
RoNet: Toward Robust Neural Assisted Mobile

Network Configuration

Yuru Zhang, Yongjie Xue, Qiang Liu

University of Nebraska-Lincoln

qiang.liu@unl.edu

Nakjung Choi

Nokia Bell Labs

nakjung.choi@nokia-bell-labs.com

Tao Han

New Jersey Institute of Technology

tao.han@njit.edu

Abstract—Automating configuration is the key path to achiev-
ing zero-touch network management in ever-complicating mobile
networks. Deep learning techniques show great potential to
automatically learn and tackle high-dimensional networking
problems. The vulnerability of deep learning to deviated input
space, however, raises increasing deployment concerns under
unpredictable variabilities and simulation-to-reality discrepancy
in real-world networks. In this paper, we propose a novel
RoNet framework to improve the robustness of neural-assisted
configuration policies. We formulate the network configura-
tion problem to maximize performance efficiency when serving
diverse user applications. We design three integrated stages
with novel normal training, learn-to-attack, and robust defense
method for balancing the robustness and performance of policies.
We evaluate RoNet via the NS-3 simulator extensively and the
simulation results show that RoNet outperforms existing solutions
in terms of robustness, adaptability, and scalability.

Index Terms—Network Configuration, Policy Robustness, Ma-
chine Learning

I. INTRODUCTION

Emerging applications and services, e.g., augmented reality

and autonomous driving, generate diversified and surging

networking demands, e.g., latency and throughput, and re-

liability. To meet the ever increasing traffic demands, next-

generation mobile networks evolve toward open, ultra-dense

and disaggregated [1], e.g., radio unit (RU), centralized unit

(CU) and distributed unit (DU). The complex mobile network

requires intelligent and automated configuration policies to

efficiently serve different users and groups.

Network configuration is the key mechanism to dynamically

configure diverse network parameters [2], e.g., bandwidth,

spectrum and transmission mode, on various physical infras-

tructures such as base stations and core servers. Different from

fine-grained resource management, e.g., power and resource

allocation, network configurations are enforced with larger

time intervals, e.g., 30 minutes [3] and hours, as they may

involve sophisticated infrastructural operations. The large con-

figuration intervals weaken the temporal inter-dependencies

between consecutive configuration actions, in other words,

network configuration generally does not hold Markov prop-

erty and can be recognized as multiple independent one-shot

configuration problems [4], [5].

Existing approaches [6], [7], [8], [5] rely on approximated

mathematical models to represent the mobile network and

use optimization based methods (e.g., linear and convex

optimization) to optimize different performance metrics, e.g.,

throughput and energy consumption. As configuration param-

eters expand to be high dimensional, e.g., hundreds if not

more, these approaches fail to achieve accurate representation

of mobile networks and fail in real-world deployment [9],

[10]. Recent, deep learning techniques have been increasingly

explored and adopted for high-dim network configuration in

mobile networks. For example, a deep neural network (DNN)

can be instantiated and trained to approximate the correlations

among observed network state, configuration parameters, and

resulted network performances [2]. With the continual learn-

ing of ML models over continuously collected transitions, the

ML-based approaches shed the light to achieve zero-touch

management for next-generation mobile networks.

In real-world mobile networks, the observation of high-dim

network state can be deviated by unpredictable variabilities,

e.g., inaccurate state collection, traffic fluctuations, link fail-

ure, and simulation-to-reality discrepancy (the difference be-

tween offline simulator and real-world networks [9], [2]). The

deviated observations may not be seen in the training dataset

of DNN models previously, which usually results in the degra-

dation of prediction accuracy [11], uncertain configuration

actions, and compromised network performances. Besides,

potential adverse attackers may attack and manipulate the state

observation [11], where the changes on state are not revealed

to configuration policies. As a result, configuration policies

determine configuration actions based on pre-attack state,

which may substantially degrades and even collapses network

performances, e.g., long user latency and flow congestion.

Hence, it is imperative to investigate effective approaches to

improve the robustness of ML-based configuration policies

under diversified network uncertainties.

