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Abstract

After selection with the Group LASSO (or generalized variants such as the overlapping,
sparse, or standardized Group LASSO), inference for the selected parameters is unreliable
in the absence of adjustments for selection bias. In the penalized Gaussian regression setup,
existing approaches provide adjustments for selection events that can be expressed as linear
inequalities in the data variables. Such a representation, however, fails to hold for selection
with the Group LASSO and substantially obstructs the scope of subsequent post-selective
inference. Key questions of inferential interest—for example, inference for the effects of
selected variables on the outcome—remain unanswered. In the present paper, we develop
a consistent, post-selective, Bayesian method to address the existing gaps by deriving a
likelihood adjustment factor and an approximation thereof that eliminates bias from the
selection of groups. Experiments on simulated data and data from the Human Connectome
Project demonstrate that our method recovers the effects of parameters within the selected
groups while paying only a small price for bias adjustment.

Keywords: Conditional inference, Group sparsity, Group LASSO, Laplace approxima-
tion, Selective inference

1. Introduction

Modern statistical analysis of complex data does not always fit into the classical inferential
framework. Instead, analysis splits into two distinct stages: a selection stage, in which we
formulate a model and hypotheses of interest; and an inference stage, in which we estimate
parameters, quantify uncertainties, and test hypotheses under our selected model. How-
ever, classical coverage guarantees for credible and confidence intervals fail dramatically
when data used for selection is naively re-used for inference; see Berk et al. (2013); Lee
et al. (2016); Benjamini (2020) and references therein. Simple procedures like data splitting
preserve validity of post-selective inference if two independent subsets of data are used for
the selection and inference stages. However, discarding all the data used in the selection
stage is inefficient, and there is potential for methodology which can safely reuse a portion
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of the information from selection for valid inference. By adopting a conditional approach,
recent tools in selective inference reduce this wastefulness when selection algorithms are ap-
plied to data prior to statistical modeling and inference. As examples, conditional methods
by Suzumura et al. (2017); Zhao and Panigrahi (2019); Gao et al. (2020); Tanizaki et al.
(2020) provide adjustments for selection bias in different post-selective inference tasks.

To briefly outline the essence of the conditional approach, consider a variable selection
algorithm applied to data Y with p (fixed) predictors X. Suppose the algorithm returns as
output Ê(Y ), a subset of {1, 2, . . . , p} such that each index represents a variable (column
of X), and therefore Ê(Y ) is associated with a model selected from 2p possibilities. After
selecting a given (non-empty) subset of variables E, our interest lies in inference for a set
of post-selective parameters

ΘE =
{
θ
(j)
E ∈ R, j ∈ E

}
using the observed data {Y = y}. Post-selective inference for ΘE proceeds by conditioning
on the selection event {

Ê(Y ) = E
}
,

which is motivated by the fact that conditional coverage implies unconditional coverage

under selection. That is, for a set C
(
Ê (Y ) , Y

)
⊆ R that depends on both the output of

selection and the data, Lee et al. (2016) note

P
(
θ
(j)

Ê(Y )
∈ C

(
Ê (Y ) , Y

)
| Ê (Y ) = E

)
≥ 1− α ⇒ P

(
θ
(j)

Ê(Y )
∈ C

(
Ê (Y ) , Y

))
≥ 1− α.

In many problems, it may be more convenient to instead condition on AE , where AE ⊆{
Ê(Y ) = E

}
. Inference remains valid by the argument above even when conditioning on a

proper subset of the selection event.

After conditioning on AE , post-selective inference may be carried out via either a fre-
quentist or Bayesian framework. A Bayesian framework in Yekutieli (2012); Panigrahi et al.
(2021) relies on a conditional, selection-informed likelihood to facilitate posterior sampling.
The Bayesian approach is especially useful for inferring about vector-valued parameters or
functions thereof, and permits flexible inference in different models informed by selection,
for instance, models with unknown noise variance. In the remainder of this paper, we de-
velop an approximate Bayesian method for post-selective inference with the Group LASSO
and several of its variants. The setup for our problem is the following: (i) the covariates act
naturally in groups known a priori in the analysis; (ii) only a few of these groups of covari-
ates affect the outcome, captured effectively by a parsimonious model. A well-developed
class of algorithms in Yuan and Lin (2005); Jacob et al. (2009); Simon et al. (2013) among
others exploits this knowledge about the covariate space in order to select regression models
with grouped covariates. Post-selective inference in the resulting selection-informed models
is a natural next step that is addressed by our method.

We structure our paper as follows. We begin by situating the contributions of our method
in the post-selective literature in Section 2. In Section 3, we present a selection-informed
posterior that serves as the methodological centerpiece of our Bayesian framework. In Sec-
tion 4, we obtain an exact value for a likelihood adjustment factor in our selection-informed
posterior to eliminate bias from the selection of groups. We then apply a generalized version
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of Laplace-type approximations to obtain feasible sampling updates from an approximate
version of the posterior. In Section 5, we generalize our method to models informed by dif-
ferent forms of grouped covariates. We establish large-sample theory for our approximate
Bayesian methods in Section 6. We demonstrate the potential of our methods in numerical
experiments and in a human neuroimaging application in Section 7. Proofs for our technical
results and further supporting information are included in the appendices.

2. Related Work and Contributions

Below, we identify the challenges that preclude the use of existing methods for post-selective
inference, and their immediate modifications, for the Group LASSO. Fixing some nota-
tion, suppose we observe n independent instances of a scalar response variable Yi and a
p-dimensional vector of covariates Xi for i = 1, . . . , n. We denote the response vector by
y =

(
Y1 . . . Yn

)⊺ ∈ Rn and the corresponding covariate matrix by X =
(
X1 . . . Xn

)⊺ ∈
Rn×p. Let G be a prespecified partition of our p covariates into G groups. We refer to a
group in G by lowercase g, and use |g| ∈ N to denote the number of covariates within group
g.

For now, we consider non-overlapping groups defined by the partition G. Suppose, we
solve the familiar Group LASSO objective in Yuan and Lin (2005):

β̂(G) ∈ argmin
β

1

2
∥y −Xβ∥22 +

∑
g∈G

λg∥βg∥2. (1)

For each group g ∈ G, βg ∈ R|g| is a vector with entries corresponding to the covariates in
group g, and λg ≥ 0 is a tuning parameter for this group. The solution of (1) returns a
subset of the covariates

Ê(y) = supp(β̂(G)),

where the support of the Group LASSO estimator respects the prespecified groups. Specif-
ically, the selected set of covariates can be written as a union of selected groups in G, which
we denote by G

Ê
in the paper.

2.1 From Atoms to Groups

In the special case when each covariate forms an atomic group of size 1, the objective in
(1) agrees with the widely studied LASSO. Established in Lee et al. (2016), the selection
of any subset of atoms is a polyhedral event, which means that the event is expressible as
a union of linear inequalities in the response vector y. Existing methods for post-selective
inference in Lee et al. (2016); Suzumura et al. (2017); Liu et al. (2018) readily adjust for
bias from selection by reducing the polyhedral conditioning event to univariate truncations.
However, when we transition from atoms to nontrivial groups, the selection of promising
groups no longer results in polyhedral events. We visualize this fact through Figure 1 in a
simple example, when the sample size and the number of predictors are both equal to 2.

In Figure 1, we contrast the geometry of the selection event for the LASSO and the
Group LASSO. Our covariates are the columns of an identity matrix and the tuning pa-
rameters are set to be 1. Under the grouped scenario, the two orthogonal covariates comprise
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Figure 1: Geometry of selection events for the LASSO (left) and the Group LASSO (right)
as a function of (y1, y2). In the case of no randomization, the origin ω is the point
(0, 0), but see text surrounding (3) for discussion of how randomization affects
the origin. The LASSO can select any of ∅, {1} , {2}, or {1, 2} as predictors; the
Group LASSO can select ∅ or {1, 2}.

a single group, whereas in the LASSO each covariate is an atom. For the LASSO, the event
leading to the selection of the active set E is a union of rectangular regions in the plane
that are highlighted by the same color. A proper subset of this event is obtained by further
restricting the signs of selected covariates to match the observed signs. This proper subset
leads to one of the rectangular regions in the plane; see left panel. In contrast, the selection
of an active group for the Group LASSO is depicted as the complement of a ball in the
right panel, which can no longer be characterized as a union of polyhedral events.

2.2 Post-selective Inference for Overall Group Effects

We now turn to recent results by Loftus and Taylor (2015); Yang et al. (2016) which
provide post-selective inference for overall effects of groups after solving the Group LASSO.
Introducing some more notation, let W represent an operator that maps the vector v to the
unit vector (∥v∥2)−1 · v. For a linear subspace S ⊆ Rn and its orthogonal complement S⊥,
let PS and PS⊥ denote the projection operators onto the subspaces S and S⊥ respectively.

Consider solving the Group LASSO in (1). Let E be the realized value of Ê. Suppose we
assume the saturated model: y ∼ Nn(µ, σ

2In) for inference. For g ∈ GE and the subspace

Sg,E = span

(
PX⊥

GE\g
(Xg)

)
, consider the post-selective parameter

µg = ∥PSg,E (µ)∥2 ∈ R

after selection with the Group LASSO. A significant p-value under the null hypothesis
H0,g : µg = 0 confirms the presence of the selected group g in the estimated support;
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confidence bounds for µg measure the overall effect of the selected group g. The main result
by Yang et al. (2016) allows post-selective inference for µg through a conditional distribution
for ∥PS

g,Ê
(y)∥2, which we revisit in the following lemma.

Lemma 1 Yang et al. (2016). Conditional upon the event{
y : Ê(y) = E, W

(
PS

g,Ê
(y)
)
= Ug, PS⊥

g,Ê

(y) = Wg

}
, (2)

the density for
∥∥∥PS

g,Ê
(y)
∥∥∥
2
at γg is proportional to:

γ|g|−1
g · exp

(
− 1

2σ2

(
γ2g − 2γg · U⊺

g µ
))
· 1RE

(γg),

where RE =
{
γg ∈ R+ : Ê (Ugγg +Wg) = E

}
.

Applying a probability integral transform to the conditional law in Lemma 1 produces a
pivot for

µ̃g = U⊺
g µ

conditional upon (2). In particular, µ̃g agrees with µg under the null H0,g. As a result,
a pivot for the former parameter yields a valid p-value for testing H0,g and coincides with
the p-value in Loftus and Taylor (2015). The two parameters, however, do not coincide in
general. Instead, the following relation holds by Cauchy-Schwarz:

µg ≥ µ̃g,

and inverting the pivot thus provides a conservative, lower confidence bound for µg.

As emphasized in the preceding discussion in Section 2, the selection of groups is no
longer a polyhedral event. Indeed, the difficulties posed by the non-polyhedral geometry for
the Group LASSO continue to persist; we note that the truncating region RE in Lemma 1
lacks a closed-form description. The outlined approach overcomes this barrier to some
extent by narrowing down the scope of inferential targets to conducting inference on overall
group effects, in which case one only needs to explore a positive half-line to approximately
compute RE . Besides lacking an upper confidence bound for overall group effects, the
existing approach does not yield interval estimates for the effects of the individual variables
in the selected groups, nor does it identify a joint distribution for the individual effects.

2.3 Our Method

Closing existing gaps, we develop a Bayesian method for post-selective inference after con-
ducting a randomized selection of groups. Our method accounts for the non-polyhedral
selection of groups via a likelihood adjustment factor and characterizes a selection-informed
posterior distribution based on the likelihood adjustment. Working with a selection-informed
posterior grants us the flexibility to estimate the individual effects within selected groups
and functions thereof through credible regions and general posterior expectations. At the
same time, a randomized selection of groups permits us a very simple and exact charac-
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terization for the truncating region in the conditional likelihood that makes subsequent
inference easily feasible.

The randomizing variable, or randomization, used for the selection of groups is a Gaus-
sian variable throughout the remainder of the paper and is hereafter termed Gaussian ran-
domization. Our methods based on Gaussian randomization are closely related to data carv-
ing proposals in Fithian et al. (2014); Panigrahi et al. (2021); Panigrahi (2018); Schultheiss
et al. (2021), wherein selection operates only on a subset of the samples, but subsequent
post-selective estimation uses the full data. The variance of the Gaussian randomization
is a tuning parameter analogous to the split proportion in data splitting; this provides us
control of the relative amount of information used in selecting a group-sparse model ver-
sus estimating the post-selective parameters. The information borrowed by our approach
from selection yields credible intervals which are shorter than the corresponding interval
estimates for data splitting with roughly the same information split.

In the following sections, we develop our method in two steps. First, we account for
the selection of groups, a non-polyhedral event, via an exact likelihood adjustment factor.
Rather than characterizing the non-polyhedral event in the space of the data and ran-
domization variables, we develop a change of variables that is motivated by ideas in Tian
et al. (2016). Our choice of conditioning event is characterized by simple sign constraints
in the new variables which yields us a selection-informed posterior distribution. In the
next step, we propose a computationally feasible surrogate for this posterior distribution
with a (generalized) Laplace approximation. Our Bayesian method delivers statistically
consistent estimates using a selection-informed posterior distribution for the group-sparse
parameter vector. Continuing with our simple grouped example introduced earlier and de-
picted in the right panel of Figure 1, Figure 2 serves to preview the distribution of 1400
samples from our surrogate selection-informed posterior by varying the number of observa-
tions n = 25, 50, 100, 250, 500, 1000. Assuredly, as n increases, the support of the posterior
concentrates around the true bivariate parameter, suggesting the statistical consistency of
our method which we justify theoretically in Section 6.

3. Framework for Selection-informed Inference

Consistent with a post-selective setting, under a fixed X regression, our problem proceeds in
two stages. First, we select promising groups by optimizing an objective inducing grouped
sparsity. Then, we specify a group-sparse linear model which is informed by the groups of
covariates selected from the previous stage. We begin by describing our methods for non-
overlapping groups, based on a prespecified partition G of p covariates into G groups. In
Section 5, we present a larger category of grouped sparsities that our methods successfully
encompass.

Using notation defined in Section 2, we consider the Group LASSO objective in (1) with
an added randomization term:

β̂(G) ∈ argmin
β

1

2
∥y −Xβ∥22 +

∑
g∈G

λg∥βg∥2 − ω⊺β

 . (3)
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Figure 2: Distribution of 1400 samples from a surrogate of our selection-informed posterior
based on a bivariate model with a single group of orthogonal covariates for varying
n. The color of each hex depicts the number of posterior samples drawn in
that region, while a red crosshair indicates the location of the true value of the
parameter β =

(
−0.1 0.1

)⊺
.

