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Abstract
Parallel optimization has become popular for large-
scale learning in the past decades. However, ex-
isting methods suffer from huge computational
cost, memory usage, and communication burden
in high-dimensional scenarios. To address the
challenges, we propose a new accelerated dou-
bly sparse asynchronous learning (DSAL) method
for stochastic composite optimization, under which
two algorithms are proposed on shared-memory
and distributed-memory architecture respectively,
which only conducts gradient descent on the
nonzero coordinates (data sparsity) and active set
(model sparsity). The proposed algorithm can con-
verge much faster and achieve significant speedup
by simultaneously enjoying the sparsity of the
model and data. Moreover, by sending the gradi-
ents on the active set only, communication costs are
dramatically reduced. Theoretically, we prove that
the proposed method achieves the linear conver-
gence rate with lower overall complexity and can
achieve the model identification in a finite number
of iterations almost surely. Finally, extensive ex-
perimental results on benchmark datasets confirm
the superiority of our proposed method.

1 Introduction
Big data with massive samples and numerous features re-
cently widely exists in many real-world machine learning
tasks, which often contains superfluous features [Gui and Li,
2005]. In the past decades, many models with sparse regu-
larization have achieved great successes in high-dimensional
scenarios by encouraging the model sparsity [Tibshirani,
1996; Ng, 2004; Yuan and Lin, 2006; Bao et al., 2019]. Let
A = [a1, · · · , an]⊤ ∈ ℜn×p, in this paper, we consider the
following composite optimization problem:

min
x∈ℜp

P(x) := F(x) + λΩ(x), (1)

where x is the model coefficient, Ω(x) is the block-separable
sparsity-inducing norm, F(x) = 1

n

∑n
i=1 fi(a

⊤
i x) is the
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data-fitting loss, and λ is the regularization parameter. We de-
note Fi(x) = fi(a

⊤
i x) for simplicity. Given partition G of the

coefficients, we denote the sub-matrix of A with the columns
of Gj as Aj ∈ ℜn×|Gj | and have Ω(x) =

∑q
j=1 Ωj(xGj

).
Inspired by the emerging parallel computing systems such

as multi-core computer and distributed architecture, parallel
learning has been actively studied in machine learning com-
munity due to its capability for tackling large-scale appli-
cations [Wang et al., 2012; Wu et al., 2013]. In literature,
many parallel learning methods have been proposed to ac-
celerate different optimization algorithms on shared-memory
architecture [Langford et al., 2009; Recht et al., 2011;
Reddi et al., 2015; Zhao and Li, 2016; Leblond et al., 2017;
Meng et al., 2017; Pedregosa et al., 2017; Zhou et al., 2018;
Leblond et al., 2018; Nguyen et al., 2018; Joulani et al.,
2019; Stich et al., 2021] and distributed-memory architec-
ture [Agarwal and Duchi, 2012; Dean et al., 2012; Zhang
and Kwok, 2014; Lian et al., 2015; Zhang et al., 2016].
For smooth optimization problems, asynchronous stochas-
tic methods, e.g., Hogwild! [Recht et al., 2011], Lock-Free
SVRG [Reddi et al., 2015], AsySVRG [Zhao and Li, 2016],
and ASAGA [Leblond et al., 2017], were proposed. Further-
more, AsyProxSVRG [Meng et al., 2017], ProxASAGA [Pe-
dregosa et al., 2017], and AsyMiG [Zhou et al., 2018] were
proposed to solve non-smooth composite optimization prob-
lems. However, most existing methods focus on improving
the algorithm efficiency in terms of sample complexity.

To solve the problems with huge samples and features,
an asynchronous doubly stochastic method was proposed in
[Meng et al., 2017], which performs coordinate updates with-
out considering any sparsity and thus can be very slow. More-
over, [Leblond et al., 2017] proposed an asynchronous sparse
incremental gradient method, which does not enjoy the spar-
sity of the model to accelerate the training and thus huge
requirement of computational complexity hinders its appli-
cation on large-scale learning. Therefore, existing parallel
methods still suffer huge burden for computation, memory,
and communication costs to solve high-dimensional models.

