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Abstract

We consider the problem of finding top-k
items from a set of n items using actively
chosen pairwise comparisons. This problem
has been widely studied in machine learning
and has widespread applications in recom-
mendation systems, sports, social choice etc.
Motivated by applications where there can be
a substantial delay between requesting com-
parisons and receiving feedback, we consider
an active/adaptive learning setting where the
algorithm uses limited rounds of parallel in-
teraction with the feedback generating oracle.

We study this problem under the strong
stochastic transitivity ( S S T )  noise model
which is a widely studied ranking model and
captures many applications. A  special case of
this model is the noisy comparison model for
which it was recently shown that O(n log k)
comparisons and log n rounds of adaptivity
are sufficient to find the set of top-k items
(Cohen-Addad et al., 2020; Braverman et al.,
2019). Under the more general SST model, it
is known that O(n) comparisons and O(n)
rounds are sufficient to find a PA C  top-1
item (Falahatgar et al., 2017a,b), however,
not much seems to be known for general k,
even given unbounded rounds of adaptivity.

We first show that
(nk) comparisons are necessary for PA C  top-

k identification under S S T  even with
unbounded adaptivity, estab-lishing that
this problem is strictly harder under SST

than it is for the noisy comparison model. Our
main contribution is to show that the 2-round
query complexity for this prob-lem is (n4=3

+  nk), and to show that just 3 rounds are
sufficient to obtain a nearly opti-mal query

complexity of (nk). We further show that our
3-round result can be improved
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by a log(n) factor using 2 log n +  4 rounds.

1 I N T R O D U C T I O N

The problem of finding the k best items amongst n
totally ordered items using pairwise comparisons is a
fundamental problem in ranking/sorting and has wide-
ranging applications in a variety of domains including
recommendation systems, sports, social choice, crowd-
sourcing etc. (Radlinski et al., 2008; Radlinski and
Joachims, 2007; Baltrunas et al., 2010; Chen et al.,
2013; Yue and Joachims, 2011; Soufiani et al., 2013).
Due to the high cost of procuring comparison data, the
natural objective is to minimize the number of pairwise
queries required for finding top-k items.

However, in many practical applications such as rec-
ommendation systems, crowdsourcing etc., there can
be a substantial delay between requesting comparisons
and receiving feedback, thereby making it more effi-
cient for an algorithm to query in parallel. Motivated
by such applications, we consider an active/adaptive
setting where the algorithm interacts with a feedback
generating oracle in rounds, with each round consisting
of comparisons for multiple pairs of items in parallel.
Hence, the goal in our problem setting is to find the
k best items while minimizing the number of pairwise
queries with limited rounds of parallel interaction.

This problem is well-studied in both theoretical com-
puter science and machine learning.     The classical
Se lec t i on  algorithm finds top-k items using O(n)
noiseless comparisons in O(log n) rounds of interac-
tion; Braverman et al. (2016) improved the number of
rounds to 4 while having the same query complexity.
The noisy comparison model (Feige et al., 1994), where
there is a (fixed, constant) parameter  2  [0; 1 ) such
that the true outcome of a comparison is flipped with

probability , has also been well-studied. Braverman et
al. (2016) show that one can find the top-k set w.h.p.

using O(n log n) noisy comparisons in 4 rounds, and
Cohen-Addad et al. (2020) further improve the query
complexity to (n log k) in log n rounds1.

1 The function log n is the number of times the logarithm
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Adapt ive  Rounds
1
2

3 2 log
n +  4

Table 1: Overview of Results

U p p e r  B o u n d
O(n2 log n) [Trivial]

O(maxfnk; n4=3g log2 n) [Theorem 2]

O(nk log2 n) [Theorem 3]
O((nk +  k2 log2 k) log k) [Corollary 1]

Lower B o u n d

(n2) [Braverman et al.
(2019)]
(maxfnk; n4=3g)

[Theorem 1+Alon and Azar (1988)]

(nk) [Theorem 1]

In this paper, we consider a more general noise model
for pairwise comparisons, known as the strong stochas-
tic sransitivity ( S S T )  model. This model has
roots in social science and psychology (Fishburn,
1973) and several empirical studies (Tversky, 1972;
Ballinger and Wilcox, 1997) have indicated it to be
effective at mod-eling real-world human decision-
making, making it an active area of research in the
machine learning commu-nity (Shah et al., 2016;
Falahatgar et al., 2017a, 2018, 2017b). Given a set of
[n] items, the S S T  model is parameterized by a
preference matrix P  2  [0; 1]nn where P i j  is the
probability of item i  beating item j  in a pairwise
comparison. This model further as-sumes an
underlying strict ordering over the items, and posits
that for any items h; i; j 2  [n] ordered such that h  i   j ,
then P h j   maxfPh i ; P i j g 2. This implies that the
matrix P  is consistent with the underlying ordering
in the sense that P i j   1 if i   j .

Since this model allows P i j  for any pair ( i ; j )  to be
arbitrarily close to     , one would require an arbitrarily
large number of comparisons to differentiate between
such pairs (i; j ),  making the separation of the exact
top-k items from other items inefficient. We overcome
this difficulty by adopting the probably approximately
correct ( PA C )  paradigm, which has been commonly
used in ranking literature (Busa-Fekete et al., 2014;
Falahatgar et al., 2017a,b; Ren et al., 2020). Under this
paradigm one can return an “approximately optimal”
set of k items with high probability.

Definit ion 1 ((; k)-optimality and PA C  top-k selec-
tion). For a set [n], given k <  n, and  2  (0; 1], a
subset S   [n] is said to be an (; k)-optimal subset3 of
[n] if jS j =  k and for any items i  2  S ; j  2  [n] n S ,
P i j  >  1=2   . Given  2  (0; 1], the ( ; ) -PAC top-k
identification4 problem is to identify an (; k)-optimal
subset of items w.p.  1 .

function must be iteratively applied to n before the result is
less than or equal to 1. This is a very slowly growing
function and is less than 6 for most practical values of n.

2Note that the noisy comparison model discussed above
satisfies this condition under S S T ,  and hence, S S T  is a
strictly more general model than noisy comparison model

3Note that the exact top-k set under the noisy compari-
son model is also a (; k)-optimal subset.

4 For ease of exposition, we suppress dependence on ; .

There have been several results showing that even under
this more general SST model, PA C  top-1 identification is
possible using O(n) comparisons and O(n) rounds of
interaction (Falahatgar et al., 2017a,b). Recently, Ren
et al. (2020) showed that PA C  top-k selection is possi-
ble using (n log k) comparisons and
(log n) rounds if the model satisfies a stochastic triangle
inequality (STI)  condition in addition to SST 5. However,
the query com-plexity of PA C  top-k selection under SST
for general k without the S T I  assumption is not known,
even when allowed unbounded adaptivity. Therefore,
we seek to understand the following fundamental
question –

Assuming the SST noise model, what is the query com-
plexity of PA C  top-k selection, and how many rounds of
interaction/adaptivity are sufficient to achieve this?

1.1 Summary of K e y  Contr ibutions (Tab le  1)

1. Lower Bound:  We show
(nk) comparisons are necessary for PA C  top-k
selection under S S T  even given unbounded
adaptivity. One can observe a sharp contrast
between the mild log k dependence un-der the noisy
comparison model (as well as SST +ST I  model), and
the linear dependence on k in the above bound under
SST.

2. 2-Round Algorithm: We design a 2-round algo-
rithm with a query complexity of O(nk+n4=3), which
is the best complexity achievable in 2 rounds (up to
polylog factors), and shows that the additional cost
incurred by limiting to 2 rounds is O(n4=3).

3. 3-Round Algorithm: We design a 3-round algo-
rithm with query complexity of O(nk) which is op-
timal up to polylog factors. This shows, perhaps
surprisingly, that even under this more general SST
model, we need only a constant number of rounds
for achieving optimal query complexity.

4. (2 log n +  4)-round Algorithm: We show that it
is possible to further improve the performance of the
3-round algorithm by log factors using more number
of rounds. In particular, we design a (2 log n +  4)
round algorithm that has a nearly optimal query
complexity of O(nk log k) for any k  n= log2 n.
5Note that the algorithms in Falahatgar et al. (2017a,b);

Ren et al. (2020) were not optimized for rounds of interac-
tion and turned out to be highly adaptive in nature.
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1.2 Overview of Challenges and K e y  Ideas

We discuss the key technical challenges and algorithmic
ideas used to overcome these challenges.

Lower bound for unb ounded number of rounds.
In order to understand the idea behind our lower bound
one has to first observe that under the SST model, the
probability of observing the correct preference relation
between a pair of items upon comparing them can be
item-dependent and arbitrary, unlike the noisy com-
parison model where the probability of observing the
correct outcome for any pair is a fixed constant, say
2=3. For instance in our setting, for any given toler-
ance , it is possible to have a triple h  i   j ,  with
P h i ; P i j  =  1=2 +  n 2, and P h j  =  1=2 +  , essentially
implying that it is impossible to efficiently infer the
sub-optimality of item j  without explicitly compar-
ing the pair (h; j ). This idea forms the basis of our
lower bound, which for any given tolerance , consists
of an instance with two distinguished items 1; n with
P1n  =  1=2 + , and for all other items i  2  [2; : : : ; n      1],
P1i  =  P i n  =  1=2 +  n 2. For any k, the only invalid
solution for this instance is a set which contains item n
but excludes item 1. However, identifying these distin-
guished elements 1; n is only possible by comparing the
specific pair (1; n). Now it is easy to see that any algo-
rithm that succeeds with a sufficiently high probability
must perform
(nk) comparisons. Intuitively, if the algorithm plans
to return a set S  of k items, it needs to have compared
most pairs i  2  S ; j  2  [n] n S. Otherwise, there is a
possibility that the suboptimal item n was included,
but item 1 was excluded, and the algorithm failed to
detect this situation since the pair (1; n) was amongst
the pairs that the algorithm did not compare. The
following informal theorem describes our lower
bound result, which is formally stated in Section 2.

Theorem 1 (Informal). Given any set of items [n]
with pairwise preferences satisfying S S T ,  and any k
n=2, any ( ; )-PAC top-k identification algorithm for a
sufficiently small  must perform
(nk) comparisons, even when allowed unbounded
adaptivity.

In the above bound, we focus on establishing a sample
complexity as a function of n and k. Though our lower
bound construction does not reflect it, prior work (cf.
Falahatgar et al. (2017a) and references therein) has
established that a (worst-case) multiplicative depen-
dence on the precision 1=2 is necessary – supposing we
perform fewer comparisons per pair, then the observed
relation can be erroneous with constant probability
even for pairs that are -separated in pairwise prefer-
ences. We now discuss the key ideas behind our 2 and
3-round algorithms which are our main contributions.

T h e  2-round algorithm. At a high level, both our 2

and 3-round algorithms are based on the idea of pivoting
– Suppose we aim for a query complexity of O(n)
comparisons across 2 rounds, then we select  anchor

items, and compare them to all items (up to a desired
precision) in parallel in the first round. The idea is that
supposing we chose these anchors uniformly at random,
then they should be roughly equally spaced in the true

ordering – n= apart in expectation. Now suppose we
could correctly determine the relative position of every
item with respect to every anchor, then we can partition

our items into chunks of size roughly n=. We can then
process these anchors in their sorted order, adding
entire chunks to our final solution without comparison
until we reach the first chunk where adding it entirely
would cause the solution size to exceed k. We can then
focus our attention to just this chunk in the second
round, where we compare all pairs of items in this
chunk to the desired precision in parallel and add just
the top items into our solution to meet our cardinality
requirement. The query complexity would then be

O(n +  (n=)2), which after optimizing for  would
give us a sample complexity of O(n4=3) for  =  n1=3.