In the final term of this objective, ω ∼ Np(0,Ω) is a Gaussian randomization variable
independent of the data. As indicated previously, perturbing the optimization problem with
a Gaussian randomization variable ω introduces a tradeoff between selection and inference,
giving the user the ability to reserve some information from the selection stage to perform
inference. Additional discussion of the role of randomization in (3), and the relation of
randomization variance with data splitting is given in Section 7. Hereafter, focusing on the
solution of (3), we let

Ê = supp(β̂(G))

be the support of the randomized Group LASSO estimator and let G
Ê
be the selected groups

of covariates according to the estimated support.

Revisiting the example in Section 2 and the related Figure 1, we note that the selection
regions have a similar geometry with the added randomization: the randomization instance
ω merely shifts the origin in both panels of the figure. Elaborating on the example, suppose
that n = p = 2, X = In, the identity matrix and λg = λ = 1. Let ω ∼ N2(0, I2). The
stationary mapping for the optimization in (3) is given by:

y + ω = β̂(G) + z,
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where the final term is the subgradient of the Group LASSO penalty evaluated at the
solution. In the case that the single group of two covariates is not selected, β̂(G) = 0 and
∥z∥2 < 1. For any fixed ω, the collection of y that leads to no selection is equivalent to a
ball centered at ω. The complement of this region characterizes the selection of the group
of size 2. Instead, when we have two atoms (groups with size 1 each), i.e., we solve a
randomized version of the LASSO in Tian and Taylor (2018), then the selection of a subset
of covariates with fixed signs is equivalent to linear inequalities in y and ω. Once again,
shifting the origin in the left panel of Figure 1 to ω depicts the polyhedral selection event
for the randomized LASSO. Recent work by Panigrahi et al. (2021); Panigrahi and Taylor
(2022); Panigrahi et al. (2022) provide a likelihood after the randomized LASSO; but, these
methods are not applicable to the present problem, because the selection of groups with
size greater than 1 does not admit a polyhedral form.

In the next stage, we specify a model after selection. Letting E be the realized value of
Ê, we model our response as

y ∼ Nn(XEβE , σ
2In). (4)

The selected model in (4), using the solution of (3), may indeed be misspecified. Suppose,
the true distribution for our response is

y ∼ Nn(Xβ̄, σ̄2In),

for some β̄ ∈ Rp, σ̄2 ∈ R+. Under the true distribution, our method always delivers inference
for the best linear representation of the response mean using the selected covariates XE ,
regardless of model misspecification. We elaborate further on this point when we turn to a
selection-informed likelihood based on the model in (4).

By analogy with Yekutieli (2012); Panigrahi and Taylor (2018), we pose a selection-
informed prior for our post-selective parameter

βE ∼ πE (5)

to invoke a Bayesian framework after selection. Both the selected model and the selection-
informed prior depend on the observed data. However, they do so only through the selection
event accounted for by conditioning.

Without loss of generality, we are able to assume that the variance parameter σ is
known. Following the lines of Panigrahi et al. (2021), the Bayesian approach we take easily
accommodates the case of unknown variance by treating it as a parameter. In this case, we
can proceed by posing a joint selection-informed prior on βE and σ.

3.1 Selection-informed Posterior

In this section we define a selection-informed posterior using the model for y in (4) and
the prior in (5). Through the remainder of the paper, we use the notation p(µ,Σ; b) for
a multivariate normal density function with mean µ and covariance Σ evaluated at b. To
state the selection-informed posterior, we will use the following variables that are involved in
selection: (i) the randomization variable ω; (ii) the least squares estimate based on (XE , y)

β̂E =
(
X⊺

EXE

)−1
X⊺

Ey;
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(iii) the orthogonal projection NE = X⊺
(
In −XE

(
X⊺

EXE

)−1
X⊺

E

)
y, assuming XE is full

rank. Under the selected model, β̂E has mean βE , and NE has mean 0. Denote the
covariance of β̂E by ΣE = σ2

(
X⊺

EXE

)−1
and let ΨE be the covariance of NE . Ignoring

selection, the usual joint likelihood for these three variables is given by:

p(βE ,ΣE ; β̂E) · p(0,ΨE ;NE) · p(0,Ω;ω).

The factorization follows directly from the independence between β̂E and NE and their
independence with the randomization variable ω.

Accounting for the selection-informed nature of our model, the likelihood we work with
conditions upon an event:

AE ⊆ {(β̂E , NE , ω) : Ê = E}.

The conditioning event AE for the group-sparse problem is a proper subset of the selection
event {Ê = E}, which we define precisely in Theorem 2. After truncating realizations to
the event AE , the resulting conditional likelihood is proportional to

p(βE ,ΣE ; β̂E) · p(0,ΨE ;NE) · p(0,Ω;ω) · 1AE
(β̂E , NE , ω).

Now we state our selection-informed likelihood, derived after conditioning further upon
the ancillary statistic NE and integrating out the randomization variable ω. Up to propor-
tionality in βE , the expression for this likelihood agrees with

{P(AE;NE
| βE)}−1 · p(βE ,ΣE ; β̂E) ·

∫
p(0,Ω;ω) · 1AE;NE

(β̂E , ω)dω; (6)

AE;NE
is the set of β̂E , ω that result in the event AE for the fixed instance NE , and

P(AE;NE
| βE) =

∫
p(βE ,ΣE ; β̂E) · p(0,Ω;ω) · 1AE;NE

(β̂E , ω)dωdβ̂E ,

where P(· | βE) highlights the dependence of the probability for the event AE;NE
on the

post-selective parameters βE .

More generally, the selection-informed likelihood in (6) yields us inference for the best
linear representation of the response mean in terms of the selected covariates. To note this
generality, suppose that our response is generated from the linear model: y ∼ Nn(Xβ̄, σ̄2In).
For any fixed set E with size |E|, we have β̂E ∼ N|E|(βE ,ΣE) and NE ∼ Np(ξE ,ΨE) where

βE = argmin
b∈R|E|

∥Xβ̄ −XEb∥22,

and ξE = X⊺PS⊥E (Xβ̄) for SE = span(XE). The likelihood for β̂E , NE and ω factorizes as

p(βE ,ΣE ; β̂E) · p(ξE ,ΨE ;NE) · p(0,Ω;ω).

Treating ξE as nuisance parameters post selection, we condition on NE to obtain a likelihood
function of βE , free from nuisance parameters. It is easy to see that our selection-informed
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likelihood assumes the expression in (6) and inference proceeds identically, regardless of
model misspecification.

Using (6) in conjunction with our selection-informed prior (5) ultimately yields us our
selection-informed posterior distribution for βE :

πE(βE | β̂E , NE) ∝ (P(AE;NE
| βE))−1 · πE(βE) · p(βE ,ΣE ; β̂E). (7)

Evaluating P(AE;NE
| βE), called the likelihood adjustment factor in Panigrahi et al.

(2021), is the prime technical hurdle in carrying out selection-informed Bayesian inference.
By carefully choosing the conditioning event AE;NE

, we develop mathematical expressions
for the adjustment factor and update estimates in a feasible analytic form for the group-
sparse problem. We take this up in the next section.

4. Selection-informed Bayesian Methods

We begin by identifying an exact theoretical value for the likelihood adjustment factor in
our selection-informed posterior (7). With a slight abuse of notation, hereon, we denote the
event AE;NE

by AE and the related adjustment factor by P(AE | βE).

4.1 Likelihood Adjustment Factor

We return to our primary case study of the (non-overlapping) Group LASSO. We express
the non-zero solution for a selected group, g ∈ GE , as

β̂(G)
g = ∥β̂(G)

g ∥2 ·
β̂
(G)
g

∥β̂(G)
g ∥2

= γgug, (8)

where γg = ∥β̂(G)
g ∥2 > 0 is a scalar representing the size of the selected group and ug =

(∥β̂(G)
g ∥2)−1 · β̂(G)

g is a unit vector in R|g| satisfying ∥ug∥2 = 1. The stationary mapping for
(3) at the solution is given by:

ω = X⊺X

(
(γgug)g∈GE

0

)
−X⊺XE β̂E −NE +

(
(λgug)g∈GE

(λgzg)g∈−GE

)
.

We note that
(
(λgug)

⊺
g∈GE

(λgzg)
⊺
g∈−GE

)⊺
is the subgradient of the ℓ2-norm Group LASSO

penalty at the solution, where zg is a vector in R|g| satisfying ∥zg∥2 < 1 for each non-selected
group g ∈ −GE . We collect the following optimization variables:

γ̂ = (γg : g ∈ GE)⊺ ∈ R|GE |, Û = {ug : g ∈ GE}, Ẑ = {zg : g ∈ −GE},

calling their respective realizations γ, U and Z. Letting diag(·) operate on an ordered
collection of matrices and return the corresponding block diagonal matrix, we fix U =

diag
(
(ug)g∈GE

)
. Then, based on the stationary mapping from the Group LASSO, define

ϕ
β̂E

(γ̂, Û , Ẑ) = Aβ̂E +B(Û)γ̂ + c(Û , Ẑ),
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where

A = −X⊺XE , B = X⊺XEU, c = −NE +
(
(λgug)

⊺
g∈GE

(λgzg)
⊺
g∈−GE

)⊺
.

Theorem 2 gives us the expression for the likelihood adjustment factor after applying
the change of variables:

ω → (γ̂, Û , Ẑ), where (γ̂, Û , Ẑ) = ϕ−1

β̂E
(ω). (9)

For each g ∈ GE , we construct the orthonormal basis completion for ug, which we denote
by Ūg ∈ R|g|×|g|−1. Further, x > t for x ∈ Rk and t ∈ R simply means that the inequality
holds in a coordinate-wise sense.

Theorem 2 Consider the conditioning event

AE = {Ê = E, Û = U , Ẑ = Z}.

Define the following matrices:

Ū = diag
((

Ūg

)
g∈GE

)
,Γ = diag

((
γ̂gI|g|−1

)
g∈GE

)
,Λ = diag

((
λgI|g|

)
g∈GE

)
.

Then, we have

P(AE | βE) ∝
∫ ∫

p(βE ,ΣE ; β̂E) · exp
{
−1

2
(Aβ̂E +Bγ̂ + c)⊺Ω−1(Aβ̂E +Bγ̂ + c)

}
× Jϕ

β̂E
(γ̂;U ,Z) · 1(γ̂ > 0)dβ̂Edγ̂,

where
Jϕ

β̂E
(γ̂;U ,Z) = det

(
Γ + Ū⊺(X⊺

EXE)
−1ΛŪ

)
. (10)

The non-polyhedral event we set out to analyze is characterized exactly up to pro-
portionality through the adjustment factor in Theorem 2. This exact characterization is
possible due to the choice of conditioning event as well as the specific form of randomiza-
tion. Drawing an analogy to the conditioning event for the LASSO in Lee et al. (2016),
conditioning on Û = U is similar to their required conditioning on the sign of each selected
coefficient, where we interpret the sign as the univariate special case of vector direction. By
conditioning further upon Ẑ = Z, we avoid an integration over p− |E| variables. Further-
more, the specific form of randomization in (3) allows us to describe our conditioning event
AE only as a set of simple sign constraints on γ̂, the sizes (ℓ2 norms) of the selected groups.

In our likelihood adjustment factor, Jϕ
β̂E

(γ̂;U ,Z) represents the Jacobian associated

with the change of variables ϕ
β̂E

(·). Noticing the dependence of this function on simply γ̂

and the conditioned-upon U , we call this function Jϕ(·,U). In the special case where the
design matrix of the selected model is orthogonal, the Jacobian takes a much simpler form
which is given in Corollary 3.

11
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Corollary 3 Suppose X⊺
EXE = I|E|. Then

Jϕ(γ,U) =
∏

g∈GE
(γg + λg)

(|g|−1).

The proof of Corollary 3 is a direct calculation based on (10) and is omitted.
In comparison with the adjustment for polyhedral selection events in Panigrahi et al.

(2021), the selection of groups leads to a nontrivial Jacobian function Jϕ(·,U) in our likeli-
hood adjustment. It is easy to note that the Jacobian dissolves as a constant when all the
selected groups are atoms with sizes exactly equal to 1. Based on the event AE , our likeli-
hood adjustment factor in this special case (with a constant Jacobian) gives an adjustment
for the randomized LASSO.

4.2 Surrogate Selection-informed Posterior

Plugging the adjustment factor from Theorem 2 into (7) gives us the selection-informed
posterior. Proposition 4 simplifies the expression for this posterior, and further expresses
it in terms of Gaussian densities. We defer the details for matrices Ā, R̄, b̄, s̄, Θ̄, and Ω̄,
which have closed forms, which do not depend on β̂E or γ̂, to the appendices.

Proposition 4 Conditioned on the event AE in Theorem 2, the selection-informed poste-
rior in (7) agrees with(∫

Jϕ(γ̂,U) · p(R̄βE + s̄, Θ̄; β̂E) · p(Āβ̂E + b̄, Ω̄; γ̂) · 1(γ̂ > 0)dγ̂dβ̂E

)−1

× πE(βE) · p(R̄βE + s̄, Θ̄; β̂E).

Bypassing integrations, we provide deterministic expressions for a surrogate selection-
informed posterior and the corresponding gradient in Theorem 5. Let

β⋆
E , γ

⋆ = argmin
β̃E ,γ̃

{1
2
(β̃E − R̄βE − s̄)⊺(Θ̄)−1(β̃E − R̄βE − s̄)

+
1

2
(γ̃ − Āβ̃E − b̄)⊺(Ω̄)−1(γ̃ − Āβ̃E − b̄) + Barr(γ̃)

}
,

where Barr(·) is a barrier penalty (Auslender, 1999) that takes the value ∞ when the
support constraints are violated and imposes a smaller penalty for values farther away from
the boundary of the positive orthant. We use C to denote a constant free of βE . We apply a
generalized version of the Laplace approximation (Wong, 2001; Inglot and Majerski, 2014)
to the normalizing constant in Proposition 4. This approximation, given by∫

Jϕ(γ̂,U) · p(R̄βE + s̄, Θ̄; β̂E) · p(Āβ̂E + b̄, Ω̄; γ̂) · 1(γ̂ > 0)dγ̂dβ̂E

≈ C · Jϕ(γ⋆;U) · exp
(
− 1

2
(β⋆

E − R̄βE − s̄)⊺(Θ̄)−1(β⋆
E − R̄βE − s̄)

− 1

2
(γ⋆ − Āβ⋆

E − b̄)⊺(Ω̄)−1(γ⋆ − Āβ⋆
E − b̄)− Barr(γ⋆)

)
, (11)

12
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is the basis of our surrogate posterior. Using convex analysis (Rockafellar, 2015), we state
the surrogate selection-informed posterior and its gradient in the following theorem.