In high-dimensional setting, sparsity is a key property that
can be exploited to accelerate the training. Sparsity can be
broken down into two aspects: data sparsity and model spar-
sity. In terms of the data sparsity, the dataset usually has
a huge number of features in which most of the elements
are zero. If the feature representation of the current sam-

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

1916



Reference Model Dynamic Safe Distributed Scalablity Data Sparsity
PE-AGCD [Li et al., 2016a] Lasso No No No No No

DSAL (Ours) Problem (1) Yes Yes Yes Yes Yes

Table 1: Comparison between PE-AGCD and our DSAL method. “Distributed” represents whether it can work on distributed-memory
architecture. “Data Sparsity” represents whether it can benefit from the sparsity of data.

ple is zero, the stochastic gradient w.r.t. the corresponding
feature must be zero. It is an effective method to acceler-
ate the training by avoiding the useless updates of these gra-
dients. On the other aspect, the regularization usually en-
forces the model sparsity where the coefficients of the asso-
ciated features are zeroes at the optimum. The model spar-
sity can be exploited to reduce the problem dimensional-
ity by pre-identifying inactive features [Ndiaye et al., 2017;
Bao et al., 2020]. Discarding these features can save much
computation without any loss of accuracy. Therefore, accel-
erating high-dimensional models by exploiting the sparsity is
promising and sorely needed for large-scale problems.

To address the challenges above, in this paper, we pro-
pose a novel accelerated doubly sparse asynchronous learn-
ing (DSAL) method for stochastic composite optimization
and apply it on shared-memory (Sha-DSAL) and distributed-
memory (Dis-DSAL) architecture, which can accelerate the
training significantly without any loss of accuracy. Specifi-
cally, DSAL not only conducts the elimination to discard in-
active features to enjoy the model sparsity, but also conducts
sparse proximal gradient update with the nonzero partial gra-
dients to enjoy the data sparsity. To further accelerate DSAL,
we reduce the gradient variance over the active set and thus
can utilize a constant step size to achieve the linear conver-
gence. On distributed-memory system, to reduce the compu-
tational burden of the server, we utilize a decouple strategy to
improve the scalability of DSAL w.r.t. the number of workers.
Contributions. The main contributions of our work are
summarized as follows:

• We propose a new doubly sparse asynchronous stochas-
tic gradient method for stochastic composite optimiza-
tion, which is easy-to-implement on the both shared-
memory and distributed-memory architecture. To the
best of our knowledge, this is the first work of asyn-
chronous stochastic gradient method to simultaneously
enjoy the model sparsity and data sparsity.

• We rigorously prove the DSAL method can achieve a
linear convergence rate O(log(1/ϵ)), reduce the per-
iteration cost from O(p) to O(r) where r ≪ p, and
achieve a lower overall computational complexity un-
der the strongly convex condition. Moreover, we prove
almost sure finite time identification of the active set.

• We empirically show that our proposed method can si-
multaneously achieve significant acceleration and linear
speedup property.

1.1 Related Works
Parallel method (PE-AGCD) in [Li et al., 2016a] handles the
high-dimensional setting by conducting the parallel elimina-
tion (PE) step before Asynchronous Grouped Coordinate De-

scent (AGCD). However, the proposed method has several
disadvantages. First, PE is only conducted once prior to the
optimization algorithm. Second, only safe static rule [Ghaoui
et al., 2010] used in PE is safe and the strong rule [Tibshi-
rani et al., 2012] used in PE is unsafe, which means it could
discard features wrongly. Third, PE-AGCD is deterministic
on samples and thus cannot scale well for large n. Fourth,
PE-AGCD cannot enjoy the sparsity of the data. Lastly, PE-
AGCD is limited to Lasso regression. Table 1 summarizes
the advantages of our DSAL over PE-AGCD. First, DSAL
is dynamic and conducted during the whole training pro-
cess. Thus, DSAL can accelerate and meanwhile benefit from
the convergence of the optimization algorithm. Second, our
DSAL is safe for the training. Third, DSAL is stochastic and
can scale well on both samples and features. Fourth, DSAL
can enjoy the data sparsity by performing sparse proximal up-
dates. Lastly, DSAL can solve Problem (1).

2 Proposed Method
We first propose the accelerated doubly sparse asynchronous
learning (DSAL) method and then apply it to shared-memory
and distributed-memory architecture respectively.

