RoNet: Toward Robust Neural Assisted Mobile
Network Configuration

Yuru Zhang, Yongjie Xue, Qiang Liu
University of Nebraska-Lincoln
giang.liu@unl.edu

Abstract—Automating configuration is the key path to achiev-
ing zero-touch network management in ever-complicating mobile
networks. Deep learning techniques show great potential to
automatically learn and tackle high-dimensional networking
problems. The vulnerability of deep learning to deviated input
space, however, raises increasing deployment concerns under
unpredictable variabilities and simulation-to-reality discrepancy
in real-world networks. In this paper, we propose a novel
RoNet framework to improve the robustness of neural-assisted
configuration policies. We formulate the network configura-
tion problem to maximize performance efficiency when serving
diverse user applications. We design three integrated stages
with novel normal training, learn-to-attack, and robust defense
method for balancing the robustness and performance of policies.
We evaluate RoNet via the NS-3 simulator extensively and the
simulation results show that RoNet outperforms existing solutions
in terms of robustness, adaptability, and scalability.

Index Terms—Network Configuration, Policy Robustness, Ma-
chine Learning

I. INTRODUCTION

Emerging applications and services, e.g., augmented reality
and autonomous driving, generate diversified and surging
networking demands, e.g., latency and throughput, and re-
liability. To meet the ever increasing traffic demands, next-
generation mobile networks evolve toward open, ultra-dense
and disaggregated [1], e.g., radio unit (RU), centralized unit
(CU) and distributed unit (DU). The complex mobile network
requires intelligent and automated configuration policies to
efficiently serve different users and groups.

Network configuration is the key mechanism to dynamically
configure diverse network parameters [2], e.g., bandwidth,
spectrum and transmission mode, on various physical infras-
tructures such as base stations and core servers. Different from
fine-grained resource management, e.g., power and resource
allocation, network configurations are enforced with larger
time intervals, e.g., 30 minutes [3] and hours, as they may
involve sophisticated infrastructural operations. The large con-
figuration intervals weaken the temporal inter-dependencies
between consecutive configuration actions, in other words,
network configuration generally does not hold Markov prop-
erty and can be recognized as multiple independent one-shot
configuration problems [4], [5].

Existing approaches [6], [7], [8], [5] rely on approximated
mathematical models to represent the mobile network and
use optimization based methods (e.g., linear and convex
optimization) to optimize different performance metrics, e.g.,
throughput and energy consumption. As configuration param-
eters expand to be high dimensional, e.g., hundreds if not
more, these approaches fail to achieve accurate representation

Nakjung Choi
Nokia Bell Labs
nakjung.choi @nokia-bell-labs.com

Tao Han
New Jersey Institute of Technology
tao.han@njit.edu

of mobile networks and fail in real-world deployment [9],
[10]. Recent, deep learning techniques have been increasingly
explored and adopted for high-dim network configuration in
mobile networks. For example, a deep neural network (DNN)
can be instantiated and trained to approximate the correlations
among observed network state, configuration parameters, and
resulted network performances [2]. With the continual learn-
ing of ML models over continuously collected transitions, the
ML-based approaches shed the light to achieve zero-touch
management for next-generation mobile networks.

In real-world mobile networks, the observation of high-dim
network state can be deviated by unpredictable variabilities,
e.g., inaccurate state collection, traffic fluctuations, link fail-
ure, and simulation-to-reality discrepancy (the difference be-
tween offline simulator and real-world networks [9], [2]). The
deviated observations may not be seen in the training dataset
of DNN models previously, which usually results in the degra-
dation of prediction accuracy [11], uncertain configuration
actions, and compromised network performances. Besides,
potential adverse attackers may attack and manipulate the state
observation [11], where the changes on state are not revealed
to configuration policies. As a result, configuration policies
determine configuration actions based on pre-attack state,
which may substantially degrades and even collapses network
performances, e.g., long user latency and flow congestion.
Hence, it is imperative to investigate effective approaches to
improve the robustness of ML-based configuration policies
under diversified network uncertainties.

