2023 IEEE International Conference On Artificial Intelligence Testing (AlTest)

DEANOMALYZER: Improving Determinism and
Consistency in Anomaly Detection Implementations

Muyeed Ahmed

Tulian Neamtiu

Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, USA
{ma234, ineamtiu} @njit.edu

Abstract—Anomaly Detection (AD) is a popular unsupervised
learning technique, but AD implementations are difficult to test,
understand, and ultimately improve. Contributing factors for
these difficulties include the lack of a specification to test against,
output differences (on the same input) between toolkits that
supposedly implement the same AD algorithm, and no linkage
between learning parameters and undesirable outcomes. We have
implemented DEANOMALYZER, a black-box tool that improves
AD reliability by addressing two issues: nondeterminism (wide
output variations across repeated runs of the same implemen-
tation on the same dataset) and inconsistency (wide output
variations between toolkits on the same dataset). Specifically,
DEANOMALYZER uses a feedback-directed, gradient descent-like
approach to search for toolkit parameter settings that maximize
determinism and consistency. DEANOMALYZER can operate in
two modes: univariate, without ground truth, targeted to general
users, and bivariate, with ground truth, targeted to algorithm
designers and developers. We evaluated DEANOMALYZER on 54
AD datasets and the implementations of four AD algorithms
in three popular ML toolkits: MATLAB, R, and Scikit-learn.
The evaluation has revealed that DEANOMALYZER is effective
at increasing determinism and consistency without sacrificing
performance, and can even improve performance.

Index Terms—Al testing, Al reliability, Nondeterminism, Ver-
ification, Anomaly Detection, Machine Learning

[. INTRODUCTION

Anomaly Detection (AD) is a widely-used unsupervised
learning technique for detecting rare/anomalous items, or
data/events that contradict expected behavior. Thanks to AI’s
growing popularity, AD use is increasing in a wide range
of domains, including manufacturing, health, security, and
finance. While AD reliability is crucial, verifying or validating
the output of an AD algorithm is challenging: there is no
specification to check against, and even in scenarios where
learning tasks have ground truth, different AD implementa-
tions can produce widely diverging outputs on the same input
(dataset). In general, AD users should expect (1) determinism:
a certain AD implementation produces the same output when
run repeatedly on the same dataset, and (2) consistency:
different implementations of the same AD algorithm produce
similar outputs on the same input dataset. However, prior
work has revealed that popular AD implementations violate
both properties [1]. Note that current AD efforts in the ML
or Big Data communities are focused on developing new
algorithms, optimizing performance, or increasing scalability
— little to no research is focused on testing, and improving the
reliability of, AD implementations. To address these issues,
we designed and implemented DEANOMALYZER: a tool that

2835-3560/23/$31.00 ©2023 IEEE
DOI 10.1109/AITest58265.2023.00012

17

r. .3 LY L.
MAS-A T " R N * ®
.9 LA A '.!, L :_' : . L]
. n . .' . = -.5 &
. . S .., e " k]
. - . - .
[4 o : '._‘ . . . []
. ot E s T e
PR L . ° Both Predicted Same Output
Py «*%2. " e Only Runl Predicted as Anomaly
o ° ‘,.-" ¢ ® Only Run2 Predicted as Anomaly

(a) Default settings

8 s
o aenp e o

.. . ,: ' :c. O KT ‘ .
. .o o, e, -
N PP
- . o .. '..‘ e
o AN IR ‘

* . . e .. N « Both Predicted Same Output
: “en *, +*%. "' e OnlyRunl Predicted as Anomaly
o ttles St e Only Run2 Predicted as Anomaly

(b) Improved via our univariate search

Fig. 1. Nondeterminism example: different outputs of two different runs
(algorithm: Isolation Forest; toolkit: Sklearn) on dataset vertebral.

increases determinism, consistency, and even performance,
of AD implementations, without requiring source code, by
exploring toolkits’ parameter spaces in a gradient descent-like
manner. We made DEANOMALYZER available on GitHub. !

To motivate our approach, we illustrate nondeterminism and
inconsistency in two popular toolkits, Scikit-learn (Sklearn for
short) and MATLAB.

Nondeterminism. First, we illustrate AD nondeterminism on
vertebral — an orthopaedic dataset with two classes, normal
and abnormal [2]. We ran the Isolation Forest AD algo-
rithm (explained in Section IV) using Sklearn, multiple times,
without making any changes in parameters or environment,
yet obtained different results in different runs. Figure 1 (a)’
shows the result of two different runs, “Run 1” and “Run 2.
The grey dots represent points where both runs predicted the
same output, blue dots are the points that were identified as
anomaly only in Run 1, and red dots were the points that were
identified as anomaly only in Run 2. Ideally, all the points
should be grey (same outcome in both runs), however that
is clearly not the case. Among the 240 points, the two runs
predicted different outcome for 14 points (cross-run ARI=0.63,

Uhttps://github.com/Muyeed Ahmed/De Anomalyzer
2For Figures 1 and 2 we used t-SNE [3] to reduce dimensionality of the
datasets to 2 for better visualization.

ALyl

0 op o Vel ve o

.
S A Bpod P of
+ Both Toolkits Predicted Same Output
® Only Matlab Predicted as Anomaly

® Only Sklearn Predicted as Anomaly

- *0°° o
L~ , e°

) o % og
L XY o

o =%

o %0
L4

(a) Default settings

‘e o V% s e
+ Both Toolkits Predicted Same Output
® Only Matlab Predicted as Anomaly
® Only Sklearn Predicted as Anomaly

i
’.o
(b) Improved via our univariate search

Fig. 2. Inconsistency example: algorithm Isolation Forest on dataset breastw.

far short of the expected ARI=1; Section II-A defines ARI).
DEANOMALYZER was able to achieve a cross-run ARI of 1
(eliminating nondeterminism), shown in Figure 1 (b). More-
over, DEANOMALYZER exposed the exact parameter values
responsible for nondeterminism, and the values that should be
used to eliminate it (e.g., n_estimators should be set to 512
instead of the default, 100).