This is indeed the idea used in the 2-round algorithm
for top-k selection in the noisy comparison model (with
some optimizations to save log factors), where it is
possible to identify the relative position of every item
with respect to every anchor by performing sufficiently
many comparisons. However, this idea alone fails under
the S S T  model where this neat partitioning of items
into chunks of size O(n=) is no longer viable due to the
arbitrary and item-dependent nature of the paired
preference probabilities. To  demonstrate this, consider
the following instance: given any k, let  >  0 be some
arbitrarily small constant, with the set of items [n]
being partitioned as follows: G0 is the set of true top-k
items, G1 is a set of k1 n2=3 “equivalent” items, G2 is a
set of n2=3  “not equivalent but indistinguishable"
items, and G3 are the rest of the “not equivalent but
distinguishable” items. The groups are ordered as G0  G1

G2  G3, with an arbitrary internal ordering within
each set. Let b =  n     2 be a negligible bias term, then the
pairwise preference probabilities6 are:

G0 G1 G2 G3
+  b +  +  G

B 1               1 +  b      1 +  C  G1

2 2 +  G2

2 3

Observe that any k items from G0 [  G1 is an (; k)-

6Within each group, we can assume a negligible bias of b
in the preference probabilities to ensure the strict ordering
assumption required by S S T .  However, we ignore it here
for ease of exposition.
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optimal subset. However, if we sample just O(n1=3)
anchors, we almost certainly get no anchors from G0

for k <  n2=3 . We almost certainly also get no an-
chors from G2 and just O(k1 )  anchors from set G1.
The rest of the anchors will be from set G3. Now ob-
serve what happens when we compare all items to the
anchors: since anchors from group G1 are unable to
differentiate between items from groups G0; G1; G2, we
end up with a set of O(k1 n2=3) items whose position can
not be determined relative to the first O(k1 )
anchors. While we can construct a partial solution of
size O(k1 )  using the anchors alone (since no item will
beat any of these pivots from group G1 with a
margin larger than ), finding an (; k      k1 )-optimal
subset from the remaining chunk of size
(k1 n2=3) in just the one remaining round is a non-trivial
challenge. We cannot simply take an arbitrary set of
(k) items from this large chunk due to the existence of
the set G2, and the naive recipe of comparing all pairs of
items in this chunk would require
(k2 2n4=3) comparisons, which is larger than our
desired query complexity of O(n4=3 +  nk) for any
polynomially large k. There-fore, the pivoting idea
which worked well for the noisy comparison model, fails
here.

Despite this apparent difficulty, we show that a pair
of new ideas combined with pivoting actually gives
us a 2-round algorithm with a query complexity of
O(n4=3 + nk) (optimal up to log factors), and the above
hard instance proves helpful in developing intuition.

The first key idea addresses the problem of the margins
in pairwise probabilities being arbitrarily small: we
first compare all items to the anchors to a precision
slightly smaller than the allowed tolerance , say =4,
and for every anchor, construct a winner set of items
that beat the anchor with a large observed margin, say
larger than 3=4. The idea here is that the winner set
of an anchor can only contain items that precede the
anchor in the true sorted order, and necessarily
contains every item that beats the anchor with a true
margin larger than , giving these items priority over
the anchor. The items that do not make it into the
winner set can be treated as equivalent if not worse than
the anchor. We then process the anchors in their sorted
order, breaking ties by preferring anchors with smaller
winner sets when the ordering is unclear, adding their
entire winner sets into the partial solution stopping
at the first anchor whose winner set, if added to the
partial solution, would cause its size to exceed k. If this
final winner set is sufficiently small in size to perform
all pairwise comparisons, we do so and pick the best
items from this final winner set to meet the cardinality
requirement of k. However, as demonstrated by the
hard instance outlined above, this by itself is still not
sufficient to control the sizes of these winner sets, with

the last winner set being possibly as large as
(kn2=3) in size. This brings us to the second key idea,
which is the way we handle the second round of queries.

Observe in the above instance, we ran into difficulty
because the final winner set we were left with was too
large to perform all pairwise comparisons. Moreover,
although all items in this set had an essentially iden-
tical profile when compared against all anchors, there
existed a problematic set of “not equivalent but indis-
tinguishable” items (G2 ) hidden in this chunk which
prevented us from picking arbitrary items to meet our
cardinality requirement of k. However, observe that
these suboptimal items are very small in number, and
we can in fact argue that this must always be the
case. Specifically, there can be at most O(n2=3) such
items because otherwise, we would have sampled an
anchor from this set allowing us to isolate the “true”
top-k set exactly. Since we broke ties by preferring
anchors with smaller winner sets, this would have
guaranteed the final winner set to have size at most
O(k), which is within our query budget to simply
perform all pair-wise comparisons in this final winner
set. The formal argument is much more nuanced, but
generally builds upon this intuition. Therefore, this
naturally suggests a random sampling idea for the
second round - if the remaining chunk is too large in
size, say larger than 10 maxfn2=3; nkg, we can
sample say 10k items from this chunk and compare
them against all other items in this chunk, costing
only O(nk) comparisons in the worst case. By a
standard Chernoff bound, we would be guaranteed to
sample a (; k)-optimal subset into this set, which
would be easily identifiable from noisy pairwise
comparisons as they would be items that do not lose
to anyone with an observed margin larger than 3=4. We
can then cover the deficit in our cardinality
requirement with an arbitrary set of such items that
are not beaten by a large observed margin.

The following informal theorem describes our 2-round
upper bound, which is formally stated in Section 3.1.
Theorem 2 (Informal). Given any items [n] with un-
known pairwise preferences satisfying S S T ,  any k
n=2,  >  0, and  >  0, there exists a 2-round algorithm for
( ; )-PAC top-k selection with query complexity O(n4=3

+  nk).

Note that this bound is tight (upto log factors) as
Braverman et al. (2019) show that any 2-round algo-
rithm needs
(n4=3) comparisons, and our lower bound shows that
(nk) is always necessary.

T h e  3-round algorithm. The 3-round algorithm is
similar to the 2-round algorithm, except for a few key
differences. We begin by sampling a larger set of O( n)
anchors uniformly at random, and invest the first round
into comparing all anchors amongst themselves to a
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precision slightly smaller than the specified tolerance ,
say =4. We retain just the best k anchors, which are
anchors that do not lose to any of the discarded
anchors by an observed margin larger than this preci-
sion. The rest of the algorithm is now identical to the
2-round algorithm, with the set of anchors being these
k best anchors chosen at the end of the first round.
The intuition behind this approach is based on two
observations: firstly, supposing we could actually iden-
tify the best k anchors from the set of the randomly
sampled O( n) anchors, then an (; k)-optimal subset
of items can be found amongst these best k anchors
and the items that are superior (specifically, in their
winner sets) to these k anchors alone. Therefore, the
items that are inferior to these best k anchors can be
safely ignored, making comparisons with the rest of
the inferior anchors meaningless. Secondly, supposing
we make a mistake in identifying the actual best k
an-chors, then any inferior anchor that was chosen in
place of an actual best-k anchor could not have been
much worse. Specifically, the actual best-k anchor
could not have beaten this inferior anchor by a true
margin larger than =2 (twice the set precision) and
consequently, due to S S T ,  no item that lies between
the best-k anchor and the chosen inferior anchor can
beat the inferior anchor by a margin larger than this.
Therefore, none of these items can be included into
the winner set of this inferior anchor as none of these
items can beat the inferior anchor with an observed
margin larger than 3=4. Therefore, the winner set of
this inferior anchor can only contain items that
precede the actual best-k anchor in the true sorted
ordering, effectively simu-lating selecting the actual
best-k anchor itself. The formal proof is subtle, but
builds upon this idea. The following theorem describes
our 3-round upper bound, which is formally stated
and proved in Section 3.2.

Theorem 3 (Informal). In the setting of Theorem 2,
there exists a 3-round algorithm for ( ; ) -PAC top-k
selection with query complexity O(nk).

(2 log n +  4)-round algorithm. Our algorithm is
based on the idea of selecting good anchors and com-
paring other items to these anchors in order to find a
small number of top-k candidates. This idea is similar
to the top-k algorithm of Cohen-Addad et al. (2020)
which finds an anchor with rank O(k) and filters items
that are better than this anchor in successive rounds.
However, as discussed in the overview of 2 and 3-round
algorithms, our setting does not allow one to filter
items based on such precise criterion as the margins
in pairwise preferences can be arbitrarily small. More
precisely, consider the example given in the overview
of 2-round algorithm where there are 4 groups– G0 to
G3. If one happens to select an anchor from the group
G1 then one will not be able to filter G0 as it is very

close to G1 (underflow), and if the anchor lies in group
G3 then all of G0 ; G1 ; G2 can be filtered which can be
much larger than required (overflow).

In order to solve the overflow problem we define the
notion of the -rank of an item, which is the number
of items that beat the given item with margin at least .
We then find an anchor with =3-rank of O(k) using a
top-1 algorithm similar to Cohen-Addad et al. (2020) as
a subroutine over a randomly chosen subset of items.
Now, we compare items up to a precision of =6 and
filter all items which beat the anchor with margin at
least 2=3, and exclude all items which beat the anchor
with margin less than =3 (including items that lose to
the anchor). This solves the overflow problem as there
are at most O(k) items that can be filtered in. However,
it is possible that no items beat the anchor with a
margin at least 2=3, still leaving us with the underflow
problem. In this case, observe that the anchor itself is
an -optimal item and can be included in the solution.
Hence, if we repeat this in parallel for k different good
anchors, we will have k items in the solution even if we
have underflow for all of them. These ideas combined
with an aggressive item-elimination strategy (Agarwal
et al., 2017) gives us the following result.
Corol lary 1 (Informal). In the setting of Theorem 2,
there exists a (2 log n +  4)-round algorithm for ( ; ) -PAC
top-k selection with query complexity O((nk +  k2 log
k) log k).

1.3 Related Wo r k

There is a substantial literature on the problem of top-k
identification from pairwise comparisons in theoretical
computer science and machine learning. Given a set of
n items with an underlying ranking over them, the
classical Se lec t i on  algorithm finds the set of top-k
items using O(n) noiseless comparisons and O(log n)
rounds. Bollobás and Brightwell (1990) show that O(n)
noiseless comparisons and 4 rounds are sufficient for
a closely related problem of finding the k-th ranked
item, and Braverman et al. (2016) show that one can
even solve top-k identification with same number of
noiseless comparisons and rounds.

The noisy comparison model was introduced by Feige
et al. (1994), who showed that the top-1 item can be
identified using O(n) comparisons and log n rounds.
Braverman et al. (2016) show that one can find the set
of top-k items under this comparison model using 4
rounds and O(n log n) comparisons. Braverman et al.
(2019) further improve this understanding by showing
that a 1-round algorithm needs (n2) comparisons,
while a 2-round algorithm needs (n4=3) comparisons.

Finally, Cohen-Addad et al. (2020) show that the opti-
mal query and round complexity under this model is
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(n log k) comparisons and (log n) rounds, respec-
tively. However, these results are for the noisy compar-
ison model, which is considerably more restrictive than
the S S T  model we consider.

Another line of work considers the top-k identification
problem under parametric models such as the Bradley-
Terry-Luce ( B T L )  model (Luce, 1959; Bradley and
Terry, 1952). In particular, Szörényi et al. (2015) show
that one can find a PA C  top-1 item using O(n log n)
comparisons. Chen and Suh (2015); Chen et al. (2017,
2019) show that one can find the exact top-k set using
O(npoly(log n)) comparisons given the knowledge of
a gap parameter. However, these results are in the
passive setting where the algorithm has no control over
which comparisons are performed. Moreover, these
models have been shown to be much more restrictive
than the S S T  model that we consider in this paper
(Tversky, 1972; Ballinger and Wilcox, 1997).

Ranking under the SST model has been an active area
of research in machine learning; here we focus on re-
sults directly related to top-k identification. Yue and
Joachims (2011) show that one can find a PA C  top-1
item using O(n log n) comparisons assuming that the
comparison model also satisfies stochastic triangle in-
equality ( S T I )  in addition to S S T .  Under the same
assumption, Falahatgar et al. (2017a) further improve
the query complexity for PA C  top-1 identification to
O(n). Finally, Ren et al. (2020) show that one can
find a PA C  top-k set using (n log k) comparisons and
O(log n) rounds under SST+STI .  However, this result
crucially uses the S T I  condition which does not apply
in our setting. Falahatgar et al. (2017b) relax the ST I
assumption, and show that one can find a PA C  top-1
item under S S T  alone using O(n) comparisons. In a
follow-up work, Falahatgar et al. (2018) show that the
same query complexity holds for a slightly more general
stochastic transitivity condition called MST. However,
these results focussed on the special case of k =  1 and
their algorithms were designed for unbounded rounds
of interaction. Mohajer et al. (2017) consider the prob-
lem of finding exact top-k items under a more general
model than S S T ,  but assumes that the gap between
k-th and (k +  1)-th ranked items is fixed and known,
which is crucially used by their algorithm. In contrast,
we make no assumptions on the gaps between items.

