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ABSTRACT

This paper studies a category of visual question answering tasks,
in which accessing external knowledge is necessary for answering
the questions. This category is called outside-knowledge visual
question answering (OK-VQA). A major step in developing OK-
VQA systems is to retrieve relevant documents for the given multi-
modal query. Current state-of-the-art asymmetric dense retrieval
model for this task uses an architecture with a multi-modal query
encoder and a uni-modal document encoder. Such an architecture
requires a large amount of training data for effective performance.
We propose an automatic data generation pipeline for pre-training
passage retrieval models for OK-VQA tasks. The proposed approach
leads to 26.9% Precision@5 improvements compared to the current
state-of-the-art asymmetric architecture. Additionally, the proposed
pre-training approach exhibits a good ability in zero-shot retrieval
scenarios.
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1 INTRODUCTION

Outside-knowledge visual question answering (OK-VQA) [27] is a
category of visual question answering tasks in which answering
the given natural language question about an image requires access
to external information. In OK-VQA retrieval tasks, queries are
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Question : How far can this animal jump?
Answer: 8 feet

Figure 1: An example OK-VQA question. Answering this ques-
tion requires external knowledge.
Image © nsfmc, https://www.flickr.com/photos/subliminal/589841807

multi-modal (text and image) and the retrieval corpus is often uni-
modal, consisting of text documents. To shed more light on this,
Figure 1 presents an example of the queries in this task. It can be
observed that answering the question ‘how far can this animal
jump?’ requires an understanding of the entity (i.e., the cat) in
the image, but this information may not be sufficient. In this case,
accessing a knowledge source containing information about the
animal in the picture and its abilities can facilitate answering the
question. The extensive range of practical implementations for OK-
VQA is worth noting. Consider the scenarios where individuals, who
are patrons of e-commerce platforms, capture images of products or
specific components and pose queries about them Salemi et al. [36].
Similarly, within the educational domain, students can interrogate
an image from their textbook by asking questions Salemi et al. [36].
Moreover, users can leverage OK-VQA by photographing visual
signs or artwork and inquiring about their significance or historical
background. These instances merely scratch the surface of the
diverse application potential of OK-VQA.

Lately, Salemi et al. [36] introduced a symmetric architecture
for multi-modal retrieval and compared it with the previous state-
of-the-art asymmetric architectures introduced by Qu et al. [29].
Despite the significantly better performance of the symmetric ar-
chitecture, the fact that this architecture needs access to a caption
generator at the inference time makes it costly to use in real-time.
Consequently, the main emphasis of this research paper is placed
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on asymmetric architecture, unveiling a novel methodology for en-
hancing the training of superior asymmetric retrievers. Importantly,
this approach effectively curtails the necessity of caption gener-
ation solely to the training phase, sparing it from being required
during inference time.

Qu et al. [29] demonstrates that supervised asymmetric dense
retrieval models with multi-modal query encoder and uni-modal
document encoder lead to state-of-the-art passage retrieval perfor-
mance for OK-VQA tasks. However, it requires large-scale manually
labeled training data which is expensive and time consuming to ob-
tain. Inspired by the prior research on text retrieval based on weak
supervision [7, 48, 49] and Inverse Cloze Task (ICT) pre-training
[4], this paper introduces a novel pipeline for automatic generation
of training data for OK-VQA tasks. This data generation pipeline
requires no manually labeled OK-VQA data. It first obtains an image
corpus (e.g., MS COCO [23]) and generates captions for the images.
Each caption is then used as a query to retrieve text passages from
Wikipedia. We then select some noun phrases from each passage as
potential answers and generate a question for each of them using a
fine-tuned language model. To reduce the noise introduced into the
pre-training data, we design a question-answering model and filter
out questions for which the model cannot produce a close enough
answer. This process leads to a large-scale dataset with about 4.6
million question-image pairs for OK-VQA tasks. The generated data
can then be used for pre-training dense retrieval models for OK-
VOQA tasks. To the best of out knowledge, this is the first attempt to
automatic generation of data for OK-VQA tasks.