In this paper, we propose RoNet, a new robust network con-
figuration framework in mobile networks with three integrated
stages. We formulate the network configuration problem to
maximize the performance efficiency (PE) under varying
network states. First, we design a new neural-assisted network
configuration policy to effectively address the problem. Sec-
ond, we design a novel learn-to-attack method to automatically
attack state observation without the need for prior knowledge
about the policy. Third, we design a novel robust defense
method to recover network performances of the policy.

To the best of our knowledge, we are the first work
for assuring the robustness of neural-assisted configuration
policies in mobile networks. The specific contributions are
summarized as follows:

o« We formulate the network configuration problems to
maximize the performance efficiency in mobile networks.

o We design a new RoNet framework to improve the
robustness of neural-assisted configuration policies.

States Meaning
ul_avg_size average uplink data size of user applications
dl_avg_size average downlink data size of user applications

mcs_max_ul
mcs_max_dl
avg_distance

maximum uplink modulation and coding scheme
maximum downlink modulation and coding scheme
average distance between users and base station

TABLE I: The state space

Actions Meaning Range
bandwidth_ul maximum uplink physical resource blocks [0, 50]
bandwidth_dl | maximum downlink physical resource blocks | [0, 50]

cpu_ratio CPU share ratio of edge server [0, 1]

TABLE II: The configuration action space

o We design three integrated stages with new network con-
figuration, learn-to-attack and robust defense methods.

o We evaluate RoNet via NS-3 simulator extensively and
results justify the superiority of RoNet in terms of ro-
bustness, adaptability and scalability.

II. SYSTEM MODEL

We consider a mobile network with multiple base stations
in radio access networks (RAN), network switches in transport
networks (TN), the core network (CN), and servers in edge
networks (EN). The mobile network is considered to be
time slotted [3], where configuration actions can only be
made in discrete time slots, e.g., every hour. Without loss
of generality, we consider that network configurations may
be applied to individual mobile users, user groups (e.g.,
network slices [12]), or particular infrastructures (e.g., specific
gNBs). For the sake of simplicity, we refer to user groups in
the following descriptions. At each configuration time slot,
the operator can observe the network state by gathering a
collection of statistical metrics, e.g., user traffic and transport
network delay. As the configuration action is enforced, the
operator can obtain the performance of users, e.g., statistics
of users, before the next configuration interval.

State Space. The network state s; represents the current
status of mobile networks in multiple aspects, and has the
impact on the performance of mobile users. We define the
state space s; in the Table I. The parameters ul_avg_size
and dl_avg_size are the average uplink and downlink data
size of user applications. The parameters mcs_max_ul and
mcs_max_dl are the maximum uplink and downlink mod-
ulation and coding scheme (MCS) of users. The parame-
ter avg_distance represents the average geographic distance
between users and base stations. Here, the design of state
space can be easily extended to support more parameters if
applicable, e.g., scheduler algorithm and transmission power.

Action Space. The configuration action a; allows a variety
of network configuration in multiple technical domains to be
enforced in mobile networks. We define the action space in
the Table II. The parameter bandwidth_ul and bandwidth_dl
are the uplink and downlink wireless bandwidth of users, re-
spectively. The parameter cpu_ratio is the CPU share ratio of
edge servers for serving user applications. Here, the design of
action space can incorporate more configuration parameters if
available, e.g., the bandwidth allocation in transport networks.