Theorem 5 Fixing Σ̄ = Ω̄ + ĀΘ̄(Ā)⊺, P̄ = ĀR̄ and q̄ = Ās̄+ b̄, let

γ⋆ = argmin
γ∈R|GE |

1

2
(γ − P̄ βE − q̄)⊺(Σ̄)−1(γ − P̄ βE − q̄) + Barr(γ). (12)

Letting Γ⋆ = diag
((

γ⋆gI|g|−1

)
g∈GE

)
and Mg be the set of |g| − 1 diagonal indices of Γ⋆ for

group g, define

J⋆ =

∑
i∈Mg

[(Γ⋆ + Ū⊺(X⊺
EXE)

−1ΛŪ)−1]ii


g∈GE

∈ R|GE |.

Using the approximation in (11), the logarithm of our surrogate selection-informed posterior
is equal to

log πE(βE) + log p(R̄βE + s̄, Θ̄; β̂E)− log p(P̄ βE + q̄, Σ̄; γ⋆) + Barr(γ⋆)− log Jϕ(γ
⋆;U),

and has gradient equal to

∇ log πE(βE)+R̄⊺(Θ̄)−1(β̂E−R̄βE−s̄)+P̄ ⊺(Σ̄)−1
(
P̄ βE+q̄−γ⋆−

(
Σ̄−1 +∇2 Barr(γ⋆)

)−1
J⋆
)
.

Recall, |GE | is the number of selected groups after solving (3). As is evident from
Theorem 5, gradient-based sampling from the surrogate posterior requires us to solve a
R|GE |-dimensional optimization problem in every update, without carrying out integrations
for the theoretical adjustment. Algorithm 1 outlines a prototype implementation of our
methods to generate estimates from the surrogate posterior.

We revisit our simple running example in Section 3 to instantiate Algorithm 1. In the
selection stage, we solve (3) with ω ∼ N2(0, τ

2I2) where τ2 is the randomization variance.
Before noting the updates from the surrogate posterior, we assess in Figure 3 the relative
accuracy of the Laplace approximation in (11) with respect to the exact normalizing con-
stant. Because we have exactly one selected group of covariates, the exact normalizer is a
one-dimensional integral that can be computed numerically. In particular, we observe how
the relative accuracy of the approximation varies with sample size n and randomization
variance τ2. For any fixed sample size, the accuracy of approximation for the integral with
the mode decreases as the randomization variance increases, or equivalently as the concen-
tration of probability mass in the integrand has a greater spread. As expected, the relative
accuracy converges to 0 with growing sample size for all values of randomization variance.

Now, we exemplify Algorithm 1 for the simple example. Applying Theorems 2 and 5,
(Laplace) in this instance solves the one-dimensional optimization

γ⋆(k) = argmin
γ∈R

{1
2
(γ − P̄ β

(k)
E − q̄)⊺(Σ̄)−1(γ − P̄ β

(k)
E − q̄) + Barr(γ)

}
13
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Algorithm 1 A Prototype Implementation of our Selection-informed Bayesian Method

SELECT: (y, X, Ω, G, {λg}g∈G)
Optimize (3)−→ Ê = E, Û = U , Ẑ = Z

STEPS: Set up parameters for (Laplace)

(Orthonormal completion) Calculate Ū (see Theorem 2)

(Parameters) Calculate R̄, s̄, Θ̄, P̄ , q̄, Σ̄ (see Theorem 5)

STEPS: Implementation for a generic gradient-based sampler

(Initialize) Sample: β
(1)
E = β̂E , Step Size: η, Proposal Scale: χ, Number of Samples: K

for k = 1, 2, . . . ,K − 1 do

(Laplace) Solve γ⋆(k) = argminγ∈R|GE |

{1
2
(γ − P̄ β

(k)
E − q̄)⊺(Σ̄)−1(γ − P̄ β

(k)
E − q̄)

+Barr(γ)
}

(Jacobian) Calculate J⋆(k) (see Theorem 5)

(Gradient) Calculate ∇ log πE(β
(k)
E | β̂E , NE) (see Theorem 5)

(Update) β
(k+1)
E ←− β

(k)
E + ηχ∇ log πE(β

(k)
E | β̂E , NE) +

√
2ηϵ(k), ϵ(k) ∼ N (0, χ).

end for

where P̄ = U⊺(2 · I2 − UU⊺)−1, q̄ = −1, Σ̄ = 1 + U⊺(2 · I2 − UU⊺)−1U and U is the unit
vector in R2 from writing the Group LASSO solution as (8). The Jacobian function is given

by J⋆(k) = (1+ γ⋆(k))−1. We generate our prototype update for β
(k+1)
E using the expression

for the gradient of the surrogate in Theorem 5.

At last, we briefly comment on the case when σ, the error variance in the data, is treated
as an unknown parameter. Using a joint prior on (βE , σ) in conjunction with our selection-
informed likelihood gives us Bayesian inference in this situation. As prescribed in Panigrahi
et al. (2021), one could run a Gibbs sampler that alternates between drawing (i) an update
for βE given σ and (ii) an update for σ given βE . Note that the updates for βE , using a
gradient-based sampler, will assume the expression provided in Theorem 5.

5. Generalization to Other Grouped Sparsities

We now generalize our selection-informed methods to learning algorithms which target other
forms of grouped sparsities and covariate structures.

14
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Figure 3: Plot for relative accuracy of the log-Laplace approximation with respect to the
exact log-normalizing constant.

5.1 Overlapping Group LASSO

One approach for the overlapping Group LASSO recovers superposed groups by augment-
ing the covariate space with duplicated predictors (Jacob et al., 2009). We proceed by
implementing the solver (3) with a randomization variable ω∗ ∼ Np∗(0,Ω) such that p∗ is
the number of covariates after duplication. To formalize the setting, we let X∗ ∈ Rn×p∗

denote the augmented matrix of covariates constructed from X ∈ Rn×p, given that these
overlapping groups are determined before selection. Each set of selected covariates E∗ in the
augmented space maps to a set of selected variables E in the original space by reversing the
duplication. The stationary mapping for the overlapping Group LASSO with augmented
matrix X∗ and randomization ω∗, which we call ϕ∗, is given by

ω∗ = X∗⊺X∗

((
γ∗gu

∗
g

)
g∈GE∗

0

)
−X∗⊺XE β̂E −NE +

( (
λgu

∗
g

)
g∈GE∗

(λhz
∗
h)h∈−GE∗

)
(13)

where β̂E and NE = (X∗)⊺(y − XE β̂E) are the refitted and the ancillary statistics in our
selected model (cf. (4)). Following our notation,

γ̂∗ = (γ∗g : g ∈ GE∗)⊺, Û∗ = {u∗g : g ∈ GE∗},

15
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represent a decomposition of the overlapping Group LASSO solution as done in (8). Let

U∗ = diag
((

u∗g
)
g∈GE∗

)
. Finally,

Ẑ∗ = {z∗g : g ∈ −GE∗}

are the subgradient variables from the Group LASSO penalty for the non-selected groups
in the augmented predictor space.

The conditioning event we study for an analytically feasible selection-informed posterior
is given by

AE∗ = {Ê∗ = E∗, Û∗ = U∗, Ẑ∗ = Z∗}

where E∗, U∗ and Z∗ are the corresponding observed instances. We then recover an ex-
pression for the adjustment factor along the lines of Theorem 2 using the matrices

A = −(X∗)⊺XE , B = (X∗)⊺X∗
E∗U∗, c = −NE +

((
λgu

∗
g

)⊺
g∈GE

(
λgz

∗
g

)⊺
g∈−GE

)⊺
(14)

from the mapping in (13).

Proposition 6 Define the following matrices:

Ū∗ = diag
((

Ū∗
g

)
g∈GE∗

)
,Γ∗ = diag

((
γ̂∗gI|g|

)
g∈GE∗

)
,Λ = diag

((
λgI|g|

)
g∈GE∗

)
,

where A, B, c are specified in (14). Then, P(AE∗ | βE) is proportional to∫ ∫
p(βE ,ΣE ; β̂E) · exp

{
−1

2
(Aβ̂E +Bγ̂∗ + c)⊺Ω−1(Aβ̂E +Bγ̂∗ + c)

}
× Jϕ∗(γ̂∗;U∗) · 1(γ̂∗ > 0)dβ̂Edγ̂

∗

where
Jϕ∗(γ̂∗;U∗) = det

(
((X∗

E∗)⊺X∗
E∗Γ∗ + Λ) Ū∗ (X∗

E∗)⊺X∗
E∗U∗) . (15)

Notice that since X∗ contains overlapping groups, the matrix (X∗
E∗)⊺X∗

E∗ may not be
invertible. Thus, in comparison to Theorem 2, (15) provides a different expression for the
Jacobian function involving the sizes of the selected groups of variables. In solving (3), one
may introduce a ridge penalty ϵ∥β∥22/2, where ϵ is a small positive number. This will in
turn lead to (14) with

B =

(
(X∗

E)
⊺X∗

E∗ + ϵ · IE∗

(X∗
−E∗)⊺X∗

E∗

)
U∗.

This results in the following Jacobian

Jϕ∗(γ̂∗;U∗) = det
(
Γ∗ +

(
Ū∗)⊺ ((X∗

E∗)
⊺X∗

E∗ + ϵ · IE∗)−1 ΛŪ∗
)

where the ridge parameter can be used to counter the collinearity in the augmented predictor
matrix.
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5.2 Standardized Group LASSO

An alternate treatment to the Group LASSO objective is popularly applied in problems
with correlated covariates when a within-group orthonormality is desired. The learning
algorithm proposed by Simon and Tibshirani (2012) addresses the selection of groups in the
presence of such correlations via a modification to the Group LASSO penalty. Equivalently,
the canonical objective (3) is reparameterized in the standardized formulation; for each
submatrix Xg containing the predictors in group g ∈ G, the quadratic loss function is now
given by

∥y −
∑
g

Xgβg∥22 = ∥y −
∑
g

Wgθg∥22, (16)

Xg = WgRg for Wg, an orthonormal matrix, and Rg, an invertible matrix, and θg = Rgβg,
the reparameterized vector. The standardized Group LASSO optimizes the Group LASSO
objective in terms of θ rather than β:

θ̂(G) = argmin
θ

1

2
∥y −

∑
g ∈G

Wgθg∥22 +
∑
g∈G

λg∥θg∥2 − ω⊺θ

 . (17)

Lastly, the original parameters of interest are estimated by R−1
g θ̂

(G)
g . The selected set of

groups E comprises groups with non-zero coordinates in θ̂(G) after solving (17).

Letting W ∈ Rn×p be the column-wise concatentation of the standardized groups of
covariates Wg, the stationary mapping for the standardized Group LASSO is given by

ω = W ⊺W

(
(γgug)g∈GE

0

)
−W ⊺XE β̂E −NE +

(
(λgug)g∈GE

(λhzh)h∈−GE

)
; (18)

β̂E is our usual refitted statistic and NE = W ⊺(Y −XE β̂E). Consistent with our approach,
the (non-zero) standardized Group LASSO solution θ̂(G) can be decomposed in terms of

γ = (γg : g ∈ GE), U = {ug : g ∈ GE}.

Recall that
Z = {zg : g ∈ −GE}

are the subgradient variables for the non-selected groups. Setting

AE = {Ê = E, Û = U , Ẑ = Z},

A = −W ⊺XE , B = W ⊺WEU, c = −NE +
(
(λgug)

⊺
g∈GE

(λgzg)
⊺
g∈−GE

)⊺
, (19)

we present the adjustment factor in line with Theorem 2 after a change of variables from
inverting the stationary mapping of (17).

Proposition 7 Consider the following matrices:

Ū = diag
((

Ūg

)
g∈GE

)
,Γ = diag

((
γ̂gI|g|−1

)
g∈GE

)
,Λ = diag

((
λgI|g|

)
g∈GE

)
.
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We then have

P(AE | βE) ∝
∫ ∫

p(βE ,ΣE ; β̂E) · exp
{
−1

2
(Aβ̂E +Bγ̂ + c)⊺Ω−1(Aβ̂E +Bγ̂ + c)

}
× Jϕ(γ̂;U) · 1(γ̂ > 0)dβ̂Edγ̂

where
Jϕ(γ̂;U) = det(Γ + Ū⊺(W ⊺

EWE)
−1ΛŪ).

5.3 Sparse Group LASSO

The sparse Group LASSO (Simon et al., 2013) produces solutions that are sparse at both
the group level and the individual level within selected groups by deploying the Group
LASSO penalty along with the usual ℓ1 penalty. A randomized formulation of the sparse
Group LASSO is given by

argmin
β

{
1

2
∥y −Xβ∥22 +

∑
g λg∥βg∥2 + λ0∥β∥1 − ω⊺β

}
;

the sum over g forms a non-overlapping partition of the predictors. Notice that this criterion
may be viewed as a special case of the overlapping Group LASSO where each predictor i
appears in a group g ∈ {1, . . . , G}, as well as in its own individual group.

Setting up notations, recall that GE denotes the set of selected groups and −GE its
complement; let Tg denote the selected predictors in group g, and −Tg the corresponding
complement. Finally, we define

Ĕ =
⋃

g∈GE

Tg,

the set of selected predictors in the selected groups which parameterize our model. We
write the stationary mapping for the sparse Group LASSO below:

ω = X⊺X

(
(γgug)g∈GE

0

)
−X⊺XĔ β̂Ĕ −NĔ +

(
(λgug)g∈GE

(λhzh)h∈−GE

)
+ λ0

((
(sj)j∈Tg

(sj)j∈−Tg

)
g∈G

)
(20)

where β̂Ĕ and NĔ are defined as per projections according to the selected model; we denote

this mapping by ϕ̆. Recall that γ, U , and Z are consistent in their definition in terms of
the groups we select after solving (3). In addition, the subgradient variables from the ℓ1

penalty are represented by sj , with sj = sign(β̂
(G)
j ) for j ∈ Ĕ, and |sj | < 1 for j ∈ −Ĕ.