Our experiments on the OK-VQA passage retrieval dataset [27,
29] demonstrate that training dense retrieval models using the pro-
posed data generation pipeline leads to 40.2% Precision@5 improve-
ments in a zero-shot setting compared to competitive baselines.
We also show that pre-training state-of-the-art supervised dense
retrieval models improves state-of-the-art performance by 26.9%
in terms of Precision@5. The obtained improvements are statis-
tically significant in all cases. Further analysis suggests that the
proposed pre-trained model that is fine-tuned only on 25% of the
OK-VQA supervised data outperforms the model that is trained on
100% of the supervised data without pre-training. Moreover, the
performance of the pre-trained model becomes relatively stable
after observing 50% of the supervised training data. Therefore, the
proposed pre-training procedure reduces the need to large-scale
manually labeled training sets.

In summary, the major contributions of this work include:

(1) Introducing the first automatic data generation pipeline for
outside-knowledge visual question answering tasks.

(2) Improving the current state-of-the-art asymmetric passage re-
trieval models in both zero-shot and supervised settings.

(3) Providing extensive result analysis to better understand the
impact of pre-training on OK-VQA performance.

To foster research in this area, we release our generated dataset,

our data creation pipeline, and our learned model parameters.!

The data and code are available at https://github.com/alirezasalemi7/pretraining-
multimodal-dense-retriever-for-okvqa
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2 RELATED WORK

Multi-Modal Dense Passage Retrieval. Multi-modal dense re-
trieval can be defined in different categories based on where the
multi-modality takes place. The multi-modality can be in the queries,
with a corpus of uni-modal documents, which enables the under-
lying information need to be expressed through a multi-modal
representation [27]. Our work fits into this category with queries
comprised of images with corresponding questions, and uni-modal
textual passages in the corpus. Another line of work has been fo-
cusing on multi-modal documents in the corpus, such as a mix of
textual, tabular, or visual information, while the query is expressed
in one modality [13, 25, 39]. In another setting, both queries and
documents can be multi-modal, for example where the answer to
a query about an image contains multiple modalities [38]. Cross-
modal retrieval is also partly related to multi-modal retrieval, where
both queries and documents are uni-modal but they come from
different modalities [15, 30].

Outside-Knowledge Visual Question Answering. In standard
visual question answering (VQA) [2], the answer lies in the image;
however, in outside-knowledge visual question answering (OK-
VQA) [27], the image and question are jointly used to find the
answer to the question from an external knowledge source [29].
That being said, retrieving relevant passages to a query, which
consists of an image and a question about it, plays an essential role
in this task [29]. Previous work [10, 12, 26, 37, 46] mostly utilizes
knowledge graphs as a source of external information; however,
the lack of a complete and easily updatable knowledge source is
challenging [1, 41]. Therefore, following Qu et al. [29] and Salemi
et al. [36], we focus on retrieving passages from Wikipedia as the
knowledge source.

Previous work mostly evaluates OK-VQA based on the answer
generation quality [6, 10-12, 26, 37, 46, 47]; however, following
Qu et al. [29], we only investigate the retrieval performance in
the aforementioned task. In contrast with Salemi et al. [36], which
focuses on designing a symmetric architecture for OK-VQA retrieval
and answer generation, we investigate the data generation and
augmentation methods to train the proposed asymmetric retriever
architecture by Qu et al. [29] with no labeled training data.

Pre-Training Dense Passage Retrievers. In recent years, pre-
training transformers [43] using semi- and self-supervised tasks
has become a standard approach for achieving strong performance
in natural language and vision tasks [8, 9, 24]. Moreover, retrieval-
specific pre-training tasks, such as Inverse Cloze Task (ICT) [4],
have been shown to be effective for uni-modal retrieval. Recently,
a multi-modal variant of ICT has been proposed by Lerner et al.
[21], in which queries are question-image pairs, and documents are
passage-image pairs. However, our work focuses on the case that
passages are only textual, while queries consist of question-image
pairs.