2.1 Doubly Sparse Asynchronous Learning
To enjoy the sparsity of the model coefficient, we first give a
naive implementation of DSAL on shared-memory architec-
ture in Alg. 1. During the training, DSAL only need solve
a sub-problem with constantly decreasing size by discarding
useless features. Specifically, Alg. 1 has two loops. We de-
note the original problem as P0 and the full set as B0. At the
s-th iteration of the outer loop, we denote the active set as
Bs and suppose Bs has qs active blocks with total ps active
features. Then we can compute the dual ys as

ys = −∇F(x0
Bs
)/max(1,ΩD(A⊤

Bs
∇F(x0

Bs
))/λ), (2)

where dual norm ΩD(u) = maxΩ(v)≤1⟨v, u⟩. Then, for ∀j ∈
Bs, Bs+1 is updated by:

ΩD
j (A⊤

j y
s) + ΩD

j (Aj)
√
2L(P(x0

Bs
)−D(ys)) ≥ nλ, (3)

where L is the Lipschitz constant and D(ys) is the dual ob-
jective of Ps ([Ndiaye et al., 2017; Bao et al., 2020]).

For the inner loop, all the updates are conducted on Bs+1.
First, each thread inconsistently reads x̂t

Bs+1
from the shared

memory and randomly chooses sample i to compute the
stochastic gradient on Bs+1. Then, the proximal step is con-
ducted with the stochastic gradient. By (3), we can constantly
reduce the model size and the parameter size to accelerate the
training by exploiting the sparsity of the model. Since each
variable xi discarded by the elimination must be zero for the
optimum solution, this method is safe for the training.
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Algorithm 1 Sha-DSAL-Naive

1: Input: x0
B0

∈ ℜp, step size η, inner loops K.
2: for s = 0 to S − 1 do
3: All threads parallelly compute ∇F(x0

Bs
)

4: Compute ys by (2) and Bs+1 from Bs by (3)
5: Update ABs+1

, x0
Bs+1

6: For each thread, do:
7: for t = 0 to K − 1 do
8: Read x̂t

Bs+1
from the shared memory

9: Randomly sample i from {1, 2, . . . , n}
10: vst = ∇fi(a

⊤
i,Bs+1

x̂t
Bs+1

)

11: Update xt+1
Bs+1

= proxηλΩ(x̂
t
Bs+1

− ηvst )

12: end for
13: xBs+1 = xK

Bs+1
, x0

Bs+1
= xBs+1

14: end for

Variance Reduction on the Active Set
However, the variance of the gradient in Alg. 1 caused by
stochastic sampling does not converge to zero. Thus, we have
to use a diminishing step size and can only attain a sublinear
convergence rate when P is strongly convex.

Since the full gradient has been computed for the elimina-
tion step, inspired by [Xiao and Zhang, 2014], we can adopt
the variance-reduced technique over active set Bs+1 without
additional computational costs. Thus, we can adjust the gra-
dient estimation as

vst = ∇fi(a
⊤
i,Bs+1

x̂t
Bs+1

)−∇fi(a
⊤
i,Bs+1

x0
Bs+1

)

+∇F(x0
Bs+1

), (4)

which can guarantee that the variance of stochastic gradients
asymptotically converges to zero. Therefore, we can use a
constant step size to achieve a linear convergence rate for
strongly convex function.

Sparse Proximal Gradient Update
In practice, sparsity widely exists in large-scale datasets. To
utilize the data sparsity, we only need to update the blocks
with nonzero partial gradients. Thus, some blocks might be
updated for more times while others for less times. Inspired
by [Leblond et al., 2017] for Proximal SAGA, we define a
block-wise reweighting matrix to make a weighted projec-
tion on the blocks. Specifically, we define Ψi as the set of
blocks that intersect the nonzero coefficients of ∇fi. Let nG
be the number of occurrences that G ∈ Ψi, if nG > 0, we
define dG = n/nG . Otherwise, we ignore that block directly.
Thus, we can define diagonal matrix [Di]G,G = dGI|G| for
each block i and the gradient over Bs+1 can be formulated as

vst = ∇fi(a
⊤
i,Bs+1

x̂t
Bs+1

)−∇fi(a
⊤
i,Bs+1

x0
Bs+1

)

+Di,Bs+1
∇F(x0

Bs+1
). (5)

Thus, we only need conduct a sparse update over the active
set and the computational cost is further reduced.