We collect these scalar variables into the two sets SGE
and S−GE

, depending on whether
the predictor is in a selected group. For non-selected predictors in selected groups, the
corresponding entry of ug is zero. That is, we can interpret ug as a unit vector with the
same dimension as the selected part of group g, denoting it by ŭg = (ug,j : j ∈ Tg)

⊺ ∈ R|Tg |.

Set Ŭ = diag
(
(ŭg)g∈GE

)
. Define the selection event

AĔ = { ̂̆E = Ĕ, Û = U , Ẑ = Z, ŜGE
= SGE

, Ŝ−GE
= S−GE

},

18
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A = −X⊺XĔ , B = X⊺XĔŬ , c = −NE +
(
(λgug)

⊺
g∈GE

(λgzg)
⊺
g∈−GE

)⊺
+ λ0

(
((sj)j∈g)g∈G

)⊺
,

(21)
using the stationary mapping for the learning algorithm under scrutiny. We then recover
the following theoretical expression for the adjustment factor after selection via the sparse
Group LASSO.

Proposition 8 For each selected group g ∈ GE, construct
¯̆
Ug ∈ R|Tg |×(|Tg−1|) as the or-

thonormal basis completion of ŭg. Define the following matrices:

¯̆
U = diag

((
¯̆
Ug

)
g∈GE

)
,Γ = diag

((
γgI|Tg |−1

)
g∈GE

)
,Λ = diag

((
λgI|Tg |

)
g∈GE

)
,

based upon (21). Then, we have

P(AE | βĔ) ∝
∫ ∫

p(βĔ ,ΣĔ ; β̂Ĕ) · exp
{
−1

2
(Aβ̂Ĕ +Bγ̂ + c)⊺Ω−1(Aβ̂Ĕ +Bγ̂ + c)

}
× Jϕ̆

β̂
Ĕ

(γ̂;U) · 1(γ̂ > 0)dβ̂Ĕdγ̂

where
Jϕ̆(γ̂;U) = det(Γ +

¯̆
U⊺(X⊺

Ĕ
XĔ)

−1Λ
¯̆
U).

6. Large Sample Theory

We establish statistical credibility of inference done using our surrogate selection-informed
posterior under a frequentist regime with fixed p and growing n. We fix βn,E to be the
sequence of parameters governing our generating model such that

√
nβn,E = bnβ̄E , where

n−1/2bn = O(1), bn → ∞ as n → ∞. Introducing the dependence on the sample size, let
ℓn,E(βn,E ; β̂n,E | Nn,E) represent the surrogate (log) selection-informed likelihood given in
Theorem 5. After ignoring constants and the prior, the surrogate (log) likelihood takes the
value

log p(R̄
√
nβn,E + s̄, Θ̄;

√
nβ̂n,E) +

n

2
(γ⋆n − P̄ βn,E − n−1/2q̄)⊺(Σ̄)−1(γ⋆n − P̄ βn,E − n−1/2q̄)

+ Barr(
√
nγ⋆n)− log Jϕ(

√
nγ⋆n;U),

which uses the optimizer

γ⋆n = argmin
γ

n

2
(γ − P̄ βn,E − n−1/2q̄)⊺(Σ̄)−1(γ − P̄ βn,E − n−1/2q̄) + Barr(

√
nγ).

Recall that appending our surrogate selection-informed likelihood to a selection-informed
prior πE(·) gives us our selection-informed posterior. We denote the measure of a set K
with respect to this posterior distribution as follows:

Πn,E(K | β̂n,E ;Nn,E) =

∫
K πE(zn) · exp(ℓn,E(zn; β̂n,E | Nn,E)) dzn∫
πE(zn) · exp(ℓn,E(zn; β̂n,E | Nn,E)) dzn

.
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We let
B(βn,E , δ) =

{
z : ∥z − βn,E∥22 < δ

}
denote a ball of radius δ around our parameter of interest, βn,E , and we let Bc(βn,E , δ)
denote its complement. Lastly, we use Pn,E(·) to represent the selection-informed probability
after conditioning upon our selection event and the ancillary statistic under the generating
parameter, βn,E .

Our main theoretical result, Theorem 12, proves that, subject to mild conditions on
the selection-informed prior distribution, our surrogate version of the selection-informed
posterior concentrates around the true parameter as the sample size grows infinitely large;
this gives us the rate of contraction. We begin with two supporting propositions: (i)
Proposition 9 proves the convergence of the approximate normalizing constant based on
(11) to the exact counterpart when the support constraints for the sizes of the selected
groups are restricted to a compact subset; (ii) Proposition 11 bounds the curvature of the
surrogate (log) selection-informed likelihood around its maximizer. Proofs of these main
results are in Appendix B. To support the claim in Proposition 11, Lemma 13 and Lemma 14
provide supplementary theory to control the asymptotic orders of the gradient and Hessian
of the (log) Jacobian in our surrogate selection-informed posterior. We include both these
results in Appendix C.

Proposition 9 Suppose that

lim
n→∞

(bn)
−2
{
logP

(√
nγn > 0

)
− logP

(√
nγn > q̄

)}
= 0. (22)

Let γ̄⋆n be given as

argmin
γ̄<Q̄·1|E|

b2n
2
(γ̄ − P̄ β̄E − (bn)

−1q̄)⊺Σ̄−1(γ̄ − P̄ β̄E − (bn)
−1q̄) + Barr(bnγ̄),

where Q̄ > 0. Then we have

lim
n→∞

(bn)
−2 logP

(
0 <
√
nγn < bnQ̄ · 1|E| + q̄

)
+ (bn)

−2 Barr(bnγ̄
⋆
n)− (bn)

−2 log Jϕ(bnγ̄
⋆
n;U)

+
1

2
(γ̄⋆n − P̄ β̄E − (bn)

−1q̄)⊺Σ̄−1(γ̄⋆n − P̄ β̄E − (bn)
−1q̄) = 0.

Remark 10 For a fixed selection-informed prior πE(·), we may choose Q̄ to be a positive
constant in order to consider a sufficiently large compact subset of our selection region
that would work for all β̄E in a bounded set of probability close to 1 under our prior.
Proposition 9 now implies that our surrogate (log) selection-informed likelihood converges
to its exact counterpart, obtained by plugging in the exact probability of selection under the
parameter sequence βn,E, as the sample size grows to ∞.

Proposition 11 Fix C ∈ R|E|, a compact set. Define β̂ max
n,E to be the maximizer of the

selection-informed likelihood sequence, ℓn,E(·; β̂n,E | Nn,E). Then there exist positive con-
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stants C0 ≤ C1 and N ∈ N such that for any 0 < ϵ0 < C0,

−n

2
(C1 + ϵ0)∥zn − β̂ max

n,E ∥22 ≤ ℓn,E(zn; β̂n,E | Nn,E)− ℓn,E(β̂
max
n,E ; β̂n,E | Nn,E)

≤ −n

2
(C0 − ϵ0)∥zn − β̂ max

n,E ∥22

for all n ≥ N and zn ∈ C.

We are now ready to state and prove our main theoretical result on the concentration
properties of our selection-informed posterior.

Theorem 12 Suppose a selection-informed prior πE(·) with compact support C assigns
non-zero probability to B(βn,E , δ′) ⊂ C for any δ′ > 0 such that the inclusion is satisfied.
Further, assume for the associated prior measure ΠE(·) that

limn→∞ exp
(
−b2nδ2K/2

)
/ΠE (B(βn,E , κδn)) = 0

for any K > 0, κ ∈ (0, 1), and δ > 0, where δn is defined by
√
nδn = bnδ. Then, the

following convergence must hold for any ϵ > 0:

Pn,E

(
Πn,E

(
Bc(βn,E , δn) | β̂n,E ;Nn,E

)
≤ ϵ
)
→ 1 as n→∞.

We visualize in Figure 2 the concentration theory presented in Theorem 12 for our simple
example with a single group of two covariates.

7. Empirical Investigations

7.1 Experimental Design

In all of our experiments with synthetic data, we construct the design X by drawing n = 500
rows independently according to Np (0,Σ); Σ follows an autoregressive structure with the
(i, j)-th entry of the covariance matrix Σ(i,j) = 0.2|i−j|. We fix the support and vary the
values of β according to a variety of schemes described below; in each case, we have a
“Low,” “Medium,” and “High” signal-to-noise ratio (SNR) regime as detailed in Appendix
D. Finally, we draw Y ∼ Nn

(
Xβ, σ2In

)
, a Gaussian group-sparse linear model; we fix σ = 3

in our experiments. We consider the following settings for our grouped covariates:

• Balanced: In the balanced setting, we partition (i) p = 100 covariates into 25 disjoint
groups each of cardinality four when we solve the canonical Group LASSO and the stan-
dardized Group LASSO to learn a group-sparse model; (ii) p = 103 covariates into 34
groups of four predictors each, but the last feature of the first group is also the first
feature of the second group, and so on when we solve the overlapping Group LASSO. In
the latter case, the first and last groups each have three features in no other groups, and
all other groups have two features in no other groups. We randomly select three of these
candidate groups to be active, and let each coefficient assume a random sign with the
same magnitudes that in turn depend on the SNR regime.
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• Heterogeneous: In the heterogeneous setting, we allow the disjoint groups of covariates
to differ in their sizes. Further, our groups of covariates now display heterogeneity in the
signal amplitudes both within and between the active groups. We have 3 groups with
three predictors each, 4 groups with four predictors each, 5 groups with five predictors
each, and 5 groups with ten predictors each. We set one of each of the three-, four-, and
five-predictor groups to be active with linearly increasing signal magnitudes and each
active coefficient is assigned a random sign.

For each realization of the data and each setting under study, we apply three methods:
(i) “Selection-informed”, the selection-informed implementation summarized in Algorithm
1; drawing each sample remarkably solves only a |GE |-dimensional optimization problem as
can be appreciated by reviewing Step (Laplace) in Algorithm 1; (ii) “Naive”, the standard
inferential tool that first fits the usual Group LASSO (3) with no randomization to identify
the active set E, and then fits β̂E using ordinary least squares restricted to XE from which
we obtain credible intervals ignoring the effects of selection; (iii) “Split”, the sample splitting
method follows the same procedure as “Naive” except that this method partitions the data
at a prespecified ratio r, that is, “Split” applies the usual Group LASSO to [rn] randomly
chosen subsamples without replacement to obtain E and then uses the remaining (holdout)
samples to fit a linear model restricted to E for interval estimation. The nominal level for
the interval estimates is set at 90%. Following Algorithm 1, a (gradient-based) Langevin
sampler takes a noisy step along the gradient of our posterior (5) at each draw:

β
(K+1)
E = β

(K)
E + ηχ∇ log πE(β

(k)
E | β̂E , NE) +

√
2ηϵ(K),

where η > 0 is a predetermined step size, πE(βE | β̂E , NE) denotes our surrogate selection-
informed posterior at the parameter vector βE , ϵ(K) ∼ N(0, χ), our Gaussian proposal
(Shang et al., 2015), and we plug in the expression for the gradient of the surrogate posterior
from Theorem 5. In practice, we set η = 1 and determine χ from the inverse of the
Hessian of our (negative-log) posterior. It bears emphasis that this sampler serves as a
representative execution of our methods; more generally, other sampling schemes to deliver
inference based upon our selection-informed posterior (and its gradient) are clearly possible.
We construct credible intervals from the appropriate quantiles in the posterior sample of
the parameter for “Selection-informed” under a diffuse Gaussian (selection-informed) prior,
i.e., πE = N|E|

(
0, r0σ

2
)
with r0 = 100. Our credible intervals for “Split” and “Naive” are

reported for the same prior.

In our experimental findings, we draw attention to comparisons between “Split” based
on an allocation of r fraction of the samples for selecting a group-sparse linear model and
“Selection-informed” based on the solution of the randomized Group LASSO (3) with a
p-dimensional isotropic Gaussian randomization variable independent of our response; that
is, Ω = τ2 · Ip. To (approximately) match the amount of information used during selection
by “Split” for an honest assessment of inference for the randomized methods, we fix the
ratio of randomization variation to the noise level in our response as follows:

τ2

σ2
=

(1− r)

r
, (23)
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where r is the proportion of data reserved by “Split” for solving the Group LASSO. The
value for randomization variation we set for comparisons is motivated from an asymptotic
equivalence between data splitting and a Gaussian randomization scheme proved in Pan-
igrahi et al. (2021, Proposition 4.1), which notes that a regularized regression objective
using [rn] subsamples, under an i.i.d. generative process for the response and covariates,

can be formulated as (3) with the randomization covariance Ω = (1−r)
r · E[ 1nX

⊺X]. In this
sense, our choice of τ2 allows us to mimic data carving during post-selective inference for
the group-sparse parameters. Clearly, there will be a tradeoff between the information used
for selection and inference when the same data is used for learning a group-sparse model
and inferring for these selection-informed parameters. We remark that “Naive”, deploy-
ing all the samples for selection, does not require an analogous tradeoff between these two
intertwined goals.

7.2 Inferential Findings for Different Grouped Sparsities

Based on the design of experiment in the preceding section, we undertake 100 rounds of
numerical simulations for each level of randomization variation and a category of the three
SNR regimes, “Low,” “Medium,” and “High.” Our experimental findings after solving the
canonical Group LASSO (3) are summarized for Balanced and Heterogeneous groups in
Figures 4, 6, and 8. These results are presented as box plots with the outliers suppressed.
On the x-axis of these figures, we vary the level of randomization with decreasing levels
from left to right. The randomization level is determined by the ratio of data r allocated
for model selection and reserved for inference in the case of “Split,” and the level of variation
for the corresponding Gaussian randomization scheme τ2 is set according to (23) in the case
of “Selection-informed”; this value is denoted by the label x : y such that (x+y)−1x = r on
the x-axis. Note that because “Naive” deploys no randomization, we found it instructive
to assign it a label “0” for the randomization level on the x-axis. We then highlight how
our method can be adapted for extensions to the overlapping and standardized Group
LASSO through Figures 5, 7, and 9. To implement the overlapping Group LASSO, we
take the approach of Jacob et al. (2009) that duplicates overlapping features to obtain
an augmented design matrix X⋆ with no overlaps. Because columns are duplicated, the
expanded design matrix is rank deficient; we therefore incorporate a (small) ridge term as
per the prescription in Section 5. After selecting the active set E⋆, we map back to the set
of selected variables E in the original space to define our group-sparse model and perform
inference for βE .

In terms of our findings, Figures 4 and 5 first depict an assessment of the model selection
accuracy which we measure in terms of the F1 score:

F1 score =
True Positives

True Positives + 1
2(False Positives + False Negatives)

.