The research by Changpinyo et al. [5] is perhaps the closest work
to ours, in which the authors focus on pre-training models for VQA
tasks, which is by nature different from OK-VQA. Changpinyo et al.
[5] only generates questions from the image captions due to the
nature of VQA, in which the answers lie in the image. In contrast,
we use captions to retrieve a relevant passage to the image and
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generate questions from that passage to ensure that answering
them requires external knowledge.

3 PROBLEM STATEMENT

While multi-modal retrieval can be defined in different ways as
mentioned in section 2, this paper only focuses on multi-modal
scenarios where the query (Q, I) consists of the question Q about
the image I, and the corpus C from which relevant passages should
be selected is only textual.

Suppose T = {(Q1,1,A1,R1), ... (ON, IN, AN, RN)} represents
the training set for multi-modal retrieval in this paper. Each training
sample in T consists of a question Q; written in natural language,
an image I;, a set of answers A; to the question Q;, and a set of
relevant passages R; that contains the answer to Q;. In more detail,
the answer set A; might contain more than one answer to the
question, which are syntactically different but semantically the
same (|4;| > 1). Additionally, each question and image might have
more than one related passage (|R;| > 1 and R; € C).

The main task in this paper is to use training set T to train a dense
retriever that takes query (Q, I) as input and retrieves K passages
that are relevant to the query from the corpus C (|C| > K). In this
paper, we introduce a pipeline for generating weakly supervised
data, similar to the proposed problem definition, to first pre-train
the model on the weakly supervised generated data and then fine-
tune the pre-trained on the task’s data. The following sections
explain our proposed pipeline for this purpose.

4 THE PROPOSED PRE-TRAINING PIPELINE

Automatic data generation for (pre-)training neural models for
text retrieval and question answering has proven to be effective.
For instance, Dehghani et al. [7] introduced weak supervision in
information retrieval by utilizing an existing unsupervised retrieval
model as a weak labeler. Zamani and Croft [49] provided theoretical
justification on when and why weak supervision lead to strong and
robust improvements. Wang et al. [44] used a similar approach for
adapting well-trained retrieval models to an unseen target domain.
More recently, Chang et al. [4] used Inverse Cloze Task for pre-
training text retrieval models and Bonifacio et al. [3] used large-
scale language models, such as GPT [31], for data generation. All
these approaches are developed for text retrieval tasks.

For multi-modal tasks, Changpinyo et al. [5] focused on pre-
training models for visual question answering (VQA) tasks, which
is fundamentally different from OK-VQA. Changpinyo et al. [5] only
generates questions from the image’s caption due to the nature of
VQA, in which the answers lie in the image (e.g., asking about the
color of an object in the image). VQA is not an information-seeking
task; thus, this approach cannot be applied to OK-VQA.

This section introduces our data generation pipeline for pre-
training dense passage retrieval models for OK-VQA tasks.

4.1 Automatic Data Generation for Pre-training

Figure 2 depicts an overview of our automatic data generation
pipeline for pre-training multi-modal dense passage retrieval mod-
els. We start with an image and use an automatic image captioning
model to produce a textual description of the image. We then re-
trieve M passages from a large collection, such as Wikipedia, given
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the image caption as the query. We then extract a set of potential
short answers from the retrieved passages. For each potential an-
swer, we generate a question using a sequence-to-sequence model.
We later filter out low quality questions. A negative selection com-
ponent is also developed to produce data for optimizing retrieval
models. The outcome of our pipeline is a set of data instances,
each represented as (Q;, I;, A, Ri, N;), where Q; is a question about
the image I;, A; is the answer to the question Q;, R; is a relevant
passage to the question, and N; is a hard negative passage for the
question Q;. In the following sections, we explain the procedure of
generating each component in detail.