Inconsistency. Second, we ran the Isolation Forest AD
algorithm on dataset breastw (Breast Cancer Wisconsin [4],
[5]) using the default settings of MATLAB and Sklearn.
Figure 2 (a) shows the output, evidencing substantial dis-
agreement between toolkits. The red points represent points
identified as anomalies only by Sklearn, and points in grey
indicate that both toolkits agreed. While blue points would
represent the points only MATLAB identified as anomalies,
Figure 2 (a) does not contain such points, as MATLAB only
identified a subset of the anomalies exposed by Sklearn.

DEANOMALYZER reduced the inconsistency between the
implementations, as illustrated in Figure 2 (b): note the sub-
stantial increase of grey dots. DEANOMALYZER exposed the
parameter values responsible for the inconsistency, and the
values that should be used to reduce it (Matlab’s Contamina-
tionFraction should be set to a value akin to Sklearn’s “auto”,
i.e., 0.376, instead of the default 0).

Our approach, and DEANOMALYZER’s architecture, are dis-
cussed in detail in Section III. DEANOMALYZER was designed
to operate in a black-box manner, with only knowledge of the
toolkit parameter settings (aka “hyperparameters”). DEANOM-
ALYZER uses a feedback-driven gradient descent-like approach
to find parameter values that improve determinism or consis-
tency, an approach we name univariate search. DEANOMA-
LYZER can also be used to expose the determinism v. perfor-
mance balance (and respectively, consistency v. performance
balance), an approach we name bivariate search, because the
search moves along two directions. Our experiments found
that DEANOMALYZER was able to alleviate nondeterminism

18

in all those 6 implementations that were nondeterministic,
and improve consistency for all 11 implementations. For the
three strongest nondeterministic algorithms (Matlab/OCSVM,
Sklearn/IF, and Matlab/IF), DEANOMALYZER improved ARI
from 0.11 to 0.9, 0.78 to 0.94, and 0.84 to 0.94, respectively.

The rest of the paper is structured as follows. Section II
introduces definitions and presents the experimental setup. In
Sections IV to VII, we present the improvements attained by
running DEANOMALYZER on each AD algorithm.

II. DEFINITIONS AND EXPERIMENTAL SETUP

We evaluated our approach on 4 algorithms, as imple-
mented in 3 popular toolkits; we validated the results on 54
AD-specific datasets. This section introduces the evaluation
metrics, algorithms, toolkits, and datasets.

A. Definitions and Metrics

Given an unlabeled dataset, AD aims to find abnormal or
anomalous points. Therefore, we use two performance metrics:
ARI and F1 score. The Adjusted Rand Index (ARI [6]),
originating from clustering analysis, measures the similarity
between two clustering outputs U and V. In our case, the
output represents a partition of a dataset into normal and
anomalous points. ARI is versatile as it does not require
ground truth, hence can be used to compare AD output
obtained from two runs, two toolkits, etc. ARI ranges from
—1 to +1, where —1 indicates “perfect disagreement” between
U and V, while +1 indicates the same output or “perfect
agreeement” (U=V); a score close to 0 means that U and V'
are random or independent. F1 score measures performance
(combining precision and recall of the AD result), and is useful
in scenarios, e.g., for AD developers, where ground truth is
available and the goal is to improve performance.

B. Algorithms

We explored four AD algorithms, described shortly; three
algorithms are prone to both nondeterminism and inconsis-
tency, while one is deterministic, only prone to inconsistency.

Isolation Forest (IF) detects anomalies by isolating anoma-
lous objects. IF uses one or more (potentially infinite number
of) estimators. Each estimator selects a random feature from
a group of features and then randomly splits a sub-sample of
the dataset by selecting a value between the minimum and
maximum of that feature [7].

Robust Covariance (RobCov) detects anomalies by drawing
a high-dimensional (number of features in a dataset) ellipsoid
around the center or “core” of the dataset [8].

Local Outlier Factor (LOF) uses the k-nearest neighbor
(kNN [9]) algorithm to measure the distance of each sample
in a dataset from its nearest k£ neighbors and then compares
their local density with their neighbors’ local density. If
local density is significantly lower, that sample is identified
as anomaly [10]. LOF is the only deterministic-by-design
algorithm among the four.

One Class SVM (OCSVM) uses Support Vector Machines
(SVM) to detect anomalies. Note that, to separate classes,

Feedback

Parameters

Toolkit

Next
Parameter/Value
Yes

Tross-run ARTSNYO

Gradient Descent

Cross-run
ARI

Output
Parameters

Parameter Values
With Maximum
Determinism

Algorithm

Tr—

Dataset

Fig. 3. DEANOMALYZER Determinism improver: univariate search.

SVM maps the points into a high-dimensional feature space
and generates class-separating hyperplanes [11]. OCSVM is a
simple two-class SVM: the larger class is considered normal,
while the smaller class contains anomalies or outliers.

C. Toolkits

We studied AD implementations in three popular toolkits.
Scikit-learn (Sklearn) has all four aforementioned algorithms
built-in. For MATLAB, we used the most popular LOF imple-
mentation based on GitHub stars [12]; the other algorithms are
implemented in official libraries. R supports 3 algorithms (IF,
LOF, OCSVM) implemented in separate packages [13]-[15].
Therefore, in total we explored 11 implementations.

D. Datasets

The following table summarizes the distribution and char-
acteristics of the 54 datasets we used in our experiments.

Min Max | Geometric Mean
Instances (points) 63 7,200 426.7
Features (attributes) 2 64 14.10
of anomalies 6 2,036 39.88
Anomaly ratio 1.2% | 35.9% 9.3%

Out of the 54 datasets, 16 are from Outlier Detec-
tion DataSets (ODDS) [16] and the other 38 are from
OpenML [17]. On average, the datasets have 426 instances
and 14 attributes. The anomaly percentage ranged from 1.2%
to 35.9% (typically: 9.3%).

III. DEANOMALYZER ARCHITECTURE

We designed DEANOMALYZER to improve the determinism
of a given AD toolkit, and the consistency between two
given AD toolkits. Moreover, when ground truth is provided,
DEANOMALYZER incorporates mechanisms to preserve, and
even increase, performance.