These plots corroborate the approximate correspondence in the amount of information
used for model selection by the two randomized methods and subsequently in the quality of
models selected by them. We note that the selection accuracy for the randomized methods
increases with decreased levels of randomization and is bounded above by the “Naive”
selection based on all the data. Figures 6 and 7 plot the distribution of coverages of
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the credible intervals for all three methods grouped by the level of randomization. We
emphasize that the selected model is likely misspecified (with a very high probability) in
our settings which is evident from Figures 4 and 5. Regardless of model misspecification,
we deliver inference for a well-defined target—the best linear representation of the response
mean using XE—as was described in Section 3. Consistent with expectations, “Naive”
does not yield honest interval estimates with the shortfall in coverage understandably more
severe for the lower SNR regimes. “Selection-informed” and “Split” discard information
from model selection to counteract the bias in uncertainty estimation. Figures 8 and 9
illustrate our motivation to borrow residual information from selection in order to construct
more efficient inferential procedures than the benchmark offered by sample splitting. The
gains in efficiency for “Selection-informed” are noticeable from the clear separation in the
distributions of the lengths of the interval estimates produced by the randomized approaches
at a fixed level of randomization in diverse grouped settings, for example, we may compare
the third quartile for the “Selection-informed” distribution with the first quartile for the
corresponding “Split.” The “Naive” intervals in the figure for lengths highlight the price paid
in terms of efficiency for constructing honest estimates of uncertainty post selection. We note
a marginal loss in inferential accuracy for the interval estimates based on our method as the
level of randomization increases. This is attributed to the Laplace-type approximation we
apply to replace the probability of selection with the mode of the associated integrand. That
is, the quality of approximation under a fixed sample size deteriorates as the concentration
of probability mass is more spread out, for instance for randomization level “1:2,” which
has four times the level of randomization variation compared to “2:1.” The above intuitive
explanation is corroborated by Figure 3 for the simple, running example in the paper.

Figure 4: Box plots for model selection accuracy under the Group LASSO for the balanced
and heterogeneous groups.
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Figure 5: Box plots for model selection accuracy under the two extensions of the Group
LASSO.

Figure 6: Box plots for coverage of credible intervals post the Group LASSO for the bal-
anced and heterogeneous groups.
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Figure 7: Box plots for coverage of credible intervals post the two extensions of the Group
LASSO.

Figure 8: Box plots for lengths of credible intervals post the canonical Group LASSO for
the balanced and heterogeneous groups.
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Figure 9: Box plots for lengths of credible intervals post the two extensions of the Group
LASSO.

7.3 Application to Neuroimaging Data

We apply our method to a subset (n = 785) of human neuroimaging data from the Hu-
man Connectome Project (HCP) (Van Essen et al., 2013), a landmark study undertaken
by a consortium involving Washington University, the University of Minnesota, and Ox-
ford University. The HCP has led to a substantial advancement of human neuroimaging
methodology and included the collection of several corpora of data which are available to
researchers interested in studying brain function and connectivity.

We consider below a linear model to understand participant accuracy on a working
memory task using brain activity measured at p = 236 locations in the brain during per-
formance of the task, using data graciously processed by the lab of our collaborator (see
Acknowledgements). Using both behavioral and functional magnetic resonance imaging
(fMRI) measurements recorded from a cognitive task, a standardized measure of accuracy
for each participant during this task will be our response y and contrasts relying upon brain
activation records during the task form our covariates X. We provide a summary of these
details in Appendix D.1, accompanied by a description for the preprocessing steps and pa-
rameter settings. Our analysis here groups the covariates by brain system and applies our
selection-informed method to calibrate interval estimates for coefficients within any selected
systems.

We apply both the randomized Group LASSO and the Group LASSO to a random split
of this data set. We consider the level of isotropic Gaussian randomization to be “1:1,”
“2:1,” and “9:1” by setting the variance parameter τ2 according to (23) after replacing σ2
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with

σ̂2 = (n− p)−1
∥∥∥y −X (X⊺X)−1X⊺y

∥∥∥2
2
,

for r = 1/2, 2/3, 9/10, respectively. In all cases, we select one group: the “Fronto-parietal
Task Control” (FP) system. To restore inferential validity, we reuse data via our “Selection-
informed” method to draw samples from the surrogate selection-adjusted posterior. Given
the overlap between data sets employed, it is not surprising that Sripada et al. (2020)
also found that activation in the Fronto-parietal Task Control system could be used to
predict “General Cognitive Ability” (GCA): this general pattern that included activation
in the fronto-parietal system and deactivation in the default mode system under general
cognitive demands (including working memory) is discussed and reviewed in Sripada et al.
(2020). We depict 90% interval estimates for each of the locations in the brain within the
selected FP system under both the “Selection-informed” and “Split” methods in Figure 10
at varying levels of randomization. Corroborating the general pattern from our numerical
experiments, the intervals from our “Selection-informed” methods are roughly 8% shorter
than those from “Split” on an average in the application.

Figure 10: Interval estimates for coefficients at each location within the selected FP brain
system for human neuroimaging application. Intervals are provided for both our
“Selection-informed” method and “Split” at a variety of randomization levels.
At the levels of randomization “1:1,” “2:1,” and “9:1,” average interval widths
for (“Selection-informed”, “Split”) are (4.72, 5.10), (5.99, 6.17), (10.03, 11.77).
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8. Conclusion

In this paper, we provide methods to account for the selection-informed nature of models
after solving group-sparse learning algorithms. Deriving conditional inference in these set-
tings is particularly challenging due to the unavailability of a polyhedral representation for
the selection event. Formally cast into a Bayesian framework, we successfully characterize
an exact adjustment factor to account for selections of grouped variables and importantly,
provide a computationally feasible solution to bridge the gap between theory and prac-
tice for a general class of group-sparse models. Appealingly amenable to a large class of
grouped sparsities and context-relevant targets, the efficiency of our methods is evident
from the minimal price we pay to correct for selection in comparison to naive inference.

Our work leaves room for promising directions of research which we hope to take on as
future investigations. The performance of our methods serve as an encouraging direction
to tackle non-affine geometries in general, seen often with penalties disparate in behavior
from ℓ1-sparsity imposing algorithms. These developments do not preclude an asymptotic
framework for valid inference after the Group LASSO, when we deviate from Gaussian
distributions. Lastly, grouped selections form the first step of many hierarchical exploratory
pipelines (for example, in genomic studies) to select predictors with better meaning and
accuracy. Our solutions for reusing data after a class of grouped selection rules hold the
potential to infer using automated models from these complicated selection pipelines.

Acknowledgments

S.P. was supported by NSF-DMS 1951980 and NSF-DMS 2113342. D.K. was supported by
NSF-DMS 1646108 and a Rackham Predoctoral Fellowship from the University of Michi-
gan. P.W.M. was supported by NSF-DMS 1916222 and a Rackham Predoctoral Fellowship
from the University of Michigan. Data were provided in part by the Human Connectome
Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugur-
bil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH
Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuro-
science at Washington University. We thank Dr. Chandra Sripada and his research group
(with particular thanks to Saige Rutherford) for providing a processed version of this data
as well as helpful comments. This research was supported in part through computational
resources and services provided by Advanced Research Computing (ARC), a division of
Information and Technology Services (ITS) at the University of Michigan, Ann Arbor.
In addition, this work used the Extreme Science and Engineering Discovery Environment
(XSEDE), which is supported by National Science Foundation grant number ACI-1548562.

Appendix A. Proofs for Technical Developments (Section 4)

Proof [Proof of Theorem 2.] We write our adjustment factor as follows:

P(AE | βE) =
∫ ∫

p(βE ,ΣE ; β̂E) · p(0,Ω;ω) · 1AE
(β̂E , ω) dωdβ̂E .
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Next, the change of variables in (9) together with the conditioning upon Û = U and Ẑ = Z
results in the below simplification

P(AE | βE) =
∫ ∫

Jϕ
β̂E

(γ̂;U ,Z) · p(βE ,ΣE ; β̂E) · p(0,Ω;ϕβ̂E
(γ̂,U ,Z)) · 1(γ̂ > 0) dγ̂dβ̂E

∝
∫ ∫

Jϕ
β̂E

(γ̂;U ,Z) · p(βE ,ΣE ; β̂E) · exp
{
− 1

2
(Aβ̂E +B(U)γ̂ + c(U ,Z))⊺Ω−1

(Aβ̂E +B(U)γ̂ + c(U ,Z))
}
· 1(γ̂ > 0) dγ̂dβ̂E

(24)
where Jϕ

β̂E
(γ;U ,Z) is the Jacobian associated with the change of variables ϕ

β̂E
(·). To

compute the nontrivial Jacobian, we write the change of variables map in (9) as follows:

(γ̂,U ,Z) ϕ7−→ (ϕ1, ϕ2);

ϕ1(β̂E , γ̂,U ,Z) = QUγ̂ −Qβ̂E − ((NE,j)j∈E) + ((λgug)g∈GE
),

ϕ2(β̂E , γ̂,U ,Z) = X⊺
−EXE(Uγ̂ − β̂E)− ((NE,j)j∈−E) + ((λgzg)g∈−GE

),

such that Q = X⊺
EXE . Then, the derivative matrix is given by:

Dϕ
β̂E

=

(
∂ϕ1

∂U
∂ϕ1

∂γ̂
∂ϕ1

∂Z
∂ϕ2

∂U
∂ϕ2

∂γ̂
∂ϕ2

∂Z

)
,

where ∂
∂U (·) refers to differentiation with respect to each ug in the coordinates of its tangent

space. Note that the block ∂ϕ1

∂Z above the diagonal is zero and det
(
∂ϕ2

∂Z

)
∝ 1. Thus, it follows

that
Jϕ

β̂E
(γ̂;U ,Z) = det(Dϕ

β̂E
) ∝ det

((
∂ϕ1

∂U
∂ϕ1

∂γ̂

))
.

First, it is easy to see ∂ϕ1

∂γ̂ = QU . For computing the other block ∂ϕ1

∂U , let ug ∈ S |g|−1 be as-

sociated with the tangent space: TugS |g|−1 = {v : v⊺ug = 0}, the orthogonal complement of
span{ug}; Ūg is a fixed orthonormal basis for this tangent space. For a vector of coordinates
yg ∈ R|g|−1 and a general function h,

∂h(ug)

∂ug
:=

∂h(ug + Ūgyg)

∂yg
.

Writing this more compactly with a stacked vector y = (y1, . . . , y|GE |)
⊺, it follows that for

fixed g,

∂ϕ1

∂ug
=

∂

∂yg

{
Q(U + Ūy)γ̂ + ((λg(ug + Ūgyg))g∈E)

}
= Q

(
0 · · · (γ̂gŪg)

⊺ · · · 0
)⊺

+
(
0 · · · (λgŪg)

⊺ · · · 0
)⊺

,
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and combining these column-wise we obtain the full derivative matrix

∂ϕ1

∂U
=
(
∂ϕ1

∂u1
· · · ∂ϕ1

∂u|GE |

)
= Q · diag((γ̂gŪg)g∈E) + diag((λgŪg)g∈E)

= QΓ̄Ū + ΛŪ ; where Γ̄ = diag
((

γ̂gI|g|
)
g∈GE

)
,

= (QΓ̄ + Λ)Ū .

This gives us
det(Dϕ

β̂E
) ∝ det

(
(QΓ̄ + Λ)Ū QU

)
. (25)

Simplifying this expression further

det(Dϕ
β̂E

) ∝ det

((
Ū⊺

U⊺

)(
Γ̄Ū +Q−1ΛŪ U

))
= det

((
Γ + Ū⊺Q−1ΛŪ 0

. . . I|E|

))
= det(Γ + Ū⊺Q−1ΛŪ),

This follows since Ū⊺Γ̄Ū = Γ by block orthogonality, and the final equality is deduced using
block triangularity. This proves our claim in the Theorem.

Proof [Proof of Proposition 4.] Ignoring the selection-informed prior for now, our likelihood
after conditioning upon the event AE is given by

p(βE ,ΣE ; β̂E) ·
∫
Jϕ(γ̂,U) exp

{
− 1

2(Aβ̂E +Bγ̂ + c)⊺Ω−1(Aβ̂E +Bγ̂ + c)
}
· 1(γ̂ > 0)dγ̂∫

Jϕ(γ̂,U) · p(βE ,ΣE ; β̂E) · exp
{
− 1

2(Aβ̂E +Bγ̂ + c)⊺Ω−1(Aβ̂E +Bγ̂ + c)
}
· 1(γ̂ > 0)dγ̂dβ̂E

.

We note that this expression is proportional to:(∫
Jϕ(γ̂,U)p(R̄βE + s̄, Θ̄; β̂E) · p(Āβ̂E + b̄, Ω̄; γ̂) · 1(γ̂ > 0)dγ̂dβ̂E

)−1

× p(R̄βE + s̄, Θ̄; β̂E)

leaving out the constants in βE , where

Ω̄ = (B⊺Ω−1B)−1, Ā = −Ω̄B⊺Ω−1A, b̄ = −Ω̄B⊺Ω−1c,

Θ̄ =
(
Σ−1
E − (Ā)⊺(Ω̄)−1Ā+A⊺Ω−1A

)−1
, R̄ = Θ̄Σ−1

E , s̄ = Θ̄
(
(Ā)⊺(Ω̄)−1b̄−A⊺Ω−1c

)
.

This display relies on the observation that

p(βE ,ΣE ; β̂E) exp
{
− 1

2
(Aβ̂E +Bγ̂ + c)⊺Ω−1(Aβ̂E +Bγ̂ + c)

}
= K(βE) · p(R̄βE + s̄, Θ̄; β̂E) · p(Āβ̂E + b̄, Ω̄; γ̂),
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such that K(βE) involves βE alone.

Proof [Proof of Theorem 5.] To derive the expression in (5), we note that optimizing over
β̃E in the problem:

minimize
β̃E ,γ̃

{1
2
(β̃E − R̄βE − s̄)⊺Θ̄−1(β̃E − R̄βE − s̄)

+
1

2
(γ̃ − Āβ̃E − b̄)⊺(Ω̄)−1(γ̃ − Āβ̃E − b̄) + Barr(γ̃)

}
gives us

minimizeγ
1

2
(γ − P̄ βE − q̄)⊺(Σ̄)−1(γ − P̄ βE − q̄) + Barr(γ).