On the other hand, the proximal operator of Problem (1)
needs to update all the coordinates for each iteration. Con-
sidering the data sparsity again, we only need to update the

blocks with nonzero partial gradients. Thus, we use a block-
wise weighted norm ϕi(x) =

∑
G∈Ψi

dGΩG(x) to displace
Ω(x) where Eϕi(x) = Ω(x). Thus, the new sparse proximal
operator can be computed as

proxηλϕi
(x′) = argmin

x

1

2η
∥x− x′∥2 + λϕi(x). (6)

Since we only need to update the blocks in Ψi, which could
be much less than the full pass, we can save much compu-
tation and memory cost here. To sum it up, we can conduct
the sparse gradient update and sparse proximal operator to
accelerate the training by enjoying the sparsity of the data.

Decoupled Proximal Update
On distributed-memory architecture, multiple workers com-
pute the gradients and send them to the server. The server
computes the proximal operator. When the proximal step is
time-consuming, doing this in the server would be the compu-
tational bottleneck of the whole algorithm. [Li et al., 2016b]
proposed a decoupled method to off-load the computations
of the proximal step to workers. Thus, the server only does
simple addition computation, which can achieve a sublinear
converge rate and perform better than the coupled method.

To relieve the computation cost of the server in our al-
gorithm, the proximal mapping step is computed by work-
ers and the server only needs to do the element-wise com-
putation. The workers conduct the proximal operator as
xt+1
Bs+1

= proxηλϕi
(xt

Bs+1
− ηvst ) and send the difference

δst = proxηλϕi
(x

d(t)
Bs+1

− ηvst )−x
d(t)
Bs+1

between the parameter

x
d(t)
Bs+1

and the output of the proximal operator to the server.
Therefore, the server only does simple addition computation,
which makes the algorithm suitable to parallelize to achieve
linear speedup property and can be accelerated via increasing
the number of workers.

2.2 DSAL on Shared-Memory and
Distributed-Memory Architecture

On shared-memory architecture, our Sha-DSAL algorithm is
in Alg. 2. Suppose we have l cores, in the outer loop, all
threads parallelly compute ∇F(x0

Bs
) and ys, and perform the

elimination. With new set Bs+1, we update ABs+1
, x0

Bs+1
,

and ∇F(x0
Bs+1

). In the inner loop, multiple threads update
the parameter over Bs+1 asynchronously, which means the
parameter can be read and written without locks. Specifically,
each thread inconsistently read x̂t

Bs+1
from the shared mem-

ory and choose sample i. As (5), we compute the gradient vst
over Bs+1. Then we conduct the proximal step, compute the
update δst , and add it to the shared memory.

Notably, first, at the s-th iteration, by exploiting the spar-
sity of the model, our Alg. 2 only solve sub-problem Ps+1

over Bs+1, which is much more efficient than training the full
model. The full gradients at the s-th iteration in our algorithm
is only computed with ps coefficients, which is much less
than O(p) in practice. Second, by exploiting the data spar-
sity, we only conduct sparse gradient update and sparse prox-
imal update, which is very efficient for large-scale dataset.
Third, by reducing the gradient variance, we can use a con-
stant step size to achieve a linear convergence rate. Lastly, all
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Algorithm 2 Sha-DSAL

1: Input: x0
B0

∈ ℜp, step size η, inner loops K.
2: for s = 0 to S − 1 do
3: All threads parallelly compute ∇F(x0

Bs
)

4: Compute ys by (2) and Bs+1 from Bs by (3)
5: Update ABs+1

, x0
Bs+1

,∇F(x0
Bs+1

)
6: For each thread, do:
7: for t = 0 to K − 1 do
8: Read x̂t

Bs+1
from the shared memory

9: Randomly sample i from {1, 2, . . . , n}
10: Compute vst by (5)
11: δst = proxηλϕi

(x̂t
Bs+1

− ηvst )− x̂t
Bs+1

12: xt+1
Bs+1

= xt
Bs+1

+ δst
13: end for
14: xBs+1 = xK

Bs+1
, x0

Bs+1
= xBs+1

15: end for

the threads work asynchronously, which is very easy to paral-
lelize. Hence, the computation, memory, and communication
costs of large-scale training can be effectively reduced.

