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Abstract—Variability constraints are an integral part of the
requirements for a configurable system. The constraints specified
in the requirements on the legal combinations of options define
the space of potential valid configurations for the system-to-
be. This paper reports on our experience with the variability-
related requirements constraints of a flight software framework
used by multiple space missions. A challenge that we saw for
practitioners using the current framework, now open-sourced, is
that the specifications of its variability-related requirements and
constraints are dispersed across several documents, rather than
being centralized in the software requirements specification. Such
dispersion can contribute to misunderstandings of the side-effects
of design choices, increased effort for developers, and bugs during
operations. Based on our experience, we propose a new software
variability model, similar to a product-line feature model, in the
flight software framework. We describe the structured technique
by which our model is developed, demonstrate its use, and
evaluate it on a key service module of the flight software.
Results show that our lightweight modeling technique helped
find missing and inconsistent variability-related requirements
and constraints. More generally, we suggest that a variability
modeling technique such as this can be an efficient way for
developers to centralize the specification and improve the analysis
of dispersed variability-related requirements and constraints in
other configurable systems.

Index Terms—Requirement analysis, Variability constraints,
Variability requirements, Configurable system, Feature model

I. INTRODUCTION

Variability constraints are an integral part of the require-
ments for a configurable system [1], [2]. The constraints
specified in the requirements on the combinations of options
that are allowed/disallowed define the space of potential valid
configurations for the system-to-be [3]. This paper reports
our experience developing a variability model to specify and
analyze the variability-related requirements and constraints
of a NASA configurable flight software framework used by
multiple space missions.

A challenge that we saw for practitioners in using the
current flight software framework is that specification of its
variability-related requirements and constraints are dispersed
across several documents rather than being centralized in
the software requirements specification. This dispersion can
contribute to misunderstandings of the side-effects of design
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choices, increased effort for developers, and bugs during
operations.

Such dispersion is a persistent problem especially for con-
figurable systems and product lines, in that information about
variability-related requirements, such as options, dependencies
and constraints on valid configurations, is often scattered
and thus easily overlooked [4]. While much progress has
been made in formal modeling and analysis of all valid
configurations [5], [6], this research tends not to meet projects
“where they are,” in that most projects do not have or
want formal models. Consequently many projects do not find
variability constraints that are missing from the requirements,
are inconsistent, or are in conflict until testing or operations.

Based on our experience with the configurable flight soft-
ware requirements, we propose addition of a new software
artifact, a variability model, to the existing flight software
framework. A variability model is a higher-level represen-
tations of options and constraints [7]. Our construction is
based on a product-line feature model and is intended to
be useful to future mission developers of the flight software
framework. It integrates the scattered variability requirements
and constraints into a coherent, centralized, variability-aware
model for requirements analysis.

In this paper we describe our new, lightweight, tool-
supported variability modeling technique, VarCORE, and dis-
cuss our experience applying it to a key service module of the
flight software. Results reported here show that the variability
model helped find missing variability-related requirements and
constraints, inconsistencies among the specified variability
requirements and constraints, and variability requirements and
constraints not implemented in the code. We anticipate that
this new modeling technique, supported by existing open-
source tools, will be useful to future users of the flight software
framework in both the requirements engineering and aerospace
communities. More generally, we suggest that a variability
model such as this can be an efficient way to centralize
the specification of variability-related requirements constraints
that are dispersed among documents for other configurable
systems.

The contributions of the paper are three-fold:
• A proposed new variability model for the NASA config-

urable flight software framework that integrates, specifies



and analyzes variability-related requirements and con-
straints that are currently dispersed among documents

• Analysis results identifying missing and inconsistent vari-
ability requirements and constraints for repair

• A structured and partially automated technique, Var-
CORE, to develop and analyze the variability model for
potential use in other configurable systems.

A fourth, indirect contribution of the paper is that it de-
scribes an open-sourced, configurable flight software frame-
work that we believe merits increased use as a platform
for requirements engineering innovations. To the best of our
knowledge, it has not been used by the requirements engineer-
ing community, although it has been used in both architecture
and testing papers [8]–[10]. Greater use of available, real-
world systems such as this flight software framework benefits
both requirements researchers and practitioners. Evaluation of
new RE techniques on such systems can provide both real-
world feedback needed to improve them and the evidence
needed for their ready uptake by industry.

The rest of the paper is organized as follows. Section
2 describes the context of the NASA configurable flight
software framework and the project’s variability requirements
related practices. Section 3 presents the problem statement and
challenges. Section 4 describes our approach in VarCORE to
creating a variability model for the flight software. Section 5
presents and discusses our experience applying VarCORE to a
part of the flight software and its analysis findings. Section 6
discusses lessons learned and their generalizability, and related
work. Sect 7 provides concluding remarks.