Matching Images and Passages using Captions. For each image
in the MS COCO [23] training set (82K images), we aim at retrieving
M passages. Therefore, designing retriever Rimgatexs, which takes
an image as input and retrieves a set of related passages from corpus
C), is required. We use a Wikipedia dump with 11M passages as the
corpus C.? We retrieve M = 5 passages for each image.

While some models, such as CLIP [30] and ALIGN [15], are
designed to act as Rimgatext, for simplicity and without losing gen-
erality, we use BM25 [35] as Ripgotext, in which we use a textual
description of the image to retrieve a set of passages. To calculate
the similarity score between the image I and the passage P, we use
the following formula: Sg(I, P) = Sarzs(¢r—1(I), P), where ¢y,
is a modality converting module that takes an image and generates
a textual description for it.

Generating a description of an image can happen in several
ways. For instance, the textual label of objects in an image can be
used to describe the image using text. This approach suffers from
two issues: 1) object labels are limited to a pre-defined set, and 2)
labeling objects in images in large scale is costly. Conversely, using
captions as the image description resolves the mentioned issues by
generating an open-ended textual description of an image and using
the large-scale available image-caption data on the web. That being
said, we use ViT-GPT [19], a transformer-based [43] image-to-text
model, to generate a caption for each image. ViT-GPT is trained on
the images and captions provided by MS COCO [23] dataset using
a cross-entropy loss function. Once the model is trained, we freeze
the model’s parameters and use it in inference mode.

Selecting Potential Answer Phrases from Retrieved Passages.
Investigating the OK-VQA dataset shows that approximately 80%
of the answers in this dataset are noun phrases. Following this
observation, we use noun phrases in the retrieved passages as
potential answers. This approach has been previously used by Lee
et al. [20]. In more detail, we use spaCy? to extract noun phrases
from passages. We consider all noun phrases as potential answers,
except those that have a pronoun or determiner (e.g., "a", "an", and
"the") in their subtrees. This is because pronouns and determiners
usually refer to a specific word in the passage (i.e., co-references),
and we would like to select “standalone” answer phrases.

Question Generation and Filtering. The next step in the pre-
training data generation pipeline is generating a question for each
selected answer phrase. Suppose Mgg (A, P) is a question generator

2This Wikipedia dump is available at: https://ciir.cs.umass.edu/downloads/ORConvQA/
all_blocks.txt.gz
Shttps:/spacy.io/
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Figure 2: The proposed data generation pipeline for pre-training OK-VQA models.

that takes passage P and the answer phrase A as input and generates
a question Q whose answer is A. To implement Mopg, following
Ushio et al. [42], we feed the passage P and the potential answer
phrase A to T5-large [32] and instruct the model to generate a
question. To this aim, we utilize SQuAD v1.1 [34] dataset for fine-
tuning this question generation model. For each training sample
in the SQuAD v1.1 dataset, the answer is surrounded with <h1>
token, and the passage with the surrounded answer is fed to T5.
The cross-entropy loss is used for training the model:

19|

Log = - Z log P(yilyk<i; P") @
i

where y; is the ith token in the question Q, and P’ is the passage P
with <h1> surrounding tokens?.

As a reference on the quality of the question generation model,
we evaluate it on the test set of SQuAD [34] and it achieves a BLEU-
4 [28] score of 27.21 and rouge-L [22] of 54.13. To further reduce the
amount of noise in the generated pre-training data, we filter out the
questions that a question-answering model cannot answer. Suppose
Mgoa(Q, P) is a question-answering model, which takes the ques-
tion Q and the passage P as inputs and generates or selects an an-
swer phrase. Finally, we only select the generated questions that sat-
isfy the following condition: RouGE-1(A, Mpa (Mo (A4, P), P)) >
T, where ROUGE-1 is the rouge-1 score [22], A is the potential an-
swer from the passage P, and T is a threshold for the similarity
of the potential answer and the answer selected by the question-
answering model. We use T = 0.5 in our experiments.