A. Nondeterminism

To reduce nondeterminism, DEANOMALYZER supports two
strategies: univariate search and bivariate search. Univariate
search optimizes for a single output variable, determinism, and
is applicable in scenarios where repeatability or reproducibility
are key; this strategy does not take into account performance.
In contrast, bivariate search optimizes for both determinism
and performance; this strategy is applicable in, for example,
validation settings, where ground truth is available.

19

procedure DeAnomalyzer_Univariate:
Input: dataset d, implementation ¢, ParameterValues
Output: Optimum ParamSetting
ParameterV alues=m parameters, each with n values
for all parameters p; where i =1,...,m {
piValues = {pi1,pi2, - .- Pin}
pij = default from p;Values
CurrentValues = set p; 10 p;; in ParameterV alues
do {
// run executes t 10 times on d and returns the mean ARI
ARIScore =run(t, d, CurrentV alues)
Append p;; to OptimumParamSetting
// Update CurrentValues
if p;;1 performs better than p;;

Pi = Pij+1
else
Pi = Pij—1

} while (ARIScore increases)

return OptimumParamSetting

Fig. 4. Univariate search pseudocode.

1) Univariate Search: Figure 3 shows an overview of uni-
variate search approach: given a toolkit, the parameter space is
explored, informed via feedback on determinism values (cross-
run ARI), to find values that maximize determinism.

Figure 4 shows the pseudocode for univariate search.
DEANOMALYZER takes as input the dataset d, an algorithm
implementation ¢ (e.g., Sklearn/IF), and the set of parameters
ParameterValues. For each parameter p;, we have a list
of possible values [p;1, pio, ...].> DEANOMALYZER first starts
with a parameter p; and then runs ¢ on the dataset using the
default value p;; for p; (all other parameters are set to default
as well) 10 times, and computes the mean cross-run ARI.
Note that a high ARI value indicates determinism across the
10 runs, while a low ARI value indicates nondeterminism.
Then DEANOMALYZER selects the next value p;;41 from
the possible value list of p; and runs ¢ again 10 times. If
the cross-run ARI score is better than the score with default
settings, DEANOMALYZER explores in that direction (the next
value for p; being p;;42) and will continue doing so as
long as the cross-run ARI increases. However, if the cross-
run ARI with p;;;1 is worse than the default value’s score,
DEANOMALYZER will start exploring the values that precede
the default (i.e., p;j_1,pij—2, ..). Before moving on to the next
parameter, DEANOMALYZER selects the parameter value with
the maximum determinism as the new default for p; and also
stores the “winner” in OptimumParamSetting. DEANOM-
ALYZER then follows the same procedure for exploring other
parameters of ¢. Finally, after going through all parameters,
OptimumParamSetting will have the settings, e.g., param-
eter values, that represent a nondeterminism minimum (i.e.,
determinism maximum) for ¢ on dataset d.

For some parameters the default value is dynamic (i.e.,
depends on the dataset). For example, the default value
for max_samples in Sklearn/IF is min(256, #ofsamples),
meaning the implementation will take 256 samples from the

3We had a few cases where parameter values were defined as continuous
values over a range, rather than a list of discrete values. In those cases we
created a 10-value list manually.

dataset to train an estimator if the dataset has more than 256
points, otherwise it will take all the points. Therefore, if the
dataset contains 1000 points, the default max_samples should
come after 0.2 (20% of the points) and before 0.3 in the list
([0.1,0.2,default,0.3,...]) as now the fraction of points to
be used in each estimator is 0.256 (256/1000).

We illustrate univariate search on Isolation Forest, toolkit
Sklearn. As mentioned previously, max_samples controls the
fraction of points to use to build a single estimator. The range
of max_samples is (0,1] so as list of values we divided this
range into 10 discrete values ([0.1,0.2,...,1.0]). Assuming
a default value max_samples=0.5, DEANOMALYZER runs
Sklearn/IF 10 times on the dataset using 0.5 as max_samples
and computes the cross-run ARI. DEANOMALYZER then
moves on to the next value, max_samples=0.6, runs Sklearn/IF
10 times, and obtains a new cross-run ARI. If the new
cross-run ARI is better, DEANOMALYZER moves to the next
value, max_samples=0.7 and will continue doing so until the
ARI starts to decrease or we exhausted the max_samples’s
set of values. However if we obtained a lower ARI score,
DEANOMALYZER will select the max_samples value of 0.4
and potentially continue exploring downwards (0.3, 0.2, ...)
until a decrease in ARI score is observed. Assuming, for
example, that max_samples=0.3 yields the maximum cross-
run ARI, DEANOMALYZER sets this value as the new default
and adds 0.3 in our OptimumParamsSetting, i.e., output
parameters. Next, DEANOMALYZER explores the remaining
parameters of Sklearn/IF following the same strategy. For
unbounded parameters we manually set a realistic upper bound
(e.g., for n_estimators we set the upper bound to 512).

Limitation: local v. global minima. As typical in gradient
descent, our approach assumes the function to be optimized
is convex, hence could discover local, rather than global,
nondeterminism minima. This is a deliberate trade-off to keep
exploration time tractable, as in the worst case the number
of runs is still linear in the number of parameter values. In
contrast, the number of runs in grid search will be exponential.

Figure 5 shows two examples of univariate search. In
Figure 5 (a), we used Matlab/OCSVM on dataset analca-
data_apnea3 and in Figure 5 (b) we used Sklearn/IF on dataset
ar1. In both examples, we can observe a steady rise in cross-
run ARI with each step. In Figure 5 (a), with default settings
the cross-run ARI was 0.008; note that cross-run ARI close
to 0 indicates outputs so different across runs as to appear
unrelated. First, DEANOMALYZER explored the parameter
ContaminationFraction (CF) but changing the default value
of 0.1 in either direction did not improve the ARI score.
Then, DEANOMALYZER moved on to the next parameter,
KernelScale (KS) ; the default value for KS is 1 and setting it to
“auto” (which invokes a heuristic procedure, i.e., the algorithm
will choose the value automatically) increased the cross-run
ARI by almost 0.5. After exploring the remaining parameters
(Lmda, SD, BT), DEANOMALYZER achieved a cross-run ARI
of 0.67, which is a substantial improvement from the default,
0.008. We also see a minor rise in F1 score, from 0.12 to
0.15. In the Figure 5 (b) example, DEANOMALYZER found

20

an optimal value for n_e in three steps, then optimal values
for w_s and m_s). In the end, DEANOMALYZER increased
cross-run ARI from 0.84 to 0.93, with a minor decline in F1
score (from 0.287 to 0.277).