II. INDUSTRIAL CONTEXT

The core Flight System (cFS) [11], [12] is a configuration-
managed, software framework of flight software for spacecraft.
It contains a Platform Support Package (PSP), Operating Sys-
tem Abstraction Layer (OSAL), Core Flight Executive (cFE)
Services, cFS Applications and Tools, and supporting artifacts.
The cFS applies a software product line approach to reuse
across missions. Commonalities and variabilities from a rich
heritage of space missions at the NASA Goddard Space Flight
Center are implemented in the form of mission-independent
flight software [13]. The cFS is feature-based, meaning that
various combinations of features (units of functionality or
configuration options) are used to meet different needs [14]–
[17]. The objective is to provide high-quality, reusable core
flight software that can meet the majority of basic flight
requirements for a variety of spacecraft missions.

The core Flight System was open-sourced in 2015 to further
the business goal of reducing time and cost for developing
new flight software in spacecraft projects adopting the cFS.
The second author served on the software architectural review
board for the core Flight System, tasked with providing a
product-line perspective, in preparation for its being open-
sourced. In 2020, cFS was awarded NASA’s Software of the
Year. At NASA it has been used on at least nine spacecraft
projects and it is also chosen by NASA Goddard Space
Flight Center (GSFC), Johnson Space Center (JSC) and Johns

Fig. 1: cFS Software Architecture and Organization. Excerpt from
Core Flight System (cFS) Training, p. 9 [20].

Hopkins University Applied Physics Lab (APL) for all future
embedded flight software projects [11]. As part of the Lunar
Gateway program, work is also underway to certify cFS
as suitable for human-rated vehicles [18]. According to the
team lead for certification, “We work on maybe two or three
missions a year, but outside of NASA, people are trying it out,
finding new ways to use it, and making suggestions for im-
provement” [13]. Examples include the CubeSat nanosatellites
and small spacecraft [12]. Educationally, OpenSatKit (OSK)
adopts cFS to provide a free flight software system platform
for aerospace and STEM education [19].

A. Architectural Design for Variability Support

The cFS was designed with reusability and variability in
mind. Figure 1 shows the layered modular architecture of the
cFS. At the bottom layer, the cFS supports multiple hard-
ware platforms (including i686/x86 based PC, ARM-based
PC, powerPC-based PC and MCP750) and operating systems
(including Linux, VxWorks and RTEMS) via abstractions by
OSAL and PSP. It thus hides the implementation details of
hardware and operating systems from the applications and
executive.

The core Flight Executive (cFE) provides core services. At
the top layer, the cFS defines standardized core Application
Programmer Interfaces (APIs), which are the only interfaces
for applications to access the cFE core services. Although
the cFE core services are common across most flight system
projects, the cFE does provide configurable parameters to
determine variations of the core services at compilation. To
change core services’ configuration, the entire cFE must be
recompiled and restarted with a system reset.

The cFS is designed to support plug-and-play applications
using these standardized APIs. This means that applications
can be loaded and removed at runtime. Applications define
mission functionality with the support of the cFE. The cFS
architecture ensures that different combinations of applications
can be run independently and concurrently to fulfill mission
requirements.

B. Strategies for Variability Management

There are three strategies for managing software product
variability in the cFS. First, the cFS uses its architecture
design to manage mission-specific application variability. Each



application is an independent entity. To establish connection
with the cFE, each application is required to register and
subscribe for services’ access to cFE. Inter-application in-
teraction is only supported via cFE, i.e. direct interaction
is constrained. Ganesan et al. [8] analyzed the cFS product
line architecture and verified that there is no inter-dependency
and direct interaction among applications, complying with
architectural design for the cFS application layer.

Second, the cFS uses its build system to manage hardware
variants, OS variants, and module and test configurability. The
cFS build system checks for configurable parameters during
compilation and builds the flight software product accordingly.
Thus, applications and cFE source code can be run on differ-
ent hardware and OS configurations via the support of the
abstraction layer and defined APIs.

Third, the cFS uses conditional compilation C pre-processor
(CPP) directives (such as #if, #ifdef, #elif, #ifndef ) to compile
the code based on the setting defined by configurable parame-
ters. There are 139 configurable parameters [12] defined in the
cFE 6.7.0 release that are handled by conditional compilation.
We found that only 15 of the configurable parameters represent
variant features for configuring the system functional behavior.
The rest of the configurable parameters are mainly defined to
represent system (i.e., platform and mission) properties such
as memory size, message id, event type, etc. The cFE uses
CPP directives to verify the validity of these system properties
before system configuration.