Plugging the value of this optimization into (11), the logarithm of the surrogate posterior
is given by the expression

log πE(βE) + log p(R̄βE + s̄, Θ̄; β̂E) +
1

2
(γ⋆ − P̄ βE − q̄)⊺(Σ̄)−1(γ⋆ − P̄ βE − q̄)

+ Barr(γ⋆)− log Jϕ(γ
⋆;U),

ignoring additive constants. To compute the gradient of the (log) surrogate posterior, define
ζ⋆(·) to be the convex conjugate for the function

ζ(γ) =
1

2
γ⊺(Σ̄)−1γ +Barr(γ).

This allows us to write (5) as

log πE(βE)−
1

2
(β̂E − R̄βE − s̄)⊺(Θ̄)−1(β̂E − R̄βE − s̄)

+
1

2
(P̄ βE + q̄)⊺(Σ̄)−1(P̄ βE + q̄)− ζ⋆((Σ̄)−1(P̄ βE + q̄))− log Jϕ(γ

⋆;U).
(26)

Denoting L(βE) = (Σ̄)−1(P̄ βE + q̄) and taking the derivative of (26) with respect to βE
gives us

∇ log πE(βE) + (R̄)⊺(Θ̄)−1(β̂E − R̄βE − s̄) + P̄ ⊺(Σ̄)−1(P̄ βE + q̄)

−P̄ ⊺(Σ̄)−1∇L(βE)ζ
⋆((Σ̄)−1(P̄ βE + q̄))− P̄ ⊺(Σ̄)−1∇L(βE)γ

⋆((Σ̄)−1(P̄ βE + q̄))∇γ⋆ log Jϕ(γ
⋆;U)

= ∇ log πE(βE) + (R̄)⊺(Θ̄)−1(β̂E − R̄βE − s̄) + P̄ ⊺(Σ̄)−1(P̄ βE + q̄)

− P̄ ⊺(Σ̄)−1(∇L(βE)ζ)
−1(L(βE))− P̄ ⊺(Σ̄)−1∇L(βE)γ

⋆(L(βE))∇γ⋆ log Jϕ(γ
⋆;U)

= ∇ log πE(βE) + (R̄)⊺(Θ̄)−1(β̂E − R̄βE − s̄) + P̄ ⊺(Σ̄)−1(P̄ βE + q̄)

− P̄ ⊺(Σ̄)−1γ⋆(L(βE))− P̄ ⊺(Σ̄)−1∇L(βE)γ
⋆(L(βE))∇γ⋆ log Jϕ(γ

⋆;U).
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Note that in the second display we use the fact that ∇ζ⋆(·) = (∇ζ)−1(·), and the third
display follows by observing (∇ζ)−1(L(βE)) = γ⋆(L(βE)), where

γ⋆ = argmax
γ

γ⊺L(βE)− ζ(γ),

which is equal to the optimizer defined in (12). Computing the two pieces in the final term,
∇L(βE)γ

⋆(L(βE)) and ∇γ⋆ log Jϕ(γ
⋆;U), we first have

∇γ⋆(·) = ∇2ζ⋆(·) =
[
∇2ζ(γ⋆(·))

]−1
.

Since ∇2ζ(γ) = Σ̄−1 +∇2 Barr(γ), we have

∇L(βE)γ
⋆(L(βE)) =

(
Σ̄−1 +∇2 Barr(γ⋆(L(βE))

)−1
.

As for ∇ log Jϕ(γ
⋆;U), recall from Theorem 2

Jϕ(γ;U) = det(Γ + Ū⊺(X⊺
EXE)

−1ΛŪ).

We have the following matrix derivative identities for a square matrix X (Petersen and
Pedersen, 2012):

∂ log det(X)

∂Xij
= (X−1)ji,

∂(X−1)kl
∂Xij

= −(X−1)ki(X
−1)jl. (27)

Using the chain rule,

γ
J17−→ (Γ + Ū⊺(X⊺

EXE)
−1ΛŪ)

J27−→ log det(Γ + Ū⊺(X⊺
EXE)

−1ΛŪ),

we partition the indices into {Mg}g∈E such that Mg is the set of |g| − 1 indices along the
diagonal of Γ corresponding to group g. Then[

∂J1
∂γg

]
ij

=

{
1, i = j, i ∈Mg,

0, otherwise.

By (27), the partial derivatives of J2 are the entries of (Γ + Ū⊺(X⊺
EXE)

−1ΛŪ)−1. Putting
these together,

∂ log Jϕ(·;U)
∂γg

=
∑
i∈Mg

[(Γ + Ū⊺(X⊺
EXE)

−1ΛŪ)−1]ii,

which gives us the expression for ∇γ⋆ log Jϕ(γ
⋆;U).

We conclude with a remark highlighting the distinction from the usual Laplace-type
approximation, which we adopt for tractable calculations of the adjustment factor. An
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alternate approximation for (11) is given by

C exp
(
− 1

2
(β⋆

E − βE)
⊺Σ−1

E (β⋆
E − βE)−

1

2
(γ⋆ −A⋆β⋆

E − b⋆)⊺(Σ⋆)−1(γ⋆ −A⋆β⋆
E − b⋆)

− Barr(γ⋆) + log Jϕ(γ
⋆;U)

)
,

the usual Laplace approximation where γ⋆ and β⋆
E are obtained by solving

minimize
β̃E ,γ̃

{1
2
(β̃E − βE)

⊺Σ−1
E (β̃E − βE) +

1

2
(γ̃ −A⋆β̃E − b⋆)⊺(Σ⋆)−1(γ̃ −A⋆β̃E − b⋆)

+ Barr(γ̃)− log Jϕ(γ̃;U)
}
.

(28)
Problem (28) deviates from our current formulation (12) in terms of the part the (log)
Jacobian term plays in determining the mode of the optimization. We opt specifically for
a generalized formulation of the Laplace approximation to compute the Jacobian only once
at the mode of (12) for increased computational efficiency, obtaining our selection-informed
posterior and the gradient associated with it.

Proof [Proof of Proposition 6.] The proof of this Proposition follows by applying the change
of variables map:

ω∗ → (γ̂∗, Û∗, Ẑ∗) where (γ̂∗, Û∗, Ẑ∗) = (ϕ∗)−1(ω∗),

and conditioning upon Û∗ = U∗ and Ẑ∗ = Z∗. This leads to the below adjustment factor,
the probability of the selection event under consideration,

P(AE∗ | βE) =
∫ ∫

Jϕ∗(γ̂∗;U∗) · p(βE ,ΣE ; β̂E)

× exp
{
− 1

2
(Aβ̂E +B(U)γ̂∗ + c(U ,Z))⊺Ω−1(Aβ̂E +B(U)γ̂∗ + c(U ,Z))

}
· 1(γ̂∗ > 0) dγ̂∗dβ̂E ,

(29)
Jϕ∗(γ̂∗;U∗) is the Jacobian associated with the change of variables derived from ϕ∗(·). To
complete the proof, we note that the value for Jϕ∗(γ̂∗;U∗) is obtained from (25) in the
derivation of the adjustment factor when there are no overlaps in the groups, where we
simply replace the original design with the augmented version.

Proof [Proof of Proposition 7.] The proof is direct from using the change of variables
map from inverting the stationary mapping we identify for the solver (17). Based upon the
matrices we identify in (19), the argument follows similar lines as Theorem 2 yielding the
expression for the adjustment factor.

Proof [Proof of Proposition 8.] Modifying the proof of Theorem 2 by replacing the sta-
tionary mapping with ϕ̆(·) defined in (20) results in the claim in this Proposition. We thus
omit further details of the proof here.
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Appendix B. Proofs for Large Sample Theory (Section 6)

We provide in this section the proofs of the large sample claims for our selection-informed
posterior in Section 6. Supporting results for this theory, Lemma 13 and 14, are included
in Section C.

Proof [Proof of Proposition 9.] First, observe that we write our probability of selection as
follows:

(bn)
−2 logP

(
0 <
√
nγn < bnQ̄ · 1|E| + q̄

)
= (bn)

−2 logE
[
exp(log Jϕ(

√
nZ̄n + bnP̄ β̄E + q̄;U))

× 1(−bnP̄ β̄E − q̄ <
√
nZ̄n < bnQ̄ · 1|E| − bnP̄ β̄E)

]
,

(up to an additive constant), where
√
nZ̄n is a centered Gaussian random variable with

covariance Σ̄. Define C0 = {z : −P̄ β̄E < z < Q̄ · 1|E| − P̄ β̄E}. Using assumption (22), we
deduce

lim sup
n→∞

(bn)
−2 logP

(
0 <
√
nγn < bnQ̄ · 1|E| + q̄

)
= lim sup

n→∞
(bn)

−2 logE
[
exp(log Jϕ(

√
nZ̄n + bnP̄ β̄E + q̄;U)) · 1C0(

√
nZ̄n/bn)

]
≤ lim

n→∞
sup z∈C0 (bn)

−2| log Jϕ(bnz + bnP̄ β̄E + q̄;U))|+ limn→∞(bn)
−2 logP

(√
nZ̄n/bn ∈ C0

)
= lim

n→∞
(bn)

−2 logP
(
− P̄ β̄E <

√
nZ̄n/bn < Q̄ · 1|E| − P̄ β̄E

)
.

To justify that the limit of the term involving the Jacobian vanishes, note that for all
z ∈ C0, we have

q̄ < bnz + bnP̄ β̄E + q̄ < bnQ̄1|E| + q̄.

Thus, Jϕ(bnz+bnP̄ β̄E+ q̄;U) is the determinant of a matrix with entries uniformly bounded
by 2bnQ̄ > 0 for sufficiently large n. Then

sup z∈C0 |Jϕ(bnz + bnP̄ β̄E + q̄;U)| ≤ |E|!
(
2bnQ̄

)|E|
.

The Jacobian is also bounded away from zero, thus it follows that

sup z∈C0 (bn)
−2| log Jϕ(bnz + bnP̄ β̄E + q̄;U))| ≤ (bn)

−2 log
(
|E|!

(
2bnQ̄

)|E|
)

which goes to 0 as n→∞. Using an argument along the same line,

lim inf
n→∞

(bn)
−2 logP

(
0 <
√
nγn < bnQ̄ · 1|E| + q̄

)
≥ − lim

n→∞
sup z∈C0 (bn)

−2| log Jϕ(bnz + bnP̄ β̄E + q̄;U))|+ limn→∞(bn)
−2 logP

(√
nZ̄n/bn ∈ C0

)
.

From the above limits, we have

lim
n→∞

(bn)
−2
(
logP

(
0 <
√
nγn < bnQ̄ · 1|E| + q̄

)
− logP

(√
nZ̄n/bn ∈ C0

) )
= 0.
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Using a moderate (large)-deviation type result (De Acosta, 1992) for the limiting value of
the probability in the second term, we have

lim
n→∞

(bn)
−2 logP

(
0 <
√
nγn < bnQ̄ · 1|E| + q̄

)
+ infz∈C0 z

⊺Σ̄−1z/2 = 0.

Lastly, we let z + P̄ β̄E + (bn)
−1q̄ = γ̄. Using the observation that the optimization

infz∈C0 z
⊺Σ̄−1z has a unique minimum, and relying on the convexity of the objectives in

the sequence of optimization problems defined below

inf γ̄<Q̄·1|E|

{1
2
(γ̄ − P̄ β̄E − (bn)

−1q̄)⊺Σ̄−1(γ̄ − P̄ β̄E − (bn)
−1q̄) + (bn)

−2 Barr(bnγ̄)
}
,

our claim in the Proposition is complete.

Notice that we work with the below approximation for the adjustment factor in Theorem
2:

exp
(
− b2n

2
(γ̄⋆n − P̄ β̄E − (bn)

−1q̄)⊺Σ̄−1(γ̄⋆n − P̄ β̄E − (bn)
−1q̄)

− Barr(bnγ̄
⋆) + log Jϕ(bnγ̄

⋆
n;U)

)
,

motivated by Proposition 9 where

γ̄⋆n = argmin
1

2
(γ̄ − P̄ β̄E − (bn)

−1q̄)⊺Σ̄−1(γ̄ − P̄ β̄E − (bn)
−1q̄) + (bn)

−2 Barr(bnγ̄). (30)

Proof [Proof of Proposition 11.] Set
√
nzn = bnz̄, and let γ̄⋆n be the optimizer defined in

(30). Then, the surrogate selection-informed (log) likelihood assumes the form

ℓn,E(zn; β̂n,E | Nn,E) = (
√
nβ̂n,E)

⊺Θ̄−1R̄(bnz̄)− b2nCn(z̄). (31)

In the above representation, Cn(z̄) equals

(γ̄⋆n)
⊺(Σ̄)−1(P̄ z̄ + (bn)

−1q̄)− 1

2
(γ̄⋆n)

⊺(Σ̄)−1γ̄⋆n − (bn)
−2 Barr(bnγ̄

⋆
n)

+ (bn)
−2 log Jϕ(bnγ̄

⋆
n;U) +

1

2
z̄⊺R̄⊺(Θ̄ + Ā⊺Ω̄−1Ā)−1R̄z̄ − (bn)

−1z̄⊺P̄ ⊺Σ̄−1q̄ − 1

2
(bn)

−2q̄⊺Σ̄−1q̄,

which we derive after plugging in the associated (log) approximation.

Next, we define several constants: C1 is the largest eigenvalue of R̄⊺Θ̄−1R̄ and C0 is
the smallest eigenvalue of R̄⊺(Θ̄ + Ā⊺Ω̄−1Ā)−1R̄. Consistent with our parameterization, we
denote bnβ̄

max
E =

√
nβ̂ max

n,E . It follows then from a Taylor series expansion of Cn(z̄) around

β̄ max
E that the difference of log-likelihoods

ℓn,E(zn; β̂n,E | Nn,E)− ℓn,E(β̂
max
n,E ; β̂n,E | Nn,E)
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equals √
n(β̂n,E)

⊺Θ̄−1R̄bn(z̄ − β̄ max
E )− b2n

{
Cn(z̄)− Cn(β̄

max
E )

}
= bn(z̄ − β̄ max

E )⊺R̄⊺Θ̄−1√nβ̂n,E − b2n(z̄ − β̄ max
E )⊺∇Cn(β̄

max
E )

− b2n
2
(z̄ − β̄ max

E )⊺∇2Cn(R(β̄ max
E ; z̄))(z̄ − β̄ max

E )

= −n

2
(zn − β̂ max

n,E )⊺∇2Cn(R(β̄ max
E ; z̄))(zn − β̂ max

n,E ).