On distributed-memory architecture, our Dis-DSAL algo-
rithm is summarized in Alg. 3 and 4. Suppose we have
one server node and l local worker nodes where each worker
stores nk samples. When the flag is True, in the outer loop
of the server, the server broadcasts the flag and x0

Bs
to the

workers. At the worker node, worker k receives x0
Bs

from
the server, computes the gradient over nk samples, and then
sends them to the server. With the gradients received from
all the workers, the server computes the full gradients and
send them to the workers. Then, the server computes ys,
performs the elimination to obtain Bs+1, and then send it to
the workers. The worker receives ∇F(x0

Bs
) and Bs+1 from

the server. With Bs+1, the worker updates Ai∈nk,Bs+1 , x
0
Bs+1

and ∇F(x0
Bs+1

). When the flag is False, the server broad-
casts the flag to the workers. At the workers, the algorithm
optimizes over Bs+1. Multiple workers update the parame-
ter asynchronously. Specifically, each worker receives stale
parameter x

d(t)
Bs+1

from the server. The worker first chooses
sample i from {1, 2, . . . , nk} and compute vst over Bs+1. Fol-
lowing the decoupling strategy, we compute the proximal step
and the update at the worker node. Finally, the worker send it
to server. In the inner loop of the server, xt+1

Bs+1
is updated by

δst from workers via only simple addition computation.
Similar to Alg. 2, our Alg. 3 and 4 is computation-

ally efficient by exploiting the sparsity of the model and the
dataset and reducing the gradient variance. Moreover, the
time-consuming proximal step from the server is off-loaded
to all the workers, which is easy to parallelize. Overall, the
computation, memory, and communication costs could be ef-
fectively reduced.

3 Theoretical Analysis
We provide the rigorous theoretical analysis for DSAL on
shared-memory architecture, which can be easily extended to
distributed memory. The proof is provided in the appendix.

Algorithm 3 Dis-DSAL (Server Node)

1: for s = 0 to S − 1 do
2: flag = True
3: Broadcast flag and x0

Bs
to all workers

4: Receive gradients from all workers
5: ∇F(x0

Bs
) = 1

n

∑l
k=1 ∇Fk(x

0
Bs
)

6: Compute ys by (2) and update Bs+1 ⊆ Bs by (3)
7: Broadcast Bs+1 and ∇F(x0

Bs
) to all workers

8: flag = False
9: Broadcast flag to all workers

10: for t = 0 to K − 1 do
11: Receive δst from one worker
12: Update xt+1

Bs+1
= xt

Bs+1
+ δst

13: end for
14: xBs+1 = xK

Bs+1
, x0

Bs+1
= xBs+1

15: end for

Algorithm 4 Dis-DSAL (Worker Node k)

1: if flag = True then
2: Receive x0

Bs
from server

3: Compute and send gradient ∇Fk(x
0
Bs
) =∑

i∈nk
∇fi(a

⊤
i,Bs

x0
Bs
)

4: Receive ∇F(x0
Bs
) and Bs+1 from server

5: Update Ai∈nk,Bs+1
, x0

Bs+1
,∇F(x0

Bs+1
)

6: else
7: Receive x

d(t)
Bs+1

from server
8: Randomly sample i from {1, 2, . . . , nk}
9: Compute vst = ∇fi(a

⊤
i,Bs+1

x
d(t)
Bs+1

) −
∇fi(a

⊤
i,Bs+1

x0
Bs+1

) +Di,Bs+1
∇F(x0

Bs+1
)

10: Send δt = proxηλϕi
(x

d(t)
Bs+1

− ηvst )− x
d(t)
Bs+1

to server
11: end if

3.1 Assumptions, Definitions, and Properties
Assumption 1 (Strong Convexity). Ω(x) is convex and block
separable. F(x) is µ-strongly convex, i.e., ∀x, x′ ∈ ℜp, we
have F(x′) ≥ F(x) +∇F(x)⊤(x′ − x) + µ

2 ∥x
′ − x∥2.

Assumption 2 (Lipschitz Smooth). Each Fi(x) is differen-
tiable and Lipschitz gradient continuous with L, i.e., ∃L > 0,
such that ∀x, x′ ∈ ℜp, we have ∥∇Fi(x)−∇Fi(x

′)∥ ≤
L∥x− x′∥.
Assumption 3 (Bounded Overlapping). There exists a bound
τ on the number of iterations that overlap. The bound τ
means each writing at iteration t is guaranteed to success-
fully performed into the memory before iteration t + τ + 1.