In this paper, we propose RoNet, a new robust network con-

figuration framework in mobile networks with three integrated

stages. We formulate the network configuration problem to

maximize the performance efficiency (PE) under varying

network states. First, we design a new neural-assisted network

configuration policy to effectively address the problem. Sec-

ond, we design a novel learn-to-attack method to automatically

attack state observation without the need for prior knowledge

about the policy. Third, we design a novel robust defense

method to recover network performances of the policy.

To the best of our knowledge, we are the first work

for assuring the robustness of neural-assisted configuration

policies in mobile networks. The specific contributions are

summarized as follows:

• We formulate the network configuration problems to

maximize the performance efficiency in mobile networks.

• We design a new RoNet framework to improve the

robustness of neural-assisted configuration policies.

States Meaning

ul avg size average uplink data size of user applications
dl avg size average downlink data size of user applications

mcs max ul maximum uplink modulation and coding scheme
mcs max dl maximum downlink modulation and coding scheme
avg distance average distance between users and base station

TABLE I: The state space

Actions Meaning Range

bandwidth ul maximum uplink physical resource blocks [0, 50]
bandwidth dl maximum downlink physical resource blocks [0, 50]

cpu ratio CPU share ratio of edge server [0, 1]

TABLE II: The configuration action space

• We design three integrated stages with new network con-

figuration, learn-to-attack and robust defense methods.

• We evaluate RoNet via NS-3 simulator extensively and

results justify the superiority of RoNet in terms of ro-

bustness, adaptability and scalability.

II. SYSTEM MODEL

We consider a mobile network with multiple base stations

in radio access networks (RAN), network switches in transport

networks (TN), the core network (CN), and servers in edge

networks (EN). The mobile network is considered to be

time slotted [3], where configuration actions can only be

made in discrete time slots, e.g., every hour. Without loss

of generality, we consider that network configurations may

be applied to individual mobile users, user groups (e.g.,

network slices [12]), or particular infrastructures (e.g., specific

gNBs). For the sake of simplicity, we refer to user groups in

the following descriptions. At each configuration time slot,

the operator can observe the network state by gathering a

collection of statistical metrics, e.g., user traffic and transport

network delay. As the configuration action is enforced, the

operator can obtain the performance of users, e.g., statistics

of users, before the next configuration interval.

State Space. The network state st represents the current

status of mobile networks in multiple aspects, and has the

impact on the performance of mobile users. We define the

state space st in the Table I. The parameters ul avg size

and dl avg size are the average uplink and downlink data

size of user applications. The parameters mcs max ul and

mcs max dl are the maximum uplink and downlink mod-

ulation and coding scheme (MCS) of users. The parame-

ter avg distance represents the average geographic distance

between users and base stations. Here, the design of state

space can be easily extended to support more parameters if

applicable, e.g., scheduler algorithm and transmission power.

Action Space. The configuration action at allows a variety

of network configuration in multiple technical domains to be

enforced in mobile networks. We define the action space in

the Table II. The parameter bandwidth ul and bandwidth dl

are the uplink and downlink wireless bandwidth of users, re-

spectively. The parameter cpu ratio is the CPU share ratio of

edge servers for serving user applications. Here, the design of

action space can incorporate more configuration parameters if

available, e.g., the bandwidth allocation in transport networks.

Performance Efficiency. Given the network state and con-

figuration action, the performance of users can be retrieved

at the end of individual configuration intervals, e.g., the

collection of end-to-end latency. Due to the complicated and

underlying correlations in mobile networks [2], [13], the

performance function is commonly considered to be unknown.