There has also been work on best item identification
under more general, non-transitive models. However,
the best item under these models is generally not well-
defined and one has to resort to other notions of best
item such as the Borda or Copeland winner (de Borda,
1781; Agarwal et al., 2017; Busa-Fekete et al., 2014;
Busa-Fekete et al., 2013; Shah and Wainwright, 2015;
Heckel et al., 2019). The most closely related work
to ours is Agarwal et al. (2017) which shows that one

can find the Borda winner for any pairwise probabil-
ity model using (n=2) comparisons and (log n) rounds
of querying, where b is the gap between Borda scores of
the k-th and (k + 1)-th items. Under SST, the ordering
with respect to Borda scores happens to be consistent
with the true ordering, hence, one can use their
algorithm for exact top-k identification under SST.
However, the gap b between Borda scores can be
(n) times smaller than the actual preference gap
between the k-th and the (k + 1)-th items in our setting.
Hence, the query complexity of their algorithm can
have a
(n3) dependence which is much worse compared to our
results. Moreover, their algorithm does not apply to the
PA C  setting and requires the knowledge of b.

There is also a vast literature on recovering a full rank-
ing over items using pairwise comparisons under S S T
and other models; we refer the reader to surveys pro-
vided in Agarwal (2016); Bengs et al. (2021). Shah
et al. (2016) also consider the problem of estimating
the entire pairwise preference matrix under SST. How-
ever, these results are tangential to the results in our
paper as estimation of the preference matrix does not
necessarily translate to identification of the top-k items.

Best-arm identification under the dueling bandits
framework has also gained significant attention in re-
cent years (Bengs et al., 2021). However, this frame-
work only focusses on top-1 identification, whereas the
focus of our work is the more general top-k identifi-
cation problem. Moreover, we are not aware of any
work on dueling bandits that considers limited adaptiv-
ity. Top-k identification under the multi-armed bandits
setting has also been widely studied (Even-Dar et al.,
2006; Kalyanakrishnan et al., 2012; Kalyanakrishnan
and Stone, 2010), however, the algorithms here receive
quantitative feedback on the quality of an item whereas
in our setting the algorithm receives relative feedback
between two items. The design of algorithms with
limited adaptivity has also been an active area area in
machine learning, and algorithms with limited rounds
of adaptivity have been designed for various problems
(Agarwal et al., 2017; Braverman et al., 2016,
2019; Zhang et al., 2020; Ruan et al., 2021).

2  L O W E R  B O U N D  F O R
U N B O U N D E D  A D A P T I V I T Y

In this section we formally state the lower bound on
the query complexity of ( ; )-PAC top-k identification
under the S S T  model for paired comparisons.

Theorem 1. For any n and any k  n=2,7, there exist
pairwise preferences over n items satisfying the S S T

7 The assumption k  n=2 is without loss of generality,
because otherwise, we can equivalently identify the bottom-
(n       k) items instead.
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condition such that any algorithm for (; )-PAC top-k
identification needs to perform at least nk=4 pairwise
comparisons for   k=(8(n 1)).

The hardness of this more general pairwise comparison
model becomes apparent when we contrast this query-
complexity lower bound with existing results for top-k
identification in the noisy comparison model (Cohen-
Addad et al., 2020) (and even S S T + S T I  model (Ren
et al., 2020)). Specifically, for k =
(n), in the noisy comparison model (and S S T - S T I
model), O(n log n) comparisons are sufficient to solve
this problem with high 1   1=poly(n) probability,
whereas under this more general S S T  model, our
lower bound shows that any algorithm that solves this
problem with even con-stant probability given
unbounded rounds of adaptivity, must necessarily
perform
(n2) comparisons. In the following sections, we design
algorithms for top-k iden-tification under this more
general comparison model, given limited rounds of
adaptivity.

3  C O N S T A N T - R O U N D
A L G O R I T H M S  F O R  ( ; ) - PAC
T O P - k  I D E N T I F I C A T I O N

In this section, we present our constant round algo-
rithms for PA C  top-k identification under the S S T
model. Note that it is easy to design a 1-round algo-
rithm with a query complexity of O(n2) by comparing
all items to each other sufficient number of times and
identifying a set of top-k items based on realized pref-
erence probabilities. A  standard Hoeffding’s inequality
will show that this algorithm will succeed with high
probability. Braverman et al. (2019) also gives a lower
bound showing that any 1-round algorithm needs to
have a query complexity of
(n2). This easily resolves the case of 1-round (upto log
factors). Hence, our main focus here is on 2 and 3-
round algorithms.

3.1 A  2-Round Algor i thm

We begin by presenting an algorithm for PA C  top-k
identification with O(maxfn4=3; nkg) query complexity
using 2 rounds of adaptivity. The following theorem
characterizes the 2-round upper bound.
Theorem 2. Given any set of items [n] with un-
known pairwise preferences P  2  [0; 1]nn satisfying
S S T ,  any integer k 2  [1; n=2], tolerance  2  (0; 1],
and confidence  2  (0; 1], there exists an algorithm
for ( ; )-PAC top-k identification with query complex-
ity O((1=2) maxfn4=3; nkg log2(n=)) and at most 2
rounds.

Note that the above bound is tight (upto log factors) as
Braverman et al. (2019) show that one needs

(n4=3)

comparisons for identifying top-k in 2-rounds, and our
lower bound in Section 2 shows that
(nk) is neces-sary. The proof of the above theorem is
given in the supplementary material.

We present here an overview of the algorithm, which is
formally specified as Algorithm 1. Our algorithm begins
by sampling a set A  of “anchor items” chosen at random.
These anchors, which are roughly maxfn1=3; kg log n
in number, are subsequently compared to all items
(including other anchors) up to a precision of =4
in parallel. The observed pairwise preference
probabilities are then used to construct “winner sets”
Wa for every anchor a 2  A, which consist of items that
beat anchor a with an observed margin of at least
3=4. The idea behind these winner sets Wa is that
they only consist of items that are better ranked than
the anchor a, and necessarily contain every item that
is -better than anchor a. We then order the anchors
using both the observed preference probabilities
between anchors, as well as the size of these winner
sets: if an anchor i  2  A  beats another anchor j  2  A
with an observed margin of at least =4, or if the
observed margin is strictly smaller than =4 but i  had a
smaller winner set Wi <  Wj , then i  precedes j  in the
ordering. Otherwise, ties are broken arbitrarily. Due to
the precision with which pairs are compared, the
former condition is a case where anchor i  necessarily
precedes anchor j  in the true permutation, whereas the
latter condition is a case where it is not possible to
identify the relative ordering of anchors i  and j  in the
true permutation in which case the anchor with the
smaller winner set is preferred. We refer to this
sorted ordering of anchors as a1; : : : ; ajAj.

The algorithm then processes these anchors in the
sorted order a1; : : : ; ajAj , greedily constructing an
(; jT j)-optimal partial solution T by including entire
winner sets Wa without any additional comparisons,
halting either

1. When k anchors have been processed without the
cardinality of T0 exceeding k, i.e. t =  k +  1, and
j [ i k  Wa i  j <  k.

2. At the first anchor at where including its entire
winner set Wa     in T0 would cause its cardinality to
exceed k, i.e. t  k : j [ i < t  Wa j <  k; and j [ i t  Wa i  j
k.

Let k0 =  jT0j be the number of items in the partial
solution constructed at this point. The remaining bud-
get of k   k0 items is filled depending on the halting
condition.

In the first case, the remaining budget of k      k0 items is
filled by including k      k0 anchors chosen arbitrarily
from amongst the first k anchors that have not already
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been included in the partial solution T0 thus far. Since
k0 <  k, observe that we can always find such a set of
anchor items.

In the second case, we do one of two things depending
on the number of “candidate items” jWa nT0j to choose
from. If this number is small enough that we can afford
to perform all pairwise comparisons without exceeding
our query budget of O(maxfn4=3; nkg), we do so and
select an (; k      k0)-optimal subset C  of Wa n T0 (ties
broken arbitrarily) to include in our partial solution
T0 to cover the deficit. Specifically, C   Wa n T0 is a

set of k   k0 items such that for any item i  2  C ,  and
any item j  2  (Wa     n T 0) n C ,  P j i  <  1=2 +  3=4. On
the other hand, if the number jWa n T0j of candidate
items is too large, then we first try to fill the remaining
budget using items that are guaranteed to have rank
at most that of any of the previously parsed pivots,
i.e. items j  2  [n] n T that beat any of the previously
parsed pivots with margin at least =4. We refer to

these items as S , specifically S  =  f j  2  [n] n T 0 : P j a
1=2 +  =4 for some pivot ah; where h <  tg. If this set
is large enough to cover our remaining budget, then
we select any arbitrary k   k0 items from this set to
include in our partial solution T0. If not, we extend
our partial solution by including all such elements, i.e.
T00 =  T0 [  S , and we refer to the size of this new
partial solution as jT00j =  k00. We sample a smaller set
C a      of 10k log(1=) candidate items chosen at random

from all candidate items and compare every sampled
candidate item i  2  C a       to every item j  2  Wa     n T00.

Finally, we select a set C   C a      of k   k00 items (ties
broken arbitrarily) that do not lose to any other item
with a margin larger than 3=4 to include in our partial

solution T0, filling the remaining budget. Specifically,
C   C a      is a set of k      k00 items such that for any item i
2  C ,  and any item j  2  (Wa t  nT 00)nC, P j i  <  1=2+3=4.

Algor i thm 1 A  2-round algorithm for (; ) PA C  top-k
Input:  items [n], parameter k, accuracy , confi-
dence
Let A ;; q 4 maxf nk; n2=3g.
For each element i  2  [n], add i  to set A  with proba-
bility 2 log(9n=)= minfn2=3; n=kg
Output :  2-Round-Select([n]; A; k; ; ; q)

3.2 A  3-Round Algor i thm

We now present an algorithm for PA C  top-k selection
that has query complexity O(nk) using 3 rounds of
adaptivity. The following theorem describes the 3-
round upper bound.
Theorem 3. Given any set of items [n] with unknown
pairwise preferences P  2  [0; 1]nn satisfying S S T ,  any
integer k 2  [1; n=2], tolerance  2  (0; 1], and confidence

Algor i thm 2 2-Round-Select(X; A; k ; ; ; q ) Input:
set of items X ,  set of anchors A   X ,  cardi-nality k,
accuracy , confidence , maximum set size
q.
Let n =  jX j, 0 =  =4, and m (1=02) log(3n=).
Round 1 (in parallel): For every element a 2  A,
compare a against every item i  2  X ,  with each com-
parison repeated m times. Let P i a  be the observed
probability of i  beating a.
For every a 2  A, let Wa f i  2  S  : P i a   1=2+3=4g be
the set of elements in X  that beat a with margin at
least 3=4.
Sort A  using the following rule: for any pair i ; j  2
A  : P i j   1=2 +  =4, or 1=2      =4 <  P i j  <  1=2 +  =4 and
jWij <  jWj j, then i  precedes j  in the ordering. Else,
break ties arbitrarily. Let a1; a2; : : : ; ajAj be the
corresponding sorted order.
Let T0 ; ,  R ; ,  and i 1
while jT0 [  Wa j <  k and i   k do

T0 T0 [  Wa , R R  [  fai g, i i  +  1.
end while
Let t i, and let k0 jT 0j.
if Case 1: t =  k +  1 then

T T0 [  R a ,  where R a   R  n T0, jRa j =  k   k0

chosen arbitrarily.
else Case 2: t  k

if Case 2a: jWa n T0j  q then
Round 2 (in parallel): Perform all pairwise

comparisons between items in Wa     n T0 with each
comparison repeated m times.