2) Bivariate Search: Figure 6 shows an overview of the
bivariate search approach: given a toolkit, the parameter space
is explored, informed via a feedback loop on both determinism
and performance values. Here, DEANOMALYZER explores the
determinism v. performance space. While ideally we wish
to improve both, this might not be possible in practice,
hence DEANOMALYZER allows users to quantify, say, the 2%
performance loss incurred by a y% gain in determinism.

Bivariate search is similar to univariate search, but considers
performance. When comparing the result gathered by default
pi; and p;; 11, we check both the cross-run ARI and F1 score,
and move onto p;j4o if the cross-run ARI increased and F1
score did not decrease. However if the F1 score decreases, we
move on to p;j—1 even when cross-run ARI increases.

Figure 7 shows two examples of bivariate search. For the
two examples we used the same datasets and tool/algorithm
combinations as in Figure 5. In Figure 5 (a) we see an increase
of cross-run ARI after changing the value of BetaTolerance
(BT) from the default 10~* to 10~°. While in univariate search
we explored that path, in bivariate search we did not, as
it reduces performance, as can be seen in Figure 7 (a). In
this example we do see an increase of both cross-run ARI
(0.58) and F1 score (0.17). In Figure 5 (b), taking the path to
n_estimators (n_e)=512 from n_estimators=256 would reduce
performance, hence we stop following that path. The final
result is no decrease in performance (0.30), while improving
cross-run ARI (0.90).

B. Inconsistency

To reduce inconsistency we adapted univariate and bivari-
ate search to operate on two toolkits. We had to address
the challenge where for a certain algorithm, the number of
parameters differed between toolkits, e.g., MATLAB/RobCov
has 9 parameters but Sklearn only has 4. DEANOMALYZER
addresses this by exploring all available parameters for a
certain toolkit. Figure 8 shows an overview of our approach.

1) Univariate Search: In univariate search targeting non-
determinism, after moving to a new parameter value we
calculated the cross-run ARI. In univariate search targeting
inconsistency, we “nest” one toolkit ¢, inside the other toolkit
t,. Specifically, we first choose a parameter p, from toolkit ¢,
and start exploring that parameter. We choose the pa; value of
parameter p, and then choose the pb; value from parameter p,
of toolkit 7, and check the mutual ARI between toolkits ¢, and
tp. Then we move on to pb;41 in ¢, and similar to univariate
search targeting nondeterminism we check and move to the
next step. Note that instead of cross-run ARI, here we check
the mutual ARI of the two tools’ output. While exploring
toolkit ¢, we continue to update the default value with the
new default value for each parameter. After exploring toolkit
t, completely (all parameters), we change the p, parameter
value of toolkit a to pa;41 and continue with the same process

I
o

<
~

[CF=0.1, KS="auto’, Lmda=0.01, SD=1,BT=1e-5]

o
o

[CF=0.1, KS="auto’, Lmda=0.01, SD=1,BT=1e-4]

o
n

[CF=0.1, KS="auto’, Lmda=0.01, SD=0, BT=1e-4]
[CF=0.1, KS=‘auto’, Lmda="auto’, SD=0, BT=1e-4]

o
IS

Cross-run ARI

o
W

0.2

efault: [CF=0.1, KS=1, Lmda="auto’, SD=0, BT=1e-4]

0.11 0.12 0.13 0.14

F1 Score

(a) MATLAB/OCSVM, dataset analcatdata_apnea3

0.15 0.16 0.17 0.18

Cross-run ARI

0.94

[n_e=512, w_s=True, m_s=0.9]
0.92
n_e=512, w_s=True, m_s="auto’]

[n_e=512, w_s=False, m_s=‘auto’]
0.9

[n_e=256, w_s=False, m_s="auto’]

0.88

0.86
[n_e=128, w_s=False, m_s="auto’]

0.84
Default: [n_e=100, w_s=False, m_s="auto’]

0.82

0.27 0.275 0.28 0.285 0.29

F1 Score

(b) Sklearn/IF, dataset ar1

0.295

0.3 0.305 0.31

Fig. 5. DEANOMALYZER univariate search example: reducing nondeterminism.

Feedback

Parameter/Value

Toolkit

Algorithm

C—

Dataset

Cross-run

Output

Parameters

Parameter Values
With Maximum
Determinism

Gradient Descent

Fig. 6. DEANOMALYZER determinism improver: bivariate search.

again (run toolkit ¢;). We will continue doing this for all the
parameters of toolkit ¢,. Finally, we will have two sets of
parameter settings, for ¢, and ¢, respectively, that represent a
consistency maximum for the given dataset.

For example, Sklearn/IF has a parameter n_estimators
whose default value is 100. When aiming to improve the
consistency between Sklearn/IF and MATLAB/IF, DEANOM-
ALYZER checks the mutual ARI of Sklearn and MATLAB
with this setting and continues exploring MATLAB, start-
ing from parameter ContaminationFraction and other subse-
quent parameters as long as the mutual ARI increases. Next,
DEANOMALYZER moves back to Sklearn and changes the
value of n_estimators to the next option (in this case, 128)
and finds the setting in MATLAB that achieves the highest
agreement with (i.e., best mutual ARI) Sklearn’s current
setting. DEANOMALYZER continues this approach until all the
parameters of Sklearn have been explored.

Figure 9 shows how univariate search reduces inconsistency.
With default settings, the mutual ARI between the two toolkits
is low, 0.070. The first change, the Method parameter in
MATLAB flip from “fcmd” to “ogk”, brought the mutual ARI
up to 0.588. After exploring all the parameters in MATLAB
once, DEANOMALYZER went back to Sklearn and changed as-
sume_centered from “false” to “true”, which increased mutual
ARI slightly from 0.686 to 0.710. In the next few iterations,
MATLAB did not improve the mutual ARI. After changing
the Sklearn parameter contamination to “IF” we saw another
small increase. Finally, the mutual ARI increased to 0.866.