We denote the performance function as f(st, at), which is

related to the network state st and configuration action at. Due

to the heterogeneity of user applications, their performance

metrics can be extremely diversified, e.g., delay, throughput,

and reliability. Thus, we define a unified metric, i.e., PE, to

evaluate how the mobile network satisfies the user needs

Q(st, at) = Prob(f(st, at) < H)/|at|, (1)

where Prob(f(st, at) < H) represents the percentile perfor-

mance and H is the threshold [5]. For example, if the user

application is latency-oriented, e.g., augmented reality, the

percentile performance means how many percent latencies are

lower than the given threshold. The |at| represents resource

usage of users in multiple technical domains, which is de-

termined by the configuration action at. To cost-efficiently

serve diverse user applications, the network operator aims

to strike the balance between percentile performance and

resource usage.

Problem. Given a time period T , the objective is to derive

the optimal policy (π) that maximizes the cumulative PE.

Thus, we formulate the problem P0 as

P0 : max
π

E
π

[

∑T

t=0

Q(st, at)

]

(2)

s.t. 0 ≤ at ≤ M, (3)

where M are the maximum configuration actions, e.g., total

downlink wireless bandwidth in Table II. Note that network

states st may change at different configuration intervals

during the time period T . The main challenge of resolving

the problem lies in the complex and unknown performance

function. On the one hand, existing model-based convex

optimization methods [14], e.g., gradient descent, cannot be

directly applied. On the other hand, the high-dimensional state

and action space prohibit existing searching methods, e.g.,

exhaustive and grid searching.

III. NEURAL-ASSISTED NETWORK CONFIGURATION

In the normal training stage, we propose a new neural

assisted network configuration (NANO) method to effectively

resolve the problem P0 in two steps. First, we create a deep

neural network (DNN) and train it to predict performance

of users under both the state and action space. Second, we

develop a searching scheme to randomly sample actions from

the action space and select the optimal configuration action

that has the maximum predicted PE.

Neural-Assisted Prediction. Deep neural networks have

been demonstrated very promising accuracy on complex func-

tion regression and prediction, e.g., computer vision and natu-

ral language processing. We resort to DNN-based approaches

to predict the performance of users, because conventional

approaches, e.g., decision tree, fail to tackle high-dim state

and action space with high prediction accuracy. In particular,

we create a DNN (denoted as πθ) with weights θ, whose

output is 1-dim to predict the PE of users. Its input includes

both the state space st and action space at to be aware of

current network state and configuration action. To construct

the training dataset, we collect the observed network states

and sample the action space with grid searching from either

network simulators or real-world networks. We adopt stochas-

tic gradient descent methods to train the DNN by adopting the

mean squared error (MSE) loss function.

Randomized Action Searching. With the trained DNN

for PE prediction, we develop a randomized action searching

scheme to determine the optimal configuration action under

different network states. First, we randomly sample thousands

of actions from the action space (3-dim in Table II), where

more samples may be needed when the dimension of action

space increases. Second, we concatenate the current network

state and these sampled actions, feed them into the DNN

model, and obtain the predicted PEs. Third, we select the

optimal configuration action that has the maximum predicted

PE as follows

a∗t = argmax
at

πθ(st, at). (4)

IV. THE RONET FRAMEWORK

In this section, we introduce the RoNet framework in Fig. 1

to improve the robustness of configuration policies. First, we

design a new learn-to-attack method to automatically learn

and attack the neural-assisted configuration policy, without

the need for prior knowledge, e.g., gradients. Second, we

design a new robust defense method to defend and recover the

performance of the policy while it is under attack. The above

procedures may be repeated to adaptively strike the balance

between the robustness and performance of the policy.

A. Learn-to-Attack Stage

Existing adversarial attack approaches commonly assume

that the information of the model is known by the attacker,

which allows adversarial gradient-based attacks. However, the

configuration policy is composed of not only the DNN model

but also the action searching. Existing approaches, that attack

the accuracy of the DNN model, may not effectively degrade

the overall performance of the configuration policy. Thus,

we design the attacks to the configuration policy without the

assumption of known DNN model.

Attacker Problem. The objective of the attacker (denoted

as πv) is to minimize the performance of the policy under

the given scale of attacks. Thus, we formulate the attacker

problem as

P1 : min
πv

E
πv

[

∑T

t=0

Q(st + πv(st), at)

]

(5)

s.t. |πv(st)|∞ ≤ ϵ, (6)

where the πv(st) generates the attack by observing the current

state st. The attack space is defined by the maximum scale

(ϵ) with the regulation of the l∞-norm.

