 .01
Kro DE Mo 0.846 0.005) 0.913 0.005) 0.985 (0.014) M1 0.796 ©0.056) 0.845 0.040) 0.899 (0.030)
| Mo.s 0.850 0.036) 0.937 0.058) 1.021 (0.040) Mo.1 0.862 0013y 0.953 0018 1.041 (0.026)
DC NB: 0.88 001y GNN: 0.76 0055 DSPN: 0.57 0149 HD: 0.89 ©.01) Random: 0.26 (.01
DC Moo 0.541 ©.010) 0.585 0.018) 0.577 0.007) M1 0.744 ©0.005) 0.752 0.003) 0.754 (0.003)
| Mop.s 0.825 ©0.005) 0.830 0.00s) 0.830 (0.005) Mo.1 0.829 0.002) 0.833 0.004) 0.833 (0.004)
DE NB: 0.78 001y GNN: 0.05 ©.02 DSPN: 0.06 003 HD: 0.32 001y Random: 0.06 .01
ER DE Moo 0.526 ©0.0200 0.677 0.016) 0.750 (0.010) M1 0.773 ©o16) 0.796 0.010) 0.800 (0.009)
Mo.s 0.879 ©0.002) 0.900 0.002) 0.892 (0.002) Mo.1 0.886 0.005) 0.902 0.003) 0.895 (0.003)

|
DC NB: 0.04 001y GNN: 0.05 ©.02 DSPN: 0.04 001y HD: 0.09 001y Random: 0.04 .01

Training, testing, and evaluation (Appendix E.1.4) The testing size is 540, and the training size
m is selected from {90,270, 1350}. Given the training size and the testing size, the samples are
randomly selected from the pool we generate; similarly, given K, the realizations used in Social-
Inverse are also randomly selected from the pool we generate. For each method, the entire process is
repeated five times, and we report the average performance ratio together with the standard deviation.
The performance ratio is computed by comparing the predictions with the decisions in testing samples;
larger is better.

4.2 Main observations

The main results on the Kronecker graph and the Erd6s-Rényi graph are provided in Table 1.
According to Table 1, it is clear that Social-Inverse performs better when K becomes larger or
when the discrepancy between M., and My, becomes smaller (i.e., g is small), which suggests
that Social-Inverse indeed works the way it is supposed to. In addition, while all the methods are
non-trivially better than Random, one can also observe that Social-Inverse easily outperforms other
methods by an evident margin as long as sufficient realizations are provided. We also see that
learning-based methods do not perform well in many cases; this is not very surprising because the
effectiveness of learning-based methods hinges on the assumption that different tasks share similar
decisions for the same query, which however may not be the case especially on the Erdés-Rényi
graph. Furthermore, Social-Inverse appears to be more robust than other methods in terms of standard
deviation. Finally, the performance of standard learning methods (e.g., NB and GNN) are sensitive
to graph structures; they are relatively good on the Kronecker graph but less satisfactory on the
Erd6s-Rényi graph, while Social-Inverse is consistently effective on all datasets.

4.3 An in-depth investigation on task migration

Notably, the effectiveness of Social-Inverse depends not only on the training samples S;EDD (for tuning
the weight w) but also on the expressiveness of the hypothesis space (determined by M., and
K). Therefore, with solely the results in Table 1, we are not ready to conclude that samples of DE
(resp., DC) are really useful for solving DC (resp., DE). In fact, when M., is identical to M.,
no samples are needed because setting W = 1 can allow for us to perfectly recover the best decisions
as long as K is sufficiently large. As a result, the usefulness of the samples should be assessed by
examining how much they can help in delivering a high-quality w. To this end, for each testing
query, we report the quality of two predictions made based, respectively, on the initial weight (before
optimization) and on the final weight (after optimization).

Such results for DC-DE on the Kronecker graph are provided in Figure 1. As seen from Figure 1b, the
efficacy of DC samples in solving DE is statistically significant under M, 1, which might be the first
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Figure 1: Each subgraph shows the results of 50 testing queries on the Kronecker graph with K = 30.
For each query, we report the quality (i.e. performance ratio) of the predictions made based on the
initial weight (before optimization) and final weight (after optimization).

piece of experimental evidence confirming that it is indeed possible to solve one decision-making task
by using the query-decision pairs of another one. In addition, according to Figures 1a, 1b, and 1c, the
efficacy of the samples is limited when the sample size is too small, and it does not increase too much
after sufficient samples are provided. On the other hand, with Figure le, we also see that the samples
of DC are not very useful when the empirical distribution (e.g., M) deviates too much from the
true model, and in such a case, providing more samples can even cause performance degeneration
(Figure 1f), which is an interesting observation calling for further investigations.

The full experimental study can be found in Appendix E.2, E.3 and E.4, including the results on
Higgs and Hep, results with more realizations, results of DE-DE and DC-DC, results of GNN under
different seeds, a discussion on the impact of 3, and a discussion of training efficiency.

5 Further discussion

We close our paper with a discussion on the limitations and future directions of the presented work,
with the related works being discussed in Appendix F.

Future directions. Following the discussion on Figure 1, one immediate direction is to systemically
investigate the necessary or sufficient condition in which the task migrations between DE and DC are
manageable. In addition, settings in Problem 4 can be carried over to other contagion management
tasks beyond DE and DC, such as effector detection [56] and diffusion-based community detection
[57]. Finally, in its most general sense, the problem of inverse decision-making with task migrations
can be conceptually defined over any two stochastic combinatorial optimization problems [40] sharing
the same underlying model (e.g., graph distribution). For instance, considering the stochastic shortest
path problem [58] and the minimum Steiner tree problem [59], with the information showing the
shortest paths between some pairs of nodes, can we infer the minimum Steiner tree of a certain group
of nodes with respect to the same graph distribution? Such problems are interesting and fundamental
to many complex decision-making applications [60, 61].

Limitations. While our method offers promising performance in experiments, it is possible that
deep architectures can be designed in a sophisticated manner so as to achieve improved results. In
addition, while we believe that similar observations also hold for graphs that are not considered
in our experiment, more experimental studies are required to support the universal superiority of
Social-Inverse. In another issue, the assumption that the training set contains approximation solutions
is the minimal one for the purpose of theoretical analysis, but in practice, such guarantees may never
be known. Therefore, experimenting with samples of heuristic query-decision pairs is needed to
further justify the practical utility of our method. Finally, we have not experimented with graphs of
extreme scales (e.g., over 1M nodes) due to the limit in memory. We wish to explore the above issues
in future work.
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