Remark 1. Asm. 1 implies P(x) is also µ-strongly con-
vex. Asm. 2 implies that F(x) is also Lipschitz gradient
continuous. We denote κ := L/µ as the condition number.
Asm. 3 means the delay that asynchrony may cause is upper
bounded. All the assumptions are commonly seen in asyn-
chronous methods [Pedregosa et al., 2017].
Definition 1 (Block Sparsity). We denote that the maximum
frequency of occurrences ∆ that a feature block belongs to the
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(a) KDD2010 (b) Avazu-app (c) Avazu-site

Figure 1: Convergence results on shared-memory architecture with 8 threads.

(a) KDD2010 (b) Avazu-app (c) Avazu-site

Figure 2: Convergence results on distributed-memory architecture with 8 workers.

extended support, which can be defined as ∆ = maxG∈B |{i :
Ψi ∋ G}|/n. It is easy to verify that 1/n ≤ ∆ ≤ 1.
Property 1 (Independence). We use the “after read” labeling
in [Leblond et al., 2017], which means we update the iterate
counter after each thread fully reads the parameters. This
means that x̂t

Bs+1
is the (t+1)-th fully completed read. Given

the “after read” global time counter, sample ir is independent
of x̂t

Bs+1
, ∀r ≥ t.

Property 2 (Unbiased Gradient Estimation). Gradient vt
is an unbiased estimation of the gradient over set Bs+1 at
x̂t
Bs+1

, which is directly derived from Property 1.

Property 3 (Atomic Operation). The update xt+1
Bs+1

to shared
memory in Alg. 2 is coordinate-wise atomic, which can ad-
dress the overwriting problem caused by other threads.

3.2 Theoretical Results
Theorem 1 (Convergence). Suppose τ ≤ 1

10
√
∆

, let step size

η = min{ 1
24κL ,

κ
2L ,

κ
10τL}, inner loop size K = 4 log 3

ηµ , we
have

E
∥∥xBS

− x∗
BS

∥∥2 ≤ (2/3)S ∥x0 − x∗∥2 . (7)

Remark 2. Theorem 1 shows that DSAL can achieve a linear
convergence rate O(log(1/ϵ)).

Remark 3. For the case F(x) is nonstrongly convex, we
can slightly modify Ω(x) by adding a small perturbation,
e.g., µf∥x∥2 for smoothing where µf > 0. We can treat
F(x) + µf∥x∥2 as the data-fitting loss and then the loss
is µf -strongly convex. Denote κ := L/µf , suppose τ ≤

1
10

√
∆

, let η = min{ 1
24κL ,

κ
2L ,

κ
10τL}, K = 4 log 3

ηµf
, we have

E
∥∥xBS

− x∗
BS

∥∥2 ≤ (2/3)S ∥x0 − x∗∥2 .
Theorem 2 (Elimination Ability). Equicorrelation set [Tib-
shirani and others, 2013] is defined as B∗ := {j ∈
{1, 2, . . . , q} : ΩD

j (A⊤
j y

∗) = nλ}. As DSAL converges, there
exists an iteration number S0 ∈ N, s.t. ∀s ≥ S0, any variable
block j /∈ B∗ is eliminated by DSAL almost surely.
Remark 4. Suppose the size of set Bs is ps and p∗ is the size
of the active features in B∗, Theorem 2 shows we have ps is
decreasing and lims→+∞ ps = p∗.
Remark 5. To sum it up, by the elimination, the cost at each
iteration is reduced from O(p) to O(ps). Moreover, by the
sparse update, only the nonzero coefficients of set Bs is up-
dated and thus the cost at each iteration is further reduced
from O(ps) to O(p′s) where p′s is the size of the nonzero co-
efficients. In the high-dimensional setting, we have p∗ ≪ p,
ps ≪ p and p′s ≪ p. Thus, with constantly decreasing ps
and the sparse update, our DSAL can reduced the complexity
from O(p) to O(r) where r is the mean of p′s for s = 1, 2, . . .,
which can accelerate the training at a large extent in practice.
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(a) KDD2010 (b) Avazu-app (c) Avazu-site

Figure 3: Convergence results on shared-memory architecture with 8 threads.