Bayesian Learning. Bayesian learning is a state-of-the-art

approach to automatically learn and tackle complex unknown

problems [13]. It relies on a surrogate model to approximate

the observable performance and an acquisition function to

Robust Defense Stage

Normal Training Stage

Learn-to-Attack Stage

T
h

e
 R

o
N

e
t

F
r
a

m
e
w

o
r
k

Fig. 1: RoNet Overview

determine the next attack on the state (ŝt) to query. In

each iteration, the surrogate model will be trained with all

collected transitions of attacks and degraded PE performance,

and the acquisition function will be recalculated according

to the updated surrogate model. The maximization of the

acquisition function will generate the next attack, which will

be queried, e.g., simulator or real-world testbeds, to obtain the

corresponding PE performance.

Gaussian Process. Gaussian Process [15] has been ex-

tensively adopted as the surrogate model and shown great

successes in a variety of practical problems. For the sake

of simplicity, we denote the observed dataset as D1:t =
{V1:t, y1:t}, where V1:t and y1:t are the set of attacks and

the corresponding negative PEs until the iteration t, respec-

tively. The posterior distribution is expressed as P (y|D1:t) ∝
P (D1:t|y)P (y). By using Gaussian Process GP [15] as the

prior, y can be represented as y ∼ GP(µ, k). µ(v) is the

mean function and k(v, v′) = exp(− l
2
||v−v′||2) is covariance

function under the given attack v. Here, we use the most

common kernel function, i.e., radial basis function (RBF) with

the lengthscale l is set as 1.0. Given an arbitrary attack ṽ, the

posterior distribution can be derived as

P (y(ṽ)|D1:t, ṽ) ∼ N (µ(ṽ), σ2(ṽ)), (7)

where µ(ṽ) = k
T [K + δ2I]−1y1:t, and

σ2

i (ṽ) = k(ṽ, ṽ) − k
T [K + δ2noiseI]

−1
k, where

k = [k(ṽ, v1), k(ṽ, v2), · · · , k(ṽ, vt)] and K =
[k(vi, vj)]t×t, ∀i, j = 1, 2, ..., t. The I denotes the identity

matrix with the same dimensions as K.

Acquisition Function. There are various candidate acquisi-

tion functions, e.g., EI, PI and UCB, can be used to select the

next attack, according to the updated surrogate model. Without

loss of generality, we adopt the Gaussian process upper

confidence bound (GP-UCB), which has been extensively

evaluated to be robust in tackling diversified scenarios [16].

Given the generated mean µ and variance σ2 function, GP-

UCB selects the next action as follows

vnext = argmax
vt

µ(vt) +
√

βt · σ(vt), (8)

where βt is a non-negative hyperparameter to balance the

exploration and exploitation. Intuitively, the higher βt encour-

ages more exploration, while the lower βt focuses on exploita-

tion. With the dedicated selection of β in individual iterations,

the application of GP-UCB acquisition function has a solid

theoretical guarantee on converging to global optima [16]. In

particular, under the selective kernel functions [16], the sub-

linear regret is achieved with the probability of 1− δ, if

βt = 2log

(

t2π2

3δ

)

+ 2dlog

(

t2dη2r

√

log(
4dη1
δ

)

)

, (9)

where δ is the hyperparameter between 0 and 1, and η1 >
0, η2 > 0, r > 0 are constants, and d is the attack dimension.

Remark. In this stage, the configuration policy is attacked

by the learn-to-attack method by perturbing its observable

state space. As the attack completes, we can obtain the

collection of network states, attack on states, configuration

actions, and the attacked PE performance.

B. Robust Defense Stage

To counter the attack and recover the performance, we

design a new robust defense method that is composed of

model retraining and probabilistic action selection. The model

retraining aims to recover the accuracy of the DNN model

πθ in terms of predicting the attacked PE performance. The

probabilistic action selection further improves the robustness

by randomly choosing selective configuration actions.