Performance Efficiency. Given the network state and con-
figuration action, the performance of users can be retrieved

at the end of individual configuration intervals, e.g., the
collection of end-to-end latency. Due to the complicated and
underlying correlations in mobile networks [2], [13], the
performance function is commonly considered to be unknown.
We denote the performance function as f(s:,at), which is
related to the network state s; and configuration action a;. Due
to the heterogeneity of user applications, their performance
metrics can be extremely diversified, e.g., delay, throughput,
and reliability. Thus, we define a unified metric, i.e., PE, to
evaluate how the mobile network satisfies the user needs

Q(st,at) = Prob(f(st,ar) < H)/|azl, (1)
where Prob(f(s:,a;) < H) represents the percentile perfor-
mance and H is the threshold [5]. For example, if the user
application is latency-oriented, e.g., augmented reality, the
percentile performance means how many percent latencies are
lower than the given threshold. The |a;| represents resource
usage of users in multiple technical domains, which is de-
termined by the configuration action a;. To cost-efficiently
serve diverse user applications, the network operator aims
to strike the balance between percentile performance and
resource usage.

Problem. Given a time period 7, the objective is to derive
the optimal policy (7) that maximizes the cumulative PE.
Thus, we formulate the problem Py as

P : max IE {Zj_o Q(ss, at)})
st. 0<a; <M, 3)

where M are the maximum configuration actions, e.g., total
downlink wireless bandwidth in Table II. Note that network
states s; may change at different configuration intervals
during the time period 7. The main challenge of resolving
the problem lies in the complex and unknown performance
function. On the one hand, existing model-based convex
optimization methods [14], e.g., gradient descent, cannot be
directly applied. On the other hand, the high-dimensional state
and action space prohibit existing searching methods, e.g.,
exhaustive and grid searching.

III. NEURAL-ASSISTED NETWORK CONFIGURATION

In the normal training stage, we propose a new neural
assisted network configuration (NANO) method to effectively
resolve the problem Py in two steps. First, we create a deep
neural network (DNN) and train it to predict performance
of users under both the state and action space. Second, we
develop a searching scheme to randomly sample actions from
the action space and select the optimal configuration action
that has the maximum predicted PE.

Neural-Assisted Prediction. Deep neural networks have
been demonstrated very promising accuracy on complex func-
tion regression and prediction, e.g., computer vision and natu-
ral language processing. We resort to DNN-based approaches
to predict the performance of users, because conventional
approaches, e.g., decision tree, fail to tackle high-dim state
and action space with high prediction accuracy. In particular,
we create a DNN (denoted as my) with weights €, whose
output is 1-dim to predict the PE of users. Its input includes

both the state space s; and action space a; to be aware of
current network state and configuration action. To construct
the training dataset, we collect the observed network states
and sample the action space with grid searching from either
network simulators or real-world networks. We adopt stochas-
tic gradient descent methods to train the DNN by adopting the
mean squared error (MSE) loss function.

Randomized Action Searching. With the trained DNN
for PE prediction, we develop a randomized action searching
scheme to determine the optimal configuration action under
different network states. First, we randomly sample thousands
of actions from the action space (3-dim in Table II), where
more samples may be needed when the dimension of action
space increases. Second, we concatenate the current network
state and these sampled actions, feed them into the DNN
model, and obtain the predicted PEs. Third, we select the
optimal configuration action that has the maximum predicted
PE as follows

ay = argmax mp(st, at). ()

IV. THE RONET FRAMEWORK

In this section, we introduce the RoNet framework in Fig. 1
to improve the robustness of configuration policies. First, we
design a new learn-to-attack method to automatically learn
and attack the neural-assisted configuration policy, without
the need for prior knowledge, e.g., gradients. Second, we
design a new robust defense method to defend and recover the
performance of the policy while it is under attack. The above
procedures may be repeated to adaptively strike the balance
between the robustness and performance of the policy.

A. Learn-to-Attack Stage

Existing adversarial attack approaches commonly assume
that the information of the model is known by the attacker,
which allows adversarial gradient-based attacks. However, the
configuration policy is composed of not only the DNN model
but also the action searching. Existing approaches, that attack
the accuracy of the DNN model, may not effectively degrade
the overall performance of the configuration policy. Thus,
we design the attacks to the configuration policy without the
assumption of known DNN model.