To implement Mg 4, we use a ROBERTa-base [24] that is fine-
tuned for answer span selection trained on the SQuUAD dataset.
The model is trained based on the log-likelihood of predicting the
correct start and end tokens. For selecting the answer span, the
span with the highest P(S;|P; Q) + P(E;|P;Q) is selected where
P(S;|P; Q) shows the probability of the ith token being the start
of the span and P(E;|P; Q) shows the probability of the jth token
being the end of the span. As a reference, this question-answering
model achieves a F1 score of 82.91% and exact match of 79.87% on
the test set of SQUAD v2 dataset [33].°

4The checkpoint for this question-generation model is available at: https://huggingface.
co/lmqg/t5-large-squad-qg

5The checkpoint for this question-answering model is available at: https:/huggingface.
co/deepset/roberta-base-squad2

Negative Passage Sampling. Using hard negatives and their qual-
ity plays an essential role in the final performance of dense passage
retrieval models [17]. For each generated question, we retrieve pas-
sages using BM25. We choose the highest scored passage that does
not contain the answer A as the negative passage.

Summary. The proposed pipeline leads to 4,621,973 question-
image pairs from 82,783 unique images of MS COCO [23]. The
average question, passage, and answer length in the created dataset
are 9.6 = 3.0, 187.2 + 105.7 and 2.3 + 1.2 words, respectively.

4.2 Dense Retrieval Model

The nature of the multi-modal retrieval task that we attempt to
solve in this paper requires the bi-encoder dense passage retriever
to encode queries in multi-modal semantic space and to encode
passages in textual semantic space. We use an asymmetric state-of-
the-art dense passage retrieval for OK-VQA tasks proposed by Qu
et al. [29]. It uses an asymmetric dense passage retriever with the
multi-modal query encoder Epps and the textual passage encoder
Et. Then, the relevance score is calculated as follows: S((Q,I), P) =
Emm(Q,I)-E7(P), where - denotes the inner product. Following Qu
et al. [29], we implement E7 using the representation of the [CLS]
token provided by a BERT-base [8] model. Similarly, we utilize the
representation of the [CLS] token generated by LXMERT [40], a
vision-language model pre-trained with various vision-language
tasks.
To train the retriever, we use a contrastive loss as follows:

1 S((Q.D.Ppos)
Lpr=-lo ;
& SN Ppes) 4y preppeg €(@DF)

@

where Ppos is a positive (relevant) passage and Ppeg is a set of
negative passages for the question-image pair (Q, I). In addition to
the selected negative passages, we use in-batch negatives, in which
all the positive and negative passages of other queries in the same
training batch are considered as negative passages to the query. We
use the Faiss library [16] for indexing and efficient dense retrieval.

5 EXPERIMENTS

This section discusses the datasets, experiments, and results ob-
tained in this paper.
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Table 1: Passage retrieval performance on the OK-VQA dataset [27]. The superscript * denotes statistically significant improve-
ment compared to all baselines based on two-tailed paired t-test with Bonferroni correction (p < 0.05).

Zero-Shot Performance Supervised Performance
Model Validation Test Validation Test
MRR@5 P@5 | MRR@5 P@5 | MRR@5 P@5 | MRR@5 P@5
BM25 0.2450 0.1668 0.2528 0.1642 0.2565 0.1772 0.2637 0.1755
Dense-BERT 0.0709 0.0382 0.0726 0.0375 0.4555 0.3155 0.4325 0.3058
BERT-LXMERT 0.0744 0.0376 0.0665 0.0345 0.4704 0.3364 0.4526 0.3329
Pre-trained BERT-LXMERT 0.3716*  0.2629" | 0.3364* 0.2303" | 0.5557* 0.4195" | 0.5603* 0.4274*
% rel. imp. w.r.t. the best baseline | 51.6% T 57.6%7 | 33.0%T 40.2%7 | 17.5%7 20.4%7 | 21.2%7T 26.9% 1
5.1 Experimental Setup 155 - —o—°
Dataset. In our experiments, we use the OK-VQA passage retrieval ® /
dataset [29], an extension to the OK-VQA dataset [27]. This dataset
aims at evaluating passage retrieval tasks for outside-knowledge vi- 0.50
sual question answering tasks. This dataset contains 9009 questions
for training, 2523 questions for validation, and 2523 for testing. As 2
the retrieval collection, it uses the same Wikipedia dump that we % 0451
use during pre-training (11M passages).
0.40
Pre-training and Fine-tuning setups. In order to pre-train the Setting
multi-modal dense passage retriever, we use a batch size of 32 on 0.35 - —e— With Pretraining
four RTX8000 GPUs, each with 49GB of GPU memory and a total e Without Pretraining
of 256GB of RAM, which results in an effective batch size of 128. 0 25 50 75 100