Model Re-Training. As the configuration policy is unaware

of the existence of the adverse attacker, its DNN model

observes the pre-attack states (instead of attacked states)

and generates predicted PE performance. We observe that

this deviation between pre-attack and attacked states partially

constitutes the performance degradation of the policy. We

retrain the DNN model based on the attacked dataset, i.e., the

collection of pre-attack states and their corresponding attacked

PE performance. In particular, we design the loss function of

πθ retraining as

Lossπθ
= |πθ(st, at)− U(st + πv(st), at)|2, (10)

where U(st+πv(st), at) is the attacked PE performance under

the network state st and the attacker πv . The attack πv(st) is

not revealed to the DNN model πθ. As the model retraining

completes, the DNN model πθ will recover its prediction

accuracy in terms of the attacked PE performance.

Probabilistic Selection. In the normal training stage, the

policy selects the configuration action by maximizing the pre-

dicted PE, which commonly results in non-robust performance

in practice. On one hand, the DNN model πθ may not be

very accurate on PE prediction under any states and actions.

On the other hand, the deterministic action selection under

the given DNN model can be easily attacked by targeting

the particular maximum. Hence, we design the probabilistic

selection scheme as follows. First, we sample the action

space extensively with thousands of samples. Second, we

concatenate the current state and these sampled actions, and

feed them into the retrained DNN model. Third, we rank

all the predictions of PE performance and truncate the first

κth percentile. Fourth, the configuration action is randomly

selected from the truncated set. In this way, the probabilistic

action selection not only mitigates the effect of inaccurate PE

prediction but also counters the potential attacks implicitly.

Remark. In this stage, the performance of the configuration

policy is recovered by using model retraining and probabilistic

selection. The learn-to-attack and robust defense stages may

be repeated to strike the balance between the robustness and

the performance of the policy.

V. PERFORMANCE EVALUATION

In this section, we conduct extensive network simulations

to evaluate the RoNet framework in terms of efficacy, adapt-

ability, and scalability.

Network Simulator. We use the widely adopted Network

Simulator 3 (NS-3) [17] to simulate the performance of mobile

networks. In particular, we develop an end-to-end network

topology, including RAN, TN, Core, and Edge networks.

The RAN and Core are based on 4G LTE from the LENA

project, where the channel model is LogDistancePropaga-

tionLossModel and the total wireless bandwidth is 10MHz.

The avg distance is randomized from 100 to 200 meters, and

mcs max ul and mcs max dl are sampled from [4, 20] and

[4, 28], respectively. The TN is based on a p2p link with

1Gbps bandwidth and a 2 ms delay. Specifically, we create a

video analytics application for mobile users. As simulations

start, mobile users send uplink packets via the HTTP protocol

with randomized ul avg size between 10K and 20K Bytes.

We develop a new module to achieve queue-based edge com-

puting simulations for processing the received packets. The

computation delay under 1.0 cpu ratio is set to be 81 ms mean

and 35 ms std, according to experimental measurements [9].

Without loss of generality, the downlink packet size is also

randomly generated between 10K and 20K Bytes. We design

the simulation time to be 30 seconds to collect sufficient

measurements of round-trip latency, which corresponds to

average 21 seconds real-world time. We empirically select

the latency threshold as H=200 ms according to the capacity

of the simulated network. Note that RoNet does not make

assumptions for the network and can seamlessly adapt to other

network settings and topologies.

Parameters. We collect the dataset from the simulator with

grid search on both 108 unique actions and 243 unique states,

where the total number of state-action-latency transitions is

26244. The data collection consumes more than 150 effective

hours. The dataset is used to estimate the PE under different

states and actions during the simulation. The architecture of

the DNN model is [128]x[256]x[128] full-connected layer and

ReLU activation function in PyTorch 1.10. The PE in the

evaluation is calculated by averaging the achieved PE under

all states. The default value of parameters are κ=0.99, ϵ=0.2,

and the number of training epochs is 50.