Attacker Problem. The objective of the attacker (denoted
as 7,) is to minimize the performance of the policy under
the given scale of attacks. Thus, we formulate the attacker
problem as

]Pl : min E [Zj_() Q(Sf + 771)(St)a at) (5)

sit. |mu(s)]eo < (6)

where the 7, (s;) generates the attack by observing the current
state s;. The attack space is defined by the maximum scale
(e) with the regulation of the [,,-norm.

Bayesian Learning. Bayesian learning is a state-of-the-art
approach to automatically learn and tackle complex unknown
problems [13]. It relies on a surrogate model to approximate
the observable performance and an acquisition function to

Normal Training Stage

v

Learn-to-Attack Stage

'

Robust Defense Stage

The RoNet Framework

Fig. 1: RoNet Overview

determine the next attack on the state (S;) to query. In
each iteration, the surrogate model will be trained with all
collected transitions of attacks and degraded PE performance,
and the acquisition function will be recalculated according
to the updated surrogate model. The maximization of the
acquisition function will generate the next attack, which will
be queried, e.g., simulator or real-world testbeds, to obtain the
corresponding PE performance.

Gaussian Process. Gaussian Process [15] has been ex-
tensively adopted as the surrogate model and shown great
successes in a variety of practical problems. For the sake
of simplicity, we denote the observed dataset as D' =
{vlt gt} where V1! and y't are the set of attacks and
the corresponding negative PEs until the iteration ¢, respec-
tively. The posterior distribution is expressed as P(y|D*?)
P(D%t|y)P(y). By using Gaussian Process GP [15] as the
prior, y can be represented as y ~ GP(u, k). pu(v) is the
mean function and k(v, v') = exp(—4|[v—2'||?) is covariance
function under the given attack v. Here, we use the most
common kernel function, i.e., radial basis function (RBF) with
the lengthscale [is set as 1.0. Given an arbitrary attack o, the
posterior distribution can be derived as

P(y(0)| D™,) ~ N (u(0),0° (7)), ()
where () = kKT[K + &2 'y, and
o2(d) = k(9,9) — kT[K + 62,50 1k, where
k = [k@®0), k@0, - k(@,0)] and K =

[k(v8,v))exe, Vi, j = 1,2,...,t. The I denotes the identity
matrix with the same dimensions as K.

Acquisition Function. There are various candidate acquisi-
tion functions, e.g., EI, PI and UCB, can be used to select the
next attack, according to the updated surrogate model. Without
loss of generality, we adopt the Gaussian process upper
confidence bound (GP-UCB), which has been extensively
evaluated to be robust in tackling diversified scenarios [16].
Given the generated mean p and variance o2 function, GP-
UCB selects the next action as follows

Unext = argmax pu(vg) + \/E o (vg), (8)

where (; is a non-negative hyperparameter to balance the
exploration and exploitation. Intuitively, the higher 3; encour-
ages more exploration, while the lower 3; focuses on exploita-
tion. With the dedicated selection of 3 in individual iterations,
the application of GP-UCB acquisition function has a solid
theoretical guarantee on converging to global optima [16]. In
particular, under the selective kernel functions [16], the sub-

linear regret is achieved with the probability of 1 — ¢, if

t2m? [4d
B = 2log (37;) + 2dlog <t2dn2r log((5771)), 9)

where J is the hyperparameter between O and 1, and 7, >
0,72 > 0,7 > 0 are constants, and d is the attack dimension.

Remark. In this stage, the configuration policy is attacked
by the learn-to-attack method by perturbing its observable
state space. As the attack completes, we can obtain the
collection of network states, attack on states, configuration
actions, and the attacked PE performance.

B. Robust Defense Stage

To counter the attack and recover the performance, we
design a new robust defense method that is composed of
model retraining and probabilistic action selection. The model
retraining aims to recover the accuracy of the DNN model
7y in terms of predicting the attacked PE performance. The
probabilistic action selection further improves the robustness
by randomly choosing selective configuration actions.