2) Bivariate Search: For bivariate search we follow the
same procedures, but also optimizing for F1 score. Addition-

21

ally as we already have the ground truth, we nest our tools in
such a way that the toolkit with the worse outcome (lower F1
score) tries to get closer to the toolkit with better outcome. For
example, for algorithm Isolation Forest, the average F1 score
in MATLAB with default settings was 0.26 and in Sklearn it
was 0.294. Therefore we mirrored Sklearn’s parameter explo-
ration in MATLAB (i.e., after changing a parameter’s value
in Sklearn, all the parameters will be explored in MATLAB)
in order to increase the performance of MATLAB, resulting
in an increased mutual ARI. After the bivariate search, the F1
score of MATLAB was 0.326, Sklearn’s was 0.322, while the
mutual ARI increased from 0.551 to 0.598.
We now present the evaluation results for each algorithm.

IV. ISOLATION FOREST

A. Nondeterminism

Isolation Forest implementations are nondeterministic in 2
of the 3 toolkits (only R was deterministic [1]); specifically,
Sklearn and MATLAB were nondeterministic for more than
90% of datasets. We now discuss how DEANOMALYZER
reduces nondeterminism without sacrificing performance.

1) Sklearn: DEANOMALYZER revealed that n_estimators
is one of the most influential parameters for reducing nonde-
terminism (n_estimators is the number of base estimators the
algorithm can use to predict anomalies). The default setting of
n_estimators was 100, with possible values {2,4,8,...,512};
DEANOMALYZER revealed that increasing the value can re-
duce nondeterminism. DEANOMALYZER runs with different
values of this parameter on each dataset 10 times and pro-
duces cross-run ARI scores (Section III). Table I shows the
results of a Mann-Whitney U test [18] for each pair [(64,
100), (64, 128), (64, 256),...] across all datasets. The strong
significance levels (< 0.05 for all but one) essentially indicate
that each different value of the parameter produces very
different levels of determinism (cross-run ARI). The other
influential parameter is max_samples (which determines the
fraction of points to be used in each estimator). Table II shows
other IF parameters with their AIC value (Akaike information
criterion [19]) — lower values indicate higher relevance. These
values essentially quantify the importance of each parameter.

0.7

[CF=0.1, KS="auto’, Lmda=0.01, SD=1,BT=1e-4]

0.6
= [CF=0.1, KS="auto’, Lmda=0.01, SD=0, BT=1e-4]
< 0.5
c
2
0 0.4 [CF=0.1, KS="auto’, Lmda="auto’, SD=0, BT=1e-4]
<]
s}

0.3

0.2

0.1

0 efault: [CF=0.1, KS=1, Lmda="auto’, SD=0, BT=1e-4]
0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18
F1 Score

(a) MATLAB/OCSVM, dataset analcatdata_apnea3

Cross-run ARI

Fig. 7. DEANOMALYZER bivariate search example: reducing nondeterminism.

Parameters Values With
Maximum Consistency

Parameters

Tool 1 Tool 2
N Output Output
Algorithm ——3> | Toolkit 1 Toolkit 2 | Parameters Parameters
K 2 v
Feedback \
v
Feedback \ Next Parameter/Value
of Tool 2
Next Parameter/Value
Mutual of Tool 1
Run ARI Yes
Tool 2 7 KA Tool 1
ross-toolkit Output
Run Improved? ’ Parampeters
Tool 1
Dataset Gradient Descent /
Gradient Descent
Fig. 8. DEANOMALYZER consistency improver: univariate search.
0.9 Matlab_UnivariateEstimator = qn
Matlab_NumOGKIteration = 2
0.8
0.7 Sklearn_contamination = IF
’ Sklearn_assume_centered = True
— Matlab_NumOGKiteration = 3
x 06
<<
= =
Z o5 Matlab_Method = ogk
o
o
5 04
o 0.
2
o
2
© 03
0.2
01 Matlab_Method = fcmd
0

Steps

Fig. 9. DEANOMALYZER improving consistency in dataset vertebral using
Robust Covariance algorithm in Sklearn and MATLAB.

Table III shows how DEANOMALYZER performed on Iso-
lation Forest algorithm in Sklearn. In univariate search we see
a high improvement in determinism (19.8%, i.e., from 0.783
to 0.938) with the mean performance virtually identical to the
default setting. In bivariate search we see a slight increase in
determinism (from 0.783 to 0.84) without compromising per-
formance. Univariate search improved determinism in 53 out
of 54 datasets; one dataset’s determinism remained unchanged.
In case of performance we do not see any mean difference
with the default, but in 30 datasets we observed an increase
in F1 score while in 23 datasets we observed a decrease in
F1 score (performance on one dataset remained unaffected).
In bivariate search, out of 54 datasets, we see that 42 have

22

0.92

0.91

0.9

0.89 [n_e=256, w_s=False, m_s="auto’]

0.88

0.87

0.86

0.85 [n_e=128, w_s=False, m_s="auto’]

0.84

0.83 Default: [n_e=100, w_s=False, m_s="auto’]

0.82

0.27 0.275 0.28 0.285 0.29 0.295 0.3 0.305 0.31
F1 Score
(b) Sklearn/IF, dataset ar1
TABLE I
IF/SKLEARN N_ESTIMATORS: U TEST SCORE OF CROSS-RUN ARI
100 128 256 512
64 0.06573 0.00362 4.43E-06 2.57E-10
100 0.26738 0.00331 2.84E-07
128 0.02761 6.57E-06
256 0.00943
TABLE 1I

IF/SKLEARN: AIC VALUES, IN DECREASING ORDER OF IMPORTANCE

max_samples | n_estimators | max_features | bootstrap | n_jobs | warm_start
35 64 138 171 171 171
TABLE III
IF: IMPACT OF DEANOMALYZER
Config. Determinism Performance
#Datasets #Datasets
Mean | Better Worse | Mean | Better Worse
g Default 0.783 - - 0.294 - -
2 | Univariate | 0.938 53 0 0.294 30 23
@ | Bivariate 0.840 42 0 0.308 42 0
2 [Default 0.839 - - 0.260 - -
2 | Univariate | 0.943 53 0 0.245 26 25
%: Bivariate 0.881 40 0 0.298 40 0
Default 0.983 - - 0.260 - -
~ | Univariate | 0.992 35 0 0.279 20 15
Bivariate 0.989 23 0 0.291 23 0

better determinism and performance than the default.