Comparison. We implement the following methods for fair

comparison with the RoNet framework:

• L-REG: The L-REG uses the linear regression model

to approximate the PE performance in Eq. 1, samples

actions and selects the one with the maximum predicted

PE under individual states.

• R-REG: The R-REG uses the Gaussian Process regres-

sion (GPR) model (implemented with scikit-learn toolkit)

to learn the PE performance, where the action selection

is the same as that of L-REG.

• Optimal: The Optimal is achieved by assuming that the

attack is known, i.e., the attacked states can be observed.

2 4 6 8 10
Number of training epochs

0.875

0.900

0.925

0.950

0.975
PE Ours

Optimal
G-REG
L-REG

Fig. 2: Performance under normal

training

0 20 40
Number of attack epochs

0.6

0.7

0.8

0.9

1.0

PE

Ours
RN

Fig. 3: Performance under attacks

20 40 60 80 100
Percentage of robust training (%)

0.56

0.58

0.60

0.62

PE

Ours
Optimal

Fig. 4: Performance under robust

defense

5 10 20 30
Attack Scale (%)

0.2

0.4

0.6

0.8

PE

Attack Stage
Robust Stage
Optimal

Fig. 5: Performance of RoNet under

different scales

0.8 0.9 0.95 0.99 1.0
k

0.4

0.5

0.6
PE

Attack Stage
Robust Stage
Optimal

Fig. 6: Performance of RoNet under

different κ

150 175 200 225 250
Latency Requirement (ms)

0.2

0.4

0.6

0.8

PE

Attack Stage
Robust Stage
Optimal

Fig. 7: Performance of RoNet under

different requirements

Then, the optimal action is obtained by extensive sam-

pling the action space with the ground-truth dataset.

• RN: The RN is the baseline of attacks, which randomly

samples attacks from the attack space and selects the

attack with the lowest predicted PE.

Performance of Normal Training. Fig. 2 shows the perfor-

mance of different methods during the normal training stage.

As more training epochs are completed, the performance of

RoNet converges with the close approximation to the Optimal.

As compared to L-REG, R-REG can obtain higher PE, which

is mainly attributed to the better approximation performance

of Gaussian process regression (GPR). The RoNet achieves

nearly 12.5% PE improvement than that of L-REG, which

suggests the high efficacy of the deep neural network (DNN)

based approximation. This performance difference is expected

to enlarge under higher dimensions of state and action space.

Performance of Learn-to-Attack. Fig. 3 depicts the per-

formance of different attack methods during the learn-to-

attack stage. We observe that the PE can be dramatically

decreased by attacking the state space, which indicates the vul-

nerability of the DNN-based configuration policy. The mean

and std of attack are avg distance = 0.06/0.13, dl avg size =

0.16/0.06, mcs max dl = -0.1/0.15, mcs max ul = -0.09/0.16,

and ul avg size = 0.01/0.17. The high std indicates that

attacks are contextual and individualized to different states,

instead of static values. As compared to RN, the learn-to-

attack in RoNet can achieve higher performance degradation

(8.5%), which justifies its effectiveness.

Performance of Robust Defense. Fig. 4 shows the perfor-

mance of RoNet during the robust defense stage. Here, we sep-

arate all the states into multiple subgroups, and continuously

Normal Performance Final Attacked Performance

Optimal 0.985 0.629
Ours 0.982 0.623

G-REG 0.958 0.543
L-REG 0.873 0.501

TABLE III: The performance of methods

retrain the DNN to approximate the attacked PE performance

on different subgroups. As more state subgroups are applied

for retraining, the PE performance of RoNet recovers 13.9%

PE performance (from 0.547 to 0.623) and approaches the

Optimal (0.629) gradually. The performance of the Optimal

is much lower than that in the normal training stage, because

attacks are enforced on states. We observe the attacked states

are with lower MCS and higher uplink and downlink data

sizes, where the performance cannot be fully recovered as

more data to transmit and less MCS can be used. As shown

in Table III, when the robust defense stage completes, RoNet

achieves 0.623 PE which is very close to the Optimal (0.629).