Model Re-Training. As the configuration policy is unaware
of the existence of the adverse attacker, its DNN model
observes the pre-attack states (instead of attacked states)
and generates predicted PE performance. We observe that
this deviation between pre-attack and attacked states partially
constitutes the performance degradation of the policy. We
retrain the DNN model based on the attacked dataset, i.e., the
collection of pre-attack states and their corresponding attacked
PE performance. In particular, we design the loss function of
Ty retraining as
(10
where U (s¢+7,(8¢t), at) is the attacked PE performance under
the network state s; and the attacker 7,. The attack m,(s;) is
not revealed to the DNN model my. As the model retraining
completes, the DNN model my will recover its prediction
accuracy in terms of the attacked PE performance.

Probabilistic Selection. In the normal training stage, the
policy selects the configuration action by maximizing the pre-
dicted PE, which commonly results in non-robust performance
in practice. On one hand, the DNN model 7y may not be
very accurate on PE prediction under any states and actions.
On the other hand, the deterministic action selection under
the given DNN model can be easily attacked by targeting
the particular maximum. Hence, we design the probabilistic
selection scheme as follows. First, we sample the action
space extensively with thousands of samples. Second, we
concatenate the current state and these sampled actions, and
feed them into the retrained DNN model. Third, we rank
all the predictions of PE performance and truncate the first
rth percentile. Fourth, the configuration action is randomly
selected from the truncated set. In this way, the probabilistic
action selection not only mitigates the effect of inaccurate PE
prediction but also counters the potential attacks implicitly.

Remark. In this stage, the performance of the configuration
policy is recovered by using model retraining and probabilistic
selection. The learn-to-attack and robust defense stages may

Lossq, = |mo(st,ar) — U(st + my(st), ar)la,

be repeated to strike the balance between the robustness and
the performance of the policy.

V. PERFORMANCE EVALUATION

In this section, we conduct extensive network simulations
to evaluate the RoNet framework in terms of efficacy, adapt-
ability, and scalability.

Network Simulator. We use the widely adopted Network
Simulator 3 (NS-3) [17] to simulate the performance of mobile
networks. In particular, we develop an end-to-end network
topology, including RAN, TN, Core, and Edge networks.
The RAN and Core are based on 4G LTE from the LENA
project, where the channel model is LogDistancePropaga-
tionLossModel and the total wireless bandwidth is 10MHz.
The avg_distance is randomized from 100 to 200 meters, and
mcs_max_ul and mcs_max_dl are sampled from [4, 20] and
[4, 28], respectively. The TN is based on a p2p link with
1Gbps bandwidth and a 2 ms delay. Specifically, we create a
video analytics application for mobile users. As simulations
start, mobile users send uplink packets via the HTTP protocol
with randomized ul_avg_size between 10K and 20K Bytes.
We develop a new module to achieve queue-based edge com-
puting simulations for processing the received packets. The
computation delay under 1.0 cpu_ratio is set to be 81 ms mean
and 35 ms std, according to experimental measurements [9].
Without loss of generality, the downlink packet size is also
randomly generated between 10K and 20K Bytes. We design
the simulation time to be 30 seconds to collect sufficient
measurements of round-trip latency, which corresponds to
average 21 seconds real-world time. We empirically select
the latency threshold as H=200 ms according to the capacity
of the simulated network. Note that RoNet does not make
assumptions for the network and can seamlessly adapt to other
network settings and topologies.

Parameters. We collect the dataset from the simulator with
grid search on both 108 unique actions and 243 unique states,
where the total number of state-action-latency transitions is
26244. The data collection consumes more than 150 effective
hours. The dataset is used to estimate the PE under different
states and actions during the simulation. The architecture of
the DNN model is [128]x[256]x[128] full-connected layer and
ReLU activation function in PyTorch 1.10. The PE in the
evaluation is calculated by averaging the achieved PE under
all states. The default value of parameters are k=0.99, ¢=0.2,
and the number of training epochs is 50.

Comparison. We implement the following methods for fair
comparison with the RoNet framework:

e L-REG: The L-REG uses the linear regression model
to approximate the PE performance in Eq. 1, samples
actions and selects the one with the maximum predicted
PE under individual states.