By Lemma 14, there exists N ∈ N such that the contribution of the Jacobian term
towards the Hessian (∇2Cn(·)),

supz̄∈C∥∇2
z̄(bn)

−2 log Jϕ(bnγ̄
∗
n(z̄);U)∥op,

is uniformly bounded in operator norm by ϵ0 for all n ≥ N . Together with the observation
that

(γ̄⋆n)
⊺(Σ̄)−1(P̄ z̄ + (bn)

−1q̄)− 1

2
(γ̄⋆n)

⊺(Σ̄)−1γ̄⋆n − (bn)
−2 Barr(bnγ̄

⋆
n)

is a convex conjugate of the function 1
2(γ̄)

⊺(Σ̄)−1γ̄+(bn)
−2 Barr(bnγ̄) evaluated at Σ̄−1(P̄ z̄+

(bn)
−1q̄), we conclude

(C0 − ϵ0) · I ≼ ∇2Cn(z̄) ≼ (C1 + ϵ0) · I

for all z̄ ∈ C, where I is the identity matrix of appropriate dimensions. This directly leads
to our claim in the Proposition.

Proof [Proof of Theorem 12.] Fix 0 < a < 1 such that

4a2 · (C1 + C0/2)− (1− a)2 · C0/2 < 0,

where C0 and C1 are defined in Proposition 11. This follows by noting that the quadratic
expression on the left-hand side has a root between (0, 1). Denoting C ∩ Bc(βn,E , δn) =
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B′c(βn,E , δn), we observe that there exists N such that for all n ≥ N such that

Pn,E

(
Πn,E

(
Bc(βn,E , δn) | β̂n,E ;Nn,E

)
≤ ϵ
)

= Pn,E

(∫
B′c(βn,E ,δn)

πE(zn) · exp(ℓn,E(zn; β̂n,E |Nn,E)) dzn ≤ ϵ
∫
πE(zn) · exp(ℓn,E(zn; β̂n,E |Nn,E)) dzn

)
≥ Pn,E

(∫
B′c(βn,E ,δn)

πE(zn) · exp(ℓn,E(zn; β̂n,E |Nn,E)− ℓn,E(β̂
max
n,E ; β̂n,E |Nn,E)) dzn

≤ ϵ

∫
B(βn,E ,aδn)

πE(zn) · exp(ℓn,E(zn; β̂n,E |Nn,E)− ℓn,E(β̂
max
n,E ; β̂n,E |Nn,E)) dzn

)

≥ Pn,E

(∫
B′c(βn,E ,δn)

πE(zn) · exp(−nC0 · ∥β̂ max
n,E − zn∥2/4)dzn

≤ ϵ

∫
B(βn,E ,aδn)

πE(zn) · exp(−n(C1 + C0/2) · ∥β̂ max
n,E − zn∥2/2)dzn

)
.

The ultimate display follows by using the bounds in Proposition 11 where we set ϵ0 = C0/2.
This yields us the bound

Pn,E

(
Πn,E

(
Bc(βn,E , δn) | β̂n,E ;Nn,E

)
≤ ϵ
)

≥ Pn,E

(∫
B′c(βn,E ,δn)

πE(zn) · exp(−nC0 · ∥β̂ max
n,E − zn∥2/4)dzn

≤ ϵ

∫
B(βn,E ,aδn)

πE(zn) · exp(−n(C1 + C0/2) · ∥β̂ max
n,E − zn∥2/2)dzn,

∥β̂ max
n,E − zn∥ ≥ (1− a)δn for all zn ∈ B′c(βn,E , δn),

∥β̂ max
n,E − zn∥ ≤ 2aδn for all zn ∈ B(βn,E , aδn)

)

≥ Pn,E

(
exp(−C0 · (1− a)2nδ2n/4) ≤ ϵ ·Πn,E(B(βn,E , aδn)) exp(−(C1 + C0/2) · 4a2δ2n/2)

∥β̂ max
n,E − zn∥ ≥ (1− a)δn for all zn ∈ B′c(βn,E , δn),

∥β̂ max
n,E − zn∥ ≤ 2aδn for all zn ∈ B(βn,E , aδn)

)
≥ Pn,E(∥β̂ max

n,E − βn,E∥ ≤ aδn).

The argument in the last display follows from our assumptions on the selection-informed
prior for sufficiently large n, coupled with the choice of a ∈ (0, 1). We complete our proof
by showing

limn→∞ Pn,E(∥β̂ max
n,E − βn,E∥ > aδn) = 0.
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To this end, we note that the MLE estimating equation is given by

√
nR̄⊺Θ̄−1β̂n,E = bn∇Cn(β̄

max
E )

from the surrogate selection-informed (log) likelihood in (31) (Proposition 11) under the
assumed parameters. Further, observing that Cn(·) is strongly convex for sufficiently large
n, we have

(L)−2∥
√
nΣ−1

E β̂n,E − bn∇Cn(β̄E)∥2 ≥ ∥
√
nβ̂ max

n,E −
√
nβn,E∥2;

L = C0/2. Denoting the exact counterpart of Cn(·) (obtained upon using the exact proba-
bility of selection) by C̄n(·), we conclude

Pn,E((bn)
−1√n∥β̂ max

n,E − βn,E∥ > aδ) ≤ (bnaδL)
−2 · En,E(∥

√
nR̄⊺Θ̄−1β̂n,E − bn∇Cn(β̄E)∥2)

≤ (bnaδL)
−2 · En,E(∥

√
nR̄⊺Θ̄−1β̂n,E − bn∇C̄n(β̄E)∥2)

+ (aδL)−2 · ∥∇Cn(β̄E)−∇C̄n(β̄E)∥2.

The first term in the final display clearly converges to 0 as n→∞. The second term con-
verges to 0, using the result in Proposition 9 combined with the convexity and smoothness
of the sequence Cn(·) for large enough n.

Appendix C. Supporting Theory (Section 6)

Below, we prove a result on the asymptotic orders of the gradient and Hessian of the (log)
Jacobian; this in turn allows us to bound the contribution of the Jacobian term in the
Hessian of the (log) likelihood in Proposition 11.

Lemma 13 For η > 0, denote

Kη = {x ∈ R|E| : min
j

xj > η}. (32)

We then have the following uniform bounds on the derivatives of the (log)Jacobian:

supx∈Kη
∥∇γ log Jϕ(γ;U)

∣∣
bnx
∥∞ = O(b−1

n ),

supx∈Kη
∥∇2

γ log Jϕ(γ;U)
∣∣
bnx
∥op = O(b−2

n ).

Proof We begin by deriving an expression for the Hessian ∇2
γ log Jϕ(γ;U). Recall from

Theorem 5, for g = 1, . . . , |E|,

∂

∂γg
log Jϕ(γ;U) =

∑
i∈Mg

[
(Γ + C)−1

]
ii
, (33)

where for simplicity we denote C = Ū⊺(X⊺
EXE)

−1ΛŪ , Γ = diag((γgI|g|−1)g∈GE
), and Mg

denotes the set of indices along the diagonal of Γ corresponding to group g. Using matrix
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derivative identities similar to those applied in the proof of Theorem 5, we derive for g, h =
1, . . . , |E|,

∂2

∂γg∂γh
log Jϕ(γ;U) = −

∑
i∈Mg

∑
j∈Mh

[(Γ + C)−1]ij · [{(Γ + C)−1}⊺]ij . (34)

Both our claims rely on a uniform bound on the entries of (Γ+C)−1. Let the operators
smax, λmax, and λmin denote the largest singular value, largest eigenvalue, and smallest
eigenvalue of a matrix, respectively. Fix x ∈ Kη; let Γ(bnx) = diag((bnxgI|g|−1)g∈GE

).
Denote its dimension by q =

∑
g∈E(|g| − 1). Then

max
1≤i,j≤q

|
[
(Γ(bnx) + C)−1

]
ij
| ≤ smax

(
(Γ(bnx) + C)−1

)
= λ1/2

max

(
(Γ(bnx) + C)−1

[
(Γ(bnx) + C)−1

]⊺)
= λ

−1/2
min ((Γ(bnx) + C)⊺(Γ(bnx) + C)) .

Now note the following:

λmin ((Γ(bnx) + C)⊺(Γ(bnx) + C)) = inf
∥v∥2=1

v⊺ ((Γ(bnx) + C)⊺(Γ(bnx) + C)) v

≥ b2n min
1≤j≤|E|

x2j + λmin(C
⊺C)

≥ (bnη)
2.

Combining the previous two displays uniformly over Kη, we have that

sup
x∈Kη

(
max

1≤i,j≤q
|
[
(Γ(bnx) + C)−1

]
ij
|
)
≤ 1

bnη
= O(b−1

n ). (35)

By (33), each entry of the gradient is the sum of up to p− 1 entries of (Γ(bnx) +C)−1, and
by (34), each entry of the Hessian is a sum of up to p2 products of entries of the same ma-
trix. Lastly, a bound on the ℓ∞ norm of the gradient follows directly from this element-wise
bound. Further, a bound for the operator norm of the Hessian follows after noting that for
an r × r square matrix M , ∥M∥2 ≤ rmaxij |[M ]ij |.

With the previous result in hand, we prove the next Lemma used in Proposition 11.

Lemma 14 Under the assumptions of Proposition 11, we have

lim
n→∞

{
supz̄∈C∥∇2

z̄(bn)
−2 log Jϕ(bnγ̄

⋆
n(z̄);U)∥op

}
= 0.

Proof To proceed with the proof, we derive an expression for the Hessian of the (log)
Jacobian. Recall, γ̄⋆n(z̄) is the optimizer of the convex conjugate of the function

(γ̄)⊺(Σ̄)−1γ̄/2 + (bn)
−2 Barr(bnγ̄)
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evaluated at Σ̄−1(P̄ z̄ + (bn)
−1q̄). By properties of the convex conjugate function and the

chain rule,
∇z̄γ̄

⋆
n(z̄) = P̄ ⊺Σ̄−1Hn(z̄),

where Hn(z̄) denotes the inverse Hessian matrix
(
Σ̄−1 +∇2 Barr(bnγ̄

⋆
n(z̄))

)−1
. Here, we

note that the (diagonal) Hessian of the barrier function is positive definite for all z̄, which
implies ∥Hn(z̄)∥2 ≤ ∥Σ̄∥2 uniformly over all n and z̄ ∈ C. That is,

∇z̄(bn)
−2 log Jϕ(bnγ̄

⋆
n(z̄);U) = (bn)

−1P̄ ⊺Σ̄−1Hn(z̄)
(
∇x log Jϕ(x;U)

∣∣
bnγ̄⋆

n(z̄)

)
.

To compute the Hessian, we will use the following identity

∂A(x)b(x)

∂x
=

∂A(x)

∂x
×2 b(x)

⊺ +A(x)
∂b(x)

∂x
, (36)

where A(x)b(x) denotes a matrix-vector product; the 3-dimensional tensor ∂A(x)
∂x is summed

across its second dimension in the first term of (36). Observe that the element-wise deriva-
tives of Hn with respect to the entries of γ̄⋆n(z̄) are given by

∂

∂(γ̄⋆n)ℓ
[Hn(z̄)]ij = −bn∇

3
ℓℓℓBarr(bnγ̄

⋆
n(z̄)) [Hn(z̄)]iℓ [Hn(z̄)]ℓj , (37)

involving the third derivatives of the barrier function. Then, plugging into the first term of
(36), we get

− bn
∑
j

∇3
ℓℓℓBarr(bnγ̄

⋆
n(z̄)) [Hn(z̄)]iℓ [Hn(z̄)]ℓj [∇Jϕ(bnγ̄

⋆
n(z̄);U)]j

=− bn∇3
ℓℓℓBarr(bnγ̄

⋆
n(z̄)) [Hn(z̄)]iℓ

∑
j

(
[Hn(z̄)]ℓj [∇Jϕ(bnγ̄

⋆
n(z̄);U)]j

)
.

Elementwise (row i and column ℓ), this matrix has the same entries as Hn(z̄), but with the
ℓth column scaled by

−bn∇3
ℓℓℓBarr(bnγ̄

⋆
n(z̄)) [Hn(z̄)∇Jϕ(bnγ̄⋆n(z̄);U)]ℓ .

Let bnDn(z̄) be a diagonal matrix with these entries on its main diagonal. Then the matrix
in the first term of (36) is given by Hn(z̄)Dn(z̄). The second term of (36) equals

bnHn(z̄)
(
∇2

x log Jϕ(x;U)
∣∣
bnγ̄⋆

n(z̄)

)
.

Thus, ∇z̄(bn)
−2 log Jϕ(bnγ̄

⋆
n(z̄);U) equals

P̄ ⊺Σ̄−1Hn(z̄)
(
Dn(z̄) +∇2

x log Jϕ(x;U)
∣∣
bnγ̄⋆

n(z̄)

)
Hn(z̄)Σ̄

−1P̄ .

Noting P̄ ⊺Σ̄−1Hn(z̄) = O(1) uniformly over n and z̄, bounding (C) in operator norm follows
by uniformly bounding the largest diagonal element of Dn(z̄), and the operator norm of
∇2

x log Jϕ(x;U)
∣∣
bnγ̄⋆

n(z̄)
.
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Bounds for both terms follow from an application of Lemma 13, along with the use of the
observation that the third derivatives of the barrier function are decreasing. To complete
the proof, it therefore suffices to show uniformly over z̄ ∈ C, and for sufficiently large n, all
the entries of γ̄⋆n(z̄) are bounded below by a constant η. To this end, we define the limit of
γ̄⋆n(z̄) as n→∞:

γ̄⋆∞(z̄) = argminγ>0

{
1

2
γ⊺Σ̄−1γ − γ⊺Σ̄−1P̄ z̄

}
. (38)

The image of a compact set C under the continuous map γ̄⋆∞(·) is compact and a subset of
the positive orthant, which we call C′. Define

η =
1

2
min{|xj | : x ∈ C′} > 0.

Uniform convergence of γ̄⋆n(z̄) to γ̄⋆∞(z̄) on a compact domain leads us to conclude

min
j
| [γ̄⋆n(z̄)]j | > η > 0,

for all z̄ ∈ C and sufficiently large n.