As compared to L-REG, RoNet can obtain more than 24.3%

improvement in the PE performance.

Performance under Variabilities. Fig. 5 shows the RoNet

performance under different attack scales. In general, the

higher attack scale allows larger attacks on the state space,

and results in larger performance degradation. When the attack

scale is 0.05 and 0.1, the original PE performance (0.985) can

be degraded to 0.90 (8.1%) and 0.81 (17.8%), respectively.

This disproportional performance degradation emphasizes the

necessity of investigating the robustness of DNN-based con-

figuration policy. Fig. 6 shows the final attacked performance

of RoNet under different probabilistic action selection factor

κ. When κ is 1, the action will always be selected if it has

the maximum predicted PE among all sampled actions. As

we decrease κ, the set of action candidates expands, which

generally improves the robustness because the attacker has

to target more actions. Consequently, the PE performance

is decreased because of the random selection on the set

of suboptimal action candidates. Fig. 7 shows the impact

of latency threshold H on the PE performance in RoNet.

With the more stringent latency threshold, the PE decreases

significantly under the fixed transmission and computation

resources in the simulated network.

In the default parameters, the mean and std of actions are

bandwidth ul = 0.56/0.1, bandwidth dl = 0.66/0.18, and

cpu ratio = 0.98/0.03. To counter the unknown attacks on

the state space, the mean final actions are bandwidth ul
= 0.7/0.17, bandwidth dl = 0.79/0.2, and cpu ratio =

0.99/0.01. It is worth noting that RoNet can always approach

the Optimal under different variabilities, which justifies its

strong adaptability and generalization.

VI. RELATED WORK

Network configuration has been extensively studied in

mobile networks to optimize a variety of networking ob-

jectives. Liu et. al. [18] formulated an approximated math

model to describe the problem of radio and computation

resource management, and designed an iterative algorithm to

search for the optimal solution for minimizing the latency of

mobile users. There are other works [6], [7], [5], [8] build

their analytic model based on experimental measurements for

different applications, e.g., augmented reality [6] and network

slicing [5]. Recent works [19], [2], [9] focus on machine

learning approaches to learn and automate network config-

uration. Shi et. al. [2] exploited deep learning to learn and

configure wireless mesh networks and used domain adaptation

techniques to bridge the discrepancy between simulators and

real-world networks. However, these ML-based solutions fail

to effectively counter real-world variabilities and potential

attacks in mobile networks.

AI robustness has received increasing research attention,

especially for DNN-based policies in real-world deployments.

In the pioneer AI robustness work [11], the vulnerability

of DNN under adversarial attacks is revealed with extensive

experiments, where the authors proposed a first-order adver-

sary method to achieve robust training. Multiple derivative

works aim to improve the robustness of DNN and deep

reinforcement learning (DRL) by using diversified techniques,

e.g., data augmentation [20], sparsity architecture [21], and

local linearization [22]. However, these works focused on

individual DNN model with the strong assumption of known

gradients during the DNN training. In this work, we aim to

derive a robust configuration policy, including robust DNN-

based approximation and action selections.

VII. CONCLUSION

In this work, we presented a new RoNet framework with

three stages in mobile networks to improve the robustness

of configuration policies. First, we designed a neural-assisted

network configuration policy that maximizes the performance

efficiency of mobile users. Second, we designed a learn-to-

attack method to automatically attack the state observation

and degrade the performance of the policy. Third, we designed

a robust defense method to recover the under-attack perfor-

mance of the policy. The performance evaluation shows that

RoNet outperforms existing solutions in terms of robustness,

adaptability, and scalability.

ACKNOWLEDGEMENT

This work is partially supported by the US National Science

Foundation under Grant No. 2212050.