¢ R-REG: The R-REG uses the Gaussian Process regres-
sion (GPR) model (implemented with scikit-learn toolkit)
to learn the PE performance, where the action selection
is the same as that of L-REG.

o Optimal: The Optimal is achieved by assuming that the
attack is known, i.e., the attacked states can be observed.

1.0
o - \ —e— Ours
09751~ 0.9 —— RN 062 //
— \
0.950
" / L 0.8 " 0.60
Q- 0.925 1 F —— Ours . o K =
= QOptimal 0.7 0.58
0.900 —— G-REG \ e ~———. 0561 —e— Ours
0875 e —— L-REG 0.6 — Optimal
2 4 6 8 10 0 20 40 20 40 60 80 100

Number of training epochs

Fig. 2: Performance under normal
training

Number of attack epochs
Fig. 3: Performance under attacks

Percentage of robust training (%)
Fig. 4: Performance under robust

0.8 0.61
2 0.0 I &
BN Attack Stage 0.5
0.4

I Robust Stage
B Optimal

0.2- 0.4-

5 10
Attack Scale (%)

20 30

0.8

0.9

Fig. 5: Performance of RoNet under
different scales

Then, the optimal action is obtained by extensive sam-
pling the action space with the ground-truth dataset.

e RN: The RN is the baseline of attacks, which randomly
samples attacks from the attack space and selects the
attack with the lowest predicted PE.

Performance of Normal Training. Fig. 2 shows the perfor-
mance of different methods during the normal training stage.
As more training epochs are completed, the performance of
RoNet converges with the close approximation to the Optimal.
As compared to L-REG, R-REG can obtain higher PE, which
is mainly attributed to the better approximation performance
of Gaussian process regression (GPR). The RoNet achieves
nearly 12.5% PE improvement than that of L-REG, which
suggests the high efficacy of the deep neural network (DNN)
based approximation. This performance difference is expected
to enlarge under higher dimensions of state and action space.

Performance of Learn-to-Attack. Fig. 3 depicts the per-
formance of different attack methods during the learn-to-
attack stage. We observe that the PE can be dramatically
decreased by attacking the state space, which indicates the vul-
nerability of the DNN-based configuration policy. The mean
and std of attack are avg_distance = 0.06/0.13, di_avg_size =
0.16/0.06, mcs_max_dl = -0.1/0.15, mcs_max_ul = -0.09/0.16,
and ul_avg_size = 0.01/0.17. The high std indicates that
attacks are contextual and individualized to different states,
instead of static values. As compared to RN, the learn-to-
attack in RoNet can achieve higher performance degradation
(8.5%), which justifies its effectiveness.

Performance of Robust Defense. Fig. 4 shows the perfor-
mance of RoNet during the robust defense stage. Here, we sep-
arate all the states into multiple subgroups, and continuously

Fig. 6: Performance of RoNet under
different s

defense
I Attack Stage
0.81 mmm Robust Stage
B Optimal
.I _I g 0
B Attack Stage 0.4
[Robust Stage
B Optimal 0.21

0.95 0.99 1.0

150
k Latency Requirement (ms)

175 200 225 250

Fig. 7: Performance of RoNet under
different requirements

Normal Performance | Final Attacked Performance
Optimal 0.985 0.629
Ours 0.982 0.623
G-REG 0.958 0.543
L-REG 0.873 0.501

TABLE III: The performance of methods

retrain the DNN to approximate the attacked PE performance
on different subgroups. As more state subgroups are applied
for retraining, the PE performance of RoNet recovers 13.9%
PE performance (from 0.547 to 0.623) and approaches the
Optimal (0.629) gradually. The performance of the Optimal
is much lower than that in the normal training stage, because
attacks are enforced on states. We observe the attacked states
are with lower MCS and higher uplink and downlink data
sizes, where the performance cannot be fully recovered as
more data to transmit and less MCS can be used. As shown
in Table III, when the robust defense stage completes, RoNet
achieves 0.623 PE which is very close to the Optimal (0.629).
As compared to L-REG, RoNet can obtain more than 24.3%
improvement in the PE performance.