Appendix D. Supplementary Details (Section 7)

We outline additional details involving the parameters in our numerical experiments below.
For the simulation instances we generate in the atomic and balanced case analyses, each
active coefficient has a random sign with magnitude

√
2n−1t log p. We let t = 0.2 for the low

SNR setting, t = 0.5 for the moderate SNR setting, and t = 1.5 for the high SNR setting.
In the heterogeneous scenario, the first predictor in the smallest active group has magnitude√
2n−1t log p/|T | and the last predictor in the largest group has magnitude

√
2n−1t log p

with magnitudes linearly interpolated for intermediate active coefficients; T is the number
of signal variables in the instance. Each coefficient assumes a random sign and we set t for
the low, medium, and high SNR as in our previous cases.

For the selection step, we set the grouped penalty weights to be

λg = λρσ

√
2 log p

|g|
ḡ

for solving the Group LASSO in both the randomized (“Selection-informed”) and non-
randomized formulations (“Naive” and ”Split”); |g| is the number of features in group g,
and ḡ is the floor of the average group size. In the choice of the penalty weights, when
solving the Group LASSO and overlapping Group LASSO, for “Split” we set ρ = r, the
proportion of data used for the query, while we set ρ = 1 for “Selection-informed” and
“Naive.” When solving the standardized Group LASSO, for “Split” we set ρ =

√
r while

for “Selection-informed” and “Naive” we again set ρ = 1. Clearly, in our balanced settings,
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we impose a uniform penalty across all groups, while the penalties for the heterogeneous
settings scale with the size of our groups.

Addressing selection-informed inference after the Group LASSO, the barrier function
used in our optimization problem (see Theorem 5) is given by

Barr(γ) =
∑

g∈GE
log(1 + (γg)

−1).

Observe that this choice of penalty assigns higher preference to optimizing variables away
from the boundary of the selection region [0,∞)R

|GE |
. For executing the sampler, we set

the initial draw as
β(0) = β̂E ,

the refitted least squares estimate in our setup. Completing our specifications, the inferen-
tial results we report in Section 7 are based upon 1500 draws of the Langevin sampler. We
discard the first 100 samples as burn-in and retain the remainder for uncertainty estima-
tion. The code for our experiments in the paper is available here: https://github.com/

snigdhagit/selective-inference/tree/group_LASSO/selection/randomized.

D.1 Supplementary Details for HCP Analysis

The “preprocessed” version of the data set used in our analysis, which had undergone
the processing stream described in Glasser et al. (2013), was downloaded from the HCP’s
ConnectomeDB platform (Marcus et al., 2011). The fMRI data comprises time courses
at many “voxels” throughout the brain that are typically each a few millimeters cubed in
volume. This data was preprocessed as described in Sripada et al. (2019), excluding the
steps that are specific to resting state processing. While the HCP data includes a variety
of imaging modalities, we use both behavioral and functional magnetic resonance imaging
(fMRI) measurements recorded from a cognitive task, namely the “N-back” task (Barch
et al., 2013).

In the the “N-back” task, participants are presented with a sequence of pictures about
which they make judgments, and their accuracy and brain activity is recorded while they
perform the task. There are two different conditions of principle interest, each of which
are presented in blocks. In the 0-back condition, participants simply judge whether each
item is the same as the item presented at the beginning of the block. In the 2-back con-
dition, participants judge whether each item is the same as the item presented two trials
previous. As may be intuitively clear, the 2-back condition is appreciably more demanding
with respect to working memory. A common approach for analyzing fMRI data involves the
construction of “contrasts.” Measuring activity during the 2-back condition would likely
indicate activity related to working memory, but it would also include activity indicating
many other phenomena such as visual processing, motor activation in order to press buttons
to indicate judgments, etc. These phenomena are not of primary interest, so we consider
a contrast formed by subtracting the activation during the 0-back condition from the acti-
vation during the 2-back condition. This 2-back minus 0-back contrast is standard for the
N-back task (Barch et al., 2013). Contrasts were obtained using in-house processing scripts
that use SPM12. The standardized accuracy of each participant during this task will be our
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target of prediction y and we will use the contrast as the predictor X. As a preprocessing
step, columns of the design matrix X are adjusted to have mean 0 and unit norm.

Using the contrast value from each voxel results in very high dimensional data, and
analysis is sometimes instead performed at the level of “regions of interest” (ROIs). This
provides a means of effectively downsampling the data by aggregating information at each
ROI, which is a spatially contiguous group of voxels. These ROIs can be defined a priori
according to one of a variety of atlases, and this aids interpretability and enables compar-
isons of findings across studies that use the same atlas. We use ROIs as defined by the
“Power Parcellation” (Power et al., 2011). In addition to being a broadly popular atlas,
the Power Parcellation is also noteworthy in that it assigns each of its 264 ROIs to a “brain
system.” The spatial coordinates of the ROIs, as well as their assignment to brain systems,
are described in Power et al. (2011). The MarsBar utility (Brett et al., 2002) was used
to extract contrast values for each of these ROIs. Of the 264 ROIs, 236 are assigned to
one of 13 distinct, named brain systems while the remainder are simply labeled “unknown”
and in our analysis we use only these 236 positively labeled ROIs as predictors in our re-
gression. Because each of these brain systems is putatively believed to underlie a discrete
set of functions (e.g., because they typically coactivate for a given type of task), we par-
tition our predictors into groups by brain system label, and then use the Group LASSO
to predict accuracy on the N-back task using data from these 236 ROIs. While inference
may be performed at the level of individual ROIs, it is also useful to interrogate effects
at a system-wide level. Further averaging all of the ROIs within a single system may be
too coarse and obscure useful signal, so the Group LASSO provides a means of allowing
each ROI to make a distinct predictive contribution while still performing selection at the
interpretable level of entire brain systems. Because in this application n > p, we estimate

σ̂2 = (n− p)−1
∥∥∥y −X (X⊺X)−1X⊺y

∥∥∥2
2
. We use the same value for σ̂2 for the intervals

obtained via data splitting. We set λg for each group as described in D and set the ran-
domization level τ to satisfy (23) at varying levels of r. Choosing λ = 1 (as we did for the
simulation studies) yields a fully dense model, so we increase to λ = 10 which selects just a
single group.

D.2 Supplementary Numerical Comparison

We conduct an additional numerical experiment to compare the methods of Yang et al.
(2016) and also Loftus and Taylor (2015). Specifically, we consider one instance of the
simulation settings considered in Yang et al. (2016) where we draw X ∈ R500×500 with
entries independently and identically distributed as N

(
0, 1

500

)
. The p = 500 features are

arranged into 50 contiguous groups of 10 features each. The first 10 groups (i.e., first 50
features) are all active with associated coefficient 1.5 and the remainder are inactive with
associated coefficients 0, i.e., β =

(
1.5 · 1⊺50 0⊺450

)⊺
. The response y is then generated as

N (µ, 1), where µ = Xβ. We generate a single realization of the data in this setting and
then apply the methods of Yang et al. (2016), Loftus and Taylor (2015), and our method
conducted with 5000 posterior samples (with 100 samples discarded as burn-in). Findings
in this instance gives us an opportunity to note the extent of agreement between the three
methods.
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For all methods, the first stage is automatically selecting groups using: (i) the Group
LASSO (for Yang et al. (2016)), (ii) the randomized Group LASSO (for our method) in
(3), or (iii) forward stage-wise selection (for Loftus and Taylor (2015)). We use λ = 4
for the approach of Yang et al. (2016) which yields the selection of 11 active groups (i.e.,
110 features), and we then tune parameters for the other two methods to select the same
number of active features. Once the model has been selected, we proceed to inference with
α = 0.1.

For the methods by Yang et al. (2016) and Loftus and Taylor (2015), the inferential
target for each selected group g in E is an overall group effect µg, which we review in
more detail under Section 2.2. We apply our methods to construct credible intervals for
the individual components of the coefficient vector for each group; inference for individual
effects in the selected groups is not addressed by the previous two methods. As described in
Section 7, sampling from the selection-informed posterior with a diffuse (non-informative)
prior yields credible intervals for the individual effects with “good” frequentist properties.
Note, we do not pursue inference for the overall group effect—a (non-linear) function of
the selection-informed parameters βE—using our Bayesian methods. This is because our
focus is on the extent of agreement between all three methods in terms of their frequentist
properties. Specially, “good frequentist properties” for µg will also depend on a choice of
prior for this parameter; in this case, a non-informative prior for βE might not be non-
informative for µg for g ∈ GE .

We summarize our results in Table 1. Each of the three methods selects all of the 5 active
groups and 6 additional inactive groups, although the identities of the selected inactive
groups differ slightly across the methods due to differences in the query (i.e., Group LASSO
vs randomized Group LASSO vs forward stage-wise selection). The method of Loftus and
Taylor (2015) yields no significant p-values at α = 0.10: it makes no Type I errors, but
5 Type II errors. The method of Yang et al. (2016) correctly rejects the null for 4 of
5 active groups and only makes a Type I error for 1 of 6 six inactive groups. For our
method, we report the component-wise coverage of our marginal credible intervals in each
group. Empirically, we appear to have coverage that does not appreciably deviate from
nominal (i.e., 90%). Coverage for active coefficients is slightly better at 88% as opposed to
coverage for inactive coefficients at 80%, although these may just be chance fluctuations. In
summary, the test by Loftus and Taylor (2015) seems more conservative than the remaining
two methods. Coverage for the individual variable effects in each active group by our
method seem to be consistent with the lower bounds for the overall group effect by Yang
et al. (2016).
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Group # µg Loftus p-value Yang LCB Yang p-value Ours (Coverage)

1 4.49 0.34 2.39 0.00 1.0
2 4.01 0.14 1.11 0.03 0.9
3 4.19 0.42 1.01 0.03 0.9
4 4.07 0.32 -2.68 0.33 0.8
5 4.20 0.23 3.05 0.00 0.8
8 0 0.55

11 0 0.7
14 0 0.7
17 0 0.77
18 0 -9.99 0.81
20 0 0.54 -0.95 0.21 0.9
28 0 -9.54 0.66 1.0
33 0 0.78 1.74 0.02
36 0 0.83 -4.08 0.45 0.7
39 0 -3.05 0.50 0.8
46 0 0.83

Table 1: Comparison of inferential results on single realization of synthetic data using meth-
ods of Loftus and Taylor (2015), Yang et al. (2016), and the proposed method.
Blanks indicate that the associated method did not select the variable group de-
picted in the corresponding row. LCB signifies lower confidence bound. Coverage
(where applicable) was assessed using 90% credible intervals. “Ours” refers to the
Selection-informed method discussed in the manuscript.
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dimensional post-selection inference. Electronic Journal of Statistics, 15(1):1695–1742,
2021.

Xiaocheng Shang, Zhanxing Zhu, Benedict Leimkuhler, and Amos J Storkey. Covariance-
controlled adaptive Langevin thermostat for large-scale Bayesian sampling. Advances in
Neural Information Processing Systems, 28:37–45, 2015.

Noah Simon and Robert Tibshirani. Standardization and the group LASSO penalty. Sta-
tistica Sinica, 22(3):983, 2012.

Noah Simon, Jerome Friedman, Trevor Hastie, and Robert Tibshirani. A sparse-group
LASSO. Journal of Computational and Graphical Statistics, 22(2):231–245, 2013.

Chandra Sripada, Mike Angstadt, Saige Rutherford, Daniel Kessler, Yura Kim, Mike
Yee, and Elizaveta Levina. Basic units of inter-individual variation in resting state
connectomes. Scientific Reports, 9(1):1900, February 2019. ISSN 2045-2322. doi:
10.1038/s41598-018-38406-5.

Chandra Sripada, Mike Angstadt, Saige Rutherford, Aman Taxali, and Kerby Shedden.
Toward a “treadmill test” for cognition: Improved prediction of general cognitive ability
from the task activated brain. Human Brain Mapping, 41(12):3186–3197, 2020. ISSN
1097-0193. doi: 10.1002/hbm.25007.

Shinya Suzumura, Kazuya Nakagawa, Yuta Umezu, Koji Tsuda, and Ichiro Takeuchi. Se-
lective inference for sparse high-order interaction models. In International Conference on
Machine Learning, pages 3338–3347. PMLR, 2017.

Kosuke Tanizaki, Noriaki Hashimoto, Yu Inatsu, Hidekata Hontani, and Ichiro Takeuchi.
Computing valid p-values for image segmentation by selective inference. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9553–
9562, 2020.

Xiaoying Tian and Jonathan Taylor. Selective inference with a randomized response. The
Annals of Statistics, 46(2):679–710, 2018.

48



Post-selective inference for Group LASSO

Xiaoying Tian, Snigdha Panigrahi, Jelena Markovic, Nan Bi, and Jonathan Taylor. Selective
sampling after solving a convex problem. arXiv preprint arXiv:1609.05609, 2016.

David C. Van Essen, Stephen M. Smith, Deanna M. Barch, Timothy E. J. Behrens, Essa
Yacoub, Kamil Ugurbil, and the WU-Minn HCP Consortium. The WU-Minn Human
Connectome Project: An overview. NeuroImage, 80:62–79, October 2013. ISSN 1053-
8119. doi: 10.1016/j.neuroimage.2013.05.041.

Roderick Wong. Asymptotic Approximations of Integrals. SIAM, 2001.

Fan Yang, Rina Foygel Barber, Prateek Jain, and John Lafferty. Selective inference for
group-sparse linear models. In Advances in Neural Information Processing Systems, pages
2469–2477, 2016.

Daniel Yekutieli. Adjusted Bayesian inference for selected parameters. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 74(3):515–541, 2012.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society: Series B, 68(1):49–67, 2005.

Qingyuan Zhao and Snigdha Panigrahi. Selective inference for effect modification: An
empirical investigation. Observational Studies, 5(2):131–140, 2019.

49


	Introduction
	Related Work and Contributions
	From Atoms to Groups
	Post-selective Inference for Overall Group Effects
	Our Method

	Framework for Selection-informed Inference
	Selection-informed Posterior

	Selection-informed Bayesian Methods
	Likelihood Adjustment Factor
	Surrogate Selection-informed Posterior

	Generalization to Other Grouped Sparsities
	Overlapping Group LASSO
	Standardized Group LASSO
	Sparse Group LASSO

	Large Sample Theory
	Empirical Investigations
	Experimental Design
	Inferential Findings for Different Grouped Sparsities
	Application to Neuroimaging Data

	Conclusion
	Proofs for Technical Developments (Section 4)
	Proofs for Large Sample Theory (Section 6) 
	Supporting Theory (Section 6)
	Supplementary Details (Section 7)
	Supplementary Details for HCP Analysis
	Supplementary Numerical Comparison