Let T T0 [  C ,  where C   Wa     n T0 is
any arbitrary set of (k   k0) items such that for
any item i  2  C ,  and any item j  2  (Wa     n T 0) n C ,
P j i  <  1=2 +  3=4.

else Case 2b: jWa n T0j >  q
For all 1  h <  t, let S h f j  2  X  n T0 :

P j a        1=2 +  =4g be the set of items outside our
partial solution T0 that beat anchor ah with margin
at least =4. Let S [ h < t S h .

if jS j  k      k0 then
T T0 [  Sa ,  where S a   S , jSa j =  k      k0

chosen arbitrarily.
else

T00 T0 [  S , and let k00 jT00j
Round 2 (in parallel): Sample a set C a      of

6k log(3=) items uniformly at random from Wa nT00,
and compare every pair i ; j  : i  2  C a  ; j  2  Wa n T00

with each comparison repeated m times.
Let T T00 [  C ,  where C   C a      a set of k

k00 elements such that for any element i  2  C  and any
other item j  2  Wa n T00, P j i  <  1=2 +  3=4 (ties
broken arbitrarily).

end if
end if

end if
Output :  T , an (; k)-optimal subset of items
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 2  (0; 1], there exists an algorithm for (; )-PAC top-k
selection with query complexity O((1=2)nk log2(n=))
comparisons and at most 3 rounds of adaptivity.

The proof of the above theorem is given in the sup-
plementary material. Our 3-round algorithm, which is
formally presented as Algorithm 3, is a natural exten-
sion of the 2-round algorithm from the previous section,
with the key difference being the way it utilizes this
extra round of querying. As one might expect, we begin
by sampling a set A  of anchor items chosen at random.
In the 3-round algorithm, we sample a lot more anchors
than the 2-round algorithm, roughly maxf n; kg log n
in number, and use the first round to compare all pairs
of anchors in parallel up to a precision of =4. We use
the outcomes of these comparisons to prune the set of
anchors, retaining a set A k  of just the top-k anchors,
i.e. A k  is a set of k anchors such that there is no item
amongst the remaining anchors A  n A k  that beats any
anchor in A k  with an observed margin of at least =4.
The rest of the algorithm then proceeds identically to
the 2-round algorithm, using A k  as the effective set of
anchors with a smaller query budget of O(nk) in Case
2a, 2b in the next 2 rounds.

Algor i thm 3 A  3-round algorithm for (; ) PA C  top-k
Input:  items [n], parameter k, accuracy , confi-
dence
Let A ;; q 4 nk.
For each element i  2  [n], add i  to set A  with proba-
bility 2 log(9n=)= minf n; n=kg.
Round 0 (in parallel): For every pair of anchors
i; j  2  A, compare i  against j  with each comparison
repeated (1=(=4)2) log(9n=) times, and let P i j  be the
observed probability of i  beating j .
Let A k   A  be a set of k anchors such that for any
anchor i  2  Ak ,  and any anchor j  2  A  n Ak ,  P j i  <
1=2 +  =4 (ties broken arbitrarily).
Output :  2-Round-Select([n]; Ak ; k; ; ; q)

4  A  P A R A M E T E R I Z E D
A L G O R I T H M  F O R  ( ; ) - PA C
T O P - k  S E L E C T I O N

In this section, we further improve the query complex-
ity of our 3-round algorithm by log factors using few
additional rounds. We achieve this by designing a
parameterized algorithm whose query complexity and
adaptivity scales as a function of an input round param-
eter r  as described in the following theorem. Due to
space constraints, the details of this result are deferred
to the supplementary material.

Theorem 4. Given any items [n] with unknown pair-
wise preferences P  2  [0; 1]nn satisfying S S T ,  an
integer parameter k 2  [1; n=2], tolerance  2  (0; 1],

and confidence  2  (0; 1], there exists an algorithm
for ( ; ) -PAC top-k selection with query complexity O
(1=2 )(nk(log(r ) (n) + log(k=)) + k2 log2 k log(k=)) at
most (2r +  4) rounds of adaptivity for any in-
teger parameter r ,  where log(r ) (a) denotes the
it-erated logarithms of order r ,      i.e. log(r ) (a) =
max log log(r  1) (a) ; 1 and log(0) (a) =  a.

The above theorem establishes a non-trivial upper
bound on the tradeoff between query complexity and
round complexity for PA C  top-k identification under
SST.  In order to simplify the exposition, let k =
O(n= log2 n). Then, by setting r  =  1 we get a 5-round
algorithm with query complexity O nk log n log k , and
by setting r  =  log n we achieve the best complexity of O
nk log k . Note that the latter bound is away from the
lower bound of
(nk) (Section 2) by only a log k factor.

Corol lary 1. In the setting of Theorem 4, there exists
an algorithm for ( ; ) -PAC top-k identification with
query complexity O (1=2)(nk+k2 log2 k) log(k=) and
at most (2 log(n) +  4) rounds of adaptivity.

5 C O N C L U S I O N
We studied the problem of identifying a PA C  top-k
solution under the S S T  noise model for pairwise com-
parisons given limited rounds of parallel interaction
(adaptivity) with the comparison oracle. We estab-

lished a query complexity lower bound of
(nk) com-parisons, even given unbounded rounds of
adaptivity. This lower bound sharply contrasts with
the known (n log k) query complexity results for both,

the noisy comparison model and the S S T + S T I
model, which are special cases of S S T .  We further

complemented this lower bound with new algorithmic
results for this setting. Specifically, we designed a 2-
round algorithm with a tight query complexity of

O(nk +  n4=3), and a 3-round algorithm that
achieved a nearly optimal query complexity O(nk).

In addition to these spe-cific constant-round
algorithms, we also designed a

parameterized algorithm which achieves an improved
query complexity of O(nk(log(r) (n) + log k) + k2 log3 k)
in 2r +  4 adaptive rounds for any input parameter r.
This final result is interesting in its own right, as it
establishes a non-trivial upper bound on the tradeoff
between query complexity and round complexity.

In the future, it would be interesting to understand if
we can bridge the polylogarithmic gap in our lower and
upper bounds for 2 and 3 rounds. Also, is it possible
to have low adaptive and sample efficient algorithms
for top-k identification for even more general pairwise
comparison models, such as medium stochastic transi-
tivity (MST), or is SST the weakest model under which
such a result is possible?
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Supplementary Material:
P A C  Top-k Identification under S S T  in Limited Rounds

A Concentration Inequalities

In this section, we record all of the concentration inequalities used in our proofs. These are all well known
inequalities; see Cesa-Bianchi and Lugosi (2006) for example.

Theorem 5 (Multiplicative Chernoff Bounds). Let X1 ; : : : ; Xn  be independent Bernoulli random variables, with
X  denoting their sum, and E ( X )  =   denoting their mean. Then for any 0 <   <  1, we have that

Pr ( jX       j  )   2 exp
 2

Theorem 6 (Hoeffding’s Inequality). Let X1 ; : : : ; Xn  be independent Bernoulli random variables, with X  =
(1=n) i = 1  X i  denoting their empirical mean. Then for any  >  0, we have that

Pr
 

X       E ( X )
 
 
 
 2 exp

 
 2n2

B Proof of Theorem 1

In this section, we formally prove our lower bound, which is restated here for convenience.

Theorem 1. For any n and any k  n=2,8, there exist pairwise preferences over n items satisfying the S S T
condition such that any algorithm for ( ; ) -PAC top-k identification needs to perform at least nk=4 pairwise
comparisons for   k=(8(n      1)).

Proof. By Yao’s minimax theorem, it suffices to exhibit a distribution  over instances ( S S T  models) such that any
deterministic algorithm that succeeds on  with probability at least 1      k=(8(n      1)) performs at least nk=4
comparisons.

Distr ibut ion  over instances: Each instance in  contains a partition of n items into 3 groups G1 ; G2 ; G3 where
G1 and G3 contain one item each, and G2 contains n      2 items. The pairwise preferences are defined as follows:

8
1 ; 8i 2  G1 [  G2 ; j  2  G2

P i j  = 1 ; 8i 2  G2 ; j  2  G3 :
1 +  ; i  2  G1 ; j  2  G3

The distribution  over instances is generated by uniformly at random choosing an element i  2  [n] for G1,
uniformly at random choosing an element j  2  [n] n f ig  for G3 and placing the rest in G2. Hence, there are a total of
n(n      1) instance in the support of . Note that any subset S  of k items that includes the element j  above but not
element i  is invalid. Moreover, this is the only invalid solution.

Now, suppose there is a deterministic algorithm, say A  that succeeds on  with probability  1   k=8(n   1) by
making at most q queries. We will show that q must be greater than nk=4. We will give algorithm A  extra power–
whenever it compares any two items i  and j  even once, the true preference probability P i j  between them is revealed.
Note that this can only reduce the query complexity of A  as any algorithm that uses samples drawn according to
P i j  instead of actual value of P i j  can simply draw its own Bernoulli samples and use these samples.

8 The assumption k  n=2 is without loss of generality, because otherwise, we can equivalently identify the bottom-(n  k)
items instead.
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Observe that as long as A  has not compared i  and j ,  then answer is always “equal”. Moreover, as soon as A
compared i  and j ,  it can output a valid solution– choose any k items that do not include j ,  for instance. So this
means that the decision tree representing A  is simply a path. Hence, without loss of generality, we can assume
that the algorithm A  queries a set Q of pairs of items where jQj =  q.

Pr [A outputs a valid set S  of k items on I ]

=  Pr[(i; j ) 2  Q]  Pr[A answers correctlyj(i; j ) 2  Q]
+  Pr[(i; j ) 2  Q]  Pr[A answers correctlyj(i; j ) 2  Q]

( i )   q  1 + 1    q
 1   

k(n      k)      q

2      

k
2

k kn=2      kn=4
( i i )  2(n      1)                  2(n      1)                    n(n      1)

2
=  

2(n      1) 
+  1   

2(n      1) 
  

4(n      1) 
+  

4(n      1)2

2
=  1   

4(n      1) 
+  

4(n      1)2

 1   
4(n      1) 

+  
8(n      1)

 1   
8(n      1) 

;

where the inequality ( i )  above follows from the fact that A  fails if ( j ; i )  sits on one of the unqueried edge slots in
jS j  jV n S j, and inequality ( i i )  follows from the fact that q  nk=4.

C Proof of Theorem 2

In this section, we will formally analyze the 2-round algorithm presented in Section 3.1 to establish Theorem 2,
restated below for convenience.
Theorem 2. Given any set of items [n] with unknown pairwise preferences P  2  [0; 1]nn satisfying S S T ,  any
integer k 2  [1; n=2], tolerance  2  (0; 1], and confidence  2  (0; 1], there exists an algorithm for ( ; ) -PAC top-k
identification with query complexity O((1=2) maxfn4=3; nkg log2(n=)) and at most 2 rounds.

We shall first prove the correctness guarantee of Algorithm 1, i.e. for any item i  2  T in the set T of k items
returned by this algorithm, there is no item j  2  [n] n T amongst the remaining items with preference probability P j i

1=2 +  . We shall then bound the total number of comparisons made by this algorithm. The fact that this algorithm
requires at most 2 rounds of adaptivity is clear.

Given the underlying preferences P  satisfying SST,  let  be the true strict ordering consistent with P . For any item
i  2  [n], we use rank(i) to refer to the position of item i  in  (items with smaller rank being superior to items with larger
rank). Given any 0 <    1, we begin by defining the following three events

E1 : =  8i; j 2  [n]; jp̂  j       pi j j <  
4

E2 : =  8i 2  [n]; 9a 2  A  : rank(i) <  rank(a) <  rank(i) +  n2=3

E3 : =  jAj >  maxfn1=3; kg log(4n=), and

jAj <  4 maxfn1=3; kg log(9n=)

Lemma 1. Let E =  E1 \  E2 \  E3. Then event E occurs with probability at least 1      =3.