Performance under Variabilities. Fig. 5 shows the RoNet
performance under different attack scales. In general, the
higher attack scale allows larger attacks on the state space,
and results in larger performance degradation. When the attack
scale is 0.05 and 0.1, the original PE performance (0.985) can
be degraded to 0.90 (8.1%) and 0.81 (17.8%), respectively.
This disproportional performance degradation emphasizes the
necessity of investigating the robustness of DNN-based con-
figuration policy. Fig. 6 shows the final attacked performance
of RoNet under different probabilistic action selection factor
k. When & is 1, the action will always be selected if it has
the maximum predicted PE among all sampled actions. As

we decrease k, the set of action candidates expands, which
generally improves the robustness because the attacker has
to target more actions. Consequently, the PE performance
is decreased because of the random selection on the set
of suboptimal action candidates. Fig. 7 shows the impact
of latency threshold H on the PE performance in RoNet.
With the more stringent latency threshold, the PE decreases
significantly under the fixed transmission and computation
resources in the simulated network.

In the default parameters, the mean and std of actions are
bandwidth_ul = 0.56/0.1, bandwidth_dl = 0.66/0.18, and
cpu_ratio = 0.98/0.03. To counter the unknown attacks on
the state space, the mean final actions are bandwidth_ul
= 0.7/0.17, bandwidth_dl = 0.79/0.2, and cpu_ratio =
0.99/0.01. It is worth noting that RoNet can always approach
the Optimal under different variabilities, which justifies its
strong adaptability and generalization.

VI. RELATED WORK

Network configuration has been extensively studied in
mobile networks to optimize a variety of networking ob-
jectives. Liu et. al. [18] formulated an approximated math
model to describe the problem of radio and computation
resource management, and designed an iterative algorithm to
search for the optimal solution for minimizing the latency of
mobile users. There are other works [6], [7], [5], [8] build
their analytic model based on experimental measurements for
different applications, e.g., augmented reality [6] and network
slicing [5]. Recent works [19], [2], [9] focus on machine
learning approaches to learn and automate network config-
uration. Shi et. al. [2] exploited deep learning to learn and
configure wireless mesh networks and used domain adaptation
techniques to bridge the discrepancy between simulators and
real-world networks. However, these ML-based solutions fail
to effectively counter real-world variabilities and potential
attacks in mobile networks.

Al robustness has received increasing research attention,
especially for DNN-based policies in real-world deployments.
In the pioneer AI robustness work [11], the vulnerability
of DNN under adversarial attacks is revealed with extensive
experiments, where the authors proposed a first-order adver-
sary method to achieve robust training. Multiple derivative
works aim to improve the robustness of DNN and deep
reinforcement learning (DRL) by using diversified techniques,
e.g., data augmentation [20], sparsity architecture [21], and
local linearization [22]. However, these works focused on
individual DNN model with the strong assumption of known
gradients during the DNN training. In this work, we aim to
derive a robust configuration policy, including robust DNN-
based approximation and action selections.

VII. CONCLUSION

In this work, we presented a new RoNet framework with
three stages in mobile networks to improve the robustness
of configuration policies. First, we designed a neural-assisted
network configuration policy that maximizes the performance
efficiency of mobile users. Second, we designed a learn-to-
attack method to automatically attack the state observation

and degrade the performance of the policy. Third, we designed
a robust defense method to recover the under-attack perfor-
mance of the policy. The performance evaluation shows that
RoNet outperforms existing solutions in terms of robustness,
adaptability, and scalability.

ACKNOWLEDGEMENT

This work is partially supported by the US National Science
Foundation under Grant No. 2212050.
REFERENCES

[1] M. Polese et al., “Colo-ran: Developing machine learning-based xapps
for open ran closed-loop control on programmable experimental plat-
forms,” IEEE Transactions on Mobile Computing, 2022.