III. PROBLEM STATEMENT: VARIABILITY-AWARE
REQUIREMENTS CONSTRAINTS

The cFS describes their requirements strategy [21] as incor-
porating requirements engineering best practices to manage
software variability. The requirements are parameterized to
support various missions. Fig. 2 shows the software engi-
neering V-Model for the cFS-based project life cycle. On
the left, the requirements are refined from high-level system
requirements into lower-level detailed functional requirements
for flight software development. On the right, corresponding
tests are created to verify/validate the requirements at each

Fig. 2: V-Model of cFS-based Software Development Lifecycle.
Reprinted from [12]. The shaded components are cFS artifacts and
<p> notation indicates a parameterized artifact.

level. In addition, the functional requirements are written using
recommended practices to assure quality [22]. Any change in
requirements requires review and approval before becoming
effective.

Nevertheless, there remains a risk that variability constraints
may be overlooked during requirements refinement, especially
if selections of options are delayed until design or compilation
phases. The cFS uses pre-processor directives to verify and
assure the consistency of variability requirements and con-
straints at build time. However, we observed that the constraint
verification is done independently without explicit traceability
to the variability requirements. Moreover, it is known that the
gap between requirements specification and implementation
tends to grow [23] if requirements updates are not performed
in a timely manner.

Another challenge that we observed with the current frame-
work is that the variability-related requirements are not spec-
ified in a single requirements specification document. Instead
they are dispersed across several documents. Some constraints
are mentioned but not described, or are described but not
specified as requirements. Such dispersion can complicate
the requirements analysis and thus increase the effort for
variability design, implementation and testing.

The cFE Flight Executive Software Requirements Speci-
fication is relatively short (30 pages plus appendices). For
example, it contains only 32 requirements for the six cFE
services. The other requirements document, the Functional
Requirements table, has 398 brief (one-line) “shall” textual
requirements. It does not document the configuration options
available nor the intra-cFE variability constraints that the
developers of a new product need to know. On the other hand,
the cFE user guide is very long (1,056 pages). It specifies
requirements for the configuration options and the variability
constraints. However, its length renders it difficult to navigate
and use.

The dispersion of variability-related requirements and con-
straints among documents creates a Goldilocks problem [24],
named after the children’s story in which Goldilocks finds the
Papa Bear’s chair too big and the Mama Bear’s chair too small,
but the Baby Bear’s chair is “just right” for her. The analogy
refers to the challenge that developers of a new system using
the cFE face in currently not having a central “just right” sized
specification.

Towards making it easier for developers to understand the
variability features and constraints on the feature combina-
tions, we built a new, visual variability model that captures
this requirements information in a standardized and familiar
graphical form. We do not claim that it is Goldilocks-optimal;
however, show that it facilitates discovery of missing and
inconsistent variability-related requirements and constraints.

IV. APPROACH

In this section we describe our VarCORE technique and
the new software variability model it produces, proposed for
inclusion in the flight software framework. Fig. 3 gives an
overview of VarCORE and the artifacts it uses and provides for



Fig. 3: VarCORE Overview. The new artifacts produced by the
variability-related requirements and constraint analyses are high-
lighted in yellow.

variability-related requirements and constraints analysis in a
configurable flight software. The circled numbers in the figure
map to the elements in the description below.

There are three components in the VarCORE process: (1)
Variability Requirements and Constraints Gathering, (2) Vari-
ability Model Analysis, and (3) Configurations Verification &
Validation.

A. Variability-Related Requirements and Constraints Gather-
ing

The primary input to VarCORE is the software requirement
documents. For large-scale software projects there are typically
more than one requirements document, starting from system
requirements and decomposing them into subsystems, modules
and units requirements. Often these are produced by different
engineering teams at different levels of refinement. This can
create a challenge to maintaining consistency and traceability
among all requirement documents.

In our approach, we propose a lightweight process to gather
the scattered variability requirements and constraints from
diverse requirement documents into a centralized Require-
ments Traceability Worksheet (RTW), illustrated in Table I.
Capturing in the RTW the dispersed information needed to
construct the feature model enables the step-by-step construc-
tion of a feature model that is consistent with the documented
variability-related requirements and constraints.

First, the variability requirements and constraints are ex-
tracted from the requirement documents and entered into

TABLE I: Requirements Traceability Worksheet (RTW).

the RTW, one requirement/constraint per entry. Then, we
identify the relevant terms such as the variant features and/or
the feature constraints from each requirement/constraint, and
name them as concrete features which are key elements of a
feature model. In implementation, these terms are generally the
configurable parameters that manage variability or establish
constraints in the code. As an example, “cFE is configured
to function as a time server or time client” is an identified
variability requirement. Clearly time server and time client are
two configuration variants of the cFE function. Accordingly,
we define time server and time client as concrete features, and
group them under the cFE function. Usually concrete features
are terminal nodes of a feature model. However, we chose
to allow concrete features in non-terminal nodes to keep the
feature tree smaller. Our feature tree still can be transformed
into a GenVoca feature tree [1]; that transformation adds
nodes, so we avoid it here.