Proof. To  prove this claim, we shall show via a standard Hoeffing’s inequality that the complement E1; E2; E2 of
each event occurs with probability at most =9, which after a simple union bound implies the complement E of
event E occurs with probability at most =3.
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To  bound the probability of event E1, observe that for any fixed pair i ; j  2  [n], and any precision  >  0, the
Hoeffding’s inequality bounds the probability of deviation as

Pr(jP i j       P i j j   )   2 exp
 

 2m2;

where P i j  =  E ( P i j )  is the true preference probability between i; j , and P i j  is the observed preference probability
from m independent comparisons between i; j . Therefore, by a union bound over all pairs i ; j  2  [n], we have

Pr(E1 )  2
2

exp
 

 2m2;

which is at most =9 for m  (1=2) log(3n=). The careful reader will recognize that we in fact do not compare all pairs
of items, just O(n4=3 +  nk) of them. However, for ease of exposition, we consider an alternative sampling model,
where the outcomes of m independent comparisons between all pairs of items are drawn in advance, and when the
algorithm queries a pair i ; j  2  [n], these pre-drawn outcomes are then revealed to the algorithm.

To bound the probability of event E2, consider any item i  2  [n], and let Ei;2 be the event where there is no anchor a 2
A  such that rank(i) <  rank(a) <  rank(i) +  n2=3, i.e. we do not sample any anchor amongst items in the interval
[rank(i); : : : ; rank(i) +  n2=3]. Since every item is sampled into the set of anchors with probability at least
2 log(n=)=n2=3, we expect 2 log(n=) anchors to be chosen from the said interval. By the multiplicative Chernoff
bound, we have that the probability of this event is bounded as

Pr(Ei;2 )  exp  
2 log(9n=)

 
 
9n

:

Taking a union bound over all items i  2  [n] gives us that Pr(E2 )  =9.

To  bound the probability of event E3, observe that in expectation, the number of anchors sampled is
2 maxfn1=3; kg log(9n=). By the multiplicative Chernoff bound, we have the probability of event E3 is bounded as

Pr(E3 )  2 exp  
maxfn1=3; kg log(9n=)

;

which is at most =9 for either k or n larger than a small constant.

Henceforth, we shall assume that event E occurs. We first note an implication of event E that will be useful for
proving the main theorem.
Corol lary 2. Let a 2  A  be any anchor. For  any item i  2  [n] such that pia   1=2 +  , it must be that i  2  Wa .
Furthermore for any item j  2  [n] such that pj a   1=2 +  =2, it must be that j  2= Wa. Therefore, Wa  f i  2  [n] :
rank(i) <  rank(a)g, and jWaj <  rank(a).

Proof. (of theorem 2)

Correctness. We shall first prove that Algorithm 1 produces a valid (; k)-optimal subset of items with probability
at least 1      =3 conditioned on event E.

We begin by showing that the initial k0  k items added into the partial solution T0 are an (; k0)-optimal subset of
[n]. For the sake of contradiction, let us assume that T0 is not an (; k0)-optimal subset, i.e. there exists some pair
of items i  2  T0, j  2  [n] n T0 such that P j i   1=2 +  . Since i  2  T0, there must have been some anchor a 2  A  such
that i  2  Wa due to which i  was added into set T0 for the first time. By assumption of P j i ,  and Corollary 2, it
must be that rank(j ) <  rank(i) <  rank(a), and since P j i   1=2 +  , it must be that pj a   1=2 +   due SST .
Therefore, by Corollary 2, it must be that j  2  Wa. Since T was constructed by including the entire set Wa,
it must be that j  2  T , which is a contradiction. Therefore, we can conclude that the partial solution T0

constructed thus far is (; k0)-optimal.

Next, we shall prove that the remaining k      k0 items added into the partial solution T0, creating our final solution T
are an (; k      k0)-optimal subset of the remaining items [n] n T0. This together with our previous claim would imply
that T is (; k)-optimal.
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Case 1: (t =  k +  1).

In this case, we have that T0 =  [ k       Wa . Therefore, by Corollary 2, it must be that for any a 2  R ; j  2= T0, p j a  <
1=2 +  , implying that every item a 2  R  n T0 is (; 1)-optimal amongst the remaining items, and can be added into
set T0. Furthermore, it is also easy to see that jR  n T0j  k      k0, as jRj =  k by definition of Case 1. Thus, T =  T0 [  R a
is (; k)-optimal.

Case 2: (t  k).

In this case, we will first show that there exists a set of k      k0 items in Wa n T0 itself that is (; k      k0)-optimal
amongst all remaining items [n] n T0. By definition of Case 2, it must be that jT [  Wa j >  k which implies that jWa

nT j >  k  k0. For the sake of contradiction, let us assume that Wa nT0 does not contain an (; k  k0)-optimal subset
amongst all remaining items, i.e. there exists a pair of items i  2  Wa n T 0; j 2  ([n] n T 0) n Wa     such that p j i   1=2 +  .
Due to Corollary 2, it must be that rank(j ) <  rank(i) <  rank(at), and since p j i   1=2 +  , it must be that pj a
1=2 +   due to SST .  Therefore, by Corollary 2, it must be that j  2  Wa , which is a contradiction to the
assumption j  2  ([n] n T 0) n Wa . Therefore, it suffices to look inside set Wa n T0 alone to find an (; k      k0)-optimal
subset of the remaining items [n] n T0 to fill the available budget, and the rest can be safely discarded.

Case 2a: (t  k and jWat n T0j  4 maxf
p

nk; n2=3g).

In this case, we compare all pairs of items in the set Wa n T0 and select a set C   Wa n T0 of (k      k0) items such that for
any item i  2  C ,  and any item j  2  (Wa n T 0) n C ,  P j i  <  1=2 +  3=4. Therefore by Event E1, it must be that for any
pair i  2  C ; j  2  (Wa t  n T 0) n C ,  p j i  <  1=2 +  . Thus, T =  T0 [  C  is (; k)-optimal.

We further note that if t =  1, i.e. jWa j >  k, then we must fall into this Case 2a. To  see this, consider the
anchor amin 2  A  of minimum rank. Observe that Event E2 guarantees the existence of an anchor a 2  A  such that
rank(a) <  n2=3, and Corollary 2 consequently guarantees that jWaj <  n2=3. Therefore, we have jWaj <
rank(amin) <  n2=3. the first anchor a1 can have one of two possible relations to amin: (1) either a1 =  amin, which
directly puts us in Case 2a as proved earlier, or (2) a1 =  amin, which implies 1=2      =4 <  P a  a <  1=2 + =4, and
jWa j  jWa j due to our sorting rule, which also puts us in Case 2a. The case a1 =  amin and P a  a  1=2 + =4 is
refuted by Event E1. Henceforth, we shall assume that at least one anchor has been parsed, i.e. t >  1.

Case 2b: (t  k and jWat n T0j >  4 maxf nk; n2=3g)

Let amax : =  argmaxa i 2 A : i < t  rank(ai) be the highest ranking anchor amongst a1; : : : ; at 1 (such an anchor must
exist since t >  1), and let kmin : =  argmini2[n]: i2= T rank(i) be the lowest ranking “true” top-k item not already
included into our partial solution T0 (such an item must exist since jT0j <  k). Since kT 

in 2= T0, it must be that
kT 2= W T          . This can only occur if P      0 0         <  1=2 +  3=4, implying P      0 0         <  1=2 +   due to Corollary 2.

m i n      m a x m i n      m a x

Therefore, due to SST, every item i  2= T0 with rank(i)  rank(aT ) must be (; 1)-optimal amongst the remaining
set of items [n] n T0, and any arbitrary subset of k   k0 items from this set can be added to set T0. Let
G  : =  f i  : i  2= T 0; rank(i)  rank(aT )g be this set. Consider any set S h  =  f j  2  [n] n T0 : P j a        1=2 +  =4g for 1
h <  t. By event E1, it must be that for any item i  2  Sh ,  P i a h  >  1=2, and therefore, P i a m a x  

>  1=2 by definition of
anchor aT , due to which we can conclude that S h   G  for every 1  h <  t. Therefore, if we have that jS j
=  j [ h < t  Sh j   k      k0, then any arbitrary k      k0 items from S  can be added into T0 to fill the available budget. If
not, then we extend our partial solution T00 =  T0 [  S  by including all of S . Therefore, for any (; 1)-optimal
item i  2  G  n T00 that was left out, it must be that P i a T <  1=2 +  =4, which would imply P i a T <  1=2 +  =2 due
to Event E1.

Let a[n]nT 0 

: =  argmin rank(a) be the lowest ranking anchor amongst the unparsed anchors at; : : : ; ajAj.
We again have the following two cases:

Case 2b (1): at =  a[n]nT 0 

.

By Event E2, we have rank(at) <  rank(aT 0       
)  +  n2=3, and by Corollary 2, we can conclude that Wa     can only

contain items with rank at most rank(at). However, as proved earlier, any item with rank at most rank(aT ) is
(; 1)-optimal amongst the remaining items. Therefore, within Wa t  n T00, at most n2=3 items will have rank larger
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than rank(amax), and therefore might not be (; 1)-optimal. However, observe that jWat

n T00j >  jWat n T0j      k >  4 maxf
p

nk; n2=3g      k >  3n2=3;

with the first inequality following due to the fact that T00 =  T0 [  S  and jS j <  k      k0, and the second inequality
following by definition of Case 2b. Therefore, at least a 2=3 fraction of items within Wa n T00 will have rank at
most rank(aT ) and consequently, will belong to set G  (are (; 1)-optimal). By a standard Chernoff bound, the
probability that we do not sample at least k   k0 items from set G  in the set C a      of 6k log(3=) items chosen
uniformly at random from Wa n T00 is at most =3. Let us condition on the event that we sample at least k      k00 items
from set G  into set C a  , and let C 0  G  be this corresponding set. We shall finally prove that for any item i  2  C0, there
is no item j  2  Wa n T00 such that P j i   1=2 +  3=4. To  see this, observe that for any item i  2  C0, there is no item in j
2  Wa     n T00 with pairwise preference P j i   1=2 +  =2. This follows from our previously
proved claim that for any i  2  G  n T 00; P 0        <  1=2 +  =2, implying that for any pair i ; j  2  G  n T00; P     <  1=2 +  =2

m a x

due to SST.  Event E1 subsequently guarantees that for any pair i ; j  2  G  n T 00; Pij <  1=2 +  3=4. Lastly, for any pair
i  2  G  n T 00; j 2  (Wa t  n T00) n G; P j i  <  1=2 since rank(j ) <  rank(i). Event E1 subsequently guarantees that P j i  <
1=2 +  =4 for such pairs. Therefore, conditioning on sampling at least k      k0 items from set G  into set C a  , we are
guaranteed to find such a set C0.

Case 2b (2): at =  a[n]nT 0 

.

We shall further assume that rank(at) >  rank(a[n]nT 0 

)  since otherwise, every item in Wa n T00 is (; 1)-optimal
amongst the remaining items in [n] n T00 and the rest of the proof would follow identically to that of Case 2b (1).
If rank(at) >  rank(a[n]nT 0 

), then by our sorting rule for set A, it must be the case that P  [ n ] n T 0            <  1=2 +  =4,
m i n

implying P  [ n ] n T 0 <  1=2 +  =2 due to Event E1, which also refutes the other possibility of P  [ n ] n T 0  1=2 +  =4.
m i n m i n

Therefore, due to SST, it must be that for any item j  2  [n] : rank(a[n]nT )  rank(j ) <  rank(at), P j a      <  1=2 + =2.
Therefore, by Corollary 2, Wa     cannot contain any item with rank larger than rank(a[n]nT 0 

). The rest of the proof
is now identical to that of Case 2b (1).

Since event E occurs with probability at least 1      =3, and conditioned on event E, the algorithm succeeds with
probability at least 1      =3 in Case 2b, we can conclude that the algorithm succeeds in returning a set T , which is an
(; k)-optimal subset of [n] with probability at least 1      .