REFERENCES

[1] M. Polese et al., “Colo-ran: Developing machine learning-based xapps
for open ran closed-loop control on programmable experimental plat-
forms,” IEEE Transactions on Mobile Computing, 2022.

[2] J. Shi, M. Sha, and X. Peng, “Adapting wireless mesh network con-
figuration from simulation to reality via deep learning based domain
adaptation,” in NSDI, 2021, pp. 887–901.

[3] C. Marquez et al., “How should i slice my network? a multi-service
empirical evaluation of resource sharing efficiency,” in Proceedings of

the 24th Annual International Conference on Mobile Computing and

Networking, 2018, pp. 191–206.
[4] Q. Liu and T. Han, “Virtualedge: Multi-domain resource orchestration

and virtualization in cellular edge computing,” in 2019 IEEE 39th

International Conference on Distributed Computing Systems (ICDCS).
IEEE, 2019, pp. 1051–1060.

[5] J. X. Salvat et al., “Overbooking network slices through yield-driven
end-to-end orchestration,” in ACM CoNEXT. ACM, 2018, pp. 353–365.

[6] X. Ran et al., “Deepdecision: A mobile deep learning framework for
edge video analytics,” in IEEE INFOCOM 2018-IEEE Conference on

Computer Communications. IEEE, 2018, pp. 1421–1429.
[7] S. D’Oro, L. Bonati et al., “Sl-EDGE: Network slicing at the edge,”

arXiv preprint arXiv:2005.00886, 2020.
[8] S. D’Oro et al., “Orchestran: Network automation through orchestrated

intelligence in the open ran,” in IEEE INFOCOM 2022-IEEE Confer-

ence on Computer Communications. IEEE, 2022, pp. 270–279.
[9] Q. Liu, N. Choi, and T. Han, “Onslicing: online end-to-end net-

work slicing with reinforcement learning,” in Proceedings of the 17th

International Conference on emerging Networking EXperiments and

Technologies, 2021, pp. 141–153.
[10] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez,

“Deepcog: Optimizing resource provisioning in network slicing with
ai-based capacity forecasting,” IEEE Journal on Selected Areas in

Communications, vol. 38, no. 2, pp. 361–376, 2019.
[11] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards

deep learning models resistant to adversarial attacks,” arXiv preprint

arXiv:1706.06083, 2017.
[12] X. Foukas et al., “Orion: Ran slicing for a flexible and cost-effective

multi-service mobile network architecture,” in Proceedings of the 23rd

annual international conference on mobile computing and networking,
2017, pp. 127–140.

[13] J. A. Ayala-Romero et al., “Bayesian online learning for energy-aware
resource orchestration in virtualized rans,” in IEEE Conference on

Computer Communications. IEEE, 2021, pp. 1–10.
[14] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.

Cambridge university press, 2004.
[15] C. E. Rasmussen, “Gaussian processes in machine learning,” in Summer

school on machine learning. Springer, 2003, pp. 63–71.
[16] N. Srinivas et al., “Gaussian process optimization in the bandit setting:

No regret and experimental design,” arXiv:0912.3995, 2009.
[17] A. discrete event network simulator for internet systems, “NS-3,” May

2022 [Online].
[18] Q. Liu, T. Han, and N. Ansari, “Joint radio and computation resource

management for low latency mobile edge computing,” in IEEE Global

Communications Conference (GLOBECOM). IEEE, 2018, pp. 1–7.
[19] H. Zhang et al., “OnRL: improving mobile video telephony via online

reinforcement learning,” in Proceedings of the 26th Annual International

Conference on Mobile Computing and Networking, 2020, pp. 1–14.
[20] S.-A. Rebuffi et al., “Fixing data augmentation to improve adversarial

robustness,” arXiv preprint arXiv:2103.01946, 2021.
[21] Y. Guo et al., “Sparse DNNs with improved adversarial robustness,”

Advances in neural information processing systems, vol. 31, 2018.
[22] C. Qin et al., “Adversarial robustness through local linearization,”

Advances in Neural Information Processing Systems, vol. 32, 2019.