Second, we assign a unique requirement ID as an identifier
for each entry in the RTW. Then we augment the traceable
metadata when naming the abstract feature [1], [25], [26]. In
the context of a feature model, the abstract features are non-
terminal nodes used to structure the feature diagram by group-
ing the related concrete features (identified in the previous
step), so the name of an abstract feature should be representa-
tive for grouping concrete features. Our naming convention is
to augment the abstract feature name (e.g. “name” “id”) with
traceable metadata that is extracted along with the require-
ment/constraint. The type of metadata is varied depending on
the requirement structure. If the requirements/constraints are
specified in the structured requirement document, the metadata
can be the requirement ID and the heading description for
each requirement/constraint, e.g., Time Function T1001. On
the other hand, if the requirements/constraints are extracted
from a free-form textual requirement document, the meta-
data can be document section number and heading, e.g.,
Time Server Client 1 22 4 5. Although abstract features are
essential elements for a feature model, they do not contribute
to product variant generation as they do not appear in the code.

Third, after identifying the abstract and concrete features
for each variability requirement/constraint, VarCORE trans-
lates the textual variability requirements and constraints into
propositional logic expressions [27] using the propositional
logic forms in Table II. For example, “cFE is configured to
function as a time server or time client” will be translated to

Time Function T1001 ⇐⇒
(time server ∧ ¬time client) ∨ (¬time server ∧ time client)

This translation is done manually, and we discuss the lim-
itations of NLP techniques that drove our decision not to
automate this in related work in Section VI-C. The translation
to propositional logic form serves two purposes. One is to
help verify the correctness of the variability requirement or
constraint. A requirement or constraint statement in natural
language can be ambiguous and interpreted differently by
different developers. Translating it to propositional logic which
has only one mathematical interpretation helps verify the
correctness of the requirement or constraint.



TABLE II: Rule Definition for Mapping Propositional Formulas to
Feature Model Sub-trees.

Fourth, once in propositional logic form, the relationship
between abstract and concrete features can be determined
using the defined mapping rules [1] based on Feature Ori-
ented Domain Analysis (FODA) notation [28] (see Table II).
Features are units of functionality, i.e., functional requirements
[14]–[16]. These rules convert abstract features, concrete fea-
tures and their relationships to feature model sub-trees. For
instance, the propositional logic expression “cFE is configured
to function as a time server or time client” is mapped to
rule R4, which states that a Time Function T1001 (abstract
feature) can select only one child (concrete feature), either time
server or time client. By following the rules given in Table II,
we can systematically convert all variability requirements and
constraints in the RTW to their associated feature model sub-
trees. Table IV shows a sample of the RTW generated for the
Time service module of the cFE.

The RTW is composed of entries for variability require-
ments and variability constraints. Two variability requirements
are in a hierarchical relationship if the feature of one variability
requirement is the parent node of the feature (i.e., child node)
of another variability requirement. Thus, a hierarchical rela-
tionship between two variability requirements is also a parent-
child relationship. A variability constraint is represented by
another type of relationship, the cross-tree constraint, which
is an implication relationship (i.e., if-else constraint) between
two or more concrete features across variability requirements.

Evaluation to assure consistency among variability require-
ments and constraints is not a trivial task. VarCORE creates
a graphical variability model (using feature modeling) to aid
the variability requirements and constraint analysis (see next
section). Additionally, to handle requirement changes, entries
can readily be added, modified, or deleted in the RTW at any
time to create updated or experimental variability models for
comparison, analysis, or troubleshooting.

B. Variability Model Analysis

Once the first new artifact, the RTW, is constructed, we
use it to generate a second new artifact, a feature model
that represents the variability requirements and constraints
in a graphical view. A feature model is a standard type
of variability model, with table-based models being another
common type. A feature model is a feature diagram, described
below, together with the constraints on those features [1], [28].