Rounds and Q uer y  Complexity.  It is clear that the algorithm has at most 2 sequential rounds of queries,
with the total number of queries bounded by O (nmjAj) in the first round, and one of either O m maxfnk; n4=3g
or O (nmk log(1=))) in the second round. Therefore, the total number of comparisons is bounded by
O (1=2) maxfn4=3; nkg log2(n=) .

D Proof of Theorem 3

In this section, we will formally analyze the 3-round algorithm presented in Section 3.2 to establish Theorem 3,
restated below for convenience.

Theorem 3. Given any set of items [n] with unknown pairwise preferences P  2  [0; 1]nn satisfying S S T ,  any
integer k 2  [1; n=2], tolerance  2  (0; 1], and confidence  2  (0; 1], there exists an algorithm for ( ; ) -PAC top-k
selection with query complexity O((1=2)nk log2(n=)) comparisons and at most 3 rounds of adaptivity.

This analysis is almost identical to the proof of Theorem 2, with a few minor differences. We include the entire
proof here nevertheless. We shall first prove the correctness guarantee of Algorithm 3, i.e. for any item i  2  T in
the set T of k items returned by this algorithm, there is no item j  2  [n] n T amongst the remaining items with
preference probability P j i   1=2 +  . We shall then bound the total number of comparisons made by this algorithm.
The fact that this algorithm requires at most 3 sequential rounds of querying is clear.

Given the underlying preferences P  satisfying SST,  let  be the true strict ordering consistent with P . For any
item i  2  [n], we use rank(i) to refer to the position of item i  in  (items with smaller rank being superior to items
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with larger rank). Given any 0 <    1, we begin by defining the following three events

E1 : =  8i; j 2  [n]; jp̂  j       pi j j <

E2 : =  8i 2  [n]; 9a 2  A  : rank(i) <  rank(a) <  rank(i) +  
p

n

E3 : =  jAj >  maxf n; kg log(9n=); and

jAj <  4 maxf n; kg log(9n=)

Lemma 2. Let E =  E1 \  E2 \  E3. Then event E occurs with probability at least 1      =3.

Proof. To  prove this claim, we shall show via a standard Hoeffing’s inequality that the complement E1; E2; E2 of
each event occurs with probability at most =9, which after a simple union bound implies the complement E of
event E occurs with probability at most =3.

To  bound the probability of event E1, observe that for any fixed pair i ; j  2  [n], and any precision  >  0, the
Hoeffding’s inequality bounds the probability of deviation as

Pr(jP i j       P i j j   )   2 exp
 

 2m2;

where P i j  =  E ( P i j )  is the true preference probability between i; j , and P i j  is the observed preference probability
from m independent comparisons between i; j . Therefore, by a union bound over all pairs i ; j  2  [n], we have

Pr(E1 )  2 
2     

exp  2m2     ;

which is at most =9 for m  (1=2) log(3n=). The careful reader will recognize that we in fact do not compare all pairs
of items, just O(nk) of them. However, for ease of exposition, we consider an alternative sampling model, where the
outcomes of m independent comparisons between all pairs of items are drawn in advance, and when the
algorithm queries a pair i ; j  2  [n], these pre-drawn outcomes are then revealed to the algorithm.

To bound the probability of event E2, consider any item i  2  [n], and let Ei;2 be the event where there is no anchor a 2
A  such that rank(i) <  rank(a) <  rank(i) + n, i.e. we do not sample any anchor amongst items in the
interval [rank(i); : : : ; rank(i) + n]. Since every item is sampled into the set of anchors with probability at least
2 log(n=)= n, we expect 2 log(n=) anchors to be chosen from the said interval. By the multiplicative Chernoff
bound, we have that the probability of this event is bounded as

Pr(Ei;2 )  exp  
2 log(9n=)

 
 

 
:

Taking a union bound over all items i  2  [n] gives us that Pr(E2 )  =9.

To  bound the probability of event E3, observe that in expectation, the number of anchors sampled is
2 maxf n; kg log(9n=). By the multiplicative Chernoff bound, we have the probability of event E3 is bounded as

Pr(E3 )  2 exp  
maxf

p
n; kg log(9n=)

;

which is at most =9 for either k or n larger than a small constant.

Henceforth, we shall assume that event E occurs. We first note an implication of event E that will be useful for
proving the main theorem.

Corol lary 3. Let a 2  A k  be any anchor amongst the pruned set of anchors. For any item i  2  [n] such that pia
1=2 +  , it must be that i  2  Wa. Furthermore for any item j  2  [n] such that pj a   1=2 +  =2, it must be that j  2= Wa.
Therefore, Wa  f i  2  [n] : rank(i) <  rank(a)g, and jWaj <  rank(a).

Proof. (of theorem 3)
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Correctness. We shall first prove that Algorithm 1 produces a valid (; k)-optimal subset of items with probability
at least 1      =3 conditioned on event E.

We begin by showing that the initial k0  k items added into the partial solution T0 are an (; k0)-optimal subset of
[n]. For the sake of contradiction, let us assume that T0 is not an (; k0)-optimal subset, i.e. there exists some pair
of items i  2  T0, j  2  [n] n T0 such that P j i   1=2 +  . Since i  2  T0, there must have been some anchor a 2  A k  such
that i  2  Wa due to which i  was added into set T0 for the first time. By assumption of P j i ,  and Corollary 2, it
must be that rank(j ) <  rank(i) <  rank(a), and since P j i   1=2 +  , it must be that pj a   1=2 +   due SST .
Therefore, by Corollary 2, it must be that j  2  Wa. Since T was constructed by including the entire set Wa,
it must be that j  2  T , which is a contradiction. Therefore, we can conclude that the partial solution T0

constructed thus far is (; k0)-optimal.

Next, we shall prove that the remaining k      k0 items added into the partial solution T0, creating our final solution T
are an (; k      k0)-optimal subset of the remaining items [n] n T0. This together with our previous claim would imply
that T is (; k)-optimal.

Case 1: (t =  k +  1).

In this case, we have that T0 =  [ k       Wa . Therefore, by Corollary 3, it must be that for any a 2  R ; j  2= T0, p j a  <
1=2 +  , implying that every item a 2  R  n T0 is (; 1)-optimal amongst the remaining items, and can be added into
set T0. Furthermore, it is also easy to see that jR  n T0j  k      k0, as jRj =  k by definition of Case 1. Thus, T =  T0 [  R a
is (; k)-optimal.

Case 2: (t  k).

In this case, we will first show that there exists a set of k      k0 items in Wa n T0 itself that is (; k      k0)-optimal
amongst all remaining items [n] n T0. By definition of Case 2, it must be that jT [  Wa j >  k which implies that jWa

nT j >  k  k0. For the sake of contradiction, let us assume that Wa nT0 does not contain an (; k  k0)-optimal subset
amongst all remaining items, i.e. there exists a pair of items i  2  Wa n T 0; j 2  ([n] n T 0) n Wa     such that p j i   1=2 +  .
Due to Corollary 2, it must be that rank(j ) <  rank(i) <  rank(at), and since p j i   1=2 +  , it must be that pj a
1=2 +   due to SST .  Therefore, by Corollary 3, it must be that j  2  Wa , which is a contradiction to the
assumption j  2  ([n] n T 0) n Wa . Therefore, it suffices to look inside set Wa n T0 alone to find an (; k      k0)-optimal
subset of the remaining items [n] n T0 to fill the available budget, and the rest can be safely discarded.

Case 2a: (t  k and jWat n T0j  4
p

nk).

In this case, we compare all pairs of items in the set Wa n T0 and select a set C   Wa n T0 of (k      k0) items such that for
any item i  2  C ,  and any item j  2  (Wa n T 0) n C ,  P j i  <  1=2 +  3=4. Therefore by Event E1, it must be that for any
pair i  2  C ; j  2  (Wa t  n T 0) n C ,  p j i  <  1=2 +  . Thus, T =  T0 [  C  is (; k)-optimal.

We further note that if t =  1, i.e. jWa j >  k, then we must fall into this Case 2a. To  see this, consider
the anchor amin 2  A  of minimum rank. Observe that Event E2 guarantees the existence of an anchor a 2  A
such that rank(a) < n, and Corollary 3 consequently guarantees that jWaj < n. Therefore, we have
jWa j <  rank(amin) <       n. The first anchor a1 can have one of two possible relations to amin: (1) either
a1 =  amin, which directly puts us in Case 2a as proved earlier, or (2) a1 =  amin. In this case, we again have to
deal with two cases: either amin 2= Ak ,  in which case it must be that P a a      <  1=2 +  =4 due to our selection
rule, implying P a a       <  1=2 +  =2 due to Event E1. In this case, due to S S T ,  it must be that for any item i
: rank(amin) <  rank(i) <  rank(a1), P i a       <  1=2 +  =2, implying i  2= Wa      by Corollary 3. Therefore, it must be
that jWa j  rank(amin) < n, putting us in Case 2a. Otherwise, amin 2  A k  in which case it must be that
1=2   =4 <  P a         a       <  1=2 +  =4 and jWa j  jWa j due to our sorting rule, which again puts us in Case
2a. The case amin 2  A k  and P a  a  1=2 +  =4 is refuted by Event E1. Henceforth, we shall
assume that at least one anchor has been parsed, i.e. t >  1.

Case 2b: (t  k and jWat n T0j >  4
p

nk)

Let amax : =  argmaxa i 2 A : i < t  rank(ai) be the highest ranking anchor amongst a1; : : : ; at 1 (such an anchor must
exist since t >  1), and let kmin : =  argmini2[n]: i2= T rank(i) be the lowest ranking “true” top-k item not already
included into our partial solution T0 (such an item must exist since jT0j <  k). Since kT 

in 2= T0, it must be that
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kT 0        
2= W T          . This can only occur if ^ 0 0         <  1=2 +  3=4, implying P      0 0         <  1=2 +   due to Corollary 2.

m i n      m a x m i n      m a x

Therefore, due to SST, every item i  2= T0 with rank(i)  rank(aT ) must be (; 1)-optimal amongst the remaining
set of items [n] n T0, and any arbitrary subset of k   k0 items from this set can be added to set T0. Let
G  : =  f i  : i  2= T 0; rank(i)  rank(aT )g be this set. Consider any set S h  =  f j  2  [n] n T0 : P j a        1=2 +  =4g for 1
h <  t. By event E1, it must be that for any item i  2  Sh ,  P i a h  >  1=2, and therefore, P i a m a x  

>  1=2 by definition of
anchor aT , due to which we can conclude that S h   G  for every 1  h <  t. Therefore, if we have that jS j
=  j [ h < t  Sh j   k      k0, then any arbitrary k      k0 items from S  can be added into T0 to fill the available budget. If
not, then we extend our partial solution T00 =  T0 [  S  by including all of S . Therefore, for any (; 1)-optimal
item i  2  G  n T00 that was left out, it must be that P i a T <  1=2 +  =4, which would imply P i a T <  1=2 +  =2 due
to Event E1.

Let a[n]nT 0 

: =  argmin rank(a) be the lowest ranking anchor amongst the unparsed anchors at; : : : ; ak.
We again have the following two cases:

Case 2b (1): at =  a[n]nT 0 

.

By Event E2, we have rank(at) <  rank(aT 0       
)  +  

p
n,  and by Corollary 2, we can conclude that Wa     can only

contain items with rank at most rank(at). However, as proved earlier, any item with rank at most rank(aT ) is
(; 1)-optimal amongst the remaining items. Therefore, within Wa     n T00, at most n items will have rank larger
than rank(amax), and therefore might not be (; 1)-optimal. However, observe that

jWat n T00j >  jWat n T0j      k >  4
p

nk      k >  3
p

nk;

with the first inequality following due to the fact that T00 =  T0 [  S  and jS j <  k      k0, and the second inequality
following by definition of Case 2b. Therefore, at least a 2=3 fraction of items within W n T00 will have rank at
most rank(aT 0       

)  and consequently, will belong to set G  (are (; 1)-optimal). By a standard Chernoff bound, the
probability that we do not sample at least k   k0 items from set G  in the set C a      of 6k log(3=) items chosen
uniformly at random from Wa n T00 is at most =3. Let us condition on the event that we sample at least k      k00 items
from set G  into set C a  , and let C 0  G  be this corresponding set. We shall finally prove that for any item i  2  C0, there
is no item j  2  Wa n T00 such that P j i   1=2 +  3=4. To  see this, observe that for any item i  2  C0, there is no item in j
2  Wa     n T00 with pairwise preference P j i   1=2 +  =2. This follows from our previously
proved claim that for any i  2  G  n T 00; P 0        <  1=2 +  =2, implying that for any pair i ; j  2  G  n T00; P     <  1=2 +  =2

m a x

due to SST.  Event E1 subsequently guarantees that for any pair i ; j  2  G  n T 00; Pij <  1=2 +  3=4. Lastly, for any pair
i  2  G  n T 00; j 2  (Wa t  n T00) n G; P j i  <  1=2 since rank(j ) <  rank(i). Event E1 subsequently guarantees that P j i  <
1=2 +  =4 for such pairs. Therefore, conditioning on sampling at least k      k0 items from set G  into set C a  , we are
guaranteed to find such a set C0.