[2] J. Shi, M. Sha, and X. Peng, “Adapting wireless mesh network con-
figuration from simulation to reality via deep learning based domain
adaptation,” in NSDI, 2021, pp. 887-901.

[3] C. Marquez et al., “How should i slice my network? a multi-service
empirical evaluation of resource sharing efficiency,” in Proceedings of
the 24th Annual International Conference on Mobile Computing and
Networking, 2018, pp. 191-206.

[4] Q. Liu and T. Han, “Virtualedge: Multi-domain resource orchestration
and virtualization in cellular edge computing,” in 2019 IEEE 39th
International Conference on Distributed Computing Systems (ICDCS).
IEEE, 2019, pp. 1051-1060.

[5] J. X. Salvat et al., “Overbooking network slices through yield-driven
end-to-end orchestration,” in ACM CoNEXT. ACM, 2018, pp. 353-365.

[6] X. Ran et al., “Deepdecision: A mobile deep learning framework for
edge video analytics,” in JEEE INFOCOM 2018-IEEE Conference on
Computer Communications. 1EEE, 2018, pp. 1421-1429.

[71 S. D’Oro, L. Bonati et al., “SI-EDGE: Network slicing at the edge,”
arXiv preprint arXiv:2005.00886, 2020.

[8] S. D’Oro et al., “Orchestran: Network automation through orchestrated
intelligence in the open ran,” in IEEE INFOCOM 2022-IEEE Confer-
ence on Computer Communications. 1EEE, 2022, pp. 270-279.

[9] Q. Liu, N. Choi, and T. Han, “Onslicing: online end-to-end net-

work slicing with reinforcement learning,” in Proceedings of the 17th

International Conference on emerging Networking EXperiments and

Technologies, 2021, pp. 141-153.

D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez,

“Deepcog: Optimizing resource provisioning in network slicing with

ai-based capacity forecasting,” IEEE Journal on Selected Areas in

Communications, vol. 38, no. 2, pp. 361-376, 2019.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards

deep learning models resistant to adversarial attacks,” arXiv preprint

arXiv:1706.06083, 20117.

X. Foukas et al., “Orion: Ran slicing for a flexible and cost-effective

multi-service mobile network architecture,” in Proceedings of the 23rd

annual international conference on mobile computing and networking,

2017, pp. 127-140.

J. A. Ayala-Romero et al., “Bayesian online learning for energy-aware

resource orchestration in virtualized rans,” in IEEE Conference on

Computer Communications. 1EEE, 2021, pp. 1-10.

S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.

Cambridge university press, 2004.

C. E. Rasmussen, “Gaussian processes in machine learning,” in Summer

school on machine learning. Springer, 2003, pp. 63-71.

N. Srinivas et al., “Gaussian process optimization in the bandit setting:

No regret and experimental design,” arXiv:0912.3995, 2009.

A. discrete event network simulator for internet systems, “NS-3,” May

2022 [Online].

Q. Liu, T. Han, and N. Ansari, “Joint radio and computation resource

management for low latency mobile edge computing,” in /EEE Global

Communications Conference (GLOBECOM). 1EEE, 2018, pp. 1-7.

H. Zhang et al., “OnRL: improving mobile video telephony via online

reinforcement learning,” in Proceedings of the 26th Annual International

Conference on Mobile Computing and Networking, 2020, pp. 1-14.

S.-A. Rebuffi ef al., “Fixing data augmentation to improve adversarial

robustness,” arXiv preprint arXiv:2103.01946, 2021.

Y. Guo et al., “Sparse DNNs with improved adversarial robustness,”

Advances in neural information processing systems, vol. 31, 2018.

C. Qin et al., “Adversarial robustness through local linearization,”

Advances in Neural Information Processing Systems, vol. 32, 2019.

[10]

(11]

[12]

[13]

[14]
[15]
[16]
(17]

[18]

[19]

[20]
[21]

(22]