In VarCORE we employ the open-source tool FeatureIDE,
which has been widely used for feature modeling [29] to
construct the feature model (refer to the fifth step in Fig. 3).
We formulate each feature model sub-tree (from RTW) in the
Extensible Markup Language (XML) format recognized by
FeatureIDE. Within a sub-tree, the hierarchical relationship be-
tween abstract and concrete features must be maintained. The
XML representations of the sub-trees then are concatenated
and integrated into an XML file for the feature model. Fig.
4 shows the process of concatenating variability requirement
and constraint sub-trees into the XML template recognized by
FeatureIDE. The order of concatenation for sibling sub-trees
and constraints does not impact the feature model computation,
but does decide features’ and constraints’ relative display
position in the feature diagram. We developed a program1 to
automatically construct a feature model (XML format) from
the structured RTW entries. Once the feature model in XML
format is created, we input it to FeatureIDE to generate a
graphical representation of the feature model automatically
(see Fig. 7 for the final feature model generated for the cFE
Time service module).

We use FeatureIDE’s built-in capabilities to analyze the
model’s validity, including checks for void-model detection
(i.e., feature model without any valid configuration), dead-
feature detection (i.e., a feature that is not part of any valid
configuration), false-optional feature detection (i.e., optional
feature but present in all products), constraint redundancy,
and conflict of constraints. During the feature model analysis,
FeatureIDE flags any occurrence of these errors in the feature
diagram and reports them in its statistical report. Using our
RTW, we then can trace any reported inconsistency or error
both back to the corresponding variability requirement or
constraint, and from there to its source in a requirement doc-
ument. Fig. 5 shows the traceability among the requirements
documents, the RTW and the feature model.

After completion of the feature model analysis, FeatureIDE
can generate all valid configurations (or product variants)
encoded in the feature model. These valid configurations are
then exported to a repository for our subsequent use.

C. Verifying and Validating Configurations

The feature model undergoes static analysis to check the
consistency among the variability requirements and con-
straints. However, the analysis does not detect variability bugs
in the implementation. To detect inconsistencies between the
specification of the variability requirements and constraints in

1https://github.com/chinkhor/VarCORE/tree/main/scripts/RTW2FeatureModel



Fig. 4: Concatenating Feature Model Sub-trees using XML Template for Feature Model Construction.

Fig. 5: Traceability among Requirement Documents, RTW and Feature Model.

the feature model and the source code, we use the generated
product variants from our feature model as inputs to the cFS
build system and unit test framework for variability bug detec-
tion. Each product variant represents a valid configuration that
satisfies all variability requirements and constraints specified
in the RTW. Verifying these product variants via build tests
and unit tests helps assure consistency between the variability
requirements/constraints and the code that should satisfy them,
while inconsistencies could indicate flaws in the requirements.

The product variant files generated by FeatureIDE are in
XML format. They thus must be translated to configuration
files that are recognized by the build system. To achieve
this, we parse and convert the concrete features in XML
to the corresponding variable names in the source code.
This step uses a pre-defined mapping table between concrete
feature names and code variable names. The build system then
modifies the configuration setting as specified by the product
variant configuration file to start the build test and unit test.
If the configuration space is small, all product variants can be
selected for testing. Otherwise, random or targeted sampling
of product variants for testing can be done.

Finally, the test results for each product variant is gathered
for analysis. Any build failure or unit test error is an indication
of potential inconsistency between the implementation and the
variability requirements/constraints. Once the variability bug
is identified, the RTW can be used to trace the source of
variability requirements and constraints which are related to
the inconsistency for further analysis.

V. APPLICATION AND FINDINGS

In this section we describe our application of VarCORE
on a portion of the cFS flight software. We also present our
findings regarding the following three research questions:

• RQ1: Are there missing variability-related requirements
and/or constraints?

• RQ2: Are there inconsistencies among the specified vari-
ability requirements and/or constraints?

• RQ3: Are there variability requirements and/or con-
straints not implemented in the code?

A. Application

We chose to evaluate our VarCORE technique on the cFE
Time service module (TIME) since 14 of the 15 variant feature



TABLE III: TIME Configuration Variability and its Functionality.
Variability Functionality

server Time operation in Server mode
client Time operation in Client mode

big endian Force tone message in big endian order
virtual met Configure as virtual MET if there is no local

hardware MET. virtual met = false indicates
local hardware MET is enabled.

source Source of time data is external
source met Type of external time data source is MET
source gps Type of external time data source is GPS
source time Type of external time data source is spacecraft time

signal Support primary and redundant tone signal selection
tai Default time format is International Atomic Time
utc Default time format is Coordinated Universal Time

fake tone Enable fake tone signal generation in the absence
of real hardware signal

at tone was Tone signal arrives before ”time at the tone” data
at tone will be Tone signal arrives after ”time at the tone” data

configurable parameters that define cFE system behavior are
used for Time configuration. TIME is the core service that
provides spacecraft time correlation, distribution, and syn-
chronization services. These encompass multiple variabilities,
including the time operational mode (server or client mode),
time format, source of time, scheme for tone signal, etc.
Table III shows all 14 TIME configuration variabilities and
their corresponding functionalities. The configuration of these
variabilities is defined at build-time and dictate the TIME
system behavior at run-time.