Case 2b (2): at =  a[n]nT 0 

.

We shall further assume that rank(at) >  rank(a[n]nT 0 

)  since otherwise, every item in Wa n T00 is (; 1)-optimal
amongst the remaining items in [n] n T00 and the rest of the proof would follow identically to that of Case 2b (1).
If rank(at) >  rank(a[n]nT 0 

), then by our sorting rule for set Ak ,  it must be the case that P  [ n ] n T 0            <  1=2 +  =4,
m i n

implying P  [ n ] n T 0 <  1=2 +  =2 due to Event E1, which also refutes the other possibility of P  [ n ] n T 0  1=2 +  =4.
m i n m i n

Therefore, due to SST, it must be that for any item j  2  [n] : rank(a[n]nT )  rank(j ) <  rank(at), P j a t  <  1=2 + =2.
Therefore, by Corollary 2, Wa     cannot contain any item with rank larger than rank(a[n]nT ). The rest of the proof
is now identical to that of Case 2b (1).

Since event E occurs with probability at least 1      =3, and conditioned on event E, the algorithm succeeds with
probability at least 1      =3 in Case 2b, we can conclude that the algorithm succeeds in returning a set T , which is an
(; k)-optimal subset of [n] with probability at least 1      .

Rounds and Q uer y  Complexity.  It is clear that the algorithm has at most 3 sequential rounds of queries,
with the total number of queries bounded by O mjAj2      in the first round, O(nmk) in the second round, and

one of either O (nmk) or O (nmk log(1=))) in the third round. Therefore, the total number of comparisons is
bounded by O (1=2)nk log2(n=) .
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E Almost Optimal Query Complexity for Top-k Identification in O(log n) Rounds

In this section we will design an algorithm that further improves the query complexity achieved by the 3-rounds
algorithm by a log(n) factor using O(log n) rounds. The following theorem gives the main result, which is
restated here for convenience.

Theorem 4. There exists an algorithm that given any integer k 2  [n=2], rounds r ,  set of items [n] with an
unknown underlying preference matrix P  2  [0; 1]nn satisfying the SST condition, tolerance , confidence , returns

a (; k)-optimal set of items with probability at least 1       using O     2   nk(log(r ) (n) +  log(k=)) +  k2 log3(k=)
comparisons and 2r +  4 rounds of adaptivity.

Corol lary 1. In the setting of the above theorem, there exists an algorithm that returns a (; k)-optimal set of
items with probability at least 1       using O   

2  (nk +  k2 log2(k=)) log(k=) comparisons and 2 log(n) +  4 rounds of
adaptivity.

We will first present our algorithm and following by its analysis.

E .1 Algor i thm

A  common approach in designing an algorithm for top-k identification is to find an anchor that has rank close to k,
and then find all items that are better than this anchor. However, as discussed in the introduction (Section 1), the
main difficulty under our PA C  SST setting is that such filtering of items based on comparisons with the anchor is
difficult. This is because we operate under  precision whereas the gaps between items might be arbitrarily small.
More precisely, even if we find an anchor of rank close to k, the gap between the top ranked items and the anchor
might be too small, so we might not be able to filter out any of these items as we are using a very coarse funnel.
However, one can observe that the anchor can be a part of the PA C  top-k solution if these gaps are very small.
Hence, the idea is to find k unique anchors of rank close to k, so that we have at least k items to fall back, in case
we are not able to find better items.

Therefore, the first step in this algorithm is to select a partition of n items into k groups fS i g i 2 [ k ] ,  where each
item is assigned to one of the k groups chosen uniformly at random. Using a standard concentration bound, one can
show that there is at least one item a of rank O(k log k) in each group S i ,  which can potentially serve as an
anchor. Hence, the next step is to find such an anchor from each group. However, since we are operating under
the ( ; ) -PAC setting, we might not be able to find this item a exactly. Instead, we are only guaranteed to find an
item ai which is 0-close to a for a given precision 0. In other words, we can only find an item ai in S i  with 0-rank at
most O(k log k), i.e. the number of items that are 0-better than ai are at most O(k log k). In our analysis we show
that these anchors can act as coarse funnels and filter items that are -better than them if we set 0 to be =3. If there
are very few items that are -better than any anchor in fai gk then we can fall back to
some of these anchors.

In order to find these anchors fai gk       , we call our Top-1 algorithm (Algorithm 6) in parallel for each group in
f S i g k       . The Top-1 algorithm guarantees that each ai is an =3-best item in S i  which in turn guarantees that ai has
=3-rank of O(k log k). This Top-1 algorithm is discussed in detail in Appendix F  and is similar to the top-1
algorithm of Cohen-Addad et al. (2020) designed for the noisy comparison model. These k parallel calls to the
Top-1 algorithm use the first r  +  4 rounds of adaptivity.

Now, once we have found these k anchors, we need to find all the items that are -better than any of these
anchors. A  simple approach is to simply compare all the n items to each of the anchors O(log n) times and find all -
better items. However, the complexity of this operation will be O(nk log n) which can be off by a log n factor for small
k. Hence, in order to improve upon this we use an elimination algorithm (Algorithm 5) similar to the
Aggress ive-E l im inat ion algorithm of Agarwal et al. (2017). This algorithm does not use log n comparisons
for each pair, rather it eliminates items in sequential rounds increasing the number of comparisons per pair in
each round. We make k parallel calls to the E l i m inat e  subroutine, where the i-th call is with respect to anchor a .
This subroutine uses r  rounds of interaction, and in round r  compares each of the remaining items with the anchor
tr : =  O( "2   log(r ) (n)) times. It then calculates empirical estimates of the preference probabilities of these
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items against the anchor. Based on these empirical estimates it decides to retain a 1=log(r 1) (n) fraction of the
current items for the next round, and eliminate all the other items. The elimination strategy gets more aggressive
over rounds as log(r  1) (n) increases monotonically with r. The E l i m inat e  subroutine corresponding to anchor ai
returns all the items in [n] which are -better than ai and necessarily excludes any item which is =3-worse than
ai.

The final step in the algorithm is to combine all the ‘good’ items obtained through parallel calls to E l i m inat e
into one group and perform all pairwise comparisons within that group. The set of top-k items is then any k items
that are not -worse than any other remaining items. The pseudo-code for the algorithm is given in Algorithm 4.

Algor i thm 4 ( ; ) -PAC top-k
1: Input :  items [n], parameter k, rounds 2r +  4, accuracy , confidence
2: Let fS i g k be a partition of [n] created by assigning each element j  2  [n] to S   fS i g k uniformly at

random.
3: In Parallel for all i  2  [k], ai Top-1(S i ; r  +  3; =3; =4k) (Algorithm 6):
4: In Parallel for all i  2  [k], Wi Eliminate([n]; r; ai ; =4k; =2; =6; k log(4k=)) 5:
Let W [ i 2 [ k ] W i

6: Compare all pairs in W , O(log(4k=)= )  times.
7: Output:  if jW j  k then output an (; k)-optimal solution in W , else output W plus an arbitrary set of k

jW j anchors from fa i g i = 1  n W

Algor i thm 5 Eliminate(S; r; a; ; ; "; k0 )
1: Input:  set of items S , remaining rounds r, m : =  jSj, anchor a, confidence , accuracy , precision ", upper

bound k0

2: Let tr : =   2   log(r ) (m) +  log (8k0=) .
3: Compare each item i  2  S  with a for tr times.
4: Let P i a  be the empirical probability of i  beating a
5: Sort the items in decreasing order of P i a  values
6: if r  =  1 then
7: Return:  S0 f i  2  S  : P i a   1 +  g 8:
else
9: Let mr  1 : =  k0 +  log ( r      1 ) ( m )  and let S0 be the mr  1 top most items according to P

10: end if
11: if mr  1  2k0 then
12: Return:  Eliminate(S 0; 1; a; =2; ; "; k0).
13: else
14: Return:  El iminate(S 0 ; r       1; a; =2; ; "; k0).
15: end if

E .2 Analysis

In order to prove Theorem 4, we will use the following theorem about the correctness of Top-1 algorithm
(Algorithm 6) given in Appendix F.

Theorem 7 (Top-1 Correctness). For any set S   [n], rounds r   1, confidence  >  0, accuracy  >  0, the Top-1
algorithm given in Algorithm 6 returns an item a such that any i  2  S  satisfies P i a  <  2 +  . The algorithm succeeds
with probability at least 1      , uses O     " 2   log(r ) (n) +  log (1=) comparisons and at most r + 4  rounds
of adaptivity.

For a given  >  0 and j  2  [n], we will define the -rank of j  to be the number of items that beat j  with probability
more than 1 +  , i.e.

rank(j ) : =  j f i  2  [n] : P i j   1=2 +  gj

The first lemma bounds the -rank of each of the k anchors selected using the Top-1 algorithm.
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Lemma 3 (Bounded rank). Given  >  0, for each i  2  [k], if the Top-1 algorithm succeeds in finding an =3-best
item ai in S i ,  then the =3-rank of ai is bounded as

rank=3(ai)  k log(k=) ;

with probability at least 1      .

Proof. For the set S i  in the partition, consider the “true” best item a 2  S i ,  i.e. the item with the best rank in S i .
We begin by claiming that for all i  2  [k]; rank(a)  k log(k=) with probability at least 1  . To  see this, consider a
thought experiment of assigning items to these partitions sequentially in order of rank. Each item is assigned to one
of the sets in the partition uniformly at random. For a particular partition S i ,  rank(a) >  k log(k=) can only
happen if no element was assigned to S i  from the first k log(k=) items. The probability of this event is bounded
by (1      1=k)k log(k=)  =k. Taking a union bound over all partition gives us our claimed bound on the rank of the
“true” best element in every partition.

Assuming every run of the Top-1 algorithm succeeds in identifying an =3-best element ai from their corresponding
input set S i ,  we can further claim that for all i  2  [k]; rank=3(ai)  k log(k=). This follows by definition of S S T ,
and the fact that ai is an =3-best item in S i .  To  see this, consider any item b 2  [n] for whom rank(ai) >
rank(b) >  rank(a) where rank(i) represents the rank of i  in the sorted order with 1 being the rank of the best item.
We must have that P a a       maxfPab ; Pba g. However, we must have that P a a      <  1=2 + =3, which gives us that Pba     <
1=2 +  =3. Therefore, the only elements in [n] that can beat element ai with probability at least 1=2 +  =3 are the
ones whose rank is smaller than rank(a). Therefore, rank=3(ai)  rank(a)  k log(k=).

The above lemma guarantees that the number of elements in [n] that can beat any anchor ai with a margin of at
least =3 is at most k log(k=). The next lemma will show that the set of items that are returned by each call to the
E l i m inat e  subroutine is smaller than k log(k=).

Lemma 4 ( E l i m inate  Correctness). Given set S   [n], rounds r   1, anchor a 2  [n], confidence  >  0,
accuracy  >  0 and precision 0 <  " <  , let S  =  f i  2  S  : P i a   1 +   +  "g, Sbad =  f i  2  S  : P i a  <  1 +     "g, k0  jS n
Sbadj and m =  jSj. The E l i m inat e  subroutine given in Algorithm 5 returns a set S0 such that S   S0 and S0 \  Sbad =
; .  The algorithm succeeds with probability at least 1       and uses at most r  rounds of adaptivity and makes at
most 10m  log(r ) (m) +  log (8k0=)     comparisons.