2) MATLAB: While the MATLAB implementation of the
IF algorithm is nondeterministic, a default parameter setting
renders it de facto deterministic in an unexpected way. Specif-
ically, the default ContaminationFraction is 0, meaning the
implementation will label 0% of the points as anomaly — a
questionable default value yielding a deterministic “no anoma-
lies” outcome. Hence, though deterministic, this outcome is
not desirable due to false negatives; in other words, if the
dataset contains outliers, the F1 score will be 0. Typically users
set the value of ContaminationFraction to 0.05 or 0.1 meaning
the user expects the dataset to have 5% or 10% outliers [20],
[21]. MATLAB does not offer a strategy for predicting an
appropriate value for this parameter. Therefore, we created
a set of possible ContaminationFraction values based on
the anomaly percentage predictions made by Sklearn/IF and
Sklearn/LOF.

As comparing it with the default ContaminationFraction
would be pointless, we compared the custom settings with a

Isolation Forest - Inconsistency

o

vh N
' LS o A

¢ Agheadt™ X

v

v A &
; a
A'A
¢
¢

o
©

4
A
wh

»

*
v
ARy
[

o
o

¢

¢
¢ 1Y

/N /Y

V,AQA

N
~
>

<
[N}

Default Setting
Univariate Search
4 Bivariate Search

Consistency (Mean Cross-toolkit ARI)

o
o
-

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Average Performance (F1 Score)

0.7 0.8

Fig. 10. Isolation Forest: Performance v. Consistency before (default) and
after DEANOMALYZER’s search. The three large points are mean F1 score
and ARI across all datasets.

modified default setting, where the ContaminationFraction is
set to 0.1. Univariate search increased cross-run ARI by 12.4%
but led to a 5.8% loss in F1 score. However with bivariate
search, we see both a 5% increase in cross-run ARI and a
14.6% increase in F1 score.

3) R: R’s implementation of Isolation Forest uses the
same random seed in each run, yielding deterministic results.
However this behavior is vulnerable to changes in seed values.
We experimented with different seed values in different runs
and observed nondeterminism for 43 out of the 54 datasets.
Although nondeterministic, the cross-run ARI was very high,
averaging 0.98. This is mainly due to its default value of ntrees
set to 500; note that ntrees in R/IF has similar semantics to
n_estimators in Sklearn/IF. The average F1 score in default
setup is 0.26. With DEANOMALYZER in univariate search,
determinism raised to 0.992; in bivariate search, DEANOMA-
LYZER increased accuracy by 11.9%.

B. Inconsistency

Figure 10 shows the gains thanks to DEANOMALYZER’s
bivariate and univariate search. The x-axis is the average F1
score for each toolkit, while the y-axis is the average mutual
ARI (Sklearn v. R, R v. MATLAB, and Sklearn v. MATLAB).
Each point represents a dataset, with default in red, univariate
in green, and bivariate in blue. The enlarged points in the figure
represent the mean of all datasets (performance and consis-
tency) in each setting. In both univariate and bivariate search
we see an increase in both performance and consistency — note
how the green points have shifted up (higher consistency) and
the blue points have shifted up and right (better consistency
and performance). DEANOMALYZER has revealed that, for
most datasets, a high increase in consistency can be achieved
by matching values of parameters ContaminationFraction and
sample_size between toolkits.

V. ROBUST COVARIANCE

Robust Covariance, supported by MATLAB and Sklearn,
has nondeterministic behavior in both implementations; the
two implementations are inconsistent as well.

23

A. Nondeterminism

We discuss DEANOMALYZER’s outcome on each toolkit;
the results are shown in Table IV.

1) Sklearn: Unlike Sklearn/IF and Sklearn/LOF,
Sklearn/RobCov does not follow any algorithm or method to
predict the number of outliers in a dataset; instead a default
value of 0.1 is used (meaning 10% of the points will be
labeled as outliers).

TABLE 1V
ROBCOV: IMPACT OF DEANOMALYZER
Config. Determinism Performance
#Datasets #Datasets
Mean | Better Worse | Mean | Better Worse

§ Default 0.87 - - 0.25 - -
E Univariate | 0.93 37 0 0.26 21 14
» | Bivariate 0.91 29 0 0.28 29 0
2 [Default 0978 | - - [0077T |- -
ﬁ Univariate 1.0 12 0 0.120 14 10
g Bivariate 0.984 11 0 0.147 22 0

Both univariate and bivariate search performed better than
the default on average, with many datasets achieving a cross-
run ARI of 1 for both univariate and bivariate search. From
Table IV we can see that determinism increased in both
univariate (6.9%) and bivariate (4.6%) search without losing
performance. In univariate search, out of 54 datasets we see
a decrease in performance in 14, but overall we gained 4% in
performance (mean F1 score increase across all datasets).

2) MATLAB: While MATLAB has good determinism with
default settings, DEANOMALYZER’s univariate search made
performance completely deterministic (mean cross-run ARI
increased from 0.978 to 1). However with default settings,
the implementation has a very low F1 score (on average
0.077), as for 38 datasets, the algorithm failed to detect any
anomalies. DEANOMALYZER managed to increase the overall
performance to 0.147.

B. Inconsistency

The MATLAB and Sklearn implementations of RobCov
were very inconsistent (mean mutual ARI was 0.26); while
DEANOMALYZER managed to reduce inconsistency substan-
tially, it did not eliminate it altogether.

Figure 11 shows the mutual ARI of the univariate search
and bivariate search with default setting between the two
implementations. With univariate search, DEANOMALYZER
increased mutual ARI from 0.26 to 0.7 and for the bivariate
search from 0.26 to 0.5, as seen in Table V. In terms of
performance, we only see a small decrease in Sklearn (6%)
with univariate search.