Initially we selected the cFE Software Requirement Spec-
ification (cFE requirements.docx) and the cFE Funtional Re-
quirements specification (cFE FunctionalRequirements.csv) as
the sources from which to gather the variability-related re-
quirements and constraints for TIME. However, we found
that only six variability requirements are described in these
two requirements documents. We then discovered that, instead,
the cFE User’s Guide (which is the reference for application,
tool and test development) describes the TIME variability
requirements and constraints in detail. We thus used it as one
of the primary input documents for our VarCORE application
and evaluation.

B. Findings

Table IV shows an excerpt of the first generated artifact
produced with VarCORE, the RTW (Requirements Trace-
ability Worksheet) described in Section IV-A. Following the
process described there, 10 variability requirements and 7
variability constraints were identified for TIME configurations
and extracted from the cFE User’s Guide. Then, 9 abstract
features and 15 concrete features were derived from the 17
variability requirements and constraints.

With TIME’s variability-related requirements and con-
straints now gathered into the structured RTW, we translated
each requirement or constraint into its propositional logic
formula. In parallel, we reviewed all the formulas to verify
the correctness and consistency of the variability requirements
and constraints for the TIME configuration.

Interestingly, in the review process we discovered that one
cross-tree constraint could never be satisfied. TIME−7 (see

Table IV) could not be satisfied as there was no definition for
processor count, neither in TIME, nor in PSP or OSAL (we
manually checked PSP and OSAL later). TIME−7 thus was
flagged as a unsatisfiable variability constraint and highlighted
in red on the RTW.

After verification of the variability requirements and con-
straints was completed, we created the feature model for TIME
using the FeatureIDE tool (described in Sect. IV-B) using the
satisfied variability requirements and constraints but without
TIME−7. The graphical feature model is the second artifact
produced by VarCORE, for use in the feature model analysis.

Fig. 6 shows the initial constructed feature model, including
the cross-tree constraints, for TIME that was generated by the
FeatureIDE tool. However, FeatureIDE reported the existence
of a false-optional feature in the initial feature model. It
showed that this was caused by the constraints specified by
TIME−10, TIME−11 and TIME−16, as shown in the figure.

Further investigation by the authors indicated that the culprit
was TIME−11, as this constraint would prohibit the Time
Server from using the local hardware’s MET (Mission Elapsed
Time). The variability constraint specified in TIME−11 was
thus judged to be erroneous and was highlighted in red in the
RTW for attention by the developers. Using the traceability
provided by the feature model and RTW, we could readily
identify the source of this requirement specification, so that it
could be repaired. Figs. 7 and 8 show the updated result, a
valid feature model, after the variability constraint TIME−11
was removed to resolve the inconsistency.

After completion of the model analysis, we generated all
112 product variants for verification and validation using cFS’s
build system and unit test framework. Each product variant
represents a valid configuration supported by the feature
model. Our goal is to assure that the cFE does fulfill the
variability requirements and constraints specified in the RTW.
We transformed all 112 product variants (in XML files) to
configuration files recognized by the cFS build system using
the mapping table shown in Table V. The list of C pre-
procesor (CPP) directives for TIME was retrieved using the
Linux ifnames tool, and the mapping was straight forward as
there were common keywords between the concrete features
and the CPP variable names.

Table VI shows that 76 out of the 112 valid config-
urations failed the build tests for the unit tests, where
64 of the failures were the same as the system’s failed
build tests. After investigation, all the failures of both
system and unit test builds were found to be caused
by three variability bugs. TIME attempts to call unimple-
mented abstract functions (OS SelectTone, OS SetLocalMET
or OS GetLocalMET) when either a selection for the tone sig-
nal (cFE PLATFORM TIME CFG SIGNAL=true) or for the local
hardware MET (cFE PLATFORM TIME CFG VIRTUAL=false)
is configured. Additionally, there was a unit test cod-
ing bug (TIME−6 (cFE PLATFORM TIME CFG CLIENT=true))
that was found to occur when the Time Client is configured.

These build failures indicate that the code does not satisfy
the following variability requirements (refer to Table IV for



TABLE IV: Excerpts from Requirements Traceability Worksheet (RTW) for cFE Time Configuration. Variability requirements and constraints
that are unsatisfiable or conflicted with others are highlighted in red. The full RTW is available at https://github.com/chinkhor/VarCORE.

Fig. 6: Initial Constructed Feature Model Showing Detection of Inconsistent Constraints.