Proof. The proof of this lemma is very similar to the proof of correctness for the Aggress ive-E l iminat ion
algorithm (Agarwal et al., 2017), and we only provide it here for the sake of completeness. Given a target number of
rounds r, the E l i m inat e  algorithm clearly uses at most r  rounds of adaptivity. We first start with the following
claim:

Claim 1. For any round r   1, and any item i  2  S ,  Pr P i a       P i a   "  4k 0 log( r      1 ) ( m
):

Proof. By Hoeffding’s inequality, we have,

Pr P i a       P i a   "  2 exp  2"2  tr

 2 exp  log(r ) (m)      log(8k0=)

 
4k0  log(r  1) (m)

as log(r ) (m) =  log log(r  1) (m).

The proof of correctness of the algorithm is by induction on the number of rounds r. In the following, we use A r
to denote Algorithm 5 with input number of rounds r.
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B a s e  case: For r  =  1, Claim 1 ensures that for any i  2  S , Pr P i a       P i a
  "

 
 4k l og ( 0 ) ( m )       

   as log(r  1) (m)

=  log(0) (m) =  m by definition. By taking a union bound over all m items, we obtain that w.p.
 1      , simultaneously for all items i  2  S , P i a       P i a  <  ". Then, for any arm i  2  S  such that P i a   2 +   +  ", we will

have that P i a   1 +  . Hence, the set S0 will contain all items from S . On the other hand, for any item
i  2  S  such that P i a  <  1 +        " we will have that P i a  <  1 +  . Hence, no arm from Sbad will be included in S0.
This proves the base case.

Induction step: Suppose the lemma is true for all number of rounds smaller than r   log (m)   3 and we
prove it for the case of r  rounds, i.e., for A  .

n o
Let S r  be the set that is given as input to Ar .  Let I  =      i  2  S  : P i a  <  P i a       "     and J  =  f j  2  Sbad : P j a  >  P j a + "g.
We know that for all i  2  S  and j  2  Sbad, P i a  P j a   2". As the algorithm identifies a set of mr  1  k0 + log ( r      1 ) ( m

 
)

items to recurse upon, we have,
!

Pr ( A r  errs)  Pr (jI j >  0) +  Pr     jJ j  >  
log

(
r  1) (mr )

+  Pr ( A r  1 errs j E ) (1)

where E denotes the event that jI j =  0 and jJ j  log ( r      1 )
(m

r

 
) , i.e., the complement of the first two events above.

In the following, we bound probability of each event above. We first have,

Pr (jI j >  0)  
X  

Pr P i a  <  P i a       "
i 2 S

Claim 1 k0  
4k0  log

(
r  1) (mr )

 
4

(2)

where the last inequality is true because log(r  1) (mr )  1.

We next bound the probability that jJ j >  log ( r      1 )
(m

r

 
) . For all j  2  Sbad, we define an indicator random variable

Y j  which is 1 iff P j a  >  P j a  +  ". We further define Y  : = j  Y j .  We have,

E [Y ] =  
j      

E [Y j ]  =  
j      

Pr P j a  >  P j a  +  " Claim 1      
j       4k0  log

(r
 1) (mr ) 

 
4  log

(
r  1) (mr )

Notice that Y  =  jJ j; hence,

Pr jJ j >  
log(r  1 ) ( m r )

!  

 Pr Y  >  
4 

 E [Y ]
 
 (3)

where the last inequality is by Markov bound.

We calculate the probability of error of A r  1 conditioned on that none of the two events above happens (i.e., the
event E ). In that case, we have S   S r  1 and S r  1 \  Sbad  log ( r      1 ) ( m

 
). As r   log (mr )      3 (by the lemma statement),

we have r       1  (log (mr )      1)      3  log (log mr )      3  log (mr  1)      3. Therefore, the input to A r  1 satisfies the
assumptions in the lemma statement as well and since the confidence parameter for A r  1 is =2, we obtain that
Pr ( A r  1 errs j E )  =2. By plugging in this bound, together with Eq (2) and Eq (3) to Eq (1), we obtain that A r  is
also a -error algorithm, finalizing the proof of induction step.

Next, the final step is to prove an upper bound on the query complexity of A r  for any r   1. The proof is again
by induction on the number of rounds r. The base case of r  =  1 is trivially true. Now suppose the bounds are
true for all integers smaller than r   log (m)      3 and we prove the lemma for the case of r  rounds, i.e., for A r .
Note that the total number of comparisons in A r  is the sum of comparisons in step 3 (which is m  tr ) and the
comparisons in the recursive call which we bound below. For the recursive call there are two cases to consider
depending on which of step 12 (Case 1) or step 14 (Case 2) in Algorithm 5 is being executed.
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Case 1:     In this case A 1  is called with the confidence parameter =2 on at most 2k0 items. We do not use the
induction hypothesis here and instead argue directly that,

cost(Ar ) =  m  tr +  cost(A1)

 m  tr +  
4k0 

 (log (2k0) +  log (16k0=))

 m  tr +  
8k0 

 log (8k0=)

 m  tr +  
8m 

 log (8k0=)

=  
2m 

 log(r ) (m) +  log (8k0=)
 
+  

8m 
 log (8k0=) <

10m 
 log(r ) (m) +  log (8k0=)

which proves the induction step in this case.

(as k0  m)

(by plugging in the value of tr )

Case 2:     In this case, A r  1 is called with the confidence parameter =2 on at most lo g ( r      1 ) ( m )  items. Hence, by
induction, the total number of comparisons made in recursive calls is

cost(Ar ) =  m  tr +  cost(Ar  1)

 m  tr +  
"2  log

(
r  1) (m) 

 log(r  1) (2m) +  log (16k0=)

 m  tr +  
"2  log

(
r  1) (m) 

 log(r  1) (m) +  1 +  log (8k0=) +  1

20m 22m  log (8k0=) 
r

"2               "2  log(r  1) (m)

<  
2m 

 log(r ) (m) +  log (8k0=)
 
+  

8m  log(r ) (m) 
+  

8m  log (8k0=)

where in the last inequality we used the bound on tr plus the fact that log(r ) (m)  16 as r   log (m)      3. This
concludes the proof of Lemma 4.

Proof. (of Theorem 4) We will first show that our algorithm will return a (; k)-optimal solution with probability at
least 1      . Using the correctness of the Top-1 algorithm (Theorem 7) and the union bound, we can argue that we will
find the =3-best item ai for each S i ,  with probability at least 1      =4. Using Lemma 3, for each i  2  [k], the =3-rank
of ai is at most k log(4k=) with probability at least 1      =4. For i  2  [k], since rank=3(ai)  k log(4k=), the size of jS n
Sbadj is at most k log(4k=) for the i-th call to E l i m inate  which fulfills the requirement for k in Lemma 4. Hence,
using Lemma 4, w.p.  1      =4, the E l i m inat e  algorithm succeeds for each of the k calls.

Now, we show that an (; k)-optimal solution is contained in the set A  =  fai gk         of anchors and the surviving
items W . In order to see this, consider the “worst” anchor aw 2  A, i.e. the anchor with the worst rank. Then we
have by property of our algorithm that the set W must contain all items that beat this worst anchor aw with a
margin of at least . Hence, any item i  2  W is of higher rank than any other item j  2  W as otherwise j  would
also have to be contained in W . If jW j  k then it is easy to see that the exact top-k items are a subset of W ,
and we can find a PA C  top-k solution with probability at least 1      =4 by comparing all items in W a sufficient

number of times. Moreover, for any item that is excluded from the set W , it must be that this item cannot beat
any of the k anchors with margin of at least =3, therefore making any anchor a valid substitute for the rejected

item. Hence, if jW j <  k then we can output the set W along with any k      jW j anchors in A n W chosen arbitrarily.
By uniqueness of the anchors, we are guaranteed that there are at least k   jW j anchors in A  n W . This will
constitute a valid (; k)-optimal solution. Moreover, using the union bound the probability of failure is at most .

Finally, we need to prove a bound on the number of comparisons.     The k calls to the Top-1 algorithm
take O( n k ( l o g ( r ) ( n ) + l o g ( k = ) ) )  comparisons in total. The k calls to E l i m inat e  also take O( n k ( l o g ( r ) ( n ) + l o g ( k = ) ) )



2

2

2

2

P A C  Top-k  Identification under  S S T  in  L i m i t e d  Ro u n ds

comparisons in total. Since, the size of W is at most k log(4k=), comparing all items in W against each other
also takes O( k 2  log 3 (k=) ). After summing these, we get the final bound on query complexity.

F A n  Algorithm for P A C  Top-1 Identification

In this section we will present an algorithm for top-1 identification that is used as a subroutine in our top-k
algorithm in Section E.  This algorithm is similar to the algorithm of Cohen-Addad et al. (2020) and is again
based on the idea of finding a good ‘anchor’ arm and filtering items based on this anchor. Precisely, we chose a
uniformly at random set S  of size roughly n2=3 and find an =3-best item in this set using our 2-round algorithm.
Similar, to the analysis of our top-k algorithm in Section E,  we can show that this item has =3-rank of O(n1=3).
We then use the E l i m inat e  algorithm discussed in Section E  to find all items that are -better than a,
and exclude all items that are =3-close. Since, there are not more than O(n1=3) such items we can compare
them against each other in order to find an -best item.

Algor i thm 6 ( ; ) -PAC top-1
1: Input :  items [n], rounds r  +  4, accuracy , confidence
2: Sample a set S  by including each i  2  [n] in S  with probability 1=n1=3

3: Call the 2-round algorithm (Algorithm 1) over S  to find an (=3; =4)-PAC top-1 item a in S  4:
W Eliminate([n]; r; a; =4; =2; =6; 1) (Algorithm 5)
5: Compare all pairs in W , O(log(1=)=2) times.
6: Output:  If jW j  1 then output an (; 1)-optimal item in W , else output a

We now give a proof of correctness for this algorithm.

Proof. (of Theorem 7) We begin by showing that rank=3(a) =  n1=3  log(4=) w.p.  1   =4. Firstly, observe that
the best item in S  has rank at most n1=3  log(4=) w.p.  1      =4. For the sake of contradiction, suppose that this
is not true, i.e. no item from the top n1=3  log(4=) items makes it into S . The probability of this is bounded as
(1      1=n1=3)n1=3 log(4=)  =4 which leads to a contradiction. Secondly, using the correctness of our 2-round
algorithm (Theorem 2), we can argue that item a is =3-close to the best item in S  w.p.  1   =4. Finally,
using an argument similar to Lemma 3 we can show that a being =3-close to the best item in S  implies that
rank=3(a) =  n1=3  log(4=).

Now, using the correctness of E l i m inate  (Lemma 4), w.p.  1      =4 the set W is such that any item -better than a is
returned and any item i  with P i a  <  1 +  =3 is excluded. This implies that the size of W is at most n1=3  log(4=).
Moreover, if jW j  1 then the true best item is contained in w as otherwise it would lead to a contradiction. Hence,
in this case we can find an (; 1)-optimal item in W w.p.  1      =5 using sufficient number of comparisons. If jW j =  0
then item a is a valid solution as there is no other item that is -better than a. Hence, we can find a valid solution
in both cases. Moreover, using the union bound this happens w.p.  1 .

Now, we count the number of comparisons used by the algorithm. Note that using the Hoeffding’s concentration
inequality, the number of items in S  is at most 2n2=3 with very high probability. Hence, the 2-round algorithm
over S  takes at most O(n8=9 log2(n=)=2) =  O(n log(1=)=2) comparisons. The E l i m inate  subroutine takes
O( n ( l o g ( r ) ( n ) + l o g ( 1=) ) )  comparisons. Since, the size of W is at most n1=3 log(4=), comparing all items in W
against each other also takes O( n 2 = 3  log3 (1=) ) =  O(n log(1=)=2) comparisons. After summing these, we get the final
bound on query complexity.