VI. LocAL OUTLIER FACTOR

LOF is by design a deterministic algorithm, so in all toolkits
we saw deterministic output for all datasets. Nevertheless, the
output was inconsistent across toolkits, which DEANOMA-
LYZER successfully reduced.

Recall that LOF uses a local density metric to identify
outliers (Section II-B). In practice, the metric is Local Reach-
ability Density (LRD), an inverse density measure (i.e., a high

Robust Covariance - Inconsistency

Local Outlier Factor - Performance

I 1.0 .
08 $
X A
v . ‘ s 0.8 ; ! 3
g 0.6 Y ‘ : ‘
> . CA 206 * ¢ $
Q o
% ¢ ¢ A (9] ‘
@ 04 L2] .
2 ' " ' -
S ¢
0.2 Default Setting 02
P as Univariate Search '
A 4 Bivariate Search
0.0 0.0 .
0.0 0.1 0.2 03 0.4 0.5 0.6 07
Average Performance (F1 Score) R R Matlab Matlab Sklearn
Default Univariate Default Univariate Default
Fig. 11. Robust Covariance: Performance v. Consistency before (default) and Search Search
after running DEANOMALYZER. . . .
Fig. 12. Local Outlier Factor: performance comparison.
TABLE V TABLE VI
ROBUST COVARIANCE: IMPACT OF DEANOMALYZER LOCAL OUTLIER FACTOR: IMPACT OF DEANOMALYZER
Default | Univariate | Bivariate Sklearn v. R | Sklearn v. MATLAB | R v. MATLAB
Mutual ARI | Mean 0.26 0.70 0.50 Default -0.012 0.132 -0.001
(Sklearn #Datasets Better - 16 16 Univariate 0.913 0.923 0.892
v. MATLAB) | #Datasets Worse - 0 0
Performance | Mean 0.33 0.31 040 after running DEANOMALYZER, the cross-toolkit ARI moved
Sklearn #Datasets Better - 8 12 T
#Datasets Worse _ 6 0 from roughly O (no similarity between outputs) to 0.9 (strong
Performance | Mean 0.26 0.29 0.30 agreement between outputs), a significant increase. Note that
MATLAB #Datasets Better - 10 14 for LOF, both univariate and bivariate search achieved the
#Datasets Worse - 5 0

LRD value indicates the point is in a non-dense region, hence
has a high probability of being an outlier). Implementations
use a threshold LRD value to label the point normal (below
threshold) or outlier (above threshold). MATLAB and R use
a predefined threshold value: 1 in R and 2 in MATLAB. This
threshold produces poor performance in MATLAB and R,
which DEANOMALYZER successfully addressed.

We plot the DEANOMALYZER performance improvements
in Figure 12. The ‘default’ boxplots show the performance
(statistics across all datasets) for each toolkit. Note the average
F1 scores: 0.097 in MATLAB and 0.49 in R. In contrast,
Sklearn’s performance was significantly better (average F1
score: 0.87). Sklearn operates differently: by default (con-
tamination set to “auto”), Sklearn sets the threshold to 1.5
and it produces a binary (normal/outlier) output. With differ-
ent contamination values, Sklearn calculates the appropriate
threshold. Another important parameter is the minPts (in R)
or k (in Sklearn and MATLAB) — the number of nearest
neighbors of a point. By default, the parameter is set to 20
in Sklearn/MATLAB and to 5 in R. DEANOMALYZER was
able to increase the F1 score of R substantially (from 0.49
to 0.89); for MATLAB, the improvement was modest (from
0.097 to 0.237, a 0.14 gain). For both R and MATLAB we
set the threshold to match the percentage of outliers identified
by Sklearn’s auto strategy (in other words, the output of all
3 implementations will have the same number of anomalies).
This moved MATLAB and R’s threshold and minPts values
close to Sklearn’ default values.

We present the results, substantial increase in consistency
among all three toolkits, in Table VI. In all three cases

24

same result, so we omit the bivariate results from the table.

VII. ONE CLASS SVM

First, we show how DEANOMALYZER increases MAT-
LAB/OCSVM'’s determinism, and then show how DEANOM-
ALYZER improves consistency between toolKkits.

A. Nondeterminism

Our experiments indicated that MATLAB has high nonde-
terminism and low performance. We show the default settings’
outcomes in Figure 13: as the red points indicate, average
determinism (ARI) was 0.105 and average F1 score was 0.127.
DEANOMALYZER was able to increase both determinism
and performance significantly. Table VII shows the average
cross-run ARI of both univariate and bivariate search rise
substantially (from 0.105 to 0.896 and 0.778, respectively)
and the F1 score doubles (from 0.127 to 0.258 and 0.288,
respectively).

TABLE VII

MATLAB/OCSVM: IMPACT OF DEANOMALYZER

Configs Determinism Performance
#Datasets #Datasets
Mean | Better Worse | Mean | Better Worse
Default 0.105 - - 0.127 - -
Univariate | 0.896 54 0 0.258 44 10
Bivariate 0.778 51 0 0.288 50 0
B. Inconsistency

The implementations of OCSVM are highly inconsistent. In
default settings we found the mutual ARI to be below 0.1 for
MATLAB v. R and MATLAB v. Sklearn, whereas for Sklearn
v. R it was 0.18. When DEANOMALYZER “imposed” Sklearn’s

Matlab - One Class SVM

1.0 \ Y EN X ALV X X 'y
x
o oxv A% MY x
x ¢ :‘ " X x
0.8 vA
— x oA A A
E A, ¢
<06 L,
. A
= ‘ ‘e
i) ¢
£ R
Eo04 ‘
-]
J9]
a
0.2 . ' Default Setting
0 A ,ﬁ, A ‘. Univariate Search
AN o
0.0 YR T A 4 Bivariate Search

0.0 0.1 0.2 0.3 0.4 0.5

Performance (F1 Score)

Fig. 13. MATLAB/OCSVM: Performance v. Determinism before (default)
and after running DEANOMALYZER.

0.6 0.7 0.8

nu parameter value onto R and MATLAB (in MATLAB
that parameter’s name is ContaminationFactor), a significantly
high consistency was achieved. Specifically, for MATLAB v.
R consistency improved from 0.007 to 0.378; for MATLAB v.
Sklearn, consistency increased from 0.02 to 0.477; for Sklearn
v. R, the increase was from 0.18 to 0.39.