TABLE V: Mapping between Concrete Features and Code.
Concrete Features in C Pre-processor Directives in

Feature Model CFE Time Service Module (Codes)
server CFE PLATFORM TIME CFG SERVER
client CFE PLATFORM TIME CFG CLIENT

big endian CFE PLATFORM TIME CFG BIGENDIAN
virtual met CFE PLATFORM TIME CFG VIRTUAL

source CFE PLATFORM TIME CFG SOURCE
source met CFE PLATFORM TIME CFG SRC MET
source gps CFE PLATFORM TIME CFG SRC GPS
source time CFE PLATFORM TIME CFG SRC TIME

signal CFE PLATFORM TIME CFG SIGNAL
tai CFE MISSION TIME CFG DEFAULT TAI
utc CFE MISSION TIME CFG DEFAULT UTC

fake tone CFE MISSION TIME CFG FAKE TONE
at tone was CFE MISSION TIME AT TONE WAS

at tone will be CFE MISSION TIME AT TONE WILL BE

more information):

• TIME−9 (cFE PLATFORM TIME CFG VIRTUAL=false)
• TIME−15 (cFE PLATFORM TIME CFG SIGNAL=true)
• TIME−6 (cFE PLATFORM TIME CFG CLIENT=true) in

TABLE VI: TIME Build Test and Unit Test Results.
Build Test Results Total

Component Pass Fail Configurations
cFS Time Service 48 64 112

cFS Time Unit Test 36 76 112

unit test code only.

C. Research Questions

We now discuss what our findings from application of
the VarCORE on the cFE indicate in terms of the research
questions.

RQ1: Are there missing variability-related requirements
and/or constraints?

Several variability requirements and constraints are missing
from both the cFE Software Requirement Specification (cFE
requirements.docx) and the cFE Funtional Requirements doc-
ument (cFE FunctionalRequirements.csv). During variability
requirements and constraints gathering, we found that together
they only describe 6 of the variability requirements for the



Fig. 7: Final Feature Model for Time Service Configuration. The full feature model is at https://github.com/chinkhor/VarCORE.

Fig. 8: Feature Model Analysis Statistics by FeatureIDE

TIME module compared to 17 (10 variability requirements and
7 constraints) that we extracted from the cFE User’s Guide.
There is currently no centralized requirement document from
which all behavioral requirements and constraints could be
identified and understood.

RQ2: Are there inconsistencies among the specified
variability requirements and/or constraints?

Review of the RTW identified a variability requirement
inconsistency during the review process. TIME−7 (see Table
IV) cannot be satisfied as there is no definition for processor
count in TIME nor imported to TIME. We also found through
the feature model analysis that the constraint TIME−11 con-
flicted with TIME−10 and TIME−16. These issues require
requirements updates to address the inconsistencies.

RQ3: Are there variability requirements and/or con-
straints not implemented in the code?

We investigated this question by testing all 112 valid
configurations (product variants) using cFS’s existing build
system. The results show that TIME−9 and TIME−15 are not
implemented in the code. Moreover, there is a variability bug
found in unit test for supporting TIME−6. All three of these
variability bugs are known open issues tracked by cFS’s Bug
ID #109 ( https://github.com/nasa/cFE/issues/109).

We analyzed the history of resolved bugs
for TIME and found a variability bug #2072
(https://github.com/nasa/cFE/issues/2072) which occurred
only for a specific TIME configuration, one of the valid 112
product variants generated by VarCORE. We reproduced the
bug (temporarily undoing the fix) when running the build test
using the specific product variant as TIME configuration and
confirmed that the variability requirement was correct but not
implemented correctly in the code. This resolved bug could
have been detected earlier if VarCORE had been integrated
into the cFS build system.

During code review for answering RQ3, we also found that
the specified constraint described in the RTW for TIME−4 is
inconsistent with the code implementation. TIME−4 specifies
that the issuance of a fake tone shall be enabled only for
hardware configurations that do not provide a tone signal.
Since both local hardware MET and external source MET
can provide a tone signal, the fake tone should be disabled
in these two configurations. However, the implementation of
this variability allows a fake tone when the local hardware
MET is enabled. The implemented constraint is inconsistent
with the specified constraint.

VI. DISCUSSION

A. Lessons Learned

We report four lessons learned from our experience with the
flight software that may be useful on other industrial projects.

• Information about variability-related requirements and
constraints may be dispersed among documents, not all
of which are labeled as requirements. This makes it
more time-consuming to identify and understand optional
requirements and constraints on the design space. It also
makes it easier to miss needed requirements or to in-
advertently violate constraints by introducing conflicting
requirements.

• Variability-related requirements and constraints are easily
overlooked and need special attention in mission-critical
software. The flight software framework uses many best
practices for variability management, as described in
Sect. II, and is well maintained by experienced de-
velopers. For a new project with developers initially
unfamiliar with the flight software framework, there re-
main obstacles to navigating the maze of information
[4] to determine their project requirements. Our findings



(Section V) suggest that special attention to variability-
related issues can simplify future developers’ tasks.