We utilize the Adam optimizer [18] with a learning rate of 107°.
A linear learning rate scheduler with 10% of total training steps
as warmup steps is used for pre-training. Additionally, gradient
clipping with a clipping value of 1.0 is used in the training procedure.
The maximum length of passages and queries for each encoder is
384 and 20 tokens, respectively. We only train the model for one
epoch on the pre-training data to avoid overfitting.

For fine-tuning on the OK-VQA training set, we follow the same
training setup, but we use two epochs and a batch size of 4 on each
GPU for a fair comparison with previous work [29], which results
in an effective batch size of 16.

Baselines and Terms of Comparison. We compare our models
with the following baselines. (1) BM25: a baseline that only uses the
question as the query and retrieves passages using BM25. (2) Dense-
BERT: a dense retrieval baselines similar to DPR [17] that uses
questions as queries and is trained using the same training objective
as ours. (3) BERT-LXMERT: a state-of-the-art asymmetric dense
retrieval model [29] that uses the exact same architecture as we
introduced in Section 4.2. This baseline is basically our model but
without being pre-trained using the generated data.

Evaluation. Following Qu et al. [29], we use mean reciprocal rank
(MRR) and precision with ranking cut-off of 5 as evaluation metrics.
We use the two-tailed paired t-test with Bonferroni correction as the
statistical significance test (p < 0.05). Since the OK-VQA dataset
does not provide relevant judgment for passages, we assume a
passage is identified to be positive if it contains an exact match
(case insensitive) of a ground truth answer [29].

Amonut of Data (%)

Figure 3: Learning curve for ‘Pre-trained BERT-LXMERT’ on
the OK-VQA test set. The orange line shows the performance
of the BERT-LXMERT model without pre-training that is
fine-tuned on 100% of the supervised OK-VQA training data.

5.2 Results

This section presents our experimental results and analyzes the
model performance to better demonstrate the impact of pre-training
on OK-VQA performance.

Zero-Shot Performance. In the first set of experiments, we eval-
uate the zero-shot capabilities of the models. In this setting, the
BM25 baseline uses the default parameters (k1 = 1.2,b = 0.75),
and the baselines with BERT and LXMERT use the parameters
learned through their (vision-) language model pre-training. The
‘Pre-trained BERT-LXMERT’ model is trained on the data that we
automatically generated. The results are reported in Table 1. BM25
demonstrates the strongest zero-shot performance. This suggests
that the initialized parameters of BERT and LXMERT are not suit-
able for retrieval tasks. This is inline with findings by previous work
on text retrieval [14, 50]. The proposed pre-training pipeline sig-
nificantly outperforms all the baselines and leads to 33% and 40.2%
MRR@5 and P@5 improvements compared to BM25, respectively.

Supervised Performance. In the second set of experiments, we
fine-tune the same models on the OK-VQA training set. All neural
models use the same training procedure. The BM25 parameters are
tuned through exhaustive grid search where k; € [0.5,1.5] and
b € [0.2,0.8] with a step size of 0.2. The model with the best MRR@5
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Figure 4: MRR@5 for the fine-tuned BERT-LXMERT model
with and without pre-training for different question cate-
gories. The percentages on top of the bars indicate relative
improvements compared to the model without pre-training.

on the validation set is selected. The selected parameters are k; =
1.1,b = 0.4. In Table 1, we observe that, as expected, all neural
models largely benefit from fine-tuning on the OK-VQA training
set and substantially outperform BM25. Fine-tuning BERT-LXMERT
that is pre-trained using the proposed data generation pipeline leads
to 21.2% MRR@5 and 26.9% P@5 improvements compared to BERT-
LXMERT without pre-training (i.e., the current SOTA model on
passage retrieval for OK-VQA [29]).