4 Experiments
4.1 Experimental Setup
We compare our method with competitive methods on three
large-scale datasets. Although DSAL can work broadly, we
focus on Lasso, which is the most popular case for sparse
regression. Specifically, Lasso solves

min
x∈ℜp

1

n

n∑
i=1

1

2
(yi − a⊤i x)

2 + λ∥x∥1. (8)

On shared-memory architecture, we compare six asyn-
chronous methods: 1) PE-Strong-AGCD: parallel strong
elimination in [Li et al., 2016a]; 2) PE-Safe-AGCD: parallel
static safe elimination in [Li et al., 2016a]; 3) ProxASAGA
[Pedregosa et al., 2017]; 4) ProxASVRG [Meng et al., 2017];
5) Sha-DSAL-Naive; 6) Our Sha-DSAL. ProxASAGA and
ProxASVRG are popular asynchronous method with linear
convergence. On distributed-memory architecture, we com-
pare four asynchronous methods: 1) ProxASAGA [Leblond
et al., 2018]; 2) ProxASVRG [Meng et al., 2017]; 3) Dis-
DSAL-Naive (See appendix); 4) Our Dis-DSAL.

Dataset Sample Size Attributes Sparsity

KDD 2010 19,264,097 1,163,024 7× 10−6

Avazu-app 14,596,137 1,000,000 10−5

Avazu-site 25,832,830 1,000,000 10−5

Table 2: Real-world datasets in the experiments.

We use three real-world datasets in Table 2, which are from
LIBSVM [Chang and Lin, 2011] at https://www.csie.ntu.edu.
tw/∼cjlin/libsvmtools/datasets/. We implement all the meth-
ods in C++. We employ OpenMP and OpenMPI as the par-
allel framework for shared-memory and distributed-memory
architecture respectively. We run all the methods on 2.10
GHz Intel(R) Xeon(R) CPU machines. The inner loop size
and the step size are chosen to obtain the best performance.
Parameter λ is selected as 4 ∗ 10−6λmax, 2 ∗ 10−3λmax, and
1 ∗ 10−3λmax for KDD 2010, Avazu-app, and Avazu-site
dataset respectively where λmax is a parameter that, for all
λ ≥ λmax, x∗ must be 0.

4.2 Experimental Results and Discussions
Convergence Results. Figure 1 (a)-(c) provides the con-
vergence results on shared-memory architecture. Our Sha-
DSAL-Naive converges very fast at the initial stage because
of the elimination ability and slows down later due to its sub-
linear rate. The results confirm that our Sha-DSAL always
converge much faster than other methods. Figure 2 (a)-(c)
provides the convergence results on distributed-memory ar-
chitecture. The results also show that our Dis-DSAL always
converge much faster than other methods. This is because our
method can eliminate the features by exploiting the sparsity
of the model, perform efficient sparse update by exploiting
the data sparsity, achieve the linear convergence rate by re-
ducing the gradient variance. Our Dis-DSAL also performs
the decouple proximal update to reduce the workload of the
server and reduces the communication costs.
Linear Speedup Property. Figure 3(a)-(c) presents the re-
sults of the speedup of Sha-DSAL with different number of
threads on shared-memory architecture and Dis-DSAL with
different number of workers on distributed-memory architec-
ture. The results show our method can successfully achieve a
nearly linear speedup when we increase the number of threads
or workers, although the performance decreases when the
number of processors or works increases. This is because
theoretical analysis does not take the overheads for creating
threads and distributing work for OpenMP and communica-
tion costs for OpenMPI into account.

5 Conclusion
In this paper, we propose the first doubly sparse asynchronous
learning method for stochastic composite optimization and
apply it on shared-memory and distributed-memory architec-
ture respectively. Theoretically, we prove that our proposed
method can achieve a linear convergence rate with lower
overall complexity. Moreover, our method can eliminate al-
most all the inactive variables in a finite number of iterations
almost surely. Finally, numerical results confirm the supe-
riority of our method. Since we only consider the block-
separable norm here, applying our method to non-separable
norms, such as OWL regression [Bogdan et al., 2015; Bao et
al., 2019], would be an interesting direction for future work.
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