• Lightweight variability modeling, as in VarCORE, ap-
pears to be effective in finding errors. We identify two
reasons for this. (1) It focuses special attention on the
variability. (2) It centralizes the dispersed requirements
in a structured format (the RTW) that enables automated
creation and analysis of a standard feature model.

• A graphical view of the variability requirements and
constraints makes it easier to see and understand inconsis-
tencies. VarCORE uses a well-known tool (FeatureIDE)
to display the feature model in a tree-based, graphical
display annotated with any constraint violations, and to
generate all valid configurations in support of build and
unit testing.

An interview-based study 2021 by Schmid et al. noted that
“industry still struggles to deal with a high number of variants
of their systems systematically. The underlying issue, i.e., that
knowledge about variability is often only tacit, available from
the heads of the developers only, has not disappeared” [30].
Similarly, Kruger et al. reported in a 2019 study that the
availability of lightweight traceability of features to source
code immediately benefited both developers and maintainers
[31]. We sought in our work to improve the state of practice
by making the knowledge about constraints on valid feature
combinations less tacit and more obvious to the developers of
a new flight software system using the cFS framework.

B. Threats to Validity

An internal threat to validity is that, while verification that
our feature model is sound uses the static analysis performed
by the FeatureIDE tool to confirm that it produces only
valid configurations, the variability requirements or constraints
themselves may be incorrect. VarCORE can assist to some ex-
tent in surfacing such errors since it checks that all the config-
urations identified as valid by FeatureIDE can be compiled and
built for unit testing. Another threat to internal validity is that
several steps in VarCORE are manual (requirement/constraint
extraction, propositional logic conversion) and require domain
expertise, with results dependent on the accuracy of input
provided by developers. We can automate more of the flow
to lessen this dependency; however, the current worksheet-
to-model approach has the benefit of being familiar with a
low bar to adoption. Our selection of one project, the NASA
flight software, for application may affect the external validity.
However, we chose it due to our experience with it, and it has
a sizeable community that has used it on a variety of aerospace
projects.

C. Related Work

Variability models are well-studied and take multiple forms
including feature models [28], tabular configurability models
[4], and formal models [32], created either from requirements
or reverse engineered from code.

Automating requirements and feature extraction using NLP
remains a challenging task and requires domain expertise to

fine tune the tools and verify the results. At RE’22 Rajbhoj et
al. described successful extraction of traceability information
from requirements specifications that are highly structured,
which was not the case here [33].

Our approach is perhaps most similar to that described
by Acher et al., who also proposed a tool-supported process
to create a feature model from tabular specifications [34].
They assumed input was already in tabular form before
normalizing these requirements into a more structured format
for interpretation and synthesizing the feature model based
on high-level defined directives. In contrast, we gather the
variability requirements into a central Requirements Traceabil-
ity Worksheet (RTW) for metadata augmentation to facilitate
traceability between the requirements and the feature model.
We also leverage a popular open-source feature modeling tool
for constraint analysis, which flight software developers are
more likely to accept than an unfamiliar tool.

More broadly, Gazzillo and Cohen recently urged that
configurability be promoted to a first class element, noting that
“configurable software makes up most of the software in use
today.” They cite a need for common ground to “bring together
researchers and practitioners who are typically siloed” [35].
We hope that the open-source NASA flight software frame-
work may provide one such opportunity for joint innovation.

D. Future Work

A long-range goal is to include VarCORE in the cFS tool
suite. Toward this goal we plan to automate additional portions
of VarCORE, perhaps using existing NLP techniques [36]–
[38], and to enable variability code auto-analysis [39], [40] to
evaluate the consistency between requirements specification
and implementation.

VII. CONCLUSION

This paper has described our experience with the variability-
related requirements and requirement constraints for a con-
figurable NASA flight software framework. A challenge for
new projects using this framework is that the specification of
variability requirements and constraints are dispersed across
multiple documents. This can contribute to requirements in-
consistencies, omissions, and conflicts, as well as to inadver-
tent violations of constraints on combinations of options. We
described VarCORE, a new structured technique to create a
variability model for the configurable flight software using
feature-modeling and open-source tools. We showed in our
application of it to a critical piece of the flight software how
VarCORE centralizes, specifies, and analyzes the variability
requirements and constraints that are currently dispersed.
We reported its effectiveness in finding some missing and
inconsistent variability requirements and constraints. Finally,
we discussed the broader lessons learned from our experience
that may be useful to requirements teams on other large
configurable industrial projects.
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