Learning Curve. We hypothesize that the proposed pre-training
pipeline reduces the need for large-scale supervised training data,
which is often difficult or expensive to obtain. To validate this hy-
pothesis, we fine-tuned our pre-trained model using 25%, 50%, 75%,
and 100% of the supervised data randomly sampled from the OK-
VOQA training set. The results are plotted in Figure 3. For the sake of
space, the performance based on MRR@5 on the OK-VQA test set is
reported. Other curves follow a similar behavior. The dashed orange
line in the figure shows the performance of the BERT-LXMERT
model without pre-training that is trained on 100% of the OK-VQA
training set. The curve demonstrates that our pre-trained model
outperforms the model without pre-training by only observing 25%
of supervised training data. Moreover, the performance of the pre-
trained model becomes relatively stable after observing 50% of the
supervised data, which shows that pre-training retrieval models
for OK-VQA reduces the need for supervised data.

Result Analysis. To have a deeper understanding of the proposed
pre-training impact on OK-VQA tasks, Figure 4 presents MRR@5
obtained by the fine-tuned BERT-LXMERT model with and without
pre-training for each question category. The categories are bor-
rowed from the OK-VQA [27] dataset.® We observe that pre-training
improves the OK-VQA performance on all question categories, how-
ever, the improvements are not the similar across categories. It can
be seen that the highest improvement is achieved for the “sports

5The categories include “Plants & Animals (PA),” “Science & Tech (ST),” “Sport &
Recreation (SR),” “Geography & History & Language & Culture, (GHLC)” “Brands &
Companies & Products (BCP),” “Vehicles & Transportation (VT),” “Cooking & Food
(CF),” “Weather & Climate (WC),” “People & Everyday Life (PEL),” “Objects & Material
& Clothing (OMC),” and “Other (0).
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& recreation” category (56.6%), while the lowest improvement is
observed for the “weather & climate” category (4.86%). The reason
is that we use the MS COCO dataset [23] as the image collection for
automatic creation of our pret-training data and MS COCO does
not include any category related to “weather & climate,” “science
& Tech,” and “Geography & History & Language & Culture”. As a
result, the extent of improvement is smaller for these categories in
the OK-VQA dataset. On the other hand, a considerable proportion
of images in the MS COCO dataset are related to the categories
such as “Sport & Recreation,” “People & Everyday Life,” and “Plants
& Animals” that observe the highest improvements. This analysis
demonstrates that including the nature of data included in the au-
tomatic data creation pipeline directly impact the downstream OK-
VQA performance, and including images from underrepresented

categories is likely to further improve the performance.

6 CONCLUSIONS AND FUTURE WORK

This paper introduced a pipeline for pre-training dense retrievers
for OK-VQA tasks. The proposed pipeline started from an image
collection and paired each image with a passage from a knowledge
source. Then, a question generation model was used to generate
questions for all possible answers to the questions about the image
and the passage. Finally, low-quality questions were filtered out, and
negative samples for the remaining questions were selected. Our
experiments suggest statistically significant improvements com-
pared to state-of-the-art asymmetric dense retrieval performance
for OK-VQA tasks.

Even though our results show consistent improvement in the
OK-VQA dataset, there might be some other kinds of knowledge-
intensive VQA datasets, such as FVQA [45], that this pre-training
approach needs to be revised. In the future, we intend to extend
our data generation pipeline to other knowledge-intensive vision-
language tasks. This paper also limits multi-modality to multi-
modal queries and textual passages. Providing a solution for re-
moving the mentioned limitations can be investigated in future
work.
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