VIII. RELATED WORK

We found little prior work on AD reliability, and no attempt
to improve AD implementations’ reliability.

Ahmed and Neamtiu [1] measured nondeterminism and
inconsistency among AD implementations of 4 popular AD
algorithms; they found that more than half of the implemen-
tations are nondeterministic and all implementation pairs are
inconsistent. Soenen et al. [22] studied the effect of hyperpa-
rameter tuning between default and maximum performance
within the same toolkit, and proposed a strategy to tune
parameters for a given dataset. However these efforts have
not attempted to alleviate nondeterminism or inconsistency.

Nondeterminism and inconsistency have been studied in the
context of clustering algorithms. Several studies have exposed
and quantified the issues [23]-[25] without providing a so-
lution. Yin et al. [26] took a manual white-box approach for
exposing the root causes of, and reducing, nondeterminism and
inconsistency for clustering implementations. Their approach
is not applicable here, as AD and clustering solve different
problems; in addition, their white-box approach was focused
on specific issues in specific implementations, rather than
being a black-box optimization tool.

IX. CONCLUSIONS

Given the rising popularity of Anomaly Detection and evi-
dence that AD can produce nondeterministic and inconsistent
results, there is a need for approaches that allow testing,
and increasing the reliability of, AD implementations. Our
approach DEANOMALYZER explores AD toolkits’ parameter
spaces to reduce nondeterminism and inconsistency. An evalu-
ation on 11 AD implementations has confirmed that parameter-
based optimization is an effective approach, and has estab-
lished that DEANOMALYZER is effective at achieving higher
determinism and consistency on given AD implementations.

25

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. CCF-2007730.

[1]

[2]
[3]
[4]

[5]

[6]
[7]
[8]

(23]
[24]

[25]

[26]

REFERENCES

M. Ahmed and I. Neamtiu, “Anomalous anomaly detection,” in
2022 IEEE International Conference On Artificial Intelligence Testing
(AlTest), 2022, pp. 1-6.

D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

L. Van der Maaten and G. Hinton, “Visualizing non-metric similarities
in multiple maps,” Machine learning, vol. 87, no. 1, pp. 33-55, 2012.
W. N. Street, W. H. Wolberg, and O. L. Mangasarian, “Nuclear feature
extraction for breast tumor diagnosis,” in Biomedical Image Processing
and Biomedical Visualization, ser. SPIE, R. S. Acharya and D. B.
Goldgof, Eds., vol. 1905, Jul. 1993, pp. 861-870.

W. H. Wolberg and O. L. Mangasarian, “Multisurface method of pattern
separation for medical diagnosis applied to breast cytology.” Proceedings
of the National Academy of Sciences, vol. 87, no. 23, pp. 9193-9196,
1990. [Online]. Available: https://www.pnas.org/content/87/23/9193

L. Hubert and P. Arabie, “Comparing partitions,” Journal of Classifica-
tion, vol. 2, pp. 193-218, 02 1985.

F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in /[CDM.
IEEE, 2008, pp. 413-422.

P. J. Rousseeuw and K. V. Driessen, “A fast algorithm for the minimum
covariance determinant estimator,” Technometrics, vol. 41, no. 3, pp.
212-223, 1999.

T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE
Transactions on Information Theory, vol. 13, no. 1, pp. 21-27, 1967.
M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identifying
density-based local outliers,” in ACM SIGMOD, 2000, pp. 93-104.

K. Heller, K. Svore, A. D. Keromytis, and S. Stolfo, “One class support
vector machines for detecting anomalous windows registry accesses,”
2003.

“Anomaly detection toolbox.” [Online]. Avail-
able: https://github.com/dsmi-lab-ntust/AnomalyDetectionToolbox/tree/
master/Algorithms/distributionBased/LOF

David-Cortes, “David-cortes/isotree: (python, r, c/c++) isolation forest
and variations such as sciforest and eif, with some additions
(outlier detection + similarity + na imputation).” [Online]. Available:
https://github.com/david-cortes/isotree

“Local outlier factor score.” [Online]. Available: https://search.r-project.
org/CRAN/refmans/dbscan/html/lof.html

“Svm: Support vector machines.” [Online]. Available: https://www.
rdocumentation.org/packages/e1071/versions/1.7-9/topics/svm

“ODDS,” April 2022, http://odds.cs.stonybrook.edu/.

] “OpenML,” April 2022, https://www.openml.org/.
18] P. E. McKnight and J. Najab, “Mann-whitney u test,” The Corsini

encyclopedia of psychology, pp. 1-1, 2010.

Y. Sakamoto, M. Ishiguro, and G. Kitagawa, “Akaike information
criterion statistics,” Dordrecht, The Netherlands: D. Reidel, vol. 81, no.
10.5555, p. 26853, 1986.

“Fit isolation forest for anomaly detection - MATLAB,” December 2022,
https://www.mathworks.com/help/stats/iforest.html.

“Code Generation for Anomaly Detection,” De-
cember 2022, https://www.mathworks.com/help/stats/
code- generation- for-anomaly-detection.html.

J. Soenen, K. Leuven, E. V. Wolputte, L. Perini, V. Vercruyssen,
W. Meert, J. Davis, and H. Blockeel, “The effect of hyperparameter
tuning on the comparative evaluation of unsupervised anomaly detec-
tion methods,” ser. ODD °21: 6th Outlier Detection and Description
Workshop, 2021.

V. Musco, X. Yin, and I. Neamtiu, “Smokeout: An approach for testing
clustering implementations,” in /CST 2019, April 2019.

X. Yin, V. Musco, I. Neamtiu, and U. Roshan, “Statistically rigorous
testing of clustering implementations,” in AITEST 2019, April 2019.

S. Rahaman, R. Samuel, and I. Neamtiu, “Quantifying nondeterminism
and inconsistency in self-organizing map implementations,” in IEEE
AlTest, 2021, pp. 85-92.

X. Yin, I. Neamtiu, S. Patil, and S. T. Andrews, “Implementation-
induced inconsistency and nondeterminism in deterministic clustering
algorithms,” in ICST 2020, October 